1
|
Mann MD, Wang M, Ferreon JC, Suess MP, Jain A, Malovannaya A, Alvarez RV, Pascal BD, Kumar R, Edwards DP, Griffin PR. Structural proteomics defines a sequential priming mechanism for the progesterone receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611729. [PMID: 39282295 PMCID: PMC11398526 DOI: 10.1101/2024.09.06.611729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The progesterone receptor (PR) is a steroid-responsive nuclear receptor with two isoforms: PR-A and PR-B. Disruption of PR-A:PR-B signaling is associated with breast cancer through interactions with oncogenic co-regulatory proteins (CoRs). However, molecular details of isoform-specific PR-CoR interactions remain poorly understood. Using structural mass spectrometry, we investigate the sequential binding mechanism of purified full-length PR and intact CoRs, steroid receptor coactivator 3 (SRC3) and p300, as complexes on target DNA. Our findings reveal selective CoR NR-box binding by PR and unique interaction surfaces between PR and CoRs during complex assembly, providing a structural basis for CoR sequential binding on PR. Antagonist-bound PR showed persistent CoR interactions, challenging the classical model of nuclear receptor activation and repression. Collectively, we offer a peptide-level perspective on the organization of the PR transcriptional complex and infer the mechanisms behind the interactions of these proteins, both in active and inactive conformations.
Collapse
Affiliation(s)
- Matthew D. Mann
- Skaggs Graduate School of Chemical and Biological Sciences,
Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps
Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
| | - Min Wang
- Department of Molecular and Cellular Biology, Baylor College of
Medicine, Houston, TX 77030 USA
| | - Josephine C. Ferreon
- Verna and Marrs McLean Department of Biochemistry and Molecular
Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - Michael P. Suess
- Department of Molecular and Cellular Biology, Baylor College of
Medicine, Houston, TX 77030 USA
| | - Antrix Jain
- Mass Spectrometry Proteomics Core Facility. Advanced Technology
Cores, Baylor College of Medicine, Houston, TX 77030
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular
Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | | | - Bruce D. Pascal
- Omics Informatics LLC. 1050 Bishop Street #517, Honolulu, HI
96813
| | - Raj Kumar
- Department of Pharmaceutical and Biomedical Sciences, Touro
College of Pharmacy, Touro University, New York, NY, USA 10036
| | - Dean P. Edwards
- Department of Molecular and Cellular Biology, Baylor College of
Medicine, Houston, TX 77030 USA
| | - Patrick R. Griffin
- Skaggs Graduate School of Chemical and Biological Sciences,
Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps
Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
| |
Collapse
|
2
|
Zeng P, Shu LZ, Zhou YH, Huang HL, Wei SH, Liu WJ, Deng H. Stem Cell Division and Its Critical Role in Mammary Gland Development and Tumorigenesis: Current Progress and Remaining Challenges. Stem Cells Dev 2024; 33:449-467. [PMID: 38943275 DOI: 10.1089/scd.2024.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024] Open
Abstract
The origin of breast cancer (BC) has traditionally been a focus of medical research. It is widely acknowledged that BC originates from immortal mammary stem cells and that these stem cells participate in two division modes: symmetric cell division (SCD) and asymmetrical cell division (ACD). Although both of these modes are key to the process of breast development and their imbalance is closely associated with the onset of BC, the molecular mechanisms underlying these phenomena deserve in-depth exploration. In this review, we first outline the molecular mechanisms governing ACD/SCD and analyze the role of ACD/SCD in various stages of breast development. We describe that the changes in telomerase activity, the role of polar proteins, and the stimulation of ovarian hormones subsequently lead to two distinct consequences: breast development or carcinogenesis. Finally, gene mutations, abnormalities in polar proteins, modulation of signal-transduction pathways, and alterations in the microenvironment disrupt the balance of BC stem cell division modes and cause BC. Important regulatory factors such as mammalian Inscuteable mInsc, Numb, Eya1, PKCα, PKCθ, p53, and IL-6 also play significant roles in regulating pathways of ACD/SCD and may constitute key targets for future research on stem cell division, breast development, and tumor therapy.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Breast Neoplasms/genetics
- Animals
- Mammary Glands, Human/growth & development
- Mammary Glands, Human/pathology
- Mammary Glands, Human/cytology
- Mammary Glands, Human/metabolism
- Carcinogenesis/pathology
- Carcinogenesis/metabolism
- Carcinogenesis/genetics
- Stem Cells/metabolism
- Stem Cells/cytology
- Cell Division
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/metabolism
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Signal Transduction
Collapse
Affiliation(s)
- Peng Zeng
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Lin-Zhen Shu
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu-Hong Zhou
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Hai-Lin Huang
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Shu-Hua Wei
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Wen-Jian Liu
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Huan Deng
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Lalami I, Labrosse J, Cedrin-Durnerin I, Comtet M, Vinolas C, Krief F, Sifer C, Peigne M, Grynberg M. Is letrozole during ovarian stimulation useful in breast cancer patients undergoing fertility preservation to reduce early luteal progesterone levels following GnRH-agonist trigger? Reprod Biol Endocrinol 2022; 20:87. [PMID: 35690817 PMCID: PMC9188055 DOI: 10.1186/s12958-022-00958-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In absence of contraindication, breast cancer patients of reproductive age can undergo fertility preservation with controlled ovarian stimulation for oocyte/embryo cryopreservation before the administration of potentially gonadotoxic treatments. High hormonal levels induced by ovarian stimulation might have an adverse impact on hormone-positive breast cancer. Whether letrozole supplementation during ovarian stimulation (COSTLES) reduces serum progesterone levels after GnRHa trigger remains unknown. We aimed to determine whether COSTLES might be useful for breast cancer patients undergoing fertility preservation to reduce early luteal progesterone levels following GnRH-agonist (GnRHa)trigger. METHODS All women who underwent COS with GnRH antagonist protocol with GnRHa trigger were included. Serum progesterone level measured 12 h after GnRHa trigger was compared between patients undergoing COS with letrozole supplementation (COSTLES group) and patients undergoing COS without letrozole (Control group) for fertility preservation purposes. RESULTS A total of 246 patients were included, of which 84 patients (34.1%) in the COSTLES group and 162 patients (65.6%) in the Control group. All patients in the COSTLES group were BC patients (n = 84, 100%), while the Control group included 77 BC patients (47.5%). Patients in the two groups were comparable. The mean number of oocytes recovered and vitrified at metaphase 2 stage did not significantly differ between the two groups. Serum progesterone levels on the day after GnRHa trigger were significantly lower in the COSTLES group (8.6 ± 0.7 vs. 10.5 ± 0.5 ng/mL, respectively, p < 0.03), as well as serum E2 levels (650.3 ± 57.7 vs. 2451.4.0 ± 144.0 pg/mL, respectively, p < 0.01). However, the GnRHa-induced LH surge was significantly higher in in the COSTLES group (71.9 ± 4.6 vs. 51.2 ± 2.6 UI/L, respectively, p < 0.01). CONCLUSIONS Our results show that COSTLES for fertility preservation in breast cancer patients using GnRHa trigger reduces serum progesterone levels compared to ovarian stimulation without letrozole. These findings encourage the use of COSTLES in this context to decrease the potential deleterious effect of elevated hormonal levels on hormone-positive breast cancer.
Collapse
Affiliation(s)
- Imane Lalami
- Department of Reproductive Medicine and Fertility Preservation, Hôpital Jean Verdier, Avenue du 14 Juillet, 93140, Bondy, France
| | - Julie Labrosse
- Department of Reproductive Medicine and Fertility Preservation, Hôpital Jean Verdier, Avenue du 14 Juillet, 93140, Bondy, France
| | - Isabelle Cedrin-Durnerin
- Department of Reproductive Medicine and Fertility Preservation, Hôpital Jean Verdier, Avenue du 14 Juillet, 93140, Bondy, France
| | - Marjorie Comtet
- Department of Reproductive Medicine and Fertility Preservation, Hôpital Jean Verdier, Avenue du 14 Juillet, 93140, Bondy, France
| | - Claire Vinolas
- Department of Reproductive Medicine and Fertility Preservation, Hôpital Jean Verdier, Avenue du 14 Juillet, 93140, Bondy, France
| | - Fabien Krief
- Department of Reproductive Medicine and Fertility Preservation, Hôpital Jean Verdier, Avenue du 14 Juillet, 93140, Bondy, France
| | - Christophe Sifer
- Department of Cytogenetic and Reproductive Biology, Hôpital Jean Verdier, Avenue du 14 Juillet, 93140, Bondy, France
| | - Maeliss Peigne
- Department of Reproductive Medicine and Fertility Preservation, Hôpital Jean Verdier, Avenue du 14 Juillet, 93140, Bondy, France
- University Sorbonne Paris Nord, Paris 13, 93022, Bobigny, France
| | - Michael Grynberg
- Department of Reproductive Medicine and Fertility Preservation, Hôpital Jean Verdier, Avenue du 14 Juillet, 93140, Bondy, France.
- Department of Reproductive Medicine and Fertility Preservation, Hôpital Antoine Béclère, 157, rue de la Porte de Trivaux, 92140, Clamart, France.
- University Paris-Sud, Université Paris Saclay, 94276, Le Kremlin Bicêtre, France.
- Unity Inserm U1133, University Paris-Diderot, 75013, Paris, France.
| |
Collapse
|
4
|
Ward AV, Matthews SB, Fettig LM, Riley D, Finlay-Schultz J, Paul KV, Jackman M, Kabos P, MacLean PS, Sartorius CA. Estrogens and Progestins Cooperatively Shift Breast Cancer Cell Metabolism. Cancers (Basel) 2022; 14:1776. [PMID: 35406548 PMCID: PMC8996926 DOI: 10.3390/cancers14071776] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022] Open
Abstract
Metabolic reprogramming remains largely understudied in relation to hormones in estrogen receptor (ER) and progesterone receptor (PR) positive breast cancer. In this study, we investigated how estrogens, progestins, or the combination, impact metabolism in three ER and PR positive breast cancer cell lines. We measured metabolites in the treated cells using ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS). Top metabolic processes upregulated with each treatment involved glucose metabolism, including Warburg effect/glycolysis, gluconeogenesis, and the pentose phosphate pathway. RNA-sequencing and pathway analysis on two of the cell lines treated with the same hormones, found estrogens target oncogenes, such as MYC and PI3K/AKT/mTOR that control tumor metabolism, while progestins increased genes associated with fatty acid metabolism, and the estrogen/progestin combination additionally increased glycolysis. Phenotypic analysis of cell energy metabolism found that glycolysis was the primary hormonal target, particularly for the progestin and estrogen-progestin combination. Transmission electron microscopy found that, compared to vehicle, estrogens elongated mitochondria, which was reversed by co-treatment with progestins. Progestins promoted lipid storage both alone and in combination with estrogen. These findings highlight the shift in breast cancer cell metabolism to a more glycolytic and lipogenic phenotype in response to combination hormone treatment, which may contribute to a more metabolically adaptive state for cell survival.
Collapse
Affiliation(s)
- Ashley V. Ward
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Shawna B. Matthews
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Lynsey M. Fettig
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Duncan Riley
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Jessica Finlay-Schultz
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Kiran V. Paul
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.V.P.); (P.K.)
| | - Matthew Jackman
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.J.); (P.S.M.)
| | - Peter Kabos
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.V.P.); (P.K.)
| | - Paul S. MacLean
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.J.); (P.S.M.)
| | - Carol A. Sartorius
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| |
Collapse
|
5
|
Li BB, Scott EY, Olafsen NE, Matthews J, Wheeler AR. Analysis of the effects of aryl hydrocarbon receptor expression on cancer cell invasion via three-dimensional microfluidic invasion assays. LAB ON A CHIP 2022; 22:313-325. [PMID: 34904612 DOI: 10.1039/d1lc00854d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that binds to xenobiotics and activates expression of response elements to metabolize these compounds. The AHR pathway has been associated with a long list of diseases including cancer; however, it is debated whether AHR is tumorigenic or tumour-inhibiting. In particular, there are contradictory reports in the literature regarding the effects of AHR expression level on metastatic breast cancer. Here we used a 3D invasion assay called cell invasion in digital microfluidic microgel systems (CIMMS) to study the effect of AHR expression on invasion. In this study, MDA-MB-231 cells with stable knockout of AHR (AHRko) showed enhanced invasive characteristics and reduced proliferation, and cells with transient overexpression of AHR showed reduced invasiveness. Overexpression of AHR with a mutation in the DNA binding domain showed no difference in invasiveness compared to control, which suggests that the changes in invasiveness are related to the expression of AHR. CIMMS also allowed for extraction of sub-populations of invaded cells for RNA sequencing experiments. A comparison of the transcriptomes of invaded subpopulations of wild-type and AHRko cells identified 1809 genes that were differentially expressed, with enriched pathways including cell cycle, proliferation, survival, immunoproteasome activation, and activation of matrix metalloproteases. In sum, the data reported here for MDA-MB-231 cells suggests some new interpretations of the discrepancy in the literature on the role of AHR in breast cancer. We propose that the unique combination of functional discrimination with transcriptome profiling provided by CIMMS will be valuable for a wide range of mechanistic invasion-biology studies in the future.
Collapse
Affiliation(s)
- Bingyu B Li
- Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
| | - Erica Y Scott
- Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON, M5S 3H6, Canada
| | - Ninni E Olafsen
- Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway
| | - Jason Matthews
- Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Aaron R Wheeler
- Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON, M5S 3H6, Canada
| |
Collapse
|
6
|
Mohammed G, Mousa NA, Talaat IM, Ibrahim H, Saber-Ayad M. Breast Cancer Risk with Progestin Subdermal Implants: A Challenge in Patients Counseling. Front Endocrinol (Lausanne) 2021; 12:781066. [PMID: 34975755 PMCID: PMC8719328 DOI: 10.3389/fendo.2021.781066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/23/2021] [Indexed: 11/27/2022] Open
Abstract
There is a steady global rise in the use of progestin subdermal implants, where use has increased by more than 20 times in the past two decades. BC risk has been reported with the older progestin only methods such as oral pills, injectables, and intrauterine devices, however, little is known about the risk with subdermal implants. In this review, we aim to update clinicians and researchers on the current evidence to support patient counseling and to inform future research directions. The available evidence of the association between the use of progestin subdermal implants and BC risk is discussed. We provide an overview of the potential role of endogenous progesterone in BC development. The chemical structure and molecular targets of synthetic progestins of relevance are summarized together with the preclinical and clinical evidence on their association with BC risk. We review all studies that investigated the action of the specific progestins included in subdermal implants. As well, we discuss the potential effect of the use of subdermal implants in women at increased BC risk, including carriers of BC susceptibility genetic mutations.
Collapse
Affiliation(s)
- Ghada Mohammed
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Noha A. Mousa
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Iman M. Talaat
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Haya Ibrahim
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Maha Saber-Ayad
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medical Pharmacology, College of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Bakhidze EV, Belyaeva AV, Berlev IV, Anisimov VN, Belyaev AM. Menopausal Hormonal Therapy and Breast Cancer. ADVANCES IN GERONTOLOGY 2021. [DOI: 10.1134/s2079057021040020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
8
|
Freeman DW, Rodrigues Sousa E, Karkampouna S, Zoni E, Gray PC, Salomon DS, Kruithof-de Julio M, Spike BT. Whence CRIPTO: The Reemergence of an Oncofetal Factor in 'Wounds' That Fail to Heal. Int J Mol Sci 2021; 22:10164. [PMID: 34576327 PMCID: PMC8472190 DOI: 10.3390/ijms221810164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023] Open
Abstract
There exists a set of factors termed oncofetal proteins that play key roles in ontogeny before they decline or disappear as the organism's tissues achieve homeostasis, only to then re-emerge in cancer. Although the unique therapeutic potential presented by such factors has been recognized for more than a century, their clinical utility has yet to be fully realized1. This review highlights the small signaling protein CRIPTO encoded by the tumor derived growth factor 1 (TDGF1/Tdgf1) gene, an oft cited oncofetal protein whose presence in the cancer literature as a tumor promoter, diagnostic marker and viable therapeutic target continues to grow. We touch lightly on features well established and well-reviewed since its discovery more than 30 years ago, including CRIPTO's early developmental roles and modulation of SMAD2/3 activation by a selected set of transforming growth factor β (TGF-β) family ligands. We predominantly focus instead on more recent and less well understood additions to the CRIPTO signaling repertoire, on its potential upstream regulators and on new conceptual ground for understanding its mode of action in the multicellular and often stressful contexts of neoplastic transformation and progression. We ask whence it re-emerges in cancer and where it 'hides' between the time of its fetal activity and its oncogenic reemergence. In this regard, we examine CRIPTO's restriction to rare cells in the adult, its potential for paracrine crosstalk, and its emerging role in inflammation and tissue regeneration-roles it may reprise in tumorigenesis, acting on subsets of tumor cells to foster cancer initiation and progression. We also consider critical gaps in knowledge and resources that stand between the recent, exciting momentum in the CRIPTO field and highly actionable CRIPTO manipulation for cancer therapy and beyond.
Collapse
Affiliation(s)
- David W. Freeman
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT 84113, USA;
| | - Elisa Rodrigues Sousa
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Sofia Karkampouna
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Eugenio Zoni
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Peter C. Gray
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA;
| | - David S. Salomon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 20893, USA;
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
- Translational Organoid Models, Department for BioMedical Research, University of Bern, 3012 Bern, Switzerland
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland
- Department of Urology, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland
| | - Benjamin T. Spike
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT 84113, USA;
| |
Collapse
|
9
|
Ranjan M, Lee O, Cottone G, Mirzaei Mehrabad E, Spike BT, Zeng Z, Yadav S, Chatterton R, Kim JJ, Clare SE, Khan SA. Progesterone receptor antagonists reverse stem cell expansion and the paracrine effectors of progesterone action in the mouse mammary gland. Breast Cancer Res 2021; 23:78. [PMID: 34344445 PMCID: PMC8330021 DOI: 10.1186/s13058-021-01455-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Background The ovarian hormones estrogen and progesterone (EP) are implicated in breast cancer causation. A specific consequence of progesterone exposure is the expansion of the mammary stem cell (MSC) and luminal progenitor (LP) compartments. We hypothesized that this effect, and its molecular facilitators, could be abrogated by progesterone receptor (PR) antagonists administered in a mouse model. Methods Ovariectomized FVB mice were randomized to 14 days of treatment: sham, EP, EP + telapristone (EP + TPA), EP + mifepristone (EP + MFP). Mice were then sacrificed, mammary glands harvested, and mammary epithelial cell lineages separated by flow cytometry using cell surface markers. RNA from each lineage was sequenced and differential gene expression was analyzed using DESeq. Quantitative PCR was performed to confirm the candidate genes discovered in RNA seq. ANOVA with Tukey post hoc analysis was performed to compare relative expression. Alternative splicing events were examined using the rMATs multivariate analysis tool. Results Significant increases in the MSC and luminal mature (LM) cell fractions were observed following EP treatment compared to control (p < 0.01 and p < 0.05, respectively), whereas the LP fraction was significantly reduced (p < 0.05). These hormone-induced effects were reversed upon exposure to TPA and MFP (p < 0.01 for both). Gene Ontology analysis of RNA-sequencing data showed EP-induced enrichment of several pathways, with the largest effect on Wnt signaling in MSC, significantly repressed by PR inhibitors. In LP cells, significant induction of Wnt4 and Rankl, and Wnt pathway intermediates Lrp2 and Axin2 (confirmed by qRTPCR) were reversed by TPA and MFP (p < 0.0001). Downstream signaling intermediates of these pathways (Lrp5, Mmp7) showed similar effects. Expression of markers of epithelial-mesenchymal transition (Cdh1, Cdh3) and the induction of EMT regulators (Zeb1, Zeb2, Gli3, Snai1, and Ptch2) were significantly responsive to progesterone. EP treatment was associated with large-scale alternative splicing events, with an enrichment of motifs associated with Srsf, Esrp, and Rbfox families. Exon skipping was observed in Cdh1, Enah, and Brd4. Conclusions PR inhibition reverses known tumorigenic pathways in the mammary gland and suppresses a previously unknown effect of progesterone on RNA splicing events. In total, our results strengthen the case for reconsideration of PR inhibitors for breast cancer prevention. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01455-2.
Collapse
Affiliation(s)
- Manish Ranjan
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Oukseub Lee
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Gannon Cottone
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | | | - Benjamin T Spike
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Zexian Zeng
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Shivangi Yadav
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Robert Chatterton
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA
| | - J Julie Kim
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA
| | - Susan E Clare
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Seema A Khan
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA. .,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
10
|
Shamseddin M, De Martino F, Constantin C, Scabia V, Lancelot AS, Laszlo C, Ayyannan A, Battista L, Raffoul W, Gailloud-Matthieu MC, Bucher P, Fiche M, Ambrosini G, Sflomos G, Brisken C. Contraceptive progestins with androgenic properties stimulate breast epithelial cell proliferation. EMBO Mol Med 2021; 13:e14314. [PMID: 34042278 PMCID: PMC8261488 DOI: 10.15252/emmm.202114314] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
Hormonal contraception exposes women to synthetic progesterone receptor (PR) agonists, progestins, and transiently increases breast cancer risk. How progesterone and progestins affect the breast epithelium is poorly understood because we lack adequate models to study this. We hypothesized that individual progestins differentially affect breast epithelial cell proliferation and hence breast cancer risk. Using mouse mammary tissue ex vivo, we show that testosterone-related progestins induce the PR target and mediator of PR signaling-induced cell proliferation receptor activator of NF-κB ligand (Rankl), whereas progestins with anti-androgenic properties in reporter assays do not. We develop intraductal xenografts of human breast epithelial cells from 36 women, show they remain hormone-responsive and that progesterone and the androgenic progestins, desogestrel, gestodene, and levonorgestrel, promote proliferation but the anti-androgenic, chlormadinone, and cyproterone acetate, do not. Prolonged exposure to androgenic progestins elicits hyperproliferation with cytologic changes. Androgen receptor inhibition interferes with PR agonist- and levonorgestrel-induced RANKL expression and reduces levonorgestrel-driven cell proliferation. Thus, different progestins have distinct biological activities in the breast epithelium to be considered for more informed choices in hormonal contraception.
Collapse
Affiliation(s)
- Marie Shamseddin
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Fabio De Martino
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Céline Constantin
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Valentina Scabia
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anne-Sophie Lancelot
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Csaba Laszlo
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ayyakkannu Ayyannan
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laura Battista
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Wassim Raffoul
- Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, Lausanne, Switzerland
| | | | - Philipp Bucher
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maryse Fiche
- International Cancer Prevention Institute, Epalinges, Switzerland
| | - Giovanna Ambrosini
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - George Sflomos
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Cathrin Brisken
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| |
Collapse
|
11
|
Progesterone receptors in normal breast development and breast cancer. Essays Biochem 2021; 65:951-969. [PMID: 34061163 DOI: 10.1042/ebc20200163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
Progesterone receptors (PR) play a pivotal role in many female reproductive tissues such as the uterus, the ovary, and the mammary gland (MG). Moreover, PR play a key role in breast cancer growth and progression. This has led to the development and study of different progestins and antiprogestins, many of which are currently being tested in clinical trials for cancer treatment. Recent reviews have addressed the role of PR in MG development, carcinogenesis, and breast cancer growth. Thus, in this review, in addition to making an overview on PR action in normal and tumor breast, the focus has been put on highlighting the still unresolved topics on hormone treatment involving PR isoforms and breast cancer prognosis.
Collapse
|
12
|
Phosphatase magnesium-dependent 1 δ (PPM1D), serine/threonine protein phosphatase and novel pharmacological target in cancer. Biochem Pharmacol 2020; 184:114362. [PMID: 33309518 DOI: 10.1016/j.bcp.2020.114362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
Aberrations in DNA damage response genes are recognized mediators of tumorigenesis and resistance to chemo- and radiotherapy. While protein phosphatase magnesium-dependent 1 δ (PPM1D), located on the long arm of chromosome 17 at 17q22-23, is a key regulator of cellular responses to DNA damage, amplification, overexpression, or mutation of this gene is important in a wide range of pathologic processes. In this review, we describe the physiologic function of PPM1D, as well as its role in diverse processes, including fertility, development, stemness, immunity, tumorigenesis, and treatment responsiveness. We highlight both the advances and limitations of current approaches to targeting malignant processes mediated by pathogenic alterations in PPM1D with the goal of providing rationale for continued research and development of clinically viable treatment approaches for PPM1D-associated diseases.
Collapse
|
13
|
Vella V, De Francesco EM, Lappano R, Muoio MG, Manzella L, Maggiolini M, Belfiore A. Microenvironmental Determinants of Breast Cancer Metastasis: Focus on the Crucial Interplay Between Estrogen and Insulin/Insulin-Like Growth Factor Signaling. Front Cell Dev Biol 2020; 8:608412. [PMID: 33364239 PMCID: PMC7753049 DOI: 10.3389/fcell.2020.608412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
The development and progression of the great majority of breast cancers (BCs) are mainly dependent on the biological action elicited by estrogens through the classical estrogen receptor (ER), as well as the alternate receptor named G-protein–coupled estrogen receptor (GPER). In addition to estrogens, other hormones and growth factors, including the insulin and insulin-like growth factor system (IIGFs), play a role in BC. IIGFs cooperates with estrogen signaling to generate a multilevel cross-communication that ultimately facilitates the transition toward aggressive and life-threatening BC phenotypes. In this regard, the majority of BC deaths are correlated with the formation of metastatic lesions at distant sites. A thorough scrutiny of the biological and biochemical events orchestrating metastasis formation and dissemination has shown that virtually all cell types within the tumor microenvironment work closely with BC cells to seed cancerous units at distant sites. By establishing an intricate scheme of paracrine interactions that lead to the expression of genes involved in metastasis initiation, progression, and virulence, the cross-talk between BC cells and the surrounding microenvironmental components does dictate tumor fate and patients’ prognosis. Following (i) a description of the main microenvironmental events prompting BC metastases and (ii) a concise overview of estrogen and the IIGFs signaling and their major regulatory functions in BC, here we provide a comprehensive analysis of the most recent findings on the role of these transduction pathways toward metastatic dissemination. In particular, we focused our attention on the main microenvironmental targets of the estrogen-IIGFs interplay, and we recapitulated relevant molecular nodes that orientate shared biological responses fostering the metastatic program. On the basis of available studies, we propose that a functional cross-talk between estrogens and IIGFs, by affecting the BC microenvironment, may contribute to the metastatic process and may be regarded as a novel target for combination therapies aimed at preventing the metastatic evolution.
Collapse
Affiliation(s)
- Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria Grazia Muoio
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy.,Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Livia Manzella
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico Vittorio Emanuele, Catania, Italy.,Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| |
Collapse
|
14
|
Tagliaferri B, Quaquarini E, Palumbo R, Balletti E, Presti D, Malovini A, Agozzino M, Teragni CM, Terzoni A, Bernardo A, Villani L, Sottotetti F. Role of androgen receptor expression in early stage ER+/PgR-/HER2- breast cancer. Ther Adv Med Oncol 2020; 12:1758835920958355. [PMID: 32994808 PMCID: PMC7502860 DOI: 10.1177/1758835920958355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Progesterone receptor (PgR) negative breast cancer (BC) is an aggressive subtype with poor prognosis and reduced response to endocrine treatments. Several studies have suggested that androgen receptor (AR) expression is associated with a favorable tumor biology, longer recurrence free survival (RFS), and overall survival. In the literature no data exist regarding the role of AR expression in early stage estrogen receptor (ER)+/PgR- BCs. The aim of this study was to evaluate the prognostic role of AR expression in this setting. PATIENTS AND METHODS This is a monocentric retrospective study in which 208 patients who underwent surgical intervention for ER+/PgR-/Human Epidermal growth factor Receptor 2 (HER2)- BC were included. The primary objective was to analyze the relationship between AR expression and RFS. RESULTS At a median follow-up of 77 months, 75 patients (36%) had a disease relapse (all sites included). AR expression was significantly higher in patients who did not relapse compared with those who relapsed with an impact on RFS (hazard ratio [HR] = 0.99, p = 0.025). Patients with AR expression ⩾80% had a lower risk of relapse compared with those with AR <80% (HR = 0.53, p = 0.008). In addition, breast tumors with higher AR expression had good biological features (low ki67 and nuclear grade) compared with BCs with lower AR expression, at least partly explaining the different outcome. CONCLUSIONS The results of this study support the potential prognostic role of AR in patients with ER+/PgR- BCs and may contribute to the identification of subgroups of high-risk patients.
Collapse
Affiliation(s)
| | - Erica Quaquarini
- Medical Oncology Unit, ICS Maugeri-IRCCS SpA SB, via Maugeri 10, Pavia, 27100, Italy
| | | | | | - Daniele Presti
- Medical Oncology Unit, ICS Maugeri-IRCCS SpA SB, Pavia, Italy
| | - Alberto Malovini
- Laboratory of Informatics and System Engineering for Clinical Research, ICS Maugeri-IRCCS SpA SB, Pavia, Italy
| | - Manuela Agozzino
- Operative Unit of Anatomic Pathology, ICS Maugeri-IRCCS SpA SB, Pavia, Italy
| | | | - Andrea Terzoni
- Medical Oncology Unit, ICS Maugeri-IRCCS SpA SB, Pavia, Italy
| | | | - Laura Villani
- Operative Unit of Anatomic Pathology, ICS Maugeri-IRCCS SpA SB, Pavia, Italy
| | | |
Collapse
|
15
|
Horwitz KB, Sartorius CA. 90 YEARS OF PROGESTERONE: Progesterone and progesterone receptors in breast cancer: past, present, future. J Mol Endocrinol 2020; 65:T49-T63. [PMID: 32485679 PMCID: PMC8525510 DOI: 10.1530/jme-20-0104] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 02/05/2023]
Abstract
Progesterone and progesterone receptors (PR) have a storied albeit controversial history in breast cancers. As endocrine therapies for breast cancer progressed through the twentieth century from oophorectomy to antiestrogens, it was recognized in the 1970s that the presence of estrogen receptors (ER) alone could not efficiently predict treatment responses. PR, an estrogen regulated protein, became the first prognostic and predictive marker of response to endocrine therapies. It remains today as the gold standard for predicting the existence of functional, targetable ER in breast malignancies. PRs were subsequently identified as highly structured transcription factors that regulate diverse physiological processes in breast cancer cells. In the early 2000s, the somewhat surprising finding that prolonged use of synthetic progestin-containing menopausal hormone therapies was associated with increased breast cancer incidence raised new questions about the role of PR in 'tumorigenesis'. Most recently, PR have been linked to expansion of cancer stem cells that are postulated to be the principal cells reactivated in occult or dormant disease. Other studies establish PR as dominant modulators of ER activity. Together, these findings mark PR as bona fide targets for progestin or antiprogestin therapies, yet their diverse actions have confounded that use. Here we summarize the early history of PR in breast cancer; debunk the theory that progesterone causes cancer; discuss recent discoveries that PR regulate cell heterogeneity; attempt to unify theories describing PR as either good or bad actors in tumors; and discuss emerging areas of research that may help explain this enigmatic hormone and receptor.
Collapse
Affiliation(s)
- Kathryn B. Horwitz
- Department of Medicine, Division of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Carol A. Sartorius
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Corresponding author
| |
Collapse
|
16
|
Trabert B, Sherman ME, Kannan N, Stanczyk FZ. Progesterone and Breast Cancer. Endocr Rev 2020; 41:5568276. [PMID: 31512725 PMCID: PMC7156851 DOI: 10.1210/endrev/bnz001] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 09/06/2019] [Indexed: 12/31/2022]
Abstract
Synthetic progestogens (progestins) have been linked to increased breast cancer risk; however, the role of endogenous progesterone in breast physiology and carcinogenesis is less clearly defined. Mechanistic studies using cell culture, tissue culture, and preclinical models implicate progesterone in breast carcinogenesis. In contrast, limited epidemiologic data generally do not show an association of circulating progesterone levels with risk, and it is unclear whether this reflects methodologic limitations or a truly null relationship. Challenges related to defining the role of progesterone in breast physiology and neoplasia include: complex interactions with estrogens and other hormones (eg, androgens, prolactin, etc.), accounting for timing of blood collections for hormone measurements among cycling women, and limitations of assays to measure progesterone metabolites in blood and progesterone receptor isotypes (PRs) in tissues. Separating the individual effects of estrogens and progesterone is further complicated by the partial dependence of PR transcription on estrogen receptor (ER)α-mediated transcriptional events; indeed, interpreting the integrated interaction of the hormones may be more essential than isolating independent effects. Further, many of the actions of both estrogens and progesterone, particularly in "normal" breast tissues, are driven by paracrine mechanisms in which ligand binding to receptor-positive cells evokes secretion of factors that influence cell division of neighboring receptor-negative cells. Accordingly, blood and tissue levels may differ, and the latter are challenging to measure. Given conflicting data related to the potential role of progesterone in breast cancer etiology and interest in blocking progesterone action to prevent or treat breast cancer, we provide a review of the evidence that links progesterone to breast cancer risk and suggest future directions for filling current gaps in our knowledge.
Collapse
Affiliation(s)
- Britton Trabert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Mark E Sherman
- Health Sciences Research, Mayo Clinic, Jacksonville, Florida
| | - Nagarajan Kannan
- Laboratory of Stem Cell and Cancer Biology, Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Frank Z Stanczyk
- Departments of Obstetrics and Gynecology, and Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, California
| |
Collapse
|
17
|
Pardee AB, Li CJ. Two controls of cell proliferation underlie cancer relapse. J Cell Physiol 2018; 233:8437-8440. [PMID: 29851079 DOI: 10.1002/jcp.26597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/13/2018] [Indexed: 12/16/2022]
Abstract
Much progress has been made in understanding the basis of cancer. Current therapies can effectively shrink tumors. But they frequently relapse, metastasize to other locations, and are lethal. Effective therapies are very much needed for preventing this relapse. Creation of a eukaryotic organism commences with one original stem cell, a fertilized egg, which multiplies and differentiates. Mutations of normal stem cells can produce cancer stem cells (CSC). These cells may resist chemotherapy, proliferate, and produce new tumors. Human chorionic gonadotrophin (hCG) is composed of two proteins (alpha and beta) that bind to the cell membrane and activate a number of intracellular pathways. hCG has been shown to activate the proliferation of cancer stem cells. Cyclin dependent regulation of the adult cells is created in normal differentiation and replaces the hCG regulation of stem cells. To selectively kill the cancer stem cells conventional cancer therapies could be followed with a therapy based on inactivating human chronic gonadotrophin (HCG). For example chemically modified prostaglandins like RU486 prevent binding of the unmodified steroid to hCG and inactivate hCG.
Collapse
Affiliation(s)
- Arthur B Pardee
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Chiang J Li
- Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Zhou L, Zhou W, Zhang H, Hu Y, Yu L, Zhang Y, Zhang Y, Wang S, Wang P, Xia W. Progesterone suppresses triple-negative breast cancer growth and metastasis to the brain via membrane progesterone receptor α. Int J Mol Med 2017; 40:755-761. [PMID: 28713912 PMCID: PMC5548012 DOI: 10.3892/ijmm.2017.3060] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 06/12/2017] [Indexed: 01/01/2023] Open
Abstract
Progesterone plays an important role in mammary epithelial cell proliferation and differentiation. Evidence from experimental and clinical studies indicates that progesterone is a risk factor for breast cancer under certain conditions through binding nuclear progesterone receptor (PR). These mechanisms, however, are not applicable to triple-negative breast cancer (TNBC) due to the lack of PR in these cancers. In this study, we demonstrate that membrane progesterone receptor α (mPRα) is expressed in TNBC tissues and the expression level of mPRα is negatively associated with the TNM stage. We found that progesterone suppressed the growth, migration and invasion of mPRα+ human TNBC cells in vitro, which was neither mediated by PR nor by PR membrane component 1 (PGRMCl). Notably, these effects exerted by progesterone were significantly blocked by shRNA specific to mPRα. Moreover, the knockdown of mPRα expression impaired the inhibitory effects of progesterone on mPRα+ tumor growth and metastasis in vivo. These data collectively indicate that progesterone suppresses TNCB growth and metastasis via mPRα, which provides evidence of the anti-neoplastic effects of progesterone-mPRα pathway in the treatment of human TNBC.
Collapse
Affiliation(s)
- Li Zhou
- Department of Oncology and Hematology, Shanghai Pudong New District Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Wei Zhou
- Department of Oncology, Shanghai Seventh People's Hospital, Shanghai 200137, P.R. China
| | - Hongwei Zhang
- Department of Oncology, Shanghai Seventh People's Hospital, Shanghai 200137, P.R. China
| | - Yan Hu
- Department of Oncology, Shanghai Seventh People's Hospital, Shanghai 200137, P.R. China
| | - Lei Yu
- Department of Oncology, Shanghai Seventh People's Hospital, Shanghai 200137, P.R. China
| | - Yufei Zhang
- Department of Intervention, Shanghai Seventh People's Hospital, Shanghai 200137, P.R. China
| | - Yanli Zhang
- Department of Oncology, Shanghai Seventh People's Hospital, Shanghai 200137, P.R. China
| | - Shuang Wang
- Department of Oncology, Shanghai Seventh People's Hospital, Shanghai 200137, P.R. China
| | - Peng Wang
- Department of Oncology, Shanghai Seventh People's Hospital, Shanghai 200137, P.R. China
| | - Wei Xia
- Department of Nuclear Medicine, Shanghai Seventh People's Hospital, Shanghai 200137, P.R. China
| |
Collapse
|
19
|
Goyette S, Liang Y, Mafuvadze B, Cook MT, Munir M, Hyder SM. Natural and synthetic progestins enrich cancer stem cell-like cells in hormone-responsive human breast cancer cell populations in vitro. BREAST CANCER-TARGETS AND THERAPY 2017; 9:347-357. [PMID: 28579829 PMCID: PMC5446973 DOI: 10.2147/bctt.s135371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Clinical trials and studies have shown that combination estrogen/progestin hormone replacement therapy, but not estrogen therapy alone or placebo, increases breast cancer risk in postmenopausal women. Using animal models, we have previously shown that both natural and synthetic progestins (including medroxyprogesterone acetate [MPA], a synthetic progestin used widely in the clinical setting) accelerate the development of breast tumors in vivo and increase their metastasis to lymph nodes. Based on these observations, we have hypothesized that progestin-induced breast cancer tumor growth and metastasis may be mediated by an enrichment of the cancer stem cell (CSC) pool. In this study, we used T47-D and BT-474 hormone-responsive human breast cancer cells to examine the effects of progestin on phenotypic and functional markers of CSCs in vitro. Both natural and synthetic progestins (10 nM) significantly increased protein expression of CD44, an important CSC marker in tumor cells. MPA increased the levels of both CD44 variants v3 and v6 associated with stem cell functions. This induction of CD44 was blocked by the antiprogestin RU-486, suggesting that this process is progesterone receptor (PR) dependent. CD44 induction was chiefly progestin dependent. Because RU-486 can bind other steroid receptors, we treated PR-negative T47-DCO-Y cells with MPA and found that MPA failed to induce CD44 protein expression, confirming that PR is essential for progestin-mediated CD44 induction in T47-D cells. Further, MPA treatment of T47-D cells significantly increased the activity of aldehyde dehydrogenase (ALDH), another CSC marker. Finally, two synthetic progestins, MPA and norethindrone, significantly increased the ability of T47-D cells to form mammospheres, suggesting that enrichment of the CD44high, ALDHbright subpopulation of cancer cells induced by MPA exposure is of functional significance. Based on our observations, we contend that exposure of breast cancer cells to synthetic progestins leads to an enrichment of the CSC pool, supporting the development of progestin-accelerated tumors in vivo.
Collapse
Affiliation(s)
- Sandy Goyette
- Department of Biomedical Sciences.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Yayun Liang
- Department of Biomedical Sciences.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Benford Mafuvadze
- Department of Biomedical Sciences.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Matthew T Cook
- Department of Biomedical Sciences.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Moiz Munir
- Department of Biomedical Sciences.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Salman M Hyder
- Department of Biomedical Sciences.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
20
|
Timmermans-Sprang EPM, Gracanin A, Mol JA. Molecular Signaling of Progesterone, Growth Hormone, Wnt, and HER in Mammary Glands of Dogs, Rodents, and Humans: New Treatment Target Identification. Front Vet Sci 2017; 4:53. [PMID: 28451590 PMCID: PMC5389977 DOI: 10.3389/fvets.2017.00053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/28/2017] [Indexed: 12/21/2022] Open
Abstract
Mammary tumors are the most common form of neoplasia in the bitch. Female dogs are protected when they are spayed before the first estrus cycle, but this effect readily disappears and is already absent when dogs are spayed after the second heat. As the ovaries are removed during spaying, ovarian steroids are assumed to play an essential role in tumor development. The sensitivity toward tumor development is already present during early life, which may be caused by early mutations in stem cells during the first estrus cycles. Later on in life, tumors arise that are mostly steroid-receptor positive, although a small subset of tumors overexpressing human epidermal growth factor 2 (HER2) and some lacking estrogen receptor, progesterone receptor (PR), and HER2 (triple negative) are present, as is the situation in humans. Progesterone (P4), acting through PR, is the major steroid involved in outgrowth of mammary tissue. PRs are expressed in two forms, the progesterone receptor A (PRA) and progesterone receptor B (PRB) isoforms derived from splice variants from a single gene. The dog and the whole family of canids have only a functional PRA isoform, whereas the PRB isoform, if expressed at all, is devoid of intrinsic biological activity. In human breast cancer, overexpression of the PRA isoform is related to more aggressive carcinomas making the dog a unique model to study PRA-related mammary cancer. Administration of P4 to adult dogs results in local mammary expression of growth hormone (GH) and wing less-type mouse mammary tumor virus integration site family 4 (Wnt4). Both proteins play a role in activation of mammary stem cells. In this review, we summarize what is known on P4, GH, and Wnt signaling in canine mammary cancer, how the family of HER receptors could interact with this signaling, and what this means for comparative and translational oncological aspects of human breast cancer development.
Collapse
Affiliation(s)
| | - Ana Gracanin
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, Netherlands
| | - Jan A Mol
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
21
|
Bielecka ZF, Maliszewska-Olejniczak K, Safir IJ, Szczylik C, Czarnecka AM. Three-dimensional cell culture model utilization in cancer stem cell research. Biol Rev Camb Philos Soc 2016; 92:1505-1520. [DOI: 10.1111/brv.12293] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Zofia F. Bielecka
- Department of Oncology with Laboratory of Molecular Oncology; Military Institute of Medicine; Szaserów 128 04-141 Warsaw Poland
- Postgraduate School of Molecular Medicine; Medical University of Warsaw; Zwirki i Wigury 61 02-109 Warsaw Poland
| | - Kamila Maliszewska-Olejniczak
- Department of Oncology with Laboratory of Molecular Oncology; Military Institute of Medicine; Szaserów 128 04-141 Warsaw Poland
- Laboratory of DNA Sequencing and Oligonucleotides Synthesis, Institute of Biochemistry and Biophysics; Polish Academy of Sciences; Pawinskiego 5a 02-106 Warsaw Poland
| | - Ilan J. Safir
- Department of Urology; Emory University School of Medicine; Atlanta GA 30322 U.S.A
| | - Cezary Szczylik
- Department of Oncology with Laboratory of Molecular Oncology; Military Institute of Medicine; Szaserów 128 04-141 Warsaw Poland
| | - Anna M. Czarnecka
- Department of Oncology with Laboratory of Molecular Oncology; Military Institute of Medicine; Szaserów 128 04-141 Warsaw Poland
| |
Collapse
|
22
|
Nandy SB, Gangwani L, Nahleh Z, Subramani R, Arumugam A, de la Rosa JM, Lakshmanaswamy R. Recurrence and metastasis of breast cancer is influenced by ovarian hormone's effect on breast cancer stem cells. Future Oncol 2015; 11:983-95. [PMID: 25760978 DOI: 10.2217/fon.14.301] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) have recently attracted great interest because of their emerging role in initiation, progression and metastasis, combined with their intrinsic resistance to chemotherapy and radiation therapy. CSCs and its interaction with hormones in breast cancer are currently being investigated with the aim of uncovering the molecular mechanisms by which they evade conventional treatment regimens. In this review, we discuss recent experimental data and new perspectives in the area of steroid hormones and their cross-talk with breast CSCs. We have covered literature associated with biomarkers, hormone receptors and hormone responsive signaling pathways in breast CSC. In addition, we also discuss the role of miRNAs in hormone mediated regulation of breast CSCs.
Collapse
Affiliation(s)
- Sushmita Bose Nandy
- Paul L Foster School of Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Cook MT, Liang Y, Besch-Williford C, Goyette S, Mafuvadze B, Hyder SM. Luteolin inhibits progestin-dependent angiogenesis, stem cell-like characteristics, and growth of human breast cancer xenografts. SPRINGERPLUS 2015; 4:444. [PMID: 26312209 PMCID: PMC4546074 DOI: 10.1186/s40064-015-1242-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/13/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE Clinical trials and epidemiological evidence have shown that combined estrogen/progestin hormone replacement therapy, but not estrogen therapy alone, increases breast cancer risk in post-menopausal women. Previously we have shown that natural and synthetic progestins, including the widely used synthetic progestin medroxyprogesterone acetate (MPA), increase production of a potent angiogenic factor, vascular endothelial growth factor (VEGF), in human breast cancer cells, potentially providing an explanation for progestin's mechanism of action. Here, we tested the effects of luteolin (LU), a flavonoid commonly found in fruits and vegetables, on inhibiting progestin-dependent VEGF induction and angiogenesis in human breast cancer cells, inhibiting stem cell-like characteristics, as well as breast cancer cell xenograft tumor growth in vivo and expression of angiogenesis markers. METHODS Viability of both T47-D and BT-474 cells was measured using sulforhodamine B assays. Enzyme-linked immunosorbent assays were used to monitor VEGF secretion from breast cancer cells. Progestin-dependent xenograft tumor growth was used to determine LU effects in vivo. CD31 immunohistochemistry was used to determine blood-vessel density in xenograft tumors. CD44 expression, aldehyde dehydrogenase activity, and mammosphere-formation assays were used to monitor stem cell-like characteristics of breast cancer cells. RESULTS Luteolin treatment reduced breast cancer cell viability, progestin-dependent VEGF secretion from breast cancer cells, and growth of MPA-dependent human breast cancer cell xenograft tumors in nude mice. LU treatment also decreased xenograft tumor VEGF expression and blood-vessel density. Furthermore, LU blocked MPA-induced acquisition of stem cell-like properties by breast cancer cells. CONCLUSIONS Luteolin effectively blocks progestin-dependent human breast cancer tumor growth and the stem cell-like phenotype in human breast cancer cells.
Collapse
Affiliation(s)
- Matthew T Cook
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211 USA ; Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211 USA
| | - Yayun Liang
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211 USA ; Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211 USA
| | | | - Sandy Goyette
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211 USA ; Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211 USA
| | - Benford Mafuvadze
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211 USA ; Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211 USA
| | - Salman M Hyder
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211 USA ; Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211 USA
| |
Collapse
|
24
|
Boulanger CA, Rosenfield SM, George AL, Smith GH. Hormone signaling requirements for the conversion of non-mammary mouse cells to mammary cell fate(s) in vivo. J Mammary Gland Biol Neoplasia 2015; 20:93-101. [PMID: 26362796 PMCID: PMC4595519 DOI: 10.1007/s10911-015-9343-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/03/2015] [Indexed: 12/25/2022] Open
Abstract
Mammotropic hormones and growth factors play a very important role in mammary growth and differentiation. Here, hormones including Estrogen, Progesterone, Prolactin, their cognate receptors, and the growth factor Amphiregulin, are tested with respect to their roles in signaling non-mammary cells from the mouse to redirect to mammary epithelial cell fate(s). This was done in the context of glandular regeneration in pubertal athymic female mice. Our previous studies demonstrated that mammary stem cell niches are recapitulated during gland regeneration in vivo. During this process, cells of exogenous origin cooperate with mammary epithelial cells to form mammary stem cell niches and thus respond to normal developmental signals. In all cases tested with the possible exception of estrogen receptor alpha (ER-α), hormone signaling is dispensable for non-mammary cells to undertake mammary epithelial cell fate(s), proliferate, and contribute progeny to chimeric mammary outgrowths. Importantly, redirected non-mammary cell progeny, regardless of their source, have the ability to self-renew and contribute offspring to secondary mammary outgrowths derived from transplanted chimeric mammary fragments; thus suggesting that some of these cells are capable of mammary stem cell/progenitor functions.
Collapse
Affiliation(s)
- Corinne A Boulanger
- Mammary Stem Cell Biology Section, BRL, CCR, NCI, Bldg. 37 Rm. 1122A, Bethesda, MD, 20892, USA
| | - Sonia M Rosenfield
- Mammary Stem Cell Biology Section, BRL, CCR, NCI, Bldg. 37 Rm. 1122A, Bethesda, MD, 20892, USA
| | - Andrea L George
- Mammary Stem Cell Biology Section, BRL, CCR, NCI, Bldg. 37 Rm. 1122A, Bethesda, MD, 20892, USA
| | - Gilbert H Smith
- Mammary Stem Cell Biology Section, BRL, CCR, NCI, Bldg. 37 Rm. 1122A, Bethesda, MD, 20892, USA.
| |
Collapse
|
25
|
Genazzani AR, Komm BS, Pickar JH. Emerging hormonal treatments for menopausal symptoms. Expert Opin Emerg Drugs 2015; 20:31-46. [DOI: 10.1517/14728214.2015.986093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Wip1 phosphatase in breast cancer. Oncogene 2014; 34:4429-38. [PMID: 25381821 DOI: 10.1038/onc.2014.375] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/02/2014] [Accepted: 10/05/2014] [Indexed: 12/13/2022]
Abstract
Understanding the factors contributing to tumor initiation, progression and evolution is of paramount significance. Among them, wild-type p53-induced phosphatase 1 (Wip1) is emerging as an important oncogene by virtue of its negative control on several key tumor suppressor pathways. Originally discovered as a p53-regulated gene, Wip1 has been subsequently found amplified and more recently mutated in a significant fraction of human cancers including breast tumors. Recent development in the field further uncovered the utility of anti-Wip1-directed therapies in delaying tumor onset or in reducing the tumor burden. Furthermore, Wip1 could be an important factor that contributes to tumor heterogeneity, suggesting that its inhibition may decrease the rate of cancer evolution. These effects depend on several signaling pathways modulated by Wip1 phosphatase in a spatial and temporal manner. In this review we discuss the recent development in understanding how Wip1 contributes to tumorigenesis with its relevance to breast cancer.
Collapse
|
27
|
Wang HY, Park S, Kim S, Ahn S, Lee D, Kim S, Jung D, Park KH, Lee H. Evaluation of BrightGen HR RT-qDx assay to detect nuclear receptors mRNA overexpression in FFPE breast cancer tissue samples for selection of tamoxifen therapy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:5792-5800. [PMID: 25337220 PMCID: PMC4203191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/28/2014] [Indexed: 06/04/2023]
Abstract
Breast cancer is a significant cause of death in women. Estrogen receptor (ER) and progesterone receptor (PR) are important prognostic factors indicating higher recovery rate in the breast cancer patients. Currently, immunohistochemical (IHC) staining is a conventional method to identify expression of ER and PR. If a breast cancer patient expresses ER or PR, a chemotherapy with estrogen inhibitors such as tamoxifen is supposed to be effective. Although IHC staining is a reliable method, it may not a useful method for continuous monitoring of ER and PR expression changes in multiple breast cancer patients. In the present study, we evaluated an alternative method of IHC for detection of ER and PR expression. A quantitative RT-PCR method called 'the BrightGen HR RT-qDx assay' was employed to detect mRNA expression of the nuclear receptors in 199 formalin-fixed paraffin-embedded (FFPE) breast cancer tissue samples. Among the ER/PR positive samples by IHC, 83 were determined positive and 16 were determined negative for the nuclear receptor mRNA by the quantitative RT-PCR method. Among the ER/PR negative samples by IHC, 37 were determined negative and 2 were determined positive by the quantitative RT-PCR method. The overall sensitivity and specificity of the quantitative RT-PCR method were 83.8% and 94.8% (P = 0.0026), respectively. We also optimized the quantitative RT-PCR method by setting up the diagnostic cut-off value using the likelihood ratio. The highest likelihood ratio was when the expression levels of the relative nuclear receptor mRNA passed 103.3 at which sensitivity and specificity was highest. These data suggest that BrightGen HR RT-qDx assay could be an alternative method for detection of the prognostic factors of nuclear receptors expressed in breast cancer patients for providing essential information for therapeutic application of tamoxifen.
Collapse
Affiliation(s)
- Hye-Young Wang
- M&D, Inc., Wonju Eco Environmental Technology CenterGangwon, Republic of Korea
| | - Sangjung Park
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei UniversityWonju, Gangwon, Republic of Korea
- Department of Clinical Laboratory Science, College of Medical Science, Daegu Haany UniversityDaegu, Republic of Korea
| | - Sunghyun Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei UniversityWonju, Gangwon, Republic of Korea
- Institute for Life Science and Biotechnology, Yonsei UniversitySeoul, Republic of Korea
| | - Sungwoo Ahn
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei UniversityWonju, Gangwon, Republic of Korea
| | - Dongsup Lee
- Department of Clinical Laboratory Science, Hyejeon CollegeChungnam, Republic of Korea
| | - Seungil Kim
- Department of Surgery, Yonsei University College of MedicineSeoul, Republic of Korea
| | - Dongju Jung
- Department of Biomedical Laboratory Science, College of Natural Sciences, Hoseo UniversityChungnam, Republic of Korea
| | - Kwang Hwa Park
- Department of Pathology, Wonju College of Medicine, Yonsei UniversityGangwon, Republic of Korea
| | - Hyeyoung Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei UniversityWonju, Gangwon, Republic of Korea
| |
Collapse
|
28
|
Smith CL, Santen RJ, Komm B, Mirkin S. Breast-related effects of selective estrogen receptor modulators and tissue-selective estrogen complexes. Breast Cancer Res 2014; 16:212. [PMID: 25928299 PMCID: PMC4076629 DOI: 10.1186/bcr3677] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A number of available treatments provide relief of menopausal symptoms and prevention of postmenopausal osteoporosis. However, as breast safety is a major concern, new options are needed, particularly agents with an improved mammary safety profile. Results from several large randomized and observational studies have shown an association between hormone therapy, particularly combined estrogen-progestin therapy, and a small increased risk of breast cancer and breast pain or tenderness. In addition, progestin-containing hormone therapy has been shown to increase mammographic breast density, which is an important risk factor for breast cancer. Selective estrogen receptor modulators (SERMs) provide bone protection, are generally well tolerated, and have demonstrated reductions in breast cancer risk, but do not relieve menopausal symptoms (that is, vasomotor symptoms). Tissue-selective estrogen complexes (TSECs) pair a SERM with one or more estrogens and aim to blend the positive effects of the components to provide relief of menopausal symptoms and prevention of postmenopausal osteoporosis without stimulating the breast or endometrium. One TSEC combination pairing conjugated estrogens (CEs) with the SERM bazedoxifene (BZA) has completed clinical development and is now available as an alternative option for menopausal therapy. Preclinical evidence suggests that CE/BZA induces inhibitory effects on breast tissue, and phase 3 clinical studies suggest breast neutrality, with no increases seen in breast tenderness, breast density, or cancer. In non-hysterectomized postmenopausal women, CE/BZA was associated with increased bone mineral density and relief of menopausal symptoms, along with endometrial safety. Taken together, these results support the potential of CE/BZA for the relief of menopausal symptoms and prevention of postmenopausal osteoporosis combined with breast and endometrial safety.
Collapse
Affiliation(s)
- Carolyn L Smith
- Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA .
| | - Richard J Santen
- University of Virginia School of Medicine, 450 Ray C. Hunt Drive, Fontaine Research Park, Charlottesville, VA, 22908, USA .
| | - Barry Komm
- Pfizer Inc, 500 Arcola Road, Collegeville, PA, 19426, USA .
| | | |
Collapse
|
29
|
Pardo I, Lillemoe HA, Blosser RJ, Choi M, Sauder CAM, Doxey DK, Mathieson T, Hancock BA, Baptiste D, Atale R, Hickenbotham M, Zhu J, Glasscock J, Storniolo AMV, Zheng F, Doerge RW, Liu Y, Badve S, Radovich M, Clare SE. Next-generation transcriptome sequencing of the premenopausal breast epithelium using specimens from a normal human breast tissue bank. Breast Cancer Res 2014; 16:R26. [PMID: 24636070 PMCID: PMC4053088 DOI: 10.1186/bcr3627] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 03/10/2014] [Indexed: 12/12/2022] Open
Abstract
Introduction Our efforts to prevent and treat breast cancer are significantly impeded by a lack of knowledge of the biology and developmental genetics of the normal mammary gland. In order to provide the specimens that will facilitate such an understanding, The Susan G. Komen for the Cure Tissue Bank at the IU Simon Cancer Center (KTB) was established. The KTB is, to our knowledge, the only biorepository in the world prospectively established to collect normal, healthy breast tissue from volunteer donors. As a first initiative toward a molecular understanding of the biology and developmental genetics of the normal mammary gland, the effect of the menstrual cycle and hormonal contraceptives on DNA expression in the normal breast epithelium was examined. Methods Using normal breast tissue from 20 premenopausal donors to KTB, the changes in the mRNA of the normal breast epithelium as a function of phase of the menstrual cycle and hormonal contraception were assayed using next-generation whole transcriptome sequencing (RNA-Seq). Results In total, 255 genes representing 1.4% of all genes were deemed to have statistically significant differential expression between the two phases of the menstrual cycle. The overwhelming majority (221; 87%) of the genes have higher expression during the luteal phase. These data provide important insights into the processes occurring during each phase of the menstrual cycle. There was only a single gene significantly differentially expressed when comparing the epithelium of women using hormonal contraception to those in the luteal phase. Conclusions We have taken advantage of a unique research resource, the KTB, to complete the first-ever next-generation transcriptome sequencing of the epithelial compartment of 20 normal human breast specimens. This work has produced a comprehensive catalog of the differences in the expression of protein-coding genes as a function of the phase of the menstrual cycle. These data constitute the beginning of a reference data set of the normal mammary gland, which can be consulted for comparison with data developed from malignant specimens, or to mine the effects of the hormonal flux that occurs during the menstrual cycle.
Collapse
|
30
|
In pulmonary lymphangioleiomyomatosis expression of progesterone receptor is frequently higher than that of estrogen receptor. Virchows Arch 2014; 464:495-503. [PMID: 24570392 DOI: 10.1007/s00428-014-1559-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/19/2014] [Accepted: 02/11/2014] [Indexed: 12/29/2022]
Abstract
Lymphangioleiomyomatosis (LAM) of the lung is a rare low-grade malignancy affecting primarily women of childbearing age. LAM is characterized by the proliferation of SMA and HMB-45 positive spindle-shaped and epithelioid cells throughout the lung in the form of discrete lesions causing cystic destruction and ultimately respiratory insufficiency. LAM occurs sporadically or in patients with tuberous sclerosis complex (TSC) and is etiologically linked to mutations in the TSC1 and TSC2 genes. Although LAM cells are known to express estrogen and progesterone receptors (ER and PR, respectively), their respective expression level was never determined. Therefore, here we measured the immunohistochemical expression of ERs and PRs in a large series of pulmonary LAM cases using the Aperio Spectrum Analysis Platform. Our case series comprised open lung biopsy specimens from 20 LAM patients and lungs explanted during the course of lung transplant from 24 patients. All cases were positive for ER and PR. PR expression was statistically significantly higher than ER in 80 % of the biopsies while ER predominated only in one case. Specimens from explanted cases of LAM had relatively fewer PR-positive nuclei. As a result, PR expression was significantly higher than ER in 38 % of the cases, whereas ER predominated in 33 %. Overall, PR expression predominated in 57 % of cases and ER in 21 %. These data indicate that PR frequently prevails over ER in pulmonary LAM. LAM is unusual in its high PR/ER ratio; other female neoplasms show a definite prevalence of ER. Our findings therefore warrant further study of PR function in LAM.
Collapse
|
31
|
Vares G, Cui X, Wang B, Nakajima T, Nenoi M. Generation of breast cancer stem cells by steroid hormones in irradiated human mammary cell lines. PLoS One 2013; 8:e77124. [PMID: 24146960 PMCID: PMC3797732 DOI: 10.1371/journal.pone.0077124] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 09/08/2013] [Indexed: 12/14/2022] Open
Abstract
Exposure to ionizing radiation was shown to result in an increased risk of breast cancer. There is strong evidence that steroid hormones influence radiosensitivity and breast cancer risk. Tumors may be initiated by a small subpopulation of cancer stem cells (CSCs). In order to assess whether the modulation of radiation-induced breast cancer risk by steroid hormones could involve CSCs, we measured by flow cytometry the proportion of CSCs in irradiated breast cancer cell lines after progesterone and estrogen treatment. Progesterone stimulated the expansion of the CSC compartment both in progesterone receptor (PR)-positive breast cancer cells and in PR-negative normal cells. In MCF10A normal epithelial PR-negative cells, progesterone-treatment and irradiation triggered cancer and stemness-associated microRNA regulations (such as the downregulation of miR-22 and miR-29c expression), which resulted in increased proportions of radiation-resistant tumor-initiating CSCs.
Collapse
Affiliation(s)
- Guillaume Vares
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
- * E-mail:
| | - Xing Cui
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Bing Wang
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Tetsuo Nakajima
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Mitsuru Nenoi
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
32
|
Treviño LS, Bingman WE, Edwards DP, Weigel NL. The requirement for p42/p44 MAPK activity in progesterone receptor-mediated gene regulation is target gene-specific. Steroids 2013; 78:542-7. [PMID: 23380370 PMCID: PMC3640704 DOI: 10.1016/j.steroids.2012.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/20/2012] [Accepted: 12/28/2012] [Indexed: 12/13/2022]
Abstract
Recent studies have suggested that progestins play a role in the etiology of breast cancer; however, the mechanisms by which progestins promote tumor formation/progression have not been defined. Progestin action, in target tissues such as the breast, is mediated by the progesterone receptor (PR). PR signaling is complex and PR regulates transcription of target genes through a variety of mechanisms. Many cell signaling pathways are activated inappropriately in breast cancer cells and these pathways can regulate PR activity. For example, the p42/p44 MAPK pathway can regulate PR function by altering phosphorylation of PR, as well as its coregulators. We found that inhibition of the p42/p44 MAPK signaling pathway with a MEK inhibitor (U0126) impairs PR-mediated gene induction, but not gene repression. In addition, the effects of U0126 on PR-mediated gene transcription are much greater with long-term versus short-term inhibition and are gene-specific. Finally, treatment with U0126 delays phosphorylation of Ser294, but does not block phosphorylation completely, suggesting that p42/p44 MAPK kinase is not the dominant kinase responsible for phosphorylating this site. Collectively, these studies suggest that in addition to the p42/p44 MAPK pathway, other signaling pathways are also important for PR transcriptional activity in breast cancer cells. The integration of PR transcriptional effects and cell signaling pathways has implications for the initiation or progression of breast cancer. Understanding how these pathways interact may aid in the development of prevention and/or treatment strategies for the disease.
Collapse
Affiliation(s)
- Lindsey S. Treviño
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - William E. Bingman
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Dean P. Edwards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - NL Weigel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Corresponding Author: Department of Molecular and Cellular Biology, Baylor College of Medicine, M515, One Baylor Plaza, Houston, TX 77030, USA. Telephone: 713-798-6234;
| |
Collapse
|
33
|
Milani ES, Brinkhaus H, Dueggeli R, Klebba I, Mueller U, Stadler M, Kohler H, Smalley MJ, Bentires-Alj M. Protein tyrosine phosphatase 1B restrains mammary alveologenesis and secretory differentiation. Development 2013; 140:117-25. [DOI: 10.1242/dev.082941] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tyrosine phosphorylation plays a fundamental role in mammary gland development. However, the role of specific tyrosine phosphatases in controlling mammary cell fate remains ill defined. We have identified protein tyrosine phosphatase 1B (PTP1B) as an essential regulator of alveologenesis and lactogenesis. PTP1B depletion increased the number of luminal mammary progenitors in nulliparous mice, leading to enhanced alveoli formation upon pregnancy. Mechanistically, Ptp1b deletion enhanced the expression of progesterone receptor and phosphorylation of Stat5, two key regulators of alveologenesis. Furthermore, glands from Ptp1b knockout mice exhibited increased expression of milk proteins during pregnancy due to enhanced Stat5 activation. These findings reveal that PTP1B constrains the number of mammary progenitors and thus prevents inappropriate onset of alveologenesis in early pregnancy. Moreover, PTP1B restrains the expression of milk proteins during pregnancy and thus prevents premature lactogenesis. Our work has implications for breast tumorigenesis because Ptp1b deletion has been shown to prevent or delay the onset of mammary tumors.
Collapse
Affiliation(s)
- Emanuela S. Milani
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
- University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Heike Brinkhaus
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | - Regula Dueggeli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | - Ina Klebba
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | - Urs Mueller
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | - Michael Stadler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | - Matthew J. Smalley
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff CF1 3AX, UK
| | - Mohamed Bentires-Alj
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| |
Collapse
|
34
|
Gracanin A, de Gier J, Zegers K, Bominaar M, Rutteman GR, Schaefers-Okkens AC, Kooistra HS, Mol JA. Progesterone Receptor Isoforms in the Mammary Gland of Cats and Dogs. Reprod Domest Anim 2012; 47 Suppl 6:313-7. [DOI: 10.1111/rda.12045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 07/24/2012] [Indexed: 11/26/2022]
Affiliation(s)
- A Gracanin
- Department of Clinical Sciences of Companion Animals; Faculty of Veterinary Medicine; Utrecht University; Utrecht; The Netherlands
| | - J de Gier
- Department of Clinical Sciences of Companion Animals; Faculty of Veterinary Medicine; Utrecht University; Utrecht; The Netherlands
| | - K Zegers
- Department of Clinical Sciences of Companion Animals; Faculty of Veterinary Medicine; Utrecht University; Utrecht; The Netherlands
| | - M Bominaar
- Department of Clinical Sciences of Companion Animals; Faculty of Veterinary Medicine; Utrecht University; Utrecht; The Netherlands
| | - GR Rutteman
- Department of Clinical Sciences of Companion Animals; Faculty of Veterinary Medicine; Utrecht University; Utrecht; The Netherlands
| | - AC Schaefers-Okkens
- Department of Clinical Sciences of Companion Animals; Faculty of Veterinary Medicine; Utrecht University; Utrecht; The Netherlands
| | - HS Kooistra
- Department of Clinical Sciences of Companion Animals; Faculty of Veterinary Medicine; Utrecht University; Utrecht; The Netherlands
| | - JA Mol
- Department of Clinical Sciences of Companion Animals; Faculty of Veterinary Medicine; Utrecht University; Utrecht; The Netherlands
| |
Collapse
|
35
|
Axlund SD, Yoo BH, Rosen RB, Schaack J, Kabos P, Labarbera DV, Sartorius CA. Progesterone-inducible cytokeratin 5-positive cells in luminal breast cancer exhibit progenitor properties. Discov Oncol 2012. [PMID: 23184698 DOI: 10.1007/s12672-012-0127-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Progestins play a deleterious role in the onset of breast cancer, yet their influence on existing breast cancer and tumor progression is not well understood. In luminal estrogen receptor (ER)- and progesterone receptor (PR)-positive breast cancer, progestins induce a fraction of cells to express cytokeratin 5 (CK5), a marker of basal epithelial and progenitor cells in the normal breast. CK5(+) cells lose expression of ER and PR and are relatively quiescent, increasing their resistance to endocrine and chemotherapy compared to intratumoral CK5(-)ER(+)PR(+) cells. Characterization of live CK5(+) cells has been hampered by a lack of means for their direct isolation. Here, we describe optical (GFP) and bioluminescent (luciferase) reporter models to quantitate and isolate CK5(+) cells in luminal breast cancer cell lines utilizing the human KRT5 gene promoter and a viral vector approach. Using this system, we confirmed that the induction of GFP(+)/CK5(+) cells is specific to progestins, is dependent on PR, can be blocked by antiprogestins, and does not occur with other steroid hormones. Progestin-induced, fluorescence-activated cell sorting-isolated CK5(+) cells had lower ER and PR mRNA, were slower cycling, and were relatively more invasive and sphere forming than their CK5(-) counterparts in vitro. Repeated progestin treatment and selection of GFP(+) cells enriched for a persistent population of CK5(+) cells, suggesting that this transition can be semi-permanent. These data support that in PR(+) breast cancers, progestins induce a subpopulation of CK5(+)ER(-)PR(-) cells with enhanced progenitor properties and have implications for treatment resistance and recurrence in luminal breast cancer.
Collapse
Affiliation(s)
- Sunshine Daddario Axlund
- Department of Pathology, University of Colorado Denver, Anschutz Medical Center, Aurora, CO, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Kabos P, Finlay-Schultz J, Li C, Kline E, Finlayson C, Wisell J, Manuel CA, Edgerton SM, Harrell JC, Elias A, Sartorius CA. Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Breast Cancer Res Treat 2012; 135:415-32. [PMID: 22821401 DOI: 10.1007/s10549-012-2164-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/05/2012] [Indexed: 01/05/2023]
Abstract
Bypassing estrogen receptor (ER) signaling during development of endocrine resistance remains the most common cause of disease progression and mortality in breast cancer patients. To date, the majority of molecular research on ER action in breast cancer has occurred in cell line models derived from late stage disease. Here we describe patient-derived ER+ luminal breast tumor models for the study of intratumoral hormone and receptor action. Human breast tumor samples obtained from patients post surgery were immediately transplanted into NOD/SCID or NOD/SCID/ILIIrg(-/-) mice under estrogen supplementation. Five transplantable patient-derived ER+ breast cancer xenografts were established, derived from both primary and metastatic cases. These were assessed for estrogen dependency, steroid receptor expression, cancer stem cell content, and endocrine therapy response. Gene expression patterns were determined in select tumors ±estrogen and ±endocrine therapy. Xenografts morphologically resembled the patient tumors of origin, and expressed similar levels of ER (5-99 %), and progesterone and androgen receptors, over multiple passages. Four of the tumor xenografts were estrogen dependent, and tamoxifen or estrogen withdrawal (EWD) treatment abrogated estrogen-dependent growth and/or tumor morphology. Analysis of the ER transcriptome in select tumors revealed notable differences in ER mechanism of action, and downstream activated signaling networks, in addition to identifying a small set of common estrogen-regulated genes. Treatment of a naïve tumor with tamoxifen or EWD showed similar phenotypic responses, but relatively few similarities in estrogen-dependent transcription, and affected signaling pathways. Several core estrogen centric genes were shared with traditional cell line models. However, novel tumor-specific estrogen-regulated potential target genes, such as cancer/testis antigen 45, were uncovered. These results evoke the importance of mapping both conserved and tumor-unique ER programs in breast cancers. Furthermore, they underscore the importance of primary xenografts for improved understanding of ER+ breast cancer heterogeneity and development of personalized therapies.
Collapse
Affiliation(s)
- Peter Kabos
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yoo BH, Axlund SD, Kabos P, Reid BG, Schaack J, Sartorius CA, LaBarbera DV. A high-content assay to identify small-molecule modulators of a cancer stem cell population in luminal breast cancer. ACTA ACUST UNITED AC 2012; 17:1211-20. [PMID: 22751729 DOI: 10.1177/1087057112452138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Breast cancers expressing hormone receptors for estrogen (ER) and progesterone (PR) represent ~70% of all cases and are treated with both ER-targeted and chemotherapies, with near 40% becoming resistant. We have previously described that in some ER(+) tumors, the resistant cells express cytokeratin 5 (CK5), a putative marker of breast stem and progenitor cells. CK5(+) cells have lost expression of ER and PR, express the tumor-initiating cell surface marker CD44, and are relatively quiescent. In addition, progestins, which increase breast cancer incidence, expand the CK5(+) subpopulation in ER(+)PR(+) breast cancer cell lines. We have developed models to induce and quantitate CK5(+)ER(-)PR(-) cells, using CK5 promoter-driven luciferase (Fluc) or green fluorescent protein (GFP) reporters stably transduced into T47D breast cancer cells (CK5Pro-GFP or CK5Pro-Luc). We validated the CK5Pro-GFP-T47D model for high-content screening in 96-well microplates and performed a pilot screen using a focused library of 280 compounds from the National Institutes of Health clinical collection. Four hits were obtained that significantly abrogated the progestin-induced CK5(+) cell population, three of which were members of the retinoid family. Hence, this approach will be useful in discovering small molecules that could potentially be developed as combination therapies, preventing the acquisition of a drug-resistant subpopulation.
Collapse
Affiliation(s)
- Byong Hoon Yoo
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy, The University of Colorado, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Graham JD, Clarke CL. Preview: MCE special issue on molecular mechanisms of action in progesterone signalling. Mol Cell Endocrinol 2012; 357:1-3. [PMID: 22326765 DOI: 10.1016/j.mce.2012.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|