1
|
Zuloaga R, Ahumada-Langer L, Aedo JE, Molina A, Valdés JA. Early metabolic and transcriptomic regulation in rainbow trout (Oncorhynchus mykiss) liver by 11-deoxycorticosterone through two corticosteroid receptors pathways. Comp Biochem Physiol A Mol Integr Physiol 2024; 298:111746. [PMID: 39304115 DOI: 10.1016/j.cbpa.2024.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Cortisol hormone is considered the main corticosteroid in fish stress, acting through glucocorticoid (GR) or mineralocorticoid (MR) receptor. The 11-deoxycorticosterone (DOC) corticosteroid is also secreted during stress and could complement the cortisol effects, but this still not fully understood. Hence, we evaluated the early transcriptomic response of rainbow trout (Oncorhynchus mykiss) liver by DOC through GR or MR. Thirty juvenile trout were pretreated with an inhibitor of endogenous cortisol synthesis (metyrapone) by intraperitoneal injection in presence or absence of GR (mifepristone) and MR (eplerenone) pharmacological antagonists for one hour. Then, fish were treated with a physiological DOC dose or vehicle (DMSO-PBS1X as control) for three hours (n = 5 per group). We measured several metabolic parameters in plasma, together with the liver glycogen content. Additionally, we constructed cDNA libraries from liver of each group, sequenced by HiseqX Illumina technology and then analyzed by RNA-seq. Plasma pyruvate and cholesterol levels decreased in DOC-administered fish and only reversed by eplerenone. Meanwhile, DOC increased liver glycogen contents depending on both corticosteroid receptor pathways. RNA-seq analysis revealed differential expressed transcripts induced by DOC through GR (448) and MR (1901). The enriched biological processes to both were mainly related to stress response, protein metabolism, innate immune response and carbohydrates metabolism. Finally, we selected sixteen genes from enriched biological process for qPCR validation, presenting a high Pearson correlation (0.8734 average). These results describe novel physiological effects of DOC related to early metabolic and transcriptomic responses in fish liver and differentially modulated by MR and GR.
Collapse
Affiliation(s)
- Rodrigo Zuloaga
- Programa de Doctorado en Biotecnología, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile
| | - Luciano Ahumada-Langer
- Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile
| | - Jorge Eduardo Aedo
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca 3466706, Chile
| | - Alfredo Molina
- Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile
| | - Juan Antonio Valdés
- Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile.
| |
Collapse
|
2
|
Ouyang A, Zhang M, Yuan G, Liu X, Su J. Chitooligosaccharide boosts the immunity of immunosuppressed blunt snout bream against bacterial infections. Int J Biol Macromol 2023; 242:124696. [PMID: 37224898 DOI: 10.1016/j.ijbiomac.2023.124696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/02/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023]
Abstract
The immunosuppression hazard of fish brought by intensive aquaculture needs to be addressed urgently, while chitooligosaccharide (COS) shows the potential application in the prevention the immunosuppression of fish due to its superior biological properties. In this study, COS reversed the cortisol-induced immunosuppression of macrophages and improved the immune activity of macrophages in vitro, promoting the expression of inflammatory genes (TNF-α, IL-1β, iNOS) and NO production, and increasing the phagocytic activity of macrophages. In vivo, the oral COS was absorbed directly through the intestine, significantly ameliorating the innate immunity of cortisol-induced immunosuppression of blunt snout bream (Megalobrama amblycephala). Such as facilitated the gene expression of inflammatory cytokines (TNF-α, IL-1β, IL-6) and pattern recognition receptors (TLR4, MR) and potentiated bacterial clearance, resulting in an effective improvement in survival and tissue damage. Altogether, this study demonstrates that COS offers potential strategies in the application of immunosuppression prevention and control in fish.
Collapse
Affiliation(s)
- Aotian Ouyang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengwei Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China.
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China
| |
Collapse
|
3
|
Katsu Y, Shariful IMD, Lin X, Takagi W, Urushitani H, Kohno S, Hyodo S, Baker ME. N-terminal domain regulates steroid activation of elephant shark glucocorticoid and mineralocorticoid receptors. J Steroid Biochem Mol Biol 2021; 210:105845. [PMID: 33652098 DOI: 10.1016/j.jsbmb.2021.105845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/29/2020] [Accepted: 02/04/2021] [Indexed: 12/23/2022]
Abstract
Orthologs of human glucocorticoid receptor (GR) and human mineralocorticoid receptor (MR) first appear in cartilaginous fishes. Subsequently, the MR and GR diverged to respond to different steroids: the MR to aldosterone and the GR to cortisol and corticosterone. We report that cortisol, corticosterone and aldosterone activate full-length elephant shark GR, and progesterone, which activates elephant shark MR, does not activate elephant shark GR. However, progesterone inhibits steroid binding to elephant shark GR, but not to human GR. Together, this indicates partial functional divergence of elephant shark GR from the MR. Deletion of the N-terminal domain (NTD) from elephant shark GR (truncated GR) reduced the response to corticosteroids, while truncated and full-length elephant shark MR had similar responses to corticosteroids. Swapping of NTDs of elephant shark GR and MR yielded an elephant shark MR chimera with full-length GR-like increased activation by corticosteroids and progesterone compared to full-length elephant shark MR. Elephant shark MR NTD fused to GR DBD + LBD had similar activation as full-length MR, indicating that the MR NTD lacked GR-like NTD activity. We propose that NTD activation of human GR evolved early in GR divergence from the MR.
Collapse
Affiliation(s)
- Yoshinao Katsu
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Faculty of Science, Hokkaido University, Sapporo, Japan
| | | | - Xiaozhi Lin
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Chiba, Japan
| | - Hiroshi Urushitani
- Department of Food and Nutrition, The University of Aizu, Junior College Division, Fukushima, Japan
| | - Satomi Kohno
- Department of Biology, St. Cloud State University, St. Cloud, MN, USA
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Chiba, Japan
| | - Michael E Baker
- Division of Nephrology-Hypertension, Department of Medicine, University of California, San Diego, CA, USA.
| |
Collapse
|
4
|
Romero A, Vega M, Santibáñez N, Spies J, Pérez T, Enríquez R, Kausel G, Oliver C, Oyarzún R, Tort L, Vargas-Chacoff L. Salmo salar glucocorticoid receptors analyses of alternative splicing variants under stress conditions. Gen Comp Endocrinol 2020; 293:113466. [PMID: 32194046 DOI: 10.1016/j.ygcen.2020.113466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 11/21/2022]
Abstract
Cortisol is the main corticosteroid in teleosts, exerting multiple functions by activating glucocorticoid receptors (GR). Most teleost species have two GR genes, gr-1 and gr-2. Some teleost also presents two splice variants for gr-1; gr-1a and gr-1b. In this study, we report for first time the presence of 2 homeologous genes for gr-1 and gr-2, located on chromosomes 4q-13q (gr-1) and 5p-9q (gr-2) of the Salmo salar genome. Furthermore, our results describe gr-1 splice variants derived from chromosome 4 and 13, sharing typical teleost GR elements such as the 9 amino acid insertion in the DNA binding domain (DBD) and variations in the length of the ligand binding domain (LBD). Three splice variants were predicted for the gr-2 homeologous gene in chromosome 5, with differences of a 5 amino acid insertion in the DBD. We also identified an uncommon truncated gr-2 gene in chromosome 9 in salmon, which lacked the DBD and LBD domains. Finally, by designing specific primers for each predicted splice variant, we validated and evaluated the expression of their transcripts in S. salar subjected to stress caused by stocking density. Differences were observed in the expression of all identified mRNAs, revealing that gr-1 and gr-2 splice variants were upregulated in head kidney and gills of post-stressed fish. In conclusion, our findings suggest that from specific salmonid genomic duplication (125 MYA), two gene copies of each GR receptor were generated in S. salar. The identified splice variants could contribute to the variability of GR receptor complex modulation expression during stressful events, leading to variations in physiological responses in fish.
Collapse
Affiliation(s)
- Alex Romero
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Chile.
| | - Matías Vega
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Chile
| | - Natacha Santibáñez
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Chile
| | - Johana Spies
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile; Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Tatiana Pérez
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Chile
| | - Ricardo Enríquez
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile.
| | - Gudrun Kausel
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral De Chile, Chile.
| | - Cristian Oliver
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Chile
| | - Ricardo Oyarzún
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
5
|
Madaro A, Kristiansen TS, Pavlidis MA. How Fish Cope with Stress? Anim Welf 2020. [DOI: 10.1007/978-3-030-41675-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Chen J, Peng C, Yu Z, Xiao L, Yu Q, Li S, Zhang H, Lin H, Zhang Y. The Administration of Cortisol Induces Female-to-Male Sex Change in the Protogynous Orange-Spotted Grouper, Epinephelus coioides. Front Endocrinol (Lausanne) 2020; 11:12. [PMID: 32082256 PMCID: PMC7005586 DOI: 10.3389/fendo.2020.00012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/08/2020] [Indexed: 11/13/2022] Open
Abstract
In this study, we injected cortisol into the protogynous orange-spotted grouper (Epinephelus coioides) to investigate the role of this hormone in sex change. Following injection, we evaluated gonadal changes, serum levels of steroid hormones, and sex-related gene expression during the processes of cortisol-induced sex change and cortisol withdrawal in the orange-spotted grouper. Cortisol treatment caused the degeneration of oocytes and induced sex change in a dose-dependent manner. Over the long-term, we observed a significant increase in serum 11-ketotestosterone (11-KT) levels in all cortisol-treated groups, although levels of 17β-estradiol did not change significantly. Consistent with the elevation of serum 11-KT levels, the expression of genes related to testicular development was also significantly up-regulated in the cortisol-treated groups. Based on our results, we propose that cortisol may trigger masculinization by inducing the synthesis of 11-KT and by directly activating the expression of sex-related genes. Furthermore, we found that cortisol-induced sex change was not permanent and could be reversed after the withdrawal of cortisol treatment.
Collapse
Affiliation(s)
- Jiaxing Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Cheng Peng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Zeshu Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ling Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Fisheries College, Guangdong Ocean University, Zhanjiang, China
- *Correspondence: Shuisheng Li
| | - Haifa Zhang
- Marine Fisheries Development Center of Guangdong Province, Huizhou, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Marine Fisheries Development Center of Guangdong Province, Huizhou, China
- Yong Zhang
| |
Collapse
|
7
|
Katsu Y, Kohno S, Oka K, Lin X, Otake S, Pillai NE, Takagi W, Hyodo S, Venkatesh B, Baker ME. Transcriptional activation of elephant shark mineralocorticoid receptor by corticosteroids, progesterone, and spironolactone. Sci Signal 2019; 12:12/584/eaar2668. [DOI: 10.1126/scisignal.aar2668] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mineralocorticoid receptor (MR) is a nuclear receptor and part of a large and diverse family of transcription factors that also includes receptors for glucocorticoids, progesterone, androgens, and estrogens. The corticosteroid aldosterone is the physiological activator of the MR in humans and other terrestrial vertebrates; however, its activator is not known in cartilaginous fish, the oldest group of extant jawed vertebrates. Here, we analyzed the ability of corticosteroids and progesterone to activate the full-length MR from the elephant shark (Callorhinchus milii). On the basis of their measured activities, aldosterone, cortisol, 11-deoxycorticosterone, corticosterone, 11-deoxcortisol, progesterone, and 19-norprogesterone are potential physiological mineralocorticoids. However, aldosterone, the physiological mineralocorticoid in humans and other terrestrial vertebrates, is not found in cartilaginous or ray-finned fish. Although progesterone activates MRs in ray-finned fish, progesterone does not activate MRs in humans, amphibians, or alligator, suggesting that during the transition to terrestrial vertebrates, progesterone lost the ability to activate the MR. Both elephant shark MR and human MR are expressed in the brain, heart, ovary, testis, and other nonepithelial tissues, suggesting that MR expression in diverse tissues evolved in the common ancestor of jawed vertebrates. Our data suggest that 19-norprogesterone– and progesterone-activated MR may have unappreciated functions in reproductive physiology.
Collapse
|
8
|
Modulation of stress and innate immune response by corticosteroids in pacu (Piaractus mesopotamicus). Comp Biochem Physiol A Mol Integr Physiol 2019; 231:39-48. [PMID: 30703560 DOI: 10.1016/j.cbpa.2019.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/15/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
Understanding how stress and corticosteroid modulates the innate immune response is one of the keys to improving productivity and reducing losses in intensive aquaculture. Thus, we investigated the effects of dietary corticosteroids (7 days; long-term exposure) and transport (4 h; short-term stress) on stress and innate immune response in pacu. For this end, fish were fed with diets containing dexamethasone (100 mg kg-1) or hydrocortisone (200 mg kg-1), followed by transport, and then were intraperitoneally inoculated with heat-killed Aeromonas hydrophila or PBS (sham-inoculation). Fish were sampled after a 7-day feeding period, immediately post-transport and 24 h post-transport and inoculation. The dietary treatment of corticosteroids decreased resting cortisol levels by inhibiting the production of cortisol on the hypothalamus pituitary interrenal-axis. Further, both corticosteroids reduced hematocrit, red blood cells, haemoglobin and hemolytic activity of the complement, while they increased glucose levels and serum lysozyme concentrations. The transport increased cortisol and glucose levels and reduced the humoral immune defenses such as serum lysozyme concentration and hemolytic activity of the complement system. Interestingly, the hemolytic activity of the complement system increased sharply in fish fed with corticosteroids immediately post-transport, when they had their HPI-axis partially suppressed by the corticosteroids. This finding suggests a stimulatory effect of the catecholamines released during the transport on the activity of the complement system. Our results are highly valuable to understanding the stress and innate immune responses to long-term exposure to corticosteroids and short-term stress in fish and may provide insights into how corticosteroids modulate the innate immune system.
Collapse
|
9
|
Sanhueza N, Donoso A, Aguilar A, Farlora R, Carnicero B, Míguez JM, Tort L, Valdes JA, Boltana S. Thermal Modulation of Monoamine Levels Influence Fish Stress and Welfare. Front Endocrinol (Lausanne) 2018; 9:717. [PMID: 30559717 PMCID: PMC6287116 DOI: 10.3389/fendo.2018.00717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022] Open
Abstract
Fish are ectotherm organisms that move through different thermal zones according to their physiological requirements and environmental availability, a behavior known as thermoregulation. Thermoregulation in ectothermic animals is influenced by their ability to effectively respond to thermal variations. While it is known that ectotherms are affected by thermal changes, it remains unknown how physiological and/or metabolic traits are impacted by modifications in the thermal environment. In captivity (land-based infrastructures or nets located in the open sea), fish are often restricted to spatially constant temperature conditions within the containment unit and cannot choose among different thermal conditions for thermoregulation. In order to understand how spatial variation of temperature may affect fish welfare and stress, we designed an experiment using either restricted or wide thermal ranges, looking for changes at hormonal and molecular levels. Also, thermal variability impact on fish behavior was measured. Our results showed that in Atlantic salmon (Salmo salar), a wide thermal range (ΔT 6.8°C) was associated with significant increases in monoamines hormone levels and in the expression of clock genes. Aggressive and territoriality behavior decreased, positively affecting parameters linked to welfare, such as growth and fin damage. In contrast, a restricted thermal range (ΔT 1.4°C) showed the opposite pattern in all the analyzed parameters, therefore, having detrimental effects on welfare. In conclusion, our results highlight the key role of thermal range amplitude on fish behavior and on interactions with major metabolism-regulating processes, such as hormone performance and molecular regulatory mechanisms that have positive effects on the welfare.
Collapse
Affiliation(s)
- Nataly Sanhueza
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research, Biotechnology Center, University of Concepción, Concepción, Chile
| | - Andrea Donoso
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research, Biotechnology Center, University of Concepción, Concepción, Chile
| | - Andrea Aguilar
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research, Biotechnology Center, University of Concepción, Concepción, Chile
| | - Rodolfo Farlora
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Beatriz Carnicero
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research, Biotechnology Center, University of Concepción, Concepción, Chile
| | - Jesús Manuel Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Lluis Tort
- Departamento de Biología Celular, Inmunología i Fisiologia Animal, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Juan Antonio Valdes
- Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Sebastian Boltana
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research, Biotechnology Center, University of Concepción, Concepción, Chile
| |
Collapse
|
10
|
Das C, Thraya M, Vijayan MM. Nongenomic cortisol signaling in fish. Gen Comp Endocrinol 2018; 265:121-127. [PMID: 29673844 DOI: 10.1016/j.ygcen.2018.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 10/17/2022]
Abstract
Glucocorticoids are critical regulators of the cellular processes that allow animals to cope with stressors. In teleosts, cortisol is the primary circulating glucocorticoid and this hormone mediates a suite of physiological responses, most importantly energy substrate mobilization that is essential for acute stress adaptation. Cortisol signaling has been extensively studied and the majority of work has been on the activation of the glucocorticoid receptor (GR), a ligand-bound transcription factor, and the associated downstream transcriptional and protein responses. Despite the role of this hormone in acute stress adaptation, very few studies have examined the rapid effects of this hormone on cellular function. The nongenomic corticosteroid effects, which are rapid (seconds to minutes) and independent of transcription and translation, involve changes to second-messenger pathways and effector proteins, but the primary receptors involved in this pathway activation remain elusive. In teleosts, a few studies suggested the possibility that GR located on the membrane may be initiating a rapid response based on the abrogation of this effect with RU486, a GR antagonist. However, studies have also proposed other signaling mechanisms, including a putative novel membrane receptor and changes to membrane biophysical properties as initiators of rapid signaling in response to cortisol stimulation. Emerging evidence suggests that cortisol activates multiple signaling pathways in cells to bring about rapid effects, but the underlying physiological implications on acute stress adaptation are far from clear.
Collapse
Affiliation(s)
- Chinmayee Das
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Marwa Thraya
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
11
|
Valenzuela CA, Zuloaga R, Mercado L, Einarsdottir IE, Björnsson BT, Valdés JA, Molina A. Chronic stress inhibits growth and induces proteolytic mechanisms through two different nonoverlapping pathways in the skeletal muscle of a teleost fish. Am J Physiol Regul Integr Comp Physiol 2017; 314:R102-R113. [PMID: 28978511 DOI: 10.1152/ajpregu.00009.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic stress detrimentally affects animal health and homeostasis, with somatic growth, and thus skeletal muscle, being particularly affected. A detailed understanding of the underlying endocrine and molecular mechanisms of how chronic stress affects skeletal muscle growth remains lacking. To address this issue, the present study assessed primary (plasma cortisol), secondary (key components of the GH/IGF system, muscular proteolytic pathways, and apoptosis), and tertiary (growth performance) stress responses in fine flounder ( Paralichthys adspersus) exposed to crowding chronic stress. Levels of plasma cortisol, glucocorticoid receptor 2 ( gr2), and its target genes ( klf15 and redd1) mRNA increased significantly only at 4 wk of crowding ( P < 0.05). The components of the GH/IGF system, including ligands, receptors, and their signaling pathways, were significantly downregulated at 7 wk of crowding ( P < 0.05). Interestingly, chronic stress upregulated the ubiquitin-proteasome pathway and the intrinsic apoptosis pathways at 4wk ( P < 0.01), whereas autophagy was only significantly activated at 7 wk ( P < 0.05), and meanwhile the ubiquitin-proteasome and the apoptosis pathways returned to control levels. Overall growth was inhibited in fish in the 7-wk chronic stress trial ( P < 0.05). In conclusion, chronic stress directly affects muscle growth and downregulates the GH/IGF system, an action through which muscular catabolic mechanisms are promoted by two different and nonoverlapping proteolytic pathways. These findings provide new information on molecular mechanisms involved in the negative effects that chronic stress has on muscle anabolic/catabolic signaling balance.
Collapse
Affiliation(s)
- Cristián A Valenzuela
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad Ciencias Biológicas , Santiago , Chile.,Interdisciplinary Center for Aquaculture Research , Concepción , Chile
| | - Rodrigo Zuloaga
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad Ciencias Biológicas , Santiago , Chile.,Interdisciplinary Center for Aquaculture Research , Concepción , Chile
| | - Luis Mercado
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso , Valparaíso , Chile
| | - Ingibjörg Eir Einarsdottir
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg , Gothenburg , Sweden
| | - Björn Thrandur Björnsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg , Gothenburg , Sweden
| | - Juan Antonio Valdés
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad Ciencias Biológicas , Santiago , Chile.,Interdisciplinary Center for Aquaculture Research , Concepción , Chile.,Universidad Andres Bello, Centro de Investigación Marina Quintay, Facultad de Ecología y Recursos Naturales , Valparaíso , Chile
| | - Alfredo Molina
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad Ciencias Biológicas , Santiago , Chile.,Interdisciplinary Center for Aquaculture Research , Concepción , Chile.,Universidad Andres Bello, Centro de Investigación Marina Quintay, Facultad de Ecología y Recursos Naturales , Valparaíso , Chile
| |
Collapse
|
12
|
Bury NR. The evolution, structure and function of the ray finned fish (Actinopterygii) glucocorticoid receptors. Gen Comp Endocrinol 2017; 251:4-11. [PMID: 27838382 DOI: 10.1016/j.ygcen.2016.06.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/20/2016] [Accepted: 06/28/2016] [Indexed: 01/31/2023]
Abstract
Basal ray-finned fish (Actinopterygii) possess a single glucocorticoid receptor (GR) and when compared to the lobe-finned vertebrate (Sarcopterygii) GR possess nine additional amino acids between the zinc-finger of the DNA binding domain. A whole genome duplication event which occurred between 320 and 350MYA in the teleost lineage following the split from the basal ray-finned fish resulted in 2 GRs: one GR group, GR1, has retained the 9 amino acids insert whereas the other group, GR2, has not. The exception to this is the zebrafish, that have lost one of the GRs, but they do possess 2 GRs with a splice variant that lacks the C-terminal portion of the GR to form GRβ which acts as a dominant-repressor of the wildtype GR. Another splice variant sees the basal ray-finned GR and teleost GR1 without the 9 amino acids insert. The molecular basis for GRs retention is beginning to be unravelled. In Pantadon buchholzi, rainbow trout, carp, marine and Japanese medaka GR2 is more sensitive to glucocorticoids (GC), thus potentially playing a more significant role in regulating gene expression at basal circulatory GC concentrations. However, this division in GC sensitivity is not seen in other species. The few studies to evaluate the significance of the 9 amino acid insert have shown that it affect maximal transactivational activity the extent to which is dependent on the number of glucocorticoid response elements (GREs) present in the reporter plasmid. The retention of these GRs would suggest there was an evolutionary advantage, which saw the development of a complex regulatory process to mediate the actions of the glucocorticoids.
Collapse
Affiliation(s)
- Nic R Bury
- King's College London, Diabetes and Nutritional Sciences Division, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom; University of Suffolk, Faculty of Health and Science, James Hehir Building, University Quays, Ipswich IP3 0AQ, Suffolk, United Kingdom.
| |
Collapse
|
13
|
Espinoza MB, Aedo JE, Zuloaga R, Valenzuela C, Molina A, Valdés JA. Cortisol Induces Reactive Oxygen Species Through a Membrane Glucocorticoid Receptor in Rainbow Trout Myotubes. J Cell Biochem 2016; 118:718-725. [PMID: 27564718 DOI: 10.1002/jcb.25676] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/25/2016] [Indexed: 12/31/2022]
Abstract
Cortisol is an essential regulator of neuroendocrine stress responses in teleosts. Cortisol predominantly affects target tissues through the genomic pathway, which involves interacting with cytoplasmic glucocorticoid receptors, and thereby, modulating stress-response gene expressions. Cortisol also produces rapid effects via non-genomic pathways, which do not involve gene transcription. Although cortisol-mediated genomic pathways are well documented in teleosts, non-genomic pathways are not fully understood. Moreover, no studies have focused on the contribution of non-genomic cortisol pathways in compensatory stress responses in fish. In this study, rainbow trout (Oncorhynchus mykiss) skeletal myotubes were stimulated with physiological concentrations of cortisol and cortisol-BSA, a membrane-impermeable agent, resulting in an early induction of reactive oxygen species (ROS). This production was not suppressed by transcription or translation inhibitors, suggesting non-genomic pathway involvement. Moreover, myotube preincubation with RU486 and NAC completely suppressed cortisol- and cortisol-BSA-induced ROS production. Subcellular fractionation analysis revealed the presence of cell membrane glucocorticoid receptors. Finally, cortisol-BSA induced a significant increase in ERK1/2 and CREB phosphorylation, as well as in CREB-dependent transcriptional activation of the pgc1a gene expression. The obtained results strongly suggest that cortisol acts through a non-genomic glucocorticoid receptor-mediated pathway to induce ROS production and contribute to ERK/CREB/PGC1-α signaling pathway activation as stress compensation mechanisms. J. Cell. Biochem. 118: 718-725, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marlen B Espinoza
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile
| | - Jorge E Aedo
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile
| | - Rodrigo Zuloaga
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile
| | - Cristian Valenzuela
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile
| | - Alfredo Molina
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile.,Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Juan A Valdés
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile.,Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| |
Collapse
|
14
|
Katsu Y, Kohno S, Oka K, Baker ME. Evolution of corticosteroid specificity for human, chicken, alligator and frog glucocorticoid receptors. Steroids 2016; 113:38-45. [PMID: 27317937 DOI: 10.1016/j.steroids.2016.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/25/2016] [Accepted: 06/12/2016] [Indexed: 12/31/2022]
Abstract
We investigated the evolution of the response of human, chicken, alligator and frog glucocorticoid receptors (GRs) to dexamethasone, cortisol, cortisone, corticosterone, 11-deoxycorticosterone, 11-deoxycortisol and aldosterone. We find significant differences among these vertebrates in the transcriptional activation of their full length GRs by these steroids, indicating that there were changes in the specificity of the GR for steroids during the evolution of terrestrial vertebrates. To begin to study the role of interactions between different domains on the GR in steroid sensitivity and specificity for terrestrial GRs, we investigated transcriptional activation of truncated GRs containing their hinge domain and ligand binding domain (LBD) fused to a GAL4 DNA binding domain (GAL4-DBD). Compared to corresponding full length GRs, transcriptional activation of GAL4-DBD_GR-hinge/LBD constructs required higher steroid concentrations and displayed altered steroid specificity, indicating that interactions between the hinge/LBD and other domains are important in glucocorticoid activation of these terrestrial GRs.
Collapse
Affiliation(s)
- Yoshinao Katsu
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Department of Biological Sciences, Hokkaido University, Sapporo, Japan.
| | - Satomi Kohno
- Department of Obstetrics and Gynecology, Medical University of South Carolina, and Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Charleston, SC, USA
| | - Kaori Oka
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Michael E Baker
- Department of Medicine, University of California, San Diego, CA, USA.
| |
Collapse
|
15
|
Mathieu C, Milla S, Mandiki SNM, Douxfils J, Douny C, Scippo ML, De Pauw E, Kestemont P. First evidence of the possible implication of the 11-deoxycorticosterone (DOC) in immune activity of Eurasian perch (Perca fluviatilis, L.): comparison with cortisol. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:149-58. [PMID: 23458843 DOI: 10.1016/j.cbpa.2013.02.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 02/22/2013] [Accepted: 02/22/2013] [Indexed: 11/30/2022]
Abstract
Cortisol, the main corticosteroid in fish, is frequently described as a modulator of fish immune system. Moreover, 11-deoxycorticosterone (DOC) was shown to bind and transcriptionally activate the mineralocorticoid receptor and may act as a mineralocorticoid in fish. Immune modulations induced by intraperitoneal injections of these two corticosteroids were assessed in Eurasian perch juveniles. Cortisol and DOC were injected at 0.8 mg kg(-1) and 0.08 mg kg(-1) body weight respectively. Cortisol increased plasma lysozyme activity 72 h post-injection, C-type lysozyme expression in spleen from 1 to 72 h post-injection, and favoured blood neutrophils at the expense of a mixture of lymphocytes and thrombocytes. Moreover, 6 h after injection, cortisol reduced expression levels of the pro-inflammatory cytokine TNF-α in spleen. DOC had no effects on the immune variables measured in plasma, but increased expression levels of C-type lysozyme and apolipoprotein A1 mRNA in both gills and spleen. Meanwhile, DOC stimulated its putative signalling pathway by increasing expression of mineralocorticoid receptor and 11β-hydroxysteroid dehydrogenase-2 in spleen. These results confirmed the role of cortisol as an innate, short term immune stimulator. For the first time, DOC is described as a possible immune stimulator in fish.
Collapse
Affiliation(s)
- Cédric Mathieu
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Li Y, Sturm A, Cunningham P, Bury NR. Evidence for a divergence in function between two glucocorticoid receptors from a basal teleost. BMC Evol Biol 2012; 12:137. [PMID: 22862956 PMCID: PMC3457903 DOI: 10.1186/1471-2148-12-137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 07/26/2012] [Indexed: 01/17/2023] Open
Abstract
Background Duplicated glucocorticoid receptors (GR) are present in most teleost fish. The evolutionary advantage of retaining two GRs is unclear, as no subtype specific functional traits or physiological roles have been defined. To identify factors driving the retention of duplicate GRs in teleosts, the current study examined GRs in representatives of two basal ray-finned fish taxa that emerged either side of the teleost lineage whole genome duplication event (WGD) event, the acipenseriform, Acipenser ruthenus, (pre-WGD) and the osteoglossimorph, Pantodon buchholzi, (post-WGD). Results The study identified a single GR in A. ruthenus (ArGR) and two GRs in P. buchholzi (PbGR1 and PbGR2). Phylogenetic analyses showed that ArGR formed a distinct branch separate from the teleosts GRs. The teleost GR lineage was subdivded into two sublineages, each of which contained one of the two P. buchholzi GRs. ArGR, PbGR1 and PbGR2 all possess the unique 9 amino acid insert between the zinc-fingers of the DNA-binding domain that is present in one of the teleost GR lineages (GR1), but not the other (GR2). A splice variant of PbGR2 produces an isoform that lacked these 9 amino acids (PbGR2b). Cortisol stimulated transactivation activity of ArGR, PbGR2b and PbGR1 in vitro; with PbGR2b and PbGR1, the glucocorticoid 11-deoxycortisol was a more potent agonist than cortisol. The hormone sensitivity of PbGR2b and PbGR1 differed in the transactivation assay, with PbGR2b having lower EC50 values and greater fold induction. Conclusions The difference in transactivation activity sensitivity between duplicated GRs of P. buchholzi suggests potential functional differences between the paralogs emerged early in the teleost lineage. Given the pleiotropic nature of GR function in vertebrates, this finding is in accordance with the hypothesis that duplicated GRs were potentially retained through subfunctionalisation followed by gene sharing. A 9 amino acid insert in the DNA-binding domain emerged in basal ray-finned fish GRs. However, the presence of a PbGR2 splice variant that lacks this insert, as well as the loss of the exon encoding these amino acids in the genes encoding for other teleost GR2 suggests the selection of two receptors with different DNA-binding domain structures in teleosts.
Collapse
Affiliation(s)
- Yi Li
- Nutritional Sciences Research Division, King's College London, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | | | | | | |
Collapse
|
17
|
Salas-Leiton E, Coste O, Asensio E, Infante C, Cañavate JP, Manchado M. Dexamethasone modulates expression of genes involved in the innate immune system, growth and stress and increases susceptibility to bacterial disease in Senegalese sole (Solea senegalensis Kaup, 1858). FISH & SHELLFISH IMMUNOLOGY 2012; 32:769-778. [PMID: 22326938 DOI: 10.1016/j.fsi.2012.01.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 01/17/2012] [Accepted: 01/29/2012] [Indexed: 05/31/2023]
Abstract
Cortisol, the main glucocorticoid in fish, undertakes pleiotropic biological effects in response to stressors to maintain homeostasis. It can exert several actions on the immune system, growth and cellular metabolism, establishing a fine-tune regulation stress response and cross-talk interactions with other regulatory pathways. In this study, we investigated a causal relationship between high levels of glucocorticoids and susceptibility to pathogens and modification of gene expression profiles in Senegalese sole. For this purpose, we carried out two experiments using post-metamorphic individuals (21 days after hatching) that were exposed to dexamethasone (DXM), a potent glucocorticoid, in order to mimic cortisol effects. We quantified transcript levels of a wide set of genes involved in innate immune system (g-type lysozyme and hepcidin (hamp1)), HPI axis (crf, crfbp, pomcα, pomcβ, gr1 and gr2), HPT axis (tgb), cellular stress defense system (hsp70 and hsp90aa), GH/IGF axis (igf-I and igf-Ir) and the neuropeptide trh. Short-term exposure to 0.1, 1 and 10 ppm DXM provoked a reduction of pomcβ transcripts and an increase of crfbp mRNAs in a dose-dependent manner at 48 and 72 h after treatment. Moreover, g-type lysozyme transcript levels decreased significantly at 72 h whereas hamp1 mRNA levels increased at 48 h after exposure. Long-term DXM treatment (10 ppm DXM) affected negatively weight of soles (~20% lower than controls). Moreover, reduced mRNA levels were observed for pomcβ after 1 week and igf-I and hamp1 after 2 weeks. In contrast, crfbp and crf increased mRNA levels after 2 weeks. hsp70 exhibited a dual response increasing transcript levels at 1 week after treatment and reducing thereafter. No significant changes in gene expression were observed at any time during this study for tgb, trh, hsp90aa, pomcα, gr1 and gr2. Finally, a challenge experiment using the pathogen Photobacterium damselae subsp piscicida confirmed earlier and higher mortalities in DXM-treated animals. Taken together, these data indicate that a prolonged exposure to DXM increases the susceptibility to pathogens and reduces growth. Moreover, DXM can trigger a wide cellular response modulating the expression of genes involved in the innate immune system, HPI and GH/IGF axes as well as cellular stress defense. These results are highly valuable to evaluate responses associated to aquaculture stressful conditions and discriminate specific glucocorticoid-mediated effects.
Collapse
Affiliation(s)
- E Salas-Leiton
- IFAPA Centro El Toruño, Junta de Andalucía, Molecular Biology Laboratory, Cádiz, Spain
| | | | | | | | | | | |
Collapse
|