1
|
Yang Y, Wang TT, Xie HA, Hu PP, Li P. Experimental cell models of insulin resistance: overview and appraisal. Front Endocrinol (Lausanne) 2024; 15:1469565. [PMID: 39749015 PMCID: PMC11693592 DOI: 10.3389/fendo.2024.1469565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Insulin resistance, a key factor in the development of type 2 diabetes mellitus (T2DM), is defined as a defect in insulin-mediated control of glucose metabolism in tissues such as liver, fat and muscle. Insulin resistance is a driving force behind various metabolic diseases, such as T2DM, hyperlipidemia, hypertension, coronary heart disease and fatty liver. Therefore, improving insulin sensitivity can be considered as an effective strategy for the prevention and treatment of these complex metabolic diseases. Cell-based models are extensively employed for the study of pathological mechanisms and drug screening, particularly in relation to insulin resistance in T2DM. Currently, numerous methods are available for the establishment of in vitro insulin resistance models, a comprehensive review of these models is required and can serve as an excellent introduction or understanding for researchers undertaking studies in this filed. This review examines and discusses the primary methods for establishing and evaluating insulin resistance cell models. Furthermore, it highlights key issues and suggestions on cell selection, establishment, evaluation and drug screening of insulin resistance, thereby providing valuable references for the future research efforts.
Collapse
Affiliation(s)
- Ying Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Ting-ting Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Hu-ai Xie
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Ping Ping Hu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Pan Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Mau T, Blackwell TL, Cawthon PM, Molina AJA, Coen PM, Distefano G, Kramer PA, Ramos SV, Forman DE, Goodpaster BH, Toledo FGS, Duchowny KA, Sparks LM, Newman AB, Kritchevsky SB, Cummings SR. Muscle Mitochondrial Bioenergetic Capacities Are Associated With Multimorbidity Burden in Older Adults: The Study of Muscle, Mobility and Aging. J Gerontol A Biol Sci Med Sci 2024; 79:glae101. [PMID: 38605684 PMCID: PMC11167490 DOI: 10.1093/gerona/glae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND The geroscience hypothesis posits that aging biological processes contribute to many age-related deficits, including the accumulation of multiple chronic diseases. Though only one facet of mitochondrial function, declines in muscle mitochondrial bioenergetic capacities may contribute to this increased susceptibility to multimorbidity. METHODS The Study of Muscle, Mobility and Aging (SOMMA) assessed ex vivo muscle mitochondrial energetics in 764 older adults (mean age = 76.4, 56.5% women, and 85.9% non-Hispanic White) by high-resolution respirometry of permeabilized muscle fibers. We estimated the proportional odds ratio (POR [95% CI]) for the likelihood of greater multimorbidity (4 levels: 0 conditions, N = 332; 1 condition, N = 299; 2 conditions, N = 98; or 3+ conditions, N = 35) from an index of 11 conditions, per SD decrement in muscle mitochondrial energetic parameters. Distribution of conditions allowed for testing the associations of maximal muscle energetics with some individual conditions. RESULTS Lower oxidative phosphorylation supported by fatty acids and/or complex I- and II-linked carbohydrates (eg, Max OXPHOSCI+CII) was associated with a greater multimorbidity index score (POR = 1.32 [1.13, 1.54]) and separately with diabetes mellitus (OR = 1.62 [1.26, 2.09]), depressive symptoms (OR = 1.45 [1.04, 2.00]) and possibly chronic kidney disease (OR = 1.57 [0.98, 2.52]) but not significantly with other conditions (eg, cardiac arrhythmia, chronic obstructive pulmonary disease). CONCLUSIONS Lower muscle mitochondrial bioenergetic capacities were associated with a worse composite multimorbidity index score. Our results suggest that decrements in muscle mitochondrial energetics may contribute to a greater global burden of disease and are more strongly related to some conditions than others.
Collapse
Affiliation(s)
- Theresa Mau
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Terri L Blackwell
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Peggy M Cawthon
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Anthony J A Molina
- Division of Geriatrics, Gerontology, and Palliative Care, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Paul M Coen
- Translational Research Institute, AdventHealth, Orlando, Florida, USA
| | | | - Philip A Kramer
- Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Sofhia V Ramos
- Translational Research Institute, AdventHealth, Orlando, Florida, USA
| | - Daniel E Forman
- Division of Geriatrics and Cardiology, Department of Medicine, University of Pittsburgh, Geriatrics Research, Education, and Clinical Care (GRECC), VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Bret H Goodpaster
- Translational Research Institute, AdventHealth, Orlando, Florida, USA
| | - Frederico G S Toledo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kate A Duchowny
- Social Environment and Health, Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, Florida, USA
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen B Kritchevsky
- Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Steven R Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
Brennan AM, Coen PM, Mau T, Hetherington-Rauth M, Toledo FG, Kershaw EE, Cawthon PM, Kramer PA, Ramos SV, Newman AB, Cummings SR, Forman DE, Yeo RX, Distefano G, Miljkovic I, Justice JN, Molina AJ, Jurczak MJ, Sparks LM, Kritchevsky SB, Goodpaster BH. Associations between regional adipose tissue distribution and skeletal muscle bioenergetics in older men and women. Obesity (Silver Spring) 2024; 32:1125-1135. [PMID: 38803308 PMCID: PMC11139412 DOI: 10.1002/oby.24008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE The aim of this study was to examine associations of ectopic adipose tissue (AT) with skeletal muscle (SM) mitochondrial bioenergetics in older adults. METHODS Cross-sectional data from 829 adults ≥70 years of age were used. Abdominal, subcutaneous, and visceral AT and thigh muscle fat infiltration (MFI) were quantified by magnetic resonance imaging. SM mitochondrial energetics were characterized in vivo (31P-magnetic resonance spectroscopy; ATPmax) and ex vivo (high-resolution respirometry maximal oxidative phosphorylation [OXPHOS]). ActivPal was used to measure physical activity ([PA]; step count). Linear regression adjusted for covariates was applied, with sequential adjustment for BMI and PA. RESULTS Independent of BMI, total abdominal AT (standardized [Std.] β = -0.21; R2 = 0.09) and visceral AT (Std. β = -0.16; R2 = 0.09) were associated with ATPmax (p < 0.01; n = 770) but not following adjustment for PA (p ≥ 0.05; n = 658). Visceral AT (Std. β = -0.16; R2 = 0.25) and thigh MFI (Std. β = -0.11; R2 = 0.24) were associated with carbohydrate-supported maximal OXPHOS independent of BMI and PA (p < 0.05; n = 609). Total abdominal AT (Std. β = -0.19; R2 = 0.24) and visceral AT (Std. β = -0.17; R2 = 0.24) were associated with fatty acid-supported maximal OXPHOS independent of BMI and PA (p < 0.05; n = 447). CONCLUSIONS Skeletal MFI and abdominal visceral, but not subcutaneous, AT are inversely associated with SM mitochondrial bioenergetics in older adults independent of BMI. Associations between ectopic AT and in vivo mitochondrial bioenergetics are attenuated by PA.
Collapse
Affiliation(s)
- Andrea M. Brennan
- Translational Research Institute, AdventHealth Research Institute, Orlando, Florida, USA
| | - Paul M. Coen
- Translational Research Institute, AdventHealth Research Institute, Orlando, Florida, USA
| | - Theresa Mau
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Megan Hetherington-Rauth
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Frederico G.S. Toledo
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Erin E. Kershaw
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peggy M. Cawthon
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Philip A. Kramer
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Sofhia V. Ramos
- Translational Research Institute, AdventHealth Research Institute, Orlando, Florida, USA
| | - Anne B. Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven R. Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Daniel E. Forman
- Department of Medicine-Divisions of Geriatrics and Cardiology, University of Pittsburgh, Geriatrics Research, Education, and Clinical Care (GRECC), VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Reichelle X. Yeo
- Translational Research Institute, AdventHealth Research Institute, Orlando, Florida, USA
| | - Giovanna Distefano
- Translational Research Institute, AdventHealth Research Institute, Orlando, Florida, USA
| | - Iva Miljkovic
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jamie N. Justice
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Anthony J.A. Molina
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Department of Medicine-Division of Geriatrics, Gerontology, and Palliative Care, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Michael J. Jurczak
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lauren M. Sparks
- Translational Research Institute, AdventHealth Research Institute, Orlando, Florida, USA
| | - Stephen B. Kritchevsky
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Bret H. Goodpaster
- Translational Research Institute, AdventHealth Research Institute, Orlando, Florida, USA
| |
Collapse
|
4
|
Ouni M, Kovac L, Gancheva S, Jähnert M, Zuljan E, Gottmann P, Kahl S, de Angelis MH, Roden M, Schürmann A. Novel markers and networks related to restored skeletal muscle transcriptome after bariatric surgery. Obesity (Silver Spring) 2024; 32:363-375. [PMID: 38086776 DOI: 10.1002/oby.23954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 01/26/2024]
Abstract
OBJECTIVE The aim of this study was to discover novel markers underlying the improvement of skeletal muscle metabolism after bariatric surgery. METHODS Skeletal muscle transcriptome data of lean people and people with obesity, before and 1 year after bariatric surgery, were subjected to weighted gene co-expression network analysis (WGCNA) and least absolute shrinkage and selection operator (LASSO) regression. Results of LASSO were confirmed in a replication cohort. RESULTS The expression levels of 440 genes differing between individuals with and without obesity were no longer different 1 year after surgery, indicating restoration. WGCNA clustered 116 genes with normalized expression in one major module, particularly correlating to weight loss and decreased plasma free fatty acids (FFA), 44 of which showed an obesity-related phenotype upon deletion in mice. Among the genes of the major module, 105 represented prominent markers for reduced FFA concentration, including 55 marker genes for decreased BMI in both the discovery and replication cohorts. CONCLUSIONS Previously unknown gene networks and marker genes underlined the important role of FFA in restoring muscle gene expression after bariatric surgery and further suggest novel therapeutic targets for obesity.
Collapse
Affiliation(s)
- Meriem Ouni
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Leona Kovac
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Sofiya Gancheva
- German Center for Diabetes Research (DZD), Munich, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Markus Jähnert
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Erika Zuljan
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Pascal Gottmann
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Sabine Kahl
- German Center for Diabetes Research (DZD), Munich, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Martin Hrabĕ de Angelis
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- School of Life Sciences, Technical University Munich, Freising, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), Munich, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Annette Schürmann
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| |
Collapse
|
5
|
Gonzalez-Armenta JL, Bergstrom J, Lee J, Furdui CM, Nicklas BJ, Molina AJA. Serum factors mediate changes in mitochondrial bioenergetics associated with diet and exercise interventions. GeroScience 2024; 46:349-365. [PMID: 37368157 PMCID: PMC10828137 DOI: 10.1007/s11357-023-00855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Mitochondrial improvements resulting from behavioral interventions, such as diet and exercise, are systemic and apparent across multiple tissues. Here, we test the hypothesis that factors present in serum, and therefore circulating throughout the body, can mediate changes in mitochondrial function in response to intervention. To investigate this, we used stored serum from a clinical trial comparing resistance training (RT) and RT plus caloric restriction (RT + CR) to examine effects of blood borne circulating factors on myoblasts in vitro. We report that exposure to dilute serum is sufficient to mediate bioenergetic benefits of these interventions. Additionally, serum-mediated bioenergetic changes can differentiate between interventions, recapitulate sex differences in bioenergetic responses, and is linked to improvements in physical function and inflammation. Using metabolomics, we identified circulating factors associated with changes in mitochondrial bioenergetics and the effects of interventions. This study provides new evidence that circulating factors play a role in the beneficial effects of interventions that improve healthspan among older adults. Understanding the factors that drive improvements in mitochondrial function is a key step towards predicting intervention outcomes and developing strategies to countermand systemic age-related bioenergetic decline.
Collapse
Affiliation(s)
- Jenny L Gonzalez-Armenta
- Section On Gerontology and Geriatrics, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jaclyn Bergstrom
- Division of Geriatrics, Gerontology, and Palliative Care, Department of Medicine, University of California San Diego School of Medicine, 9500 Gilman Drive, MC 0665, La Jolla, CA, 92093-0665, USA
| | - Jingyun Lee
- Proteomics and Metabolomics Shared Resource, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Section On Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Barbara J Nicklas
- Section On Gerontology and Geriatrics, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anthony J A Molina
- Division of Geriatrics, Gerontology, and Palliative Care, Department of Medicine, University of California San Diego School of Medicine, 9500 Gilman Drive, MC 0665, La Jolla, CA, 92093-0665, USA.
| |
Collapse
|
6
|
Colosimo S, Mitra SK, Chaudhury T, Marchesini G. Insulin resistance and metabolic flexibility as drivers of liver and cardiac disease in T2DM. Diabetes Res Clin Pract 2023; 206:111016. [PMID: 37979728 DOI: 10.1016/j.diabres.2023.111016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Metabolic flexibility refers to the ability of tissues to adapt their use of energy sources according to substrate availability and energy demands. This review aims to disentangle the emerging mechanisms through which altered metabolic flexibility and insulin resistance promote NAFLD and heart disease progression. Insulin resistance and metabolic inflexibility are central drivers of hepatic and cardiac diseases in individuals with type 2 diabetes. Both play a critical role in the complex interaction between glucose and lipid metabolism. Disruption of metabolic flexibility results in hyperglycemia and abnormal lipid metabolism, leading to increased accumulation of fat in the liver, contributing to the development and progression of NAFLD. Similarly, insulin resistance affects cardiac glucose metabolism, leading to altered utilization of energy substrates and impaired cardiac function, and influence cardiac lipid metabolism, further exacerbating the progression of heart failure. Regular physical activity promotes metabolic flexibility by increasing energy expenditure and enabling efficient switching between different energy substrates. On the contrary, weight loss achieved through calorie restriction ameliorates insulin sensitivity without improving flexibility. Strategies that mimic the effects of physical exercise, such as pharmacological interventions or targeted lifestyle modifications, show promise in effectively treating both diabetes and NAFLD, finally reducing the risk of advanced liver disease.
Collapse
Affiliation(s)
- Santo Colosimo
- School of Nutrition Science, University of Milan, Milan, Italy
| | - Sandip Kumar Mitra
- Diabetes and Endocrinology Unit, Apollo Gleneagles Hospital, Kolkata, West Bengal, India
| | - Tirthankar Chaudhury
- Diabetes and Endocrinology Unit, Apollo Gleneagles Hospital, Kolkata, West Bengal, India
| | - Giulio Marchesini
- IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Policlinico di Sant'Orsola, Bologna, Italy.
| |
Collapse
|
7
|
Brennan AM, Coen PM, Mau T, Hetherington-Rauth M, Toledo FGS, Kershaw EE, Cawthon PM, Kramer PA, Ramos SV, Newman AB, Cummings SR, Forman DE, Yeo RX, DiStefano G, Miljkovic I, Justice JN, Molina AJA, Jurczak MJ, Sparks LM, Kritchevsky SB, Goodpaster BH. Associations between regional adipose tissue distribution and skeletal muscle bioenergetics in older men and women. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.10.23298359. [PMID: 37986822 PMCID: PMC10659498 DOI: 10.1101/2023.11.10.23298359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Objective Examine the association of ectopic adipose tissue (AT) with skeletal muscle (SM) mitochondrial bioenergetics in older adults. Methods Cross-sectional data from 829 older adults ≥70 years was used. Total abdominal, subcutaneous, and visceral AT; and thigh muscle fat infiltration (MFI) was quantified by MRI. SM mitochondrial energetics were characterized using in vivo 31 P-MRS (ATP max ) and ex vivo high-resolution respirometry (maximal oxidative phosphorylation (OXPHOS)). ActivPal was used to measure PA (step count). Linear regression models adjusted for covariates were applied, with sequential adjustment for BMI and PA. Results Independent of BMI, total abdominal (standardized (Std.) β=-0.21; R 2 =0.09) and visceral AT (Std. β=-0.16; R 2 =0.09) were associated with ATP max ( p <0.01), but not after further adjustment for PA (p≥0.05). Visceral AT (Std. β=-0.16; R 2 =0.25) and thigh MFI (Std. β=-0.11; R 2 =0.24) were negatively associated with carbohydrate-supported maximal OXPHOS independent of BMI and PA ( p <0.05). Total abdominal AT (Std. β=-0.19; R 2 =0.24) and visceral AT (Std. β=-0.17; R 2 =0.24) were associated with fatty acid-supported maximal OXPHOS independent of BMI and PA (p<0.05). Conclusions Skeletal MFI and abdominal visceral, but not subcutaneous AT, are inversely associated with SM mitochondrial bioenergetics in older adults independent of BMI. Associations between ectopic AT and in vivo mitochondrial bioenergetics are attenuated by PA.
Collapse
|
8
|
Mau T, Blackwell TL, Cawthon PM, Molina AJA, Coen PM, Distefano G, Kramer PA, Ramos SV, Forman DE, Goodpaster BH, Toledo FGS, Duchowny KA, Sparks LM, Newman AB, Kritchevsky SB, Cummings SR. Muscle mitochondrial bioenergetic capacities is associated with multimorbidity burden in older adults: the Study of Muscle, Mobility and Aging (SOMMA). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.06.23298175. [PMID: 39711735 PMCID: PMC11661392 DOI: 10.1101/2023.11.06.23298175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Background The geroscience hypothesis posits that aging biological processes contribute to many age-related deficits, including the accumulation of multiple chronic diseases. Though only one facet of mitochondrial function, declines in muscle mitochondrial bioenergetic capacities may contribute to this increased susceptibility to multimorbidity. Methods The Study of Muscle, Mobility and Aging (SOMMA) assessed ex vivo muscle mitochondrial energetics in 764 older adults (mean age =76.4, 56.5% women, 85.9% non-Hispanic white) by high-resolution respirometry of permeabilized muscle fibers. We estimated the proportional odds ratio (POR [95%CI]) for the likelihood of greater multimorbidity (four levels: 0 conditions, N=332; 1 condition, N=299; 2 conditions, N=98; or 3+ conditions, N=35) from an index of 11 conditions, per SD decrement in muscle mitochondrial energetic parameters. Distribution of conditions allowed for testing the associations of maximal muscle energetics with some individual conditions. Results Lower oxidative phosphorylation supported by fatty acids and/or complex-I and -II linked carbohydrates (e.g., Max OXPHOSCI+CII) was associated with a greater multimorbidity index score (POR=1.32[1.13,1.54]) and separately with diabetes mellitus (OR=1.62[1.26,2.09]), depressive symptoms (OR=1.45[1.04,2.00]) and possibly chronic kidney disease (OR=1.57[0.98,2.52]) but not significantly with other conditions (e.g., cardiac arrhythmia, chronic obstructive pulmonary disease). Conclusions Lower muscle mitochondrial bioenergetic capacities was associated with a worse composite multimorbidity index score. Our results suggest that decrements in muscle mitochondrial energetics may contribute to a greater global burden of disease and is more strongly related to some conditions than others.
Collapse
Affiliation(s)
- Theresa Mau
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Terri L Blackwell
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California
| | - Peggy M Cawthon
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Anthony J A Molina
- Department of Medicine-Division of Geriatrics, Gerontology, and Palliative Care, University of California San Diego School of Medicine, La Jolla, California
| | - Paul M Coen
- Translational Research Institute, AdventHealth, Orlando, Florida
| | | | - Philip A Kramer
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Sofhia V Ramos
- Translational Research Institute, AdventHealth, Orlando, Florida
| | - Daniel E Forman
- Department of Medicine-Division of Geriatrics and Cardiology, University of Pittsburgh, Geriatrics Research, Education, and Clinical Care (GRECC), VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | | | - Frederico G S Toledo
- Department of Medicine-Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kate A Duchowny
- Social Environment and Health, Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, Florida
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephen B Kritchevsky
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Steven R Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| |
Collapse
|
9
|
Song H, Zhang X, Wang J, Wu Y, Xiong T, Shen J, Lin R, Xiao T, Lin W. The regulatory role of adipocyte mitochondrial homeostasis in metabolism-related diseases. Front Physiol 2023; 14:1261204. [PMID: 37920803 PMCID: PMC10619862 DOI: 10.3389/fphys.2023.1261204] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Adipose tissue is the most important energy storage organ in the body, maintaining its normal energy metabolism function and playing a vital role in keeping the energy balance of the body to avoid the harm caused by obesity and a series of related diseases resulting from abnormal energy metabolism. The dysfunction of adipose tissue is closely related to the occurrence of diseases related to obesity metabolism. Among various organelles, mitochondria are the main site of energy metabolism, and mitochondria maintain their quality through autophagy, biogenesis, transfer, and dynamics, which play an important role in maintaining metabolic homeostasis of adipocytes. On the other hand, mitochondria have mitochondrial genomes which are vulnerable to damage due to the lack of protective structures and their proximity to sites of reactive oxygen species generation, thus affecting mitochondrial function. Notably, mitochondria are closely related to other organelles in adipocytes, such as lipid droplets and the endoplasmic reticulum, which enhances the function of mitochondria and other organelles and regulates energy metabolism processes, thus reducing the occurrence of obesity-related diseases. This article introduces the structure and quality control of mitochondria in adipocytes and their interactions with other organelles in adipocytes, aiming to provide a new perspective on the regulation of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases, and to provide theoretical reference for further revealing the molecular mechanism of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases.
Collapse
Affiliation(s)
- Hongbing Song
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaohan Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanling Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taimin Xiong
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jieqiong Shen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tianfang Xiao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Weimin Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
10
|
Scandalis L, Kitzman DW, Nicklas BJ, Lyles M, Brubaker P, Nelson MB, Gordon M, Stone J, Bergstrom J, Neufer PD, Gnaiger E, Molina AJA. Skeletal Muscle Mitochondrial Respiration and Exercise Intolerance in Patients With Heart Failure With Preserved Ejection Fraction. JAMA Cardiol 2023; 8:575-584. [PMID: 37163294 PMCID: PMC10173105 DOI: 10.1001/jamacardio.2023.0957] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/17/2023] [Indexed: 05/11/2023]
Abstract
Importance The pathophysiology of exercise intolerance in patients with heart failure with preserved ejection fraction (HFpEF) remains incompletely understood. Multiple lines of evidence suggest that abnormal skeletal muscle metabolism is a key contributor, but the mechanisms underlying metabolic dysfunction remain unresolved. Objective To evaluate the associations of skeletal muscle mitochondrial function using respirometric analysis of biopsied muscle fiber bundles from patients with HFpEF with exercise performance. Design, Setting, and Participants In this cross-sectional study, muscle fiber bundles prepared from fresh vastus lateralis biopsies were analyzed by high-resolution respirometry to provide detailed analyses of mitochondrial oxidative phosphorylation, including maximal capacity and the individual contributions of complex I-linked and complex II-linked respiration. These bioenergetic data were compared between patients with stable chronic HFpEF older than 60 years and age-matched healthy control (HC) participants and analyzed for intergroup differences and associations with exercise performance. All participants were treated at a university referral center, were clinically stable, and were not undergoing regular exercise or diet programs. Data were collected from March 2016 to December 2017, and data were analyzed from November 2020 to May 2021. Main Outcomes and Measures Skeletal muscle mitochondrial function, including maximal capacity and respiration linked to complex I and complex II. Exercise performance was assessed by peak exercise oxygen consumption, 6-minute walk distance, and the Short Physical Performance Battery. Results Of 72 included patients, 50 (69%) were women, and the mean (SD) age was 69.6 (6.1) years. Skeletal muscle mitochondrial function measures were all markedly lower in skeletal muscle fibers obtained from patients with HFpEF compared with HCs, even when adjusting for age, sex, and body mass index. Maximal capacity was strongly and significantly correlated with peak exercise oxygen consumption (R = 0.69; P < .001), 6-minute walk distance (R = 0.70; P < .001), and Short Physical Performance Battery score (R = 0.46; P < .001). Conclusions and Relevance In this study, patients with HFpEF had marked abnormalities in skeletal muscle mitochondrial function. Severely reduced maximal capacity and complex I-linked and complex II-linked respiration were associated with exercise intolerance and represent promising therapeutic targets.
Collapse
Affiliation(s)
- Lina Scandalis
- Division of Geriatrics, Gerontology, and Palliative Care, UC San Diego School of Medicine, University of California, San Diego
| | - Dalane W. Kitzman
- Cardiovascular Medicine Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Barbara J. Nicklas
- Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mary Lyles
- Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Peter Brubaker
- Department of Health and Exercise Science at Wake Forest University, Winston-Salem, North Carolina
| | - M. Benjamin Nelson
- Cardiovascular Medicine Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Michelle Gordon
- Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - John Stone
- Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jaclyn Bergstrom
- Division of Geriatrics, Gerontology, and Palliative Care, UC San Diego School of Medicine, University of California, San Diego
| | - P. Darrell Neufer
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | | | - Anthony J. A. Molina
- Division of Geriatrics, Gerontology, and Palliative Care, UC San Diego School of Medicine, University of California, San Diego
| |
Collapse
|
11
|
Goh J, Wong E, Soh J, Maier AB, Kennedy BK. Targeting the molecular & cellular pillars of human aging with exercise. FEBS J 2023; 290:649-668. [PMID: 34968001 DOI: 10.1111/febs.16337] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 10/29/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023]
Abstract
Biological aging is the main driver of age-associated chronic diseases. In 2014, the United States National Institute of Aging (NIA) sponsored a meeting between several investigators in the field of aging biology, who identified seven biological pillars of aging and a consensus review, "Geroscience: Linking Aging to Chronic Disease," was published. The pillars of aging demonstrated the conservation of aging pathways in diverse model organisms and thus represent a useful framework with which to study human aging. In this present review, we revisit the seven pillars of aging from the perspective of exercise and discuss how regular physical exercise can modulate these pillars to stave off age-related chronic diseases and maintain functional capacity.
Collapse
Affiliation(s)
- Jorming Goh
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore
| | - Esther Wong
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore
| | - Janjira Soh
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Andrea Britta Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore.,Department of Medicine, National University of Singapore, Singapore.,Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Brian Keith Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| |
Collapse
|
12
|
Im S, Kang S, Kim JH, Oh SJ, Pak YK. Low-Dose Dioxin Reduced Glucose Uptake in C2C12 Myocytes: The Role of Mitochondrial Oxidative Stress and Insulin-Dependent Calcium Mobilization. Antioxidants (Basel) 2022; 11:2109. [PMID: 36358481 PMCID: PMC9686767 DOI: 10.3390/antiox11112109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 01/14/2024] Open
Abstract
Chronic exposure to some environmental polluting chemicals (EPCs) is strongly associated with metabolic syndrome, and insulin resistance is a major biochemical abnormality in the skeletal muscle in patients with metabolic syndrome. However, the causal relationship is inconsistent and little is known about how EPCs affect the insulin signaling cascade in skeletal muscle. Here, we investigated whether exposure to 100 pM of 2,3,7,8-tetrachlorodibenzodioxin (TCDD) as a low dose of dioxin induces insulin resistance in C2C12 myocytes. The treatment with TCDD inhibited the insulin-stimulated glucose uptake and translocation of glucose transporter 4 (GLUT4). The low-dose TCDD reduced the expression of insulin receptor β (IRβ) and insulin receptor substrate (IRS)-1 without affecting the phosphorylation of Akt. The TCDD impaired mitochondrial activities, leading to reactive oxygen species (ROS) production and the blockage of insulin-induced Ca2+ release. All TCDD-mediated effects related to insulin resistance were still observed in aryl hydrocarbon receptor (AhR)-deficient myocytes and prevented by MitoTEMPO, a mitochondria-targeting ROS scavenger. These results suggest that low-dose TCDD stress may induce muscle insulin resistance AhR-independently and that mitochondrial oxidative stress is a novel therapeutic target for dioxin-induced insulin resistance.
Collapse
Affiliation(s)
- Suyeol Im
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Sora Kang
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Ji Hwan Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Seung Jun Oh
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Youngmi Kim Pak
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Physiology, School of Medicine, Biomedical Science Institute CRI, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
13
|
Omura T, Araki A. Skeletal muscle as a treatment target for older adults with diabetes mellitus: The importance of a multimodal intervention based on functional category. Geriatr Gerontol Int 2022; 22:110-120. [PMID: 34986525 DOI: 10.1111/ggi.14339] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/01/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022]
Abstract
Although the lifespan of people with diabetes has increased in many countries, the age-related increase in comorbidities (sarcopenia, frailty and disabilities) and diabetic complications has become a major issue. Diabetes accelerates the aging of skeletal muscles and blood vessels through mechanisms, such as increased oxidative stress, chronic inflammation, insulin resistance, mitochondrial dysfunction, genetic polymorphism (fat mass and obesity-associated genes) and accumulation of advanced glycation end-products. Diabetes is associated with early onset, and progression of muscle weakness and sarcopenia, thus resulting in diminished daily life function. The type and duration of diabetes, insulin section/resistance, hyperglycemia, diabetic neuropathy, malnutrition and low physical activity might affect muscular loss and weakness. To prevent the decline in daily activities in older adults with diabetes, resistance training or multicomponent exercise should be recommended. To maintain muscle function, optimal energy and sufficient protein intake are necessary. Although no specific drug enhances muscle mass and function, antidiabetic drugs that increase insulin sensitivity or secretion could be candidates for improvement of sarcopenia. The goals of glycemic control for older patients are determined based on three functional categories through an assessment of cognitive function and activities of daily living, and the presence or absence of medications that pose a hypoglycemic risk. As these functional categories are associated with muscle weakness, frailty and mortality risk, providing multimodal interventions (exercise, nutrition, social network or support and optimal medical treatment) is important, starting at the category II stage for maintenance or improvement in daily life functions. Geriatr Gerontol Int 2022; ••: ••-••.
Collapse
Affiliation(s)
- Takuya Omura
- Department of Diabetes, Metabolism and Endocrinology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Atsushi Araki
- Department of Diabetes, Metabolism and Endocrinology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| |
Collapse
|
14
|
Gilloteaux J, Nicaise C, Sprimont L, Bissler J, Finkelstein JA, Payne WR. Leptin receptor defect with diabetes causes skeletal muscle atrophy in female obese Zucker rats where peculiar depots networked with mitochondrial damages. Ultrastruct Pathol 2021; 45:346-375. [PMID: 34743665 DOI: 10.1080/01913123.2021.1983099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tibialis anterior muscles of 45-week-old female obese Zucker rats with defective leptin receptor and non-insulin dependent diabetes mellitus (NIDDM) showed a significative atrophy compared to lean muscles, based on histochemical-stained section's measurements in the sequence: oxidative slow twitch (SO, type I) < oxidative fast twitch (FOG, type IIa) < fast glycolytic (FG, type IIb). Both oxidative fiber's outskirts resembled 'ragged' fibers and, in these zones, ultrastructure revealed small clusters of endoplasm-like reticulum filled with unidentified electron contrasted compounds, contiguous and continuous with adjacent mitochondria envelope. The linings appeared crenated stabbed by circular patterns resembling those found of ceramides. The same fibers contained scattered degraded mitochondria that tethered electron contrasted droplets favoring larger depots while mitoptosis were widespread in FG fibers. Based on other interdisciplinary investigations on the lipid depots of diabetes 2 muscles made us to propose these accumulated contrasted contents to be made of peculiar lipids, including acyl-ceramides, as those were only found while diabetes 2 progresses in aging obese rats. These could interfere in NIDDM with mitochondrial oxidative energetic demands and muscle functions.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Department of Anatomical Sciences, St George's University School of Medicine, K B Taylor Global Scholar's Program at the University of Northumbria, School of Health and Life Sciences, Newcastle upon Tyne, UK.,Unité de Recherches de Physiologie Moleculaire (URPHyM) - Narilis, Département de Médecine, Université de Namur, Namur, Belgium.,Department of Anatomy, Northeast Ohio Medical University (Neomed), Rootstown, OH, USA
| | - Charles Nicaise
- Unité de Recherches de Physiologie Moleculaire (URPHyM) - Narilis, Département de Médecine, Université de Namur, Namur, Belgium
| | - Lindsay Sprimont
- Unité de Recherches de Physiologie Moleculaire (URPHyM) - Narilis, Département de Médecine, Université de Namur, Namur, Belgium
| | - John Bissler
- Department of Anatomy, Northeast Ohio Medical University (Neomed), Rootstown, OH, USA.,Division of Nephrology at St. Jude Children's Research Hospital and Le Bonheur Children's Hospital, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Judith A Finkelstein
- Department of Anatomy, Northeast Ohio Medical University (Neomed), Rootstown, OH, USA
| | - Warren R Payne
- Institute for Sport and Health, Footscray Park Campus, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Smits A, Marei WFA, De Neubourg D, Leroy JLMR. Diet normalization or caloric restriction as a preconception care strategy to improve metabolic health and oocyte quality in obese outbred mice. Reprod Biol Endocrinol 2021; 19:166. [PMID: 34736458 PMCID: PMC8567997 DOI: 10.1186/s12958-021-00848-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Maternal metabolic disorders are linked to reduced metabolic health and oocyte quality. Obese women are advised to lose weight before conception to increase pregnancy chances. However, as human studies show no univocal guidelines, more research is necessary to provide fundamental insights in the consequences of dietary weight loss on oocyte quality. Therefore, we investigated the impact of diet normalization or calorie restricted diet for two, four or six weeks, as preconception care intervention (PCCI), in obese mice on metabolic health and oocyte quality. METHODS Outbred female mice were fed a control (CTRL) or high-fat (HF) diet for 7 weeks (7w). Afterwards, HF-mice were put on different PCCIs, resulting in four treatment groups: 1) control diet up to 13w, 2) HF diet up to 13w (HF_HF), switch from a HF (7w) to 3) an ad libitum control diet (HF_CTRL) or 4) 30% calorie restricted control diet (HF_CR) for two, four or six weeks. Body weight, metabolic health, oocyte quality and overall fertility results were assessed. RESULTS Negative effects of HF diet on metabolic health, oocyte quality and pregnancy rates were confirmed. HF_CTRL mice progressively improved insulin sensitivity, glucose tolerance, serum insulin and cholesterol from PCCI w2 to w4. No further improvements in metabolic health were present at PCCI w6. However, PCCI w6 showed best oocyte quality improvements. Mature oocytes still showed elevated lipid droplet volume and mitochondrial activity but a significant reduction in ROS levels and ROS: active mitochondria ratio compared with HF_HF mice. HF_CR mice restored overall insulin sensitivity and glucose tolerance by PCCI w4. However, serum insulin, cholesterol and ALT remained abnormal. At PCCI w6, glucose tolerance was again reduced. However, only at PCCI w6, oocytes displayed reduced ROS levels and restored mitochondrial activity compared with HF_HF mice. In addition, at PCCI w6, both PCCI groups showed decreased mitochondrial ultrastructural abnormalities compared with the HF_HF group and restored pregnancy rates. CONCLUSIONS Diet normalization for 4 weeks showed to be the shortest, most promising intervention to improve metabolic health. Most promising improvements in oocyte quality were seen after 6 weeks of intervention in both PCCI groups. This research provides fundamental insights to be considered in developing substantiated preconception guidelines for obese women planning for pregnancy.
Collapse
Affiliation(s)
- Anouk Smits
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610, Wilrijk, Belgium.
| | - Waleed F A Marei
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| | - Diane De Neubourg
- Centre for Reproductive Medicine - Antwerp University Hospital, University of Antwerp, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Jo L M R Leroy
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| |
Collapse
|
16
|
Genders AJ, Holloway GP, Bishop DJ. Are Alterations in Skeletal Muscle Mitochondria a Cause or Consequence of Insulin Resistance? Int J Mol Sci 2020; 21:ijms21186948. [PMID: 32971810 PMCID: PMC7554894 DOI: 10.3390/ijms21186948] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
As a major site of glucose uptake following a meal, skeletal muscle has an important role in whole-body glucose metabolism. Evidence in humans and animal models of insulin resistance and type 2 diabetes suggests that alterations in mitochondrial characteristics accompany the development of skeletal muscle insulin resistance. However, it is unclear whether changes in mitochondrial content, respiratory function, or substrate oxidation are central to the development of insulin resistance or occur in response to insulin resistance. Thus, this review will aim to evaluate the apparent conflicting information placing mitochondria as a key organelle in the development of insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
- Amanda J. Genders
- Institute for Health and Sport (iHeS), Victoria University, Melbourne 8001, Australia;
- Correspondence: ; Tel.: +61-3-9919-9556
| | - Graham P. Holloway
- Dept. Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - David J. Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne 8001, Australia;
| |
Collapse
|
17
|
Ghatas MP, Holman ME, Gorgey AS. Methodological considerations for near-infrared spectroscopy to assess mitochondrial capacity after spinal cord injury. J Spinal Cord Med 2020; 43:623-632. [PMID: 31233377 PMCID: PMC7534271 DOI: 10.1080/10790268.2019.1631585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background: Skeletal muscle mitochondrial activity is reduced by ∼ 50-60% after SCI, resulting in impaired energy expenditure, glucose utilization and insulin sensitivity. Near infra-red spectroscopy (NIRS) is a non-invasive tool that can be used to assess mitochondrial capacity. Objectives: (1) Highlight methodological limitations impacting data acquisition and analysis such as subcutaneous adipose tissue (SAT) thickness, movement artifacts, inadequate muscle stimulation, light interference, and ischemic discomfort. (2) Provide technical considerations to improve data acquisition and analysis. This may serve as guidance to other researchers and clinicians using NIRS. Study Design: cross-sectional observational design. Settings: Clinical research medical center. Participants: Sixteen men with 1 > year post motor complete SCI. Methods: NIRS signals were obtained from right vastus lateralis muscle utilizing a portable system. Signals were fit to a mono-exponential curve. Outcome Measures: Rate constant and r2 values for the fit curve, indirectly measures mitochondrial capacity. Results: Only four participants produced data with accepted rate constants of 0.002-0.013 s-1 and r2 of 0.71-0.87. Applications of studentized residuals ≥2.5 resulted in sparing data from another four participants with rate constants of 0.010-0.018 s-1and r2 values ranging from 0.86-0.99. Conclusions: Several limitations may challenge the use of NIRS to assess mitochondrial capacity after SCI. Acknowledging these limitations and applying additional data processing techniques may overcome the discussed limitations and facilitate data sparing.
Collapse
Affiliation(s)
- Mina P. Ghatas
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Matthew E. Holman
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA,Department of Physical Therapy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA,Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA,Correspondence to: Ashraf S. Gorgey, Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, 1201 Broad Rock Blvd, Richmond, VA23249, USA. ;
| |
Collapse
|
18
|
Insulin Resistance in Osteoarthritis: Similar Mechanisms to Type 2 Diabetes Mellitus. J Nutr Metab 2020; 2020:4143802. [PMID: 32566279 PMCID: PMC7261331 DOI: 10.1155/2020/4143802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) and type 2 diabetes mellitus (T2D) are two of the most widespread chronic diseases. OA and T2D have common epidemiologic traits, are considered heterogenic multifactorial pathologies that develop through the interaction of genetic and environmental factors, and have common risk factors. In addition, both of these diseases often manifest in a single patient. Despite differences in clinical manifestations, both diseases are characterized by disturbances in cellular metabolism and by an insulin-resistant state primarily associated with the production and utilization of energy. However, currently, the primary cause of OA development and progression is not clear. In addition, although OA is manifested as a joint disease, evidence has accumulated that it affects the whole body. As pathological insulin resistance is viewed as a driving force of T2D development, now, we present evidence that the molecular and cellular metabolic disturbances associated with OA are linked to an insulin-resistant state similar to T2D. Moreover, the alterations in cellular energy requirements associated with insulin resistance could affect many metabolic changes in the body that eventually result in pathology and could serve as a unified mechanism that also functions in many metabolic diseases. However, these issues have not been comprehensively described. Therefore, here, we discuss the basic molecular mechanisms underlying the pathological processes associated with the development of insulin resistance; the major inducers, regulators, and metabolic consequences of insulin resistance; and instruments for controlling insulin resistance as a new approach to therapy.
Collapse
|
19
|
Natarajan V, Chawla R, Mah T, Vivekanandan R, Tan SY, Sato PY, Mallilankaraman K. Mitochondrial Dysfunction in Age-Related Metabolic Disorders. Proteomics 2020; 20:e1800404. [PMID: 32131138 DOI: 10.1002/pmic.201800404] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 02/07/2020] [Indexed: 12/16/2022]
Abstract
Aging is a natural biological process in living organisms characterized by receding bioenergetics. Mitochondria are crucial for cellular bioenergetics and thus an important contributor to age-related energetics deterioration. In addition, mitochondria play a major role in calcium signaling, redox homeostasis, and thermogenesis making this organelle a major cellular component that dictates the fate of a cell. To maintain its quantity and quality, mitochondria undergo multiple processes such as fission, fusion, and mitophagy to eliminate or replace damaged mitochondria. While this bioenergetics machinery is properly protected, the functional decline associated with age and age-related metabolic diseases is mostly a result of failure in such protective mechanisms. In addition, metabolic by-products like reactive oxygen species also aid in this destructive pathway. Mitochondrial dysfunction has always been thought to be associated with diseases. Moreover, studies in recent years have pointed out that aging contributes to the decay of mitochondrial health by promoting imbalances in key mitochondrial-regulated pathways. Hence, it is crucial to understand the nexus of mitochondrial dysfunction in age-related diseases. This review focuses on various aspects of basic mitochondrial biology and its status in aging and age-related metabolic diseases.
Collapse
Affiliation(s)
- Venkateswaran Natarajan
- Mitochondrial Physiology and Metabolism Lab, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Ritu Chawla
- Mitochondrial Physiology and Metabolism Lab, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Tania Mah
- Mitochondrial Physiology and Metabolism Lab, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Rajesh Vivekanandan
- Mitochondrial Physiology and Metabolism Lab, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Shu Yi Tan
- Mitochondrial Physiology and Metabolism Lab, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Priscila Y Sato
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, 19102-1902, USA
| | - Karthik Mallilankaraman
- Mitochondrial Physiology and Metabolism Lab, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- Center for Healthy Longevity, National University Health System, Singapore, 119228, Singapore
| |
Collapse
|
20
|
Miller CT, Fraser SF, Selig SE, Rice T, Grima M, van den Hoek DJ, Ika Sari C, Lambert GW, Dixon JB. Fitness, Strength and Body Composition during Weight Loss in Women with Clinically Severe Obesity: A Randomised Clinical Trial. Obes Facts 2020; 13:307-321. [PMID: 32702706 PMCID: PMC7588734 DOI: 10.1159/000506643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION To determine whether combined exercise training with an energy-restricted diet leads to improved physical fitness and body composition when compared to energy restriction alone in free-living premenopausal women with clinically severe obesity. METHODS Sixty premenopausal women (BMI of 40.4 ± 6.7) were randomised to energy restriction only (ER) or to exercise plus energy restriction (EXER) for 12 months. Body composition and fitness were measured at baseline, 3, 6 and 12 months. RESULTS VO2 peak improved more for EXER compared to ER at 3 (mean difference ± SEM 2.5 ± 0.9 mL ∙ kg-1 ∙ min-1, p = 0.006) and 6 (3.1 ± 1.2 mL ∙ kg-1 ∙ min-1, p = 0.007) but not 12 months (2.3 ± 1.6 mL ∙ kg-1 ∙ min-1, p = 0.15). Muscle strength improved more for EXER compared to ER at all time points. No differences between groups for lean mass were observed at 12 months. CONCLUSION Combining exercise training with an energy-restricted diet did not lead to greater aerobic power, total body mass, fat mass or limit lean body mass loss at 12 months when compared to energy restriction alone for premenopausal women with clinically severe obesity in free-living situations. Future research should aim to determine an effective lifestyle approach which can be applied in the community setting for this high-risk group.
Collapse
Affiliation(s)
- Clint T Miller
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia,
| | - Steve F Fraser
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
- Institute for Physical Activity and Nutrition, Deakin University, Geelong, Victoria, Australia
| | - Steve E Selig
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Toni Rice
- Clinical Obesity Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Human Neurotransmitters and Clinical Obesity Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Mariee Grima
- Clinical Obesity Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Human Neurotransmitters and Clinical Obesity Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Daniel J van den Hoek
- Institute for Physical Activity and Nutrition, Deakin University, Geelong, Victoria, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Queensland, Australia
| | - Carolina Ika Sari
- Human Neurotransmitters and Clinical Obesity Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Gavin W Lambert
- Human Neurotransmitters and Clinical Obesity Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - John B Dixon
- Clinical Obesity Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Dynamic changes of muscle insulin sensitivity after metabolic surgery. Nat Commun 2019; 10:4179. [PMID: 31519890 PMCID: PMC6744497 DOI: 10.1038/s41467-019-12081-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
The mechanisms underlying improved insulin sensitivity after surgically-induced weight loss are still unclear. We monitored skeletal muscle metabolism in obese individuals before and over 52 weeks after metabolic surgery. Initial weight loss occurs in parallel with a decrease in muscle oxidative capacity and respiratory control ratio. Persistent elevation of intramyocellular lipid intermediates, likely resulting from unrestrained adipose tissue lipolysis, accompanies the lack of rapid changes in insulin sensitivity. Simultaneously, alterations in skeletal muscle expression of genes involved in calcium/lipid metabolism and mitochondrial function associate with subsequent distinct DNA methylation patterns at 52 weeks after surgery. Thus, initial unfavorable metabolic changes including insulin resistance of adipose tissue and skeletal muscle precede epigenetic modifications of genes involved in muscle energy metabolism and the long-term improvement of insulin sensitivity. Surgical weight-loss interventions improve insulin sensitivity via incompletely understood mechanisms. Here the authors assess skeletal muscle epigenetic changes in individuals with obesity following metabolic surgery and compare them with data from individuals without obesity.
Collapse
|
22
|
Scholpa NE, Simmons EC, Tilley DG, Schnellmann RG. β 2-adrenergic receptor-mediated mitochondrial biogenesis improves skeletal muscle recovery following spinal cord injury. Exp Neurol 2019; 322:113064. [PMID: 31525347 DOI: 10.1016/j.expneurol.2019.113064] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/28/2019] [Accepted: 09/12/2019] [Indexed: 01/06/2023]
Abstract
In addition to local spinal cord dysfunction, spinal cord injury (SCI) can result in decreased skeletal muscle mitochondrial activity and muscle atrophy. Treatment with the FDA-approved β2-adrenergic receptor (ADRB2) agonist formoterol has been shown to induce mitochondrial biogenesis (MB) in both the spinal cord and skeletal muscle and, therefore, has the potential to address comprehensive mitochondrial and organ dysfunction following SCI. Female C57BL/6 mice were subjected to moderate contusion SCI (80 Kdyn) followed by daily administration of vehicle or formoterol beginning 8 h after injury, a clinically relevant time-point characterized by a 50% decrease in mtDNA content in the injury site. As measured by the Basso Mouse Scale, formoterol treatment improved locomotor recovery in SCI mice compared to vehicle treatment by 7 DPI, with continued recovery observed through 21 DPI (3.5 v. 2). SCI resulted in 15% body weight loss in all mice by 3 DPI. Mice treated with formoterol returned to pre-surgery weight by 13 DPI, while no weight gain occurred in vehicle-treated SCI mice. Remarkably, formoterol-treated mice exhibited a 30% increase in skeletal muscle mass compared to those treated with vehicle 21 DPI (0.93 v. 0.72% BW), corresponding with increased MB and decreased skeletal muscle atrophy. These effects were not observed in ADRB2 knockout mice subjected to SCI, indicating that formoterol is acting via the ADRB2 receptor. Furthermore, knockout mice exhibited decreased basal spinal cord and skeletal muscle PGC-1α expression, suggesting that ADRB2 may play a role in mitochondrial homeostasis under physiological conditions. These data provide evidence for systemic ADRB2-mediated MB as a therapeutic avenue for the treatment of SCI.
Collapse
Affiliation(s)
- Natalie E Scholpa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States of America.
| | - Epiphani C Simmons
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States of America; Department of Neurosciences, College of Medicine, University of Arizona, Tucson, AZ, United States of America.
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America.
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States of America; Department of Neurosciences, College of Medicine, University of Arizona, Tucson, AZ, United States of America; Southern Arizona VA Health Care System, Tucson, AZ, United States of America; Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, United States of America; Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States of America.
| |
Collapse
|
23
|
Silveira R, Prado RCR, Brietzke C, Coelho-Júnior HJ, Santos TM, Pires FO, Asano RY. Prefrontal cortex asymmetry and psychological responses to exercise: A systematic review. Physiol Behav 2019; 208:112580. [PMID: 31220517 DOI: 10.1016/j.physbeh.2019.112580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Studies have shown a relationship between prefrontal cortex (PFC) activation asymmetry and psychological responses to exercise, so that a higher rest activation in left rather than right PFC has been associated with positive psychological responses to exercise such as an improved affect, anxiety and multidimensional arousal states. PURPOSE To review: 1) evidence that PFC activation asymmetry before exercise is associated with psychological responses to exercise; 2) protocols of PFC asymmetry determination. METHODS A systematic review (SR) was performed on studies retrieved from the PubMed and Web of Science database up to 04-30-2019. Eligibility criteria were: 1) studies investigating participants submitted to aerobic exercises; 2) including cerebral activation measures through electroencephalography (EEG) before the exercise bout; 3) and psychological measures during or after the exercise bout; 4) original studies. RESULTS A number of 1901 studies was retrieved from the databases and 1 study was manually inserted. Thereafter, 1858 studies were excluded during the screening stage so that 30 studies remained for the SR. After full reading, 22 studies were excluded and 8 studies composed the final SR. Methodological assessment revealed that 62.5% of the studies showed a low risk of bias, while 34.37% and 3.12% showed either an unclear or a high risk of bias, respectively. Protocols of PFC activation asymmetry used EEG at F3-F4-P3-P4 (3 studies), F3-F4 (2 studies), F3-F4-T3-T4 (1 study), F3-F4-F7-F8-T5-T6-P3-P4 (1 study) and Fp1-Fp2-Fz-F3-F4-F7-F8-Cz-C3-C4-T3-T4-T5-T6-Pz-P3-P4-Oz-O1-O2 (1 study) positions. Most studies (75%) found a higher left PFC activation associated with a greater affect (n = 2), energetic arousal (n = 2), lower anxiety (n = 2) as well as calmness and tired arousal, simultaneously (n = 1). CONCLUSIONS Although the heterogeneity of PFC asymmetry protocols, reviewed studies showed a low risk of bias, suggesting that a higher left PFC activation is associated with a positive psychological response to exercise.
Collapse
Affiliation(s)
- Rodrigo Silveira
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, Arlindo Béttio Avenue, 1000, Ermelino Matarazzo, São Paulo, Brazil.
| | - Raul Cosme Ramos Prado
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, Arlindo Béttio Avenue, 1000, Ermelino Matarazzo, São Paulo, Brazil
| | - Cayque Brietzke
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, Arlindo Béttio Avenue, 1000, Ermelino Matarazzo, São Paulo, Brazil
| | - Hélio José Coelho-Júnior
- Applied Kinesiology Laboratory, University of Campinas, Érico Veríssimo Avenue, 701, Barão Geraldo, Campinas, Brazil
| | - Tony Meireles Santos
- Performance and Health Research Center, Federal University of Pernambuco, Prof. Moraes Rego Avenue, 1235 - Cidade Universitária, Recife, Pernambuco, Brazil
| | - Flávio Oliveira Pires
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, Arlindo Béttio Avenue, 1000, Ermelino Matarazzo, São Paulo, Brazil
| | - Ricardo Yukio Asano
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, Arlindo Béttio Avenue, 1000, Ermelino Matarazzo, São Paulo, Brazil
| |
Collapse
|
24
|
Breininger SP, Malcomson FC, Afshar S, Turnbull DM, Greaves L, Mathers JC. Effects of obesity and weight loss on mitochondrial structure and function and implications for colorectal cancer risk. Proc Nutr Soc 2019; 78:426-437. [PMID: 30898183 PMCID: PMC6685789 DOI: 10.1017/s0029665119000533] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer globally. CRC risk is increased by obesity, and by its lifestyle determinants notably physical inactivity and poor nutrition. Obesity results in increased inflammation and oxidative stress which cause genomic damage and contribute to mitochondrial dysregulation and CRC risk. The mitochondrial dysfunction associated with obesity includes abnormal mitochondrial size, morphology and reduced autophagy, mitochondrial biogenesis and expression of key mitochondrial regulators. Although there is strong evidence that increased adiposity increases CRC risk, evidence for the effects of intentional weight loss on CRC risk is much more limited. In model systems, energy depletion leads to enhanced mitochondrial integrity, capacity, function and biogenesis but the effects of obesity and weight loss on mitochondria in the human colon are not known. We are using weight loss following bariatric surgery to investigate the effects of altered adiposity on mitochondrial structure and function in human colonocytes. In summary, there is strong and consistent evidence in model systems and more limited evidence in human subjects that over-feeding and/or obesity result in mitochondrial dysfunction and that weight loss might mitigate or reverse some of these effects.
Collapse
Affiliation(s)
- S P Breininger
- Human Nutrition Research Centre,Newcastle University,Newcastle upon Tyne NE2 4HH,UK
| | - F C Malcomson
- Human Nutrition Research Centre,Newcastle University,Newcastle upon Tyne NE2 4HH,UK
| | - S Afshar
- Human Nutrition Research Centre,Newcastle University,Newcastle upon Tyne NE2 4HH,UK
| | - D M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University,Newcastle upon Tyne NE2 4HH,UK
| | - L Greaves
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University,Newcastle upon Tyne NE2 4HH,UK
| | - J C Mathers
- Human Nutrition Research Centre,Newcastle University,Newcastle upon Tyne NE2 4HH,UK
| |
Collapse
|
25
|
Katayama T, Kinugawa S, Takada S, Furihata T, Fukushima A, Yokota T, Anzai T, Hibino M, Harashima H, Yamada Y. A mitochondrial delivery system using liposome-based nanocarriers that target myoblast cells. Mitochondrion 2019; 49:66-72. [PMID: 31326598 DOI: 10.1016/j.mito.2019.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 06/28/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022]
Abstract
Mitochondrial function is reduced in skeletal muscles of many patients with systemic diseases and it is difficult to deliver medicinal substances to mitochondria in such tissue. In this study, we report on attempts to develop liposome-based carriers for mitochondrial delivery using mouse myoblasts (C2C12) by varying the lipid composition of the carriers. We found that a liposome that contains an optimal lipid modified with the KALA peptide (a cellular uptake and mitochondrial targeting device) was the most effective nanocarrier for achieving mitochondrial delivery in C2C12 cells. We also report on successful mitochondrial transgene expression using the carriers encapsulating a mitochondrial DNA vector as we previously reported.
Collapse
Affiliation(s)
- Takashi Katayama
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Shingo Takada
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Takaaki Furihata
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Arata Fukushima
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Mitsue Hibino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
26
|
Kappler L, Kollipara L, Lehmann R, Sickmann A. Investigating the Role of Mitochondria in Type 2 Diabetes - Lessons from Lipidomics and Proteomics Studies of Skeletal Muscle and Liver. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:143-182. [PMID: 31452140 DOI: 10.1007/978-981-13-8367-0_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction is discussed as a key player in the pathogenesis of type 2 diabetes mellitus (T2Dm), a highly prevalent disease rapidly developing as one of the greatest global health challenges of this century. Data however about the involvement of mitochondria, central hubs in bioenergetic processes, in the disease development are still controversial. Lipid and protein homeostasis are under intense discussion to be crucial for proper mitochondrial function. Consequently proteomics and lipidomics analyses might help to understand how molecular changes in mitochondria translate to alterations in energy transduction as observed in the healthy and metabolic diseases such as T2Dm and other related disorders. Mitochondrial lipids integrated in a tool covering proteomic and functional analyses were up to now rarely investigated, although mitochondrial lipids might provide a possible lynchpin in the understanding of type 2 diabetes development and thereby prevention. In this chapter state-of-the-art analytical strategies, pre-analytical aspects, potential pitfalls as well as current proteomics and lipidomics-based knowledge about the pathophysiological role of mitochondria in the pathogenesis of type 2 diabetes will be discussed.
Collapse
Affiliation(s)
- Lisa Kappler
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Rainer Lehmann
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tuebingen, Tuebingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tuebingen, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany. .,Medical Proteome Centre, Ruhr Universität Bochum, Bochum, Germany. .,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
27
|
Fischer M, Oberänder N, Kaufmann J, Kirsche V, Prodehl G, Schäfer AO, Weimann A. Changes in intra- and extramyocellular lipids in morbidly obese patients after non-surgical weight loss-a pilot study using magnetic resonance spectroscopy. Clin Nutr ESPEN 2018; 28:121-126. [PMID: 30390868 DOI: 10.1016/j.clnesp.2018.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 08/25/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Lipid accumulation in muscles is common in obesity and associated with increased risks for insulin resistance. However, the impact of weight loss and exercise on muscle fat content is not clear due to inconsistent data. We used magnetic resonance spectroscopy (MRS) to compare the intra- (IMCL) and extramyocellular lipid (EMCL) proportions in the musculus tibialis anterior of extremely obese patients before and after weight loss. METHODS Nineteen non-diabetic patients with a Body Mass Index (BMI) ≥ 40 kg/m2 who participated in a non-surgical multimodal weight loss program were recruited. Metabolite ratios of IMCL and EMCL (metabolite/creatine) were assessed using 3 T 1H-MRS before therapy and after 6 months. The primary outcome comprised changes in IMCL and body cell mass. Additionally, changes of IMCL and EMCL were compared with changes in standard clinical measures, i.e., BMI, body composition, blood pressure and functional exercise capacity. RESULTS After 6 months the relative weight loss was 24.8% (127.6 kg, 48.5 kg/m2 vs. 96 kg, 36.5 kg/m2). All standard clinical measures were significantly improved. MRS data from 10 patients provided complete and evaluable data sets. IMCL was reduced by nearly 50% (p < .05). The reduction of EMCL was not significant (p = .106). An explorative correlation analysis between changes of IMCL and changes of the standard measures did not reveal any significance. CONCLUSIONS Significant reductions of IMCL following a successful conservative weight loss intervention are detectable by using MRS. These changes may have the potential to serve as an additional marker of clinically meaningful obesity treatment.
Collapse
Affiliation(s)
- Martin Fischer
- St. George Obesity Treatment Study Group, Klinikum St. Georg, 04129 Leipzig, Germany
| | - Nadine Oberänder
- St. George Obesity Treatment Study Group, Klinikum St. Georg, 04129 Leipzig, Germany
| | - Jörn Kaufmann
- Neurologische Universitätsklinik, Otto-von-Guericke Universität Magdeburg, Germany
| | - Viktor Kirsche
- St. George Obesity Treatment Study Group, Klinikum St. Georg, 04129 Leipzig, Germany
| | - Guido Prodehl
- St. George Obesity Treatment Study Group, Klinikum St. Georg, 04129 Leipzig, Germany
| | | | - Arved Weimann
- St. George Obesity Treatment Study Group, Klinikum St. Georg, 04129 Leipzig, Germany.
| |
Collapse
|
28
|
López-Lluch G, Hernández-Camacho JD, Fernández-Ayala DJM, Navas P. Mitochondrial dysfunction in metabolism and ageing: shared mechanisms and outcomes? Biogerontology 2018; 19:461-480. [PMID: 30143941 DOI: 10.1007/s10522-018-9768-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/21/2018] [Indexed: 12/15/2022]
Abstract
Mitochondria are key in the metabolism of aerobic organisms and in ageing progression and age-related diseases. Mitochondria are essential for obtaining ATP from glucose and fatty acids but also in many other essential functions in cells including aminoacids metabolism, pyridine synthesis, phospholipid modifications and calcium regulation. On the other hand, the activity of mitochondria is also the principal source of reactive oxygen species in cells. Ageing and chronic age-related diseases are associated with the deregulation of cell metabolism and dysfunction of mitochondria. Cell metabolism is controlled by three major nutritional sensors: mTOR, AMPK and Sirtuins. These factors control mitochondrial biogenesis and dynamics by regulating fusion, fission and turnover through mito- and autophagy. A complex interaction between the activity of these nutritional sensors, mitochondrial biogenesis rate and dynamics exists and affect ageing, age-related diseases including metabolic disease. Further, mitochondria maintain a constant communication with nucleus modulating gene expression and modifying epigenetics. In this review we highlight the importance of mitochondria in ageing and the repercussion in the progression of age-related diseases and metabolic disease.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide, Carretera de Utrera km. 1, 41013, Seville, Spain.
| | - Juan Diego Hernández-Camacho
- Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide, Carretera de Utrera km. 1, 41013, Seville, Spain
| | - Daniel J Moreno Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide, Carretera de Utrera km. 1, 41013, Seville, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide, Carretera de Utrera km. 1, 41013, Seville, Spain
| |
Collapse
|
29
|
Macia M, Pecchi E, Desrois M, Lan C, Vilmen C, Portha B, Bernard M, Bendahan D, Giannesini B. Exercise training impacts exercise tolerance and bioenergetics in gastrocnemius muscle of non-obese type-2 diabetic Goto-Kakizaki rat in vivo. Biochimie 2018; 148:36-45. [PMID: 29499298 DOI: 10.1016/j.biochi.2018.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/23/2018] [Indexed: 12/18/2022]
Abstract
The functional and bioenergetics impact of regular physical activity upon type-2 diabetic skeletal muscle independently of confounding factors of overweight remains undocumented. Here, gastrocnemius muscle energy fluxes, mitochondrial capacity and mechanical performance were assessed noninvasively and longitudinally in non-obese diabetic Goto-Kakizaki rats using magnetic resonance (MR) imaging and dynamic 31-phosphorus MR spectroscopy (31P-MRS) throughout a 6-min fatiguing bout of exercise performed before, in the middle (4-week) and at the end of an 8-week training protocol consisting in 60-min daily run on a treadmill. The training protocol reduced plasmatic insulin level (-61%) whereas blood glucose and non-esterified fatty acids levels remained unaffected, thereby indicating an improvement of insulin sensitivity. It also increased muscle mitochondrial citrate synthase activity (+45%) but this increase did not enhance oxidative ATP synthesis capacity in working muscle in vivo while glycolytic ATP production was increased (+33%). On the other hand, the training protocol impaired maximal force-generating capacity (-9%), total amount of force produced (-12%) and increased ATP cost of contraction (+32%) during the fatiguing exercise. Importantly, these deleterious effects were transiently worsened in the middle of the 8-week period, in association with reduced oxidative capacity and increased basal [Pi]/[PCr] ratio (an in vivo biomarker of muscle damage). These data demonstrate that the beneficial effect of regular training on insulin sensitivity in non-obese diabetic rat occurs separately from any improvement in muscle mitochondrial function and might be linked to an increased capacity for metabolizing glucose through anaerobic process in exercising muscle.
Collapse
Affiliation(s)
| | | | | | - Carole Lan
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | | | - Bernard Portha
- Université Paris-Diderot, Sorbonne Paris Cité, Laboratoire B2PE, Unité BFA, CNRS EAC 4413, Paris, France
| | | | | | | |
Collapse
|
30
|
Liu H, Lei H, Shi Y, Wang JJ, Chen N, Li ZH, Chen YF, Ye QF, Yang Y. Autophagy inhibitor 3-methyladenine alleviates overload-exercise-induced cardiac injury in rats. Acta Pharmacol Sin 2017; 38:990-997. [PMID: 28260802 DOI: 10.1038/aps.2016.169] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/09/2016] [Indexed: 12/14/2022]
Abstract
Overload-exercise (OE) causes myocardial injury through inducing autophagy and apoptosis. In this study we examined whether an autophagy inhibitor 3-methyladenine (3-MA) could alleviate OE-induced cardiac injury. Rats were injected with 3-MA (15 mg/kg, iv) or saline before subjected to various intensities of OE, including no swim (control), 2 h swim (mild-intensity exercise, MIE), 2 h swim with 2.5% body weight overload (moderate OE; MOE), 5% overload (intensive OE; IOE) or 2.5% overload until exhausted (exhaustive OE; EOE). After OE, the hearts were harvested for morphological and biochemiacal analysis. The cardiac morphology, autophagosomes and apoptosis were examined with H&E staining, transmission electron microscopy and TUNEL analysis, respectively. Autophagy-related proteins to (LC3-II/I and Beclin-1) and apoptosis-related proteins (Bcl-2/Bax) were assessed using Western blotting. Our results showed that compared with the control, MIE did not change the morphological structures of the heart tissues that exhibited intact myocardial fibers and neatly arranged cardiomyocytes. However, IOE resulted in irregular arrangement of cardiomyocytes and significantly increased width of cardiomyocytes, whereas EOE caused more swollen and even disrupted cardiomyocytes. In parallel with the increased OE intensity (MOE, IOE, EOE), cardiomyocyte autophagy and apoptosis became more and more prominent, evidenced by the increasing number of autophagosomes and expression levels of LC3-II/I and Beclin-1 as well as the increasing apoptotic cells and decreasing Bcl-2/Bax ratio. 3-MA administration significantly attenuated OE-induced morphological changes of cardiomyocytes as well as all the autophagy- and apoptosis-related abnormalities in MOE, IOE and EOE rats. Thus, the autophagy inhibitor 3-MA could alleviate OE-induced heart injury in rats.
Collapse
|
31
|
San-Millán I, Brooks GA. Assessment of Metabolic Flexibility by Means of Measuring Blood Lactate, Fat, and Carbohydrate Oxidation Responses to Exercise in Professional Endurance Athletes and Less-Fit Individuals. Sports Med 2017. [DOI: 10.1007/s40279-017-0751-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Layne AS, Krehbiel LM, Mankowski RT, Anton SD, Leeuwenburgh C, Pahor M, Sandesara B, Wu SS, Buford TW. Resveratrol and exercise to treat functional limitations in late life: design of a randomized controlled trial. Contemp Clin Trials Commun 2017; 6:58-63. [PMID: 28944303 PMCID: PMC5608101 DOI: 10.1016/j.conctc.2017.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/20/2017] [Accepted: 03/12/2017] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle mitochondrial function declines with age and is a key factor in the maintenance of physical function among older adults. Research studies from animals and humans have consistently demonstrated that exercise improves skeletal muscle mitochondrial function in early and middle adulthood. However, mitochondrial adaptations to both acute and chronic exercise are attenuated in late life. Thus, there is an important need to identify adjuvant therapies capable of augmenting mitochondrial adaptations to exercise (e.g. improved mitochondrial respiration, muscle mitochondria biogenesis) among older adults. This study is investigating the potential of resveratrol supplementation for this purpose. The objective of this randomized, double-masked pilot trial is to evaluate the efficacy of resveratrol supplementation combined with a comprehensive supervised exercise program exercise for improving physical function among older adults. Moderately functioning, sedentary participants aged ≥60 years will perform 24 sessions (2 day/wk for 12 weeks) of center-based walking and resistance training and are randomly assigned to receive either (1) 500 mg/day resveratrol (2) 1000 mg/day resveratrol or (3) placebo. Study dependent outcomes include changes in 1) knee extensor strength, 2) objective measures of physical function (e.g. 4m walk test, Short Physical Performance Battery), 3) subjective measures of physical function assessed by Late Life Function and Disability Instrument, and 4) skeletal muscle mitochondrial function. This study will provide novel information regarding the therapeutic potential of resveratrol supplementation combined with exercise while also informing about the long-term clinical viability of the intervention by evaluating participant safety and willingness to engage in the intervention.
Collapse
|
33
|
Goodpaster BH, Sparks LM. Metabolic Flexibility in Health and Disease. Cell Metab 2017; 25:1027-1036. [PMID: 28467922 PMCID: PMC5513193 DOI: 10.1016/j.cmet.2017.04.015] [Citation(s) in RCA: 631] [Impact Index Per Article: 78.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/07/2017] [Accepted: 04/14/2017] [Indexed: 02/07/2023]
Abstract
Metabolic flexibility is the ability to respond or adapt to conditional changes in metabolic demand. This broad concept has been propagated to explain insulin resistance and mechanisms governing fuel selection between glucose and fatty acids, highlighting the metabolic inflexibility of obesity and type 2 diabetes. In parallel, contemporary exercise physiology research has helped to identify potential mechanisms underlying altered fuel metabolism in obesity and diabetes. Advances in "omics" technologies have further stimulated additional basic and clinical-translational research to further interrogate mechanisms for improved metabolic flexibility in skeletal muscle and adipose tissue with the goal of preventing and treating metabolic disease.
Collapse
Affiliation(s)
- Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford Burnham Prebys Medical Discovery Institute, 301 East Princeton Street, Orlando, FL 32804, USA.
| | - Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford Burnham Prebys Medical Discovery Institute, 301 East Princeton Street, Orlando, FL 32804, USA
| |
Collapse
|
34
|
Stuart CA, Lee ML, South MA, Howell MEA, Cartwright BM, Ramsey MW, Stone MH. Pre-Training Muscle Characteristics of Subjects Who Are Obese Determine How Well Exercise Training Will Improve Their Insulin Responsiveness. J Strength Cond Res 2017; 31:798-808. [PMID: 27379957 DOI: 10.1519/jsc.0000000000001530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Stuart, CA, Lee, ML, South, MA, Howell, MEA, Cartwright, BM, Ramsey, MW, and Stone, MH. Pre-training muscle characteristics of subjects who are obese determine how well exercise training will improve their insulin responsiveness. J Strength Cond Res 31(3): 798-808, 2017-Only half of prediabetic subjects who are obese who underwent exercise training without weight loss increased their insulin responsiveness. We hypothesized that those who improved their insulin responsiveness might have pretraining characteristics favoring a positive response to exercise training. Thirty nondiabetic subjects who were obese volunteered for 8 weeks of either strength training or endurance training. During training, subjects increased their caloric intake to prevent weight loss. Insulin responsiveness by euglycemic clamps and muscle fiber composition, and expression of muscle key biochemical pathways were quantified. Positive responders initially had 52% higher intermediate muscle fibers (fiber type IIa) with 27% lower slow-twitch fibers (type I) and 23% lower expression of muscle insulin receptors. Whether after weight training or stationary bike training, positive responders' fiber type shifted away from type I and type IIa fibers to an increased proportion of type IIx fibers (fast twitch). Muscle insulin receptor expression and glucose transporter type 4 (GLUT4) expression increased in all trained subjects, but these moderate changes did not consistently translate to improvement in whole-body insulin responsiveness. Exercise training of previously sedentary subjects who are obese can result in muscle remodeling and increased expression of key elements of the insulin pathway, but in the absence of weight loss, insulin sensitivity improvement was modest and limited to about half of the participants. Our data suggest rather than responders being more fit, they may have been less fit, only catching up to the other half of subjects who are obese whose insulin responsiveness did not increase beyond their pretraining baseline.
Collapse
Affiliation(s)
- Charles A Stuart
- 1Department of Internal Medicine, Quillen College of Medicine; 2Department of Allied Health, College of Clinical and Rehabilitative Health; and 3Department of Exercise and Sports Science, Clemmer College of Education, East Tennessee State University, Johnson City, Tennessee
| | | | | | | | | | | | | |
Collapse
|
35
|
Effects of a Physical Activity Program on Cardiorespiratory Fitness and Pulmonary Function in Obese Women after Bariatric Surgery: a Pilot Study. Obes Surg 2017; 27:2026-2033. [DOI: 10.1007/s11695-017-2584-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
López-Lluch G. Mitochondrial activity and dynamics changes regarding metabolism in ageing and obesity. Mech Ageing Dev 2017; 162:108-121. [DOI: 10.1016/j.mad.2016.12.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/24/2016] [Accepted: 12/13/2016] [Indexed: 12/14/2022]
|
37
|
Kumar V, Chang H, Reiter DA, Bradley DP, Belury M, McCormack SE, Raman SV. Phosphorus-31 Magnetic Resonance Spectroscopy: A Tool for Measuring In Vivo Mitochondrial Oxidative Phosphorylation Capacity in Human Skeletal Muscle. J Vis Exp 2017. [PMID: 28190054 DOI: 10.3791/54977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle mitochondrial oxidative phosphorylation (OXPHOS) capacity, which is critically important in health and disease, can be measured in vivo and noninvasively in humans via phosphorus-31 magnetic resonance spectroscopy (31PMRS). However, the approach has not been widely adopted in translational and clinical research, with variations in methodology and limited guidance from the literature. Increased optimization, standardization, and dissemination of methods for in vivo 31PMRS would facilitate the development of targeted therapies to improve OXPHOS capacity and could ultimately favorably impact cardiovascular health. 31PMRS produces a noninvasive, in vivo measure of OXPHOS capacity in human skeletal muscle, as opposed to alternative measures obtained from explanted and potentially altered mitochondria via muscle biopsy. It relies upon only modest additional instrumentation beyond what is already in place on magnetic resonance scanners available for clinical and translational research at most institutions. In this work, we outline a method to measure in vivo skeletal muscle OXPHOS. The technique is demonstrated using a 1.5 Tesla whole-body MR scanner equipped with the suitable hardware and software for 31PMRS, and we explain a simple and robust protocol for in-magnet resistive exercise to rapidly fatigue the quadriceps muscle. Reproducibility and feasibility are demonstrated in volunteers as well as subjects over a wide range of functional capacities.
Collapse
Affiliation(s)
- Vidhya Kumar
- Davis Heart and Lung Research Institute, The Ohio State University
| | - Henry Chang
- Davis Heart and Lung Research Institute, The Ohio State University
| | - David A Reiter
- Laboratory of Clinical Investigation, National Institute on Aging
| | - David P Bradley
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University
| | - Martha Belury
- Department of Human Sciences, Human Nutrition, The Ohio State University
| | - Shana E McCormack
- Division of Endocrinology and Diabetes, Department of Pediatrics, University of Pennsylvania
| | - Subha V Raman
- Davis Heart and Lung Research Institute, The Ohio State University;
| |
Collapse
|
38
|
|
39
|
Ziaaldini MM, Hosseini SR, Fathi M. Mitochondrial adaptations in aged skeletal muscle: effect of exercise training. Physiol Res 2016; 66:1-14. [PMID: 27982690 DOI: 10.33549/physiolres.933329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aging process is associated with a decline in mitochondrial functions. Mitochondria dysfunction is involved in initiation and progression of many health problems including neuromuscular, metabolic and cardiovascular diseases. It is well known that endurance exercise improves mitochondrial function, especially in the elderly. However, recent studies have demonstrated that resistance training lead also to substantial increases in mitochondrial function in skeletal muscle. A comprehensive understanding of the cellular mechanisms involved in the skeletal muscle mitochondrial adaptations to exercise training in healthy elderly subjects, can help practitioners to design and prescribe more effective exercise trainings.
Collapse
Affiliation(s)
- M M Ziaaldini
- Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | | |
Collapse
|
40
|
Hesselink MKC, Schrauwen-Hinderling V, Schrauwen P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat Rev Endocrinol 2016; 12:633-645. [PMID: 27448057 DOI: 10.1038/nrendo.2016.104] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Low levels of physical activity and the presence of obesity are associated with mitochondrial dysfunction. In addition, mitochondrial dysfunction has been associated with the development of insulin resistance and type 2 diabetes mellitus (T2DM). Although the evidence for a causal relationship between mitochondrial function and insulin resistance is still weak, emerging evidence indicates that boosting mitochondrial function might be beneficial to patient health. Exercise training is probably the most recognized promoter of mitochondrial function and insulin sensitivity and hence is still regarded as the best strategy to prevent and treat T2DM. Animal data, however, have revealed several new insights into the regulation of mitochondrial metabolism, and novel targets for interventions to boost mitochondrial function have emerged. Importantly, many of these targets seem to be regulated by factors such as nutrition, ambient temperature and circadian rhythms, which provides a basis for nonpharmacological strategies to prevent or treat T2DM in humans. Here, we will review the current evidence that mitochondrial function can be targeted therapeutically to improve insulin sensitivity and to prevent T2DM, focusing mainly on human intervention studies.
Collapse
Affiliation(s)
- Matthijs K C Hesselink
- Department of Human Biology and Human Movement Sciences, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
- NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
| | - Vera Schrauwen-Hinderling
- Department of Human Biology and Human Movement Sciences, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
- NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
- Department of Radiology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, Netherlands
| | - Patrick Schrauwen
- Department of Human Biology and Human Movement Sciences, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
- NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
| |
Collapse
|
41
|
O’Brien LC, Gorgey AS. Skeletal muscle mitochondrial health and spinal cord injury. World J Orthop 2016; 7:628-637. [PMID: 27795944 PMCID: PMC5065669 DOI: 10.5312/wjo.v7.i10.628] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/18/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are the main source of cellular energy production and are dynamic organelles that undergo biogenesis, remodeling, and degradation. Mitochondrial dysfunction is observed in a number of disease states including acute and chronic central or peripheral nervous system injury by traumatic brain injury, spinal cord injury (SCI), and neurodegenerative disease as well as in metabolic disturbances such as insulin resistance, type II diabetes and obesity. Mitochondrial dysfunction is most commonly observed in high energy requiring tissues like the brain and skeletal muscle. In persons with chronic SCI, changes to skeletal muscle may include remarkable atrophy and conversion of muscle fiber type from oxidative to fast glycolytic, combined with increased infiltration of intramuscular adipose tissue. These changes contribute to a proinflammatory environment, glucose intolerance and insulin resistance. The loss of metabolically active muscle combined with inactivity predisposes individuals with SCI to type II diabetes and obesity. The contribution of skeletal muscle mitochondrial density and electron transport chain activity to the development of the aforementioned comorbidities following SCI is unclear. A better understanding of the mechanisms involved in skeletal muscle mitochondrial dynamics is imperative to designing and testing effective treatments for this growing population. The current editorial will review ways to study mitochondrial function and the importance of improving skeletal muscle mitochondrial health in clinical populations with a special focus on chronic SCI.
Collapse
|
42
|
Obesity-Related Diseases and Syndromes: Insulin Resistance, Type 2 Diabetes Mellitus, Non-alcoholic Fatty Liver Disease, Cardiovascular Disease, and Metabolic Syndrome. Obesity (Silver Spring) 2016. [DOI: 10.1007/978-3-319-39409-1_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Coen PM, Menshikova EV, Distefano G, Zheng D, Tanner CJ, Standley RA, Helbling NL, Dubis GS, Ritov VB, Xie H, Desimone ME, Smith SR, Stefanovic-Racic M, Toledo FGS, Houmard JA, Goodpaster BH. Exercise and Weight Loss Improve Muscle Mitochondrial Respiration, Lipid Partitioning, and Insulin Sensitivity After Gastric Bypass Surgery. Diabetes 2015; 64:3737-50. [PMID: 26293505 PMCID: PMC4613980 DOI: 10.2337/db15-0809] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/30/2015] [Indexed: 01/03/2023]
Abstract
Both Roux-en-Y gastric bypass (RYGB) surgery and exercise can improve insulin sensitivity in individuals with severe obesity. However, the impact of RYGB with or without exercise on skeletal muscle mitochondria, intramyocellular lipids, and insulin sensitivity index (SI) is unknown. We conducted a randomized exercise trial in patients (n = 101) who underwent RYGB surgery and completed either a 6-month moderate exercise (EX) or a health education control (CON) intervention. SI was determined by intravenous glucose tolerance test. Mitochondrial respiration and intramyocellular triglyceride, sphingolipid, and diacylglycerol content were measured in vastus lateralis biopsy specimens. We found that EX provided additional improvements in SI and that only EX improved cardiorespiratory fitness, mitochondrial respiration and enzyme activities, and cardiolipin profile with no change in mitochondrial content. Muscle triglycerides were reduced in type I fibers in CON, and sphingolipids decreased in both groups, with EX showing a further reduction in a number of ceramide species. In conclusion, exercise superimposed on bariatric surgery-induced weight loss enhances mitochondrial respiration, induces cardiolipin remodeling, reduces specific sphingolipids, and provides additional improvements in insulin sensitivity.
Collapse
Affiliation(s)
- Paul M Coen
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA Department of Health and Physical Activity, University of Pittsburgh, Pittsburgh, PA Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL
| | - Elizabeth V Menshikova
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Giovanna Distefano
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA Department of Physical Therapy, University of Pittsburgh, Pittsburgh, PA
| | - Donghai Zheng
- Department of Kinesiology, East Carolina University, Greenville, NC
| | - Charles J Tanner
- Department of Kinesiology, East Carolina University, Greenville, NC
| | - Robert A Standley
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Nicole L Helbling
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Gabriel S Dubis
- Department of Kinesiology, East Carolina University, Greenville, NC
| | - Vladimir B Ritov
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Hui Xie
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL
| | - Marisa E Desimone
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL
| | - Maja Stefanovic-Racic
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Frederico G S Toledo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Joseph A Houmard
- Department of Kinesiology, East Carolina University, Greenville, NC
| | - Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL
| |
Collapse
|
44
|
Waldburger R, Schultes B, Zazai R, Ernst B, Thurnheer M, Spengler CM, Wilms B. Comprehensive assessment of physical functioning in bariatric surgery candidates compared with subjects without obesity. Surg Obes Relat Dis 2015; 12:642-650. [PMID: 26826915 DOI: 10.1016/j.soard.2015.09.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/20/2015] [Accepted: 09/26/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Obesity appears to be associated with reduced physical performance, but comprehensive assessments of physical functioning are lacking in subjects with severe obesity, in particular in comparison with subjects without obesity. This precludes an objective assessment of the degree of impairment. OBJECTIVE To compare motor skills and cardiopulmonary fitness between subjects with severe obesity (OB) (i.e., candidates for bariatric surgery) and control subjects without obesity (non-OB). SETTING Cantonal Hospital, Switzerland. METHODS Flexibility, movement speed, balance, maximal isometric strength, and cardiopulmonary fitness were tested in 45 OB (body mass index: 42.6±.9 kg/m(2); age: 35±1.7 years; 33 women) and 32 non-OB (body mass index: 23±.4 kg/m(2); age: 38.5±2.1 years; 25 women) subjects. RESULTS In comparison with the non-OB group, the OB group showed reduced shoulder flexibility (P<.001) but comparable hamstrings flexibility (P = .3). Speed-related tasks (i.e., timed up-and-go test and timed lying-to-standing test) indicated that the OB group was slower than the non-OB group (all P<.007). Strength-related tasks indicated a greater absolute back muscle and knee-extensor strength (all P<.002) in the OB group with no difference in knee-flexor strength (both P>.8). However, when related to weight, the OB group showed reduced maximal strength (all P<.002). Bicycle spiroergometry indicated that absolute oxygen consumption at peak exercise and at the anaerobic threshold did not differ between groups (both P>.06). Related to weight, however, values were lower in the OB than in the non-OB group (both P< .001). CONCLUSION Data indicate a differential pattern of functional impairment in bariatric surgery candidates compared with subjects without obesity. These findings might help to establish tailored intervention protocols to improve physical performance in such subjects.
Collapse
Affiliation(s)
- Rahel Waldburger
- Department of Surgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Bernd Schultes
- eSwiss Medical and Surgical Center, Interdisciplinary Obesity Center, St. Gallen, Switzerland
| | - Runa Zazai
- Department of Surgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Barbara Ernst
- eSwiss Medical and Surgical Center, Interdisciplinary Obesity Center, St. Gallen, Switzerland
| | - Martin Thurnheer
- eSwiss Medical and Surgical Center, Interdisciplinary Obesity Center, St. Gallen, Switzerland
| | - Christina M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Britta Wilms
- Department of Surgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland; Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, Zurich, Switzerland.
| |
Collapse
|
45
|
Veeranki S, Winchester LJ, Tyagi SC. Hyperhomocysteinemia associated skeletal muscle weakness involves mitochondrial dysfunction and epigenetic modifications. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1852:732-41. [PMID: 25615794 PMCID: PMC4372482 DOI: 10.1016/j.bbadis.2015.01.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/15/2014] [Accepted: 01/14/2015] [Indexed: 12/31/2022]
Abstract
HHcy has been implicated in elderly frailty, but the underlying mechanisms are poorly understood. Using C57 and CBS+/- mice and C2C12 cell line, we investigated mechanisms behind HHcy induced skeletal muscle weakness and fatigability. Possible alterations in metabolic capacity (levels of LDH, CS, MM-CK and COX-IV), in structural proteins (levels of dystrophin) and in mitochondrial function (ATP production) were examined. An exercise regimen was employed to reverse HHcy induced changes. CBS+/- mice exhibited more fatigability, and generated less contraction force. No significant changes in muscle morphology were observed. However, there is a corresponding reduction in large muscle fiber number in CBS+/- mice. Excess fatigability was not due to changes in key enzymes involved in metabolism, but was due to reduced ATP levels. A marginal reduction in dystrophin levels along with a decrease in mitochondrial transcription factor A (mtTFA) were observed. There was also an increase in the mir-31, and mir-494 quantities that were implicated in dystrophin and mtTFA regulation respectively. The molecular changes elevated during HHcy, with the exception of dystrophin levels, were reversed after exercise. In addition, the amount of NRF-1, one of the transcriptional regulators of mtTFA, was significantly decreased. Furthermore, there was enhancement in mir-494 levels and a concomitant decline in mtTFA protein quantity in homocysteine treated cells. These changes in C2C12 cells were also accompanied by an increase in DNMT3a and DNMT3b proteins and global DNA methylation levels. Together, these results suggest that HHcy plays a causal role in enhanced fatigability through mitochondrial dysfunction which involves epigenetic changes.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Department of Physiology & Biophysics, University of Louisville, Louisville, KY 40202, USA.
| | - Lee J Winchester
- Department of Physiology & Biophysics, University of Louisville, Louisville, KY 40202, USA
| | - Suresh C Tyagi
- Department of Physiology & Biophysics, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
46
|
McCann JC, Shigenaga MK, Mietus-Snyder ML, Lal A, Suh JH, Krauss RM, Gildengorin GL, Goldrich AM, Block DS, Shenvi SV, McHugh TH, Olson DA, Ames BN. A multicomponent nutrient bar promotes weight loss and improves dyslipidemia and insulin resistance in the overweight/obese: chronic inflammation blunts these improvements. FASEB J 2015; 29:3287-301. [PMID: 25900806 DOI: 10.1096/fj.15-271833] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/31/2015] [Indexed: 12/12/2022]
Abstract
This study determined if twice-daily consumption of a nutrient-dense bar intended to fill gaps in Western diets, without other dietary/lifestyle requirements, favorably shifted metabolic/anthropometric indicators of dysregulation in a healthy direction. Three 8-wk clinical trials in 43 healthy lean and overweight/obese (OW/OB) adults, who served as their own controls, were pooled for analysis. In less inflamed OW/OB [high-sensitivity C-reactive protein (hsCRP) <1.5], statistically significant decreases occurred in weight (-1.1 ± 0.5 kg), waist circumference (-3.1 ± 1.4 cm), diastolic blood pressure (-4.1 ± 1.6 mmHg), heart rate [HR; -4.0 ± 1.7 beats per minute (bpm)], triglycerides (-72 ± 38.2 mg/dl), insulin resistance (homeostatic model of insulin resistance) (-0.72 ± 0.3), and insulin (-2.8 ± 1.3 mU/L); an increase in HDL-2b (+303 ± 116 nM) and realignment of LDL lipid subfractions toward a less atherogenic profile [decreased small LDL IIIb (-44 ± 23.5 nM), LDL IIIa (-99 ± 43.7 nM), and increased large LDL I (+66 ± 28.0 nM)]. In the more inflamed OW/OB (hsCRP >1.5), inflammation was reduced at 2 wk (-0.66 mg/L), and HR at 8 wk (-3.4 ± 1.3 bpm). The large HDL subfraction (10.5-14.5 nm) increased at 8 wk (+346 ± 126 nM). Metabolic improvements were also observed in lean participants. Thus, favorable changes in measures of cardiovascular health, insulin resistance, inflammation, and obesity were initiated within 8 wk in the OW/OB by replacing deficiencies in Western diets without requiring other dietary or lifestyle modifications; chronic inflammation blunted most improvements.
Collapse
Affiliation(s)
- Joyce C McCann
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| | - Mark K Shigenaga
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| | - Michele L Mietus-Snyder
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| | - Ashutosh Lal
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| | - Jung H Suh
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| | - Ronald M Krauss
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| | - Ginny L Gildengorin
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| | - Alisa M Goldrich
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| | - Devan S Block
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| | - Swapna V Shenvi
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| | - Tara H McHugh
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| | - Don A Olson
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| | - Bruce N Ames
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| |
Collapse
|
47
|
Feng YZ, Nikolić N, Bakke SS, Kase ET, Guderud K, Hjelmesæth J, Aas V, Rustan AC, Thoresen GH. Myotubes from lean and severely obese subjects with and without type 2 diabetes respond differently to an in vitro model of exercise. Am J Physiol Cell Physiol 2015; 308:C548-56. [DOI: 10.1152/ajpcell.00314.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/20/2015] [Indexed: 12/29/2022]
Abstract
Exercise improves insulin sensitivity and oxidative capacity in skeletal muscles. However, the effect of exercise on substrate oxidation is less clear in obese and type 2 diabetic subjects than in lean subjects. We investigated glucose and lipid metabolism and gene expression after 48 h with low-frequency electrical pulse stimulation (EPS), as an in vitro model of exercise, in cultured myotubes established from lean nondiabetic subjects and severely obese subjects (BMI ≥ 40 kg/m2) with and without type 2 diabetes. EPS induced an increase in insulin sensitivity but did not improve lipid oxidation in myotubes from severely obese subjects. Thus, EPS-induced increases in insulin sensitivity and lipid oxidation were positively and negatively correlated to BMI of the subjects, respectively. EPS enhanced oxidative capacity of glucose in myotubes from all subjects. Furthermore, EPS reduced mRNA expression of slow fiber-type marker (MYH7) in myotubes from diabetic subjects; however, the protein expression of this marker was not significantly affected by EPS in either of the donor groups. On the contrary, mRNA levels of interleukin-6 (IL-6) and IL-8 were unaffected by EPS in myotubes from diabetic subjects, while IL-6 mRNA expression was increased in myotubes from nondiabetic subjects. EPS-stimulated mRNA expression levels of MYH7, IL-6, and IL-8 correlated negatively with subjects' HbA1c and/or fasting plasma glucose, suggesting an effect linked to the diabetic phenotype. Taken together, these data show that myotubes from different donor groups respond differently to EPS, suggesting that this effect may reflect the in vivo characteristics of the donor groups.
Collapse
Affiliation(s)
- Yuan Z. Feng
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Nataša Nikolić
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Siril S. Bakke
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Eili T. Kase
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Kari Guderud
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Jøran Hjelmesæth
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vigdis Aas
- Faculty of Health, Oslo and Akershus University College of Applied Sciences, Oslo, Norway; and
| | - Arild C. Rustan
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - G. Hege Thoresen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
48
|
Gurung P, Lukens JR, Kanneganti TD. Mitochondria: diversity in the regulation of the NLRP3 inflammasome. Trends Mol Med 2015; 21:193-201. [PMID: 25500014 PMCID: PMC4352396 DOI: 10.1016/j.molmed.2014.11.008] [Citation(s) in RCA: 304] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 12/20/2022]
Abstract
Recent studies have identified new roles for mitochondria in the regulation of autoinflammatory processes. Emerging data suggests that the release of danger signals from mitochondria in response to stress and infection promotes the formation of the inflammatory signaling platform known as inflammasomes. Activation of inflammasomes by damaged mitochondria results in caspase-1-dependent secretion of the inflammatory cytokines interleukin-1β (IL-1β) and IL-18, and an inflammatory form of cell death referred to as pyroptosis. Here, we review recently described mechanisms that have been proposed to be involved in mitochondria-mediated regulation of inflammasome activation and inflammation. In addition, we highlight how aberrant regulation of mitochondria-induced inflammasome activation centrally contributes to the inflammatory process that is responsible for obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Prajwal Gurung
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John R Lukens
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA; Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
49
|
Picklo MJ, Thyfault JP. Vitamin E and vitamin C do not reduce insulin sensitivity but inhibit mitochondrial protein expression in exercising obese rats. Appl Physiol Nutr Metab 2014; 40:343-52. [PMID: 25761734 DOI: 10.1139/apnm-2014-0302] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Controversy exists as to whether supplementation with the antioxidants vitamin E and vitamin C blocks adaptation to exercise. Exercise is a first-line means to treat obesity and its complications. While diet-induced obesity alters mitochondrial function and induces insulin resistance (IR), no data exist as to whether supplementation with vitamin E and vitamin C modify responses to exercise in pre-existing obesity. We tested the hypothesis that dietary supplementation with vitamin E (0.4 g α-tocopherol acetate/kg) and vitamin C (0.5 g/kg) blocks exercise-induced improvements on IR and mitochondrial content in obese rats maintained on a high-fat (45% fat energy (en)) diet. Diet-induced obese, sedentary rats had a 2-fold higher homeostasis model assessment of insulin resistance and larger insulin area under the curve following glucose tolerances test than rats fed a low-fat (10% fat en) diet. Exercising (12 weeks at 5 times per week in a motorized wheel) of obese rats normalized IR indices, an effect not modified by vitamin E and vitamin C. Vitamin E and vitamin C supplementation with exercise elevated mtDNA content in adipose and skeletal muscle to a greater extent (20%) than exercise alone in a depot-specific manner. On the other hand, vitamin C and vitamin E decreased exercise-induced increases in mitochondrial protein content for complex I (40%) and nicotinamide nucleotide transhydrogenase (35%) in a muscle-dependent manner. These data indicate that vitamin E and vitamin C supplementation in obese rodents does not modify exercise-induced improvements in insulin sensitivity but that changes in mitochondrial biogenesis and mitochondrial protein expression may be modified by antioxidant supplementation.
Collapse
Affiliation(s)
- Matthew J Picklo
- USDA-ARS Grand Forks Human Nutrition Research Center, 2420 2nd Avenue North, Grand Forks, ND 58201, USA
| | | |
Collapse
|
50
|
Lo Verso F, Carnio S, Vainshtein A, Sandri M. Autophagy is not required to sustain exercise and PRKAA1/AMPK activity but is important to prevent mitochondrial damage during physical activity. Autophagy 2014; 10:1883-94. [PMID: 25483961 DOI: 10.4161/auto.32154] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Physical activity has been recently documented to play a fundamental physiological role in the regulation of autophagy in several tissues. It has also been reported that autophagy is required for exercise itself and for training-induced adaptations in glucose homeostasis. These autophagy-mediated metabolic improvements are thought to be largely dependent on the activation of the metabolic sensor PRKAA1/AMPK. However, it is unknown whether these important benefits stem from systemic adaptations or are due solely to alterations in skeletal muscle metabolism. To address this we utilized inducible, muscle-specific, atg7 knockout mice that we have recently generated. Our findings indicate that acute inhibition of autophagy in skeletal muscle just prior to exercise does not have an impact on physical performance, PRKAA1 activation, or glucose homeostasis. However, we reveal that autophagy is critical for the preservation of mitochondrial function during damaging muscle contraction. This effect appears to be gender specific affecting primarily females. We also establish that basal oxidative stress plays a crucial role in mitochondrial maintenance during normal physical activity. Therefore, autophagy is an adaptive response to exercise that ensures effective mitochondrial quality control during damaging physical activity.
Collapse
Key Words
- ACACA, acetyl-CoA carboxylase alpha
- AMPK
- ATG7, autophagy-related 7
- BNIP3, BCL2/adenovirus E1B 19 kDa interacting protein 3
- FDB, flexor digitorum brevis
- MAP1LC3A, microtubule-associated protein 1 light chain 3
- NAC, N-acetylcysteine
- PARK2, parkin RBR E3 ubiquitin protein ligase
- PRKAA1, protein kinase AMP-activated, alpha 1 catalytic subunit
- ROS, reactive oxygen species
- SQSTM1, sequestosome 1
- TA, tibialis anterior
- TMRM, tetramethylrhodamine, methyl ester
- autophagy
- exercise
- metabolism
- mitochondria
- skeletal muscle
Collapse
Affiliation(s)
- Francesca Lo Verso
- a Dulbecco Telethon Institute; Venetian Institute of Molecular Medicine ; Padova , Italy
| | | | | | | |
Collapse
|