1
|
Meneux L, Feret N, Pernot S, Girard M, Sarkis S, Caballero Megido A, Quiles M, Müller A, Fichter L, Vialaret J, Hirtz C, Delettre C, Michon F. Inherited mitochondrial dysfunction triggered by OPA1 mutation impacts the sensory innervation fibre identity, functionality and regenerative potential in the cornea. Sci Rep 2024; 14:18794. [PMID: 39138286 PMCID: PMC11322642 DOI: 10.1038/s41598-024-68994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Mitochondrial dysfunctions are detrimental to organ metabolism. The cornea, transparent outmost layer of the eye, is prone to environmental aggressions, such as UV light, and therefore dependent on adequate mitochondrial function. While several reports have linked corneal defects to mitochondrial dysfunction, the impact of OPA1 mutation, known to induce such dysfunction, has never been studied in this context. We used the mouse line carrying OPA1delTTAG mutation to investigate its impact on corneal biology. To our surprise, neither the tear film composition nor the corneal epithelial transcriptomic signature were altered upon OPA1 mutation. However, when analyzing the corneal innervation, we discovered an undersensitivity of the cornea upon the mutation, but an increased innervation volume at 3 months. Furthermore, the fibre identity changed with a decrease of the SP + axons. Finally, we demonstrated that the innervation regeneration was less efficient and less functional in OPA1+/- corneas. Altogether, our study describes the resilience of the corneal epithelial biology, reflecting the mitohormesis induced by the OPA1 mutation, and the adaptation of the corneal innervation to maintain its functionality despite its morphogenesis defects. These findings will participate to a better understanding of the mitochondrial dysfunction on peripheral innervation.
Collapse
Affiliation(s)
- Léna Meneux
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Nadège Feret
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Sarah Pernot
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Mélissa Girard
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Solange Sarkis
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Alicia Caballero Megido
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Melanie Quiles
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
- Faculté de Pharmacie, University of Montpellier, Montpellier, France
| | - Agnès Müller
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
- Faculté de Pharmacie, University of Montpellier, Montpellier, France
| | - Laura Fichter
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
- IRMB-PPC, INM, CHU Montpellier INSERM CNRS, University of Montpellier, Montpellier, France
| | - Jerome Vialaret
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
- IRMB-PPC, INM, CHU Montpellier INSERM CNRS, University of Montpellier, Montpellier, France
| | - Christophe Hirtz
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
- IRMB-PPC, INM, CHU Montpellier INSERM CNRS, University of Montpellier, Montpellier, France
| | - Cecile Delettre
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Frederic Michon
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France.
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France.
| |
Collapse
|
2
|
Hatayama M, Aruga J. Developmental control of noradrenergic system by SLITRK1 and its implications in the pathophysiology of neuropsychiatric disorders. Front Mol Neurosci 2023; 15:1080739. [PMID: 36683853 PMCID: PMC9846221 DOI: 10.3389/fnmol.2022.1080739] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
SLITRK1 is a neuronal transmembrane protein with neurite development-and synaptic formation-controlling abilities. Several rare variants of SLITRK1 have been identified and implicated in the pathogenesis of Tourette's syndrome, trichotillomania, and obsessive-compulsive disorder, which can be collectively referred to as obsessive-compulsive-spectrum disorders. Recent studies have reported a possible association between bipolar disorder and schizophrenia, including a revertant of modern human-specific amino acid residues. Although the mechanisms underlying SLITRK1-associated neuropsychiatric disorders are yet to be fully clarified, rodent studies may provide some noteworthy clues. Slitrk1-deficient mice show neonatal dysregulation of the noradrenergic system, and later, anxiety-like behaviors that can be attenuated by an alpha 2 noradrenergic receptor agonist. The noradrenergic abnormality is characterized by the excessive growth of noradrenergic fibers and increased noradrenaline content in the medial prefrontal cortex, concomitant with enlarged serotonergic varicosities. Slitrk1 has both cell-autonomous and cell-non-autonomous functions in controlling noradrenergic fiber development, and partly alters Sema3a-mediated neurite control. These findings suggest that transiently enhanced noradrenergic signaling during the neonatal stage could cause neuroplasticity associated with neuropsychiatric disorders. Studies adopting noradrenergic signal perturbation via pharmacological or genetic means support this hypothesis. Thus, Slitrk1 is a potential candidate genetic linkage between the neonatal noradrenergic signaling and the pathophysiology of neuropsychiatric disorders involving anxiety-like or depression-like behaviors.
Collapse
|
3
|
SLITRK1-mediated noradrenergic projection suppression in the neonatal prefrontal cortex. Commun Biol 2022; 5:935. [PMID: 36085162 PMCID: PMC9463131 DOI: 10.1038/s42003-022-03891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 08/25/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractSLITRK1 is an obsessive-compulsive disorder spectrum-disorders-associated gene that encodes a neuronal transmembrane protein. Here we show that SLITRK1 suppresses noradrenergic projections in the neonatal prefrontal cortex, and SLITRK1 functions are impaired by SLITRK1 mutations in patients with schizophrenia (S330A, a revertant of Homo sapiens-specific residue) and bipolar disorder (A444S). Slitrk1-KO newborns exhibit abnormal vocalizations, and their prefrontal cortices show excessive noradrenergic neurites and reduced Semaphorin3A expression, which suppresses noradrenergic neurite outgrowth in vitro. Slitrk1 can bind Dynamin1 and L1 family proteins (Neurofascin and L1CAM), as well as suppress Semaphorin3A-induced endocytosis. Neurofascin-binding kinetics is altered in S330A and A444S mutations. Consistent with the increased obsessive-compulsive disorder prevalence in males in childhood, the prefrontal cortex of male Slitrk1-KO newborns show increased noradrenaline levels, and serotonergic varicosity size. This study further elucidates the role of noradrenaline in controlling the development of the obsessive-compulsive disorder-related neural circuit.
Collapse
|
4
|
Moreland T, Poulain FE. To Stick or Not to Stick: The Multiple Roles of Cell Adhesion Molecules in Neural Circuit Assembly. Front Neurosci 2022; 16:889155. [PMID: 35573298 PMCID: PMC9096351 DOI: 10.3389/fnins.2022.889155] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 01/02/2023] Open
Abstract
Precise wiring of neural circuits is essential for brain connectivity and function. During development, axons respond to diverse cues present in the extracellular matrix or at the surface of other cells to navigate to specific targets, where they establish precise connections with post-synaptic partners. Cell adhesion molecules (CAMs) represent a large group of structurally diverse proteins well known to mediate adhesion for neural circuit assembly. Through their adhesive properties, CAMs act as major regulators of axon navigation, fasciculation, and synapse formation. While the adhesive functions of CAMs have been known for decades, more recent studies have unraveled essential, non-adhesive functions as well. CAMs notably act as guidance cues and modulate guidance signaling pathways for axon pathfinding, initiate contact-mediated repulsion for spatial organization of axonal arbors, and refine neuronal projections during circuit maturation. In this review, we summarize the classical adhesive functions of CAMs in axonal development and further discuss the increasing number of other non-adhesive functions CAMs play in neural circuit assembly.
Collapse
|
5
|
Creighton BA, Afriyie S, Ajit D, Casingal CR, Voos KM, Reger J, Burch AM, Dyne E, Bay J, Huang JK, Anton ES, Fu MM, Lorenzo DN. Giant ankyrin-B mediates transduction of axon guidance and collateral branch pruning factor sema 3A. eLife 2021; 10:69815. [PMID: 34812142 PMCID: PMC8610419 DOI: 10.7554/elife.69815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/04/2021] [Indexed: 01/19/2023] Open
Abstract
Variants in the high confident autism spectrum disorder (ASD) gene ANK2 target both ubiquitously expressed 220 kDa ankyrin-B and neurospecific 440 kDa ankyrin-B (AnkB440) isoforms. Previous work showed that knock-in mice expressing an ASD-linked Ank2 variant yielding a truncated AnkB440 product exhibit ectopic brain connectivity and behavioral abnormalities. Expression of this variant or loss of AnkB440 caused axonal hyperbranching in vitro, which implicated AnkB440 microtubule bundling activity in suppressing collateral branch formation. Leveraging multiple mouse models, cellular assays, and live microscopy, we show that AnkB440 also modulates axon collateral branching stochastically by reducing the number of F-actin-rich branch initiation points. Additionally, we show that AnkB440 enables growth cone (GC) collapse in response to chemorepellent factor semaphorin 3 A (Sema 3 A) by stabilizing its receptor complex L1 cell adhesion molecule/neuropilin-1. ASD-linked ANK2 variants failed to rescue Sema 3A-induced GC collapse. We propose that impaired response to repellent cues due to AnkB440 deficits leads to axonal targeting and branch pruning defects and may contribute to the pathogenicity of ANK2 variants.
Collapse
Affiliation(s)
- Blake A Creighton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Simone Afriyie
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Deepa Ajit
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Cristine R Casingal
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Kayleigh M Voos
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Joan Reger
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States.,Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, United States
| | - April M Burch
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Eric Dyne
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States
| | - Julia Bay
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Jeffrey K Huang
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, United States
| | - E S Anton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Meng-Meng Fu
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States
| | - Damaris N Lorenzo
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Carolina Institute for Developmental Disabilities, Chapel Hill, United States
| |
Collapse
|
6
|
Maimon R, Ankol L, Gradus Pery T, Altman T, Ionescu A, Weissova R, Ostrovsky M, Tank E, Alexandra G, Shelestovich N, Opatowsky Y, Dori A, Barmada S, Balastik M, Perlson E. A CRMP4-dependent retrograde axon-to-soma death signal in amyotrophic lateral sclerosis. EMBO J 2021; 40:e107586. [PMID: 34190355 PMCID: PMC8408612 DOI: 10.15252/embj.2020107586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal non-cell-autonomous neurodegenerative disease characterized by the loss of motor neurons (MNs). Mutations in CRMP4 are associated with ALS in patients, and elevated levels of CRMP4 are suggested to affect MN health in the SOD1G93A -ALS mouse model. However, the mechanism by which CRMP4 mediates toxicity in ALS MNs is poorly understood. Here, by using tissue from human patients with sporadic ALS, MNs derived from C9orf72-mutant patients, and the SOD1G93A -ALS mouse model, we demonstrate that subcellular changes in CRMP4 levels promote MN loss in ALS. First, we show that while expression of CRMP4 protein is increased in cell bodies of ALS-affected MN, CRMP4 levels are decreased in the distal axons. Cellular mislocalization of CRMP4 is caused by increased interaction with the retrograde motor protein, dynein, which mediates CRMP4 transport from distal axons to the soma and thereby promotes MN loss. Blocking the CRMP4-dynein interaction reduces MN loss in human-derived MNs (C9orf72) and in ALS model mice. Thus, we demonstrate a novel CRMP4-dependent retrograde death signal that underlies MN loss in ALS.
Collapse
Affiliation(s)
- Roy Maimon
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Lior Ankol
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - Tal Gradus Pery
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Topaz Altman
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Ariel Ionescu
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Romana Weissova
- Institue of Physiology of the Czech Academy of SciencesPragueCzech Republic
- Faculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Elizabeth Tank
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Gayster Alexandra
- Department of PathologySheba Medical CenterTel HashomerRamat GanIsrael
| | - Natalia Shelestovich
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Department of PathologySheba Medical CenterTel HashomerRamat GanIsrael
| | - Yarden Opatowsky
- The Mina and Everard Goodman Faculty of Life ScienceBar Ilan UniversityIsrael
| | - Amir Dori
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
- Department of NeurologySheba Medical CenterTel HashomerRamat GanIsrael
| | - Sami Barmada
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Martin Balastik
- Institue of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Eran Perlson
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
7
|
Carulli D, de Winter F, Verhaagen J. Semaphorins in Adult Nervous System Plasticity and Disease. Front Synaptic Neurosci 2021; 13:672891. [PMID: 34045951 PMCID: PMC8148045 DOI: 10.3389/fnsyn.2021.672891] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Semaphorins, originally discovered as guidance cues for developing axons, are involved in many processes that shape the nervous system during development, from neuronal proliferation and migration to neuritogenesis and synapse formation. Interestingly, the expression of many Semaphorins persists after development. For instance, Semaphorin 3A is a component of perineuronal nets, the extracellular matrix structures enwrapping certain types of neurons in the adult CNS, which contribute to the closure of the critical period for plasticity. Semaphorin 3G and 4C play a crucial role in the control of adult hippocampal connectivity and memory processes, and Semaphorin 5A and 7A regulate adult neurogenesis. This evidence points to a role of Semaphorins in the regulation of adult neuronal plasticity. In this review, we address the distribution of Semaphorins in the adult nervous system and we discuss their function in physiological and pathological processes.
Collapse
Affiliation(s)
- Daniela Carulli
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
- Department of Neuroscience Rita Levi-Montalcini and Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Fred de Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|
8
|
SH3BP4 promotes neuropilin-1 and α5-integrin endocytosis and is inhibited by Akt. Dev Cell 2021; 56:1164-1181.e12. [PMID: 33761321 DOI: 10.1016/j.devcel.2021.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/23/2020] [Accepted: 02/27/2021] [Indexed: 02/06/2023]
Abstract
Cells probe their surrounding matrix for attachment sites via integrins that are internalized by endocytosis. We find that SH3BP4 regulates integrin surface expression in a signaling-dependent manner via clathrin-coated pits (CCPs). Dephosphorylated SH3BP4 at S246 is efficiently recruited to CCPs, while upon Akt phosphorylation, SH3BP4 is sequestered by 14-3-3 adaptors and excluded from CCPs. In the absence of Akt activity, SH3BP4 binds GIPC1 and targets neuropilin-1 and α5/β1-integrin for endocytosis, leading to inhibition of cell spreading. Similarly, chemorepellent semaphorin-3a binds neuropilin-1 to activate PTEN, which antagonizes Akt and thus recruits SH3BP4 to CCPs to internalize both receptors and induce cell contraction. In PTEN mutant non-small cell lung cancer cells with high Akt activity, expression of non-phosphorylatable active SH3BP4-S246A restores semaphorin-3a induced cell contraction. Thus, SH3BP4 links Akt signaling to endocytosis of NRP1 and α5/β1-integrins to modulate cell-matrix interactions in response to intrinsic and extrinsic cues.
Collapse
|
9
|
Clements J, Buhler K, Winant M, Vulsteke V, Callaerts P. Glial and Neuronal Neuroglian, Semaphorin-1a and Plexin A Regulate Morphological and Functional Differentiation of Drosophila Insulin-Producing Cells. Front Endocrinol (Lausanne) 2021; 12:600251. [PMID: 34276554 PMCID: PMC8281472 DOI: 10.3389/fendo.2021.600251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 06/11/2021] [Indexed: 11/21/2022] Open
Abstract
The insulin-producing cells (IPCs), a group of 14 neurons in the Drosophila brain, regulate numerous processes, including energy homeostasis, lifespan, stress response, fecundity, and various behaviors, such as foraging and sleep. Despite their importance, little is known about the development and the factors that regulate morphological and functional differentiation of IPCs. In this study, we describe the use of a new transgenic reporter to characterize the role of the Drosophila L1-CAM homolog Neuroglian (Nrg), and the transmembrane Semaphorin-1a (Sema-1a) and its receptor Plexin A (PlexA) in the differentiation of the insulin-producing neurons. Loss of Nrg results in defasciculation and abnormal neurite branching, including ectopic neurites in the IPC neurons. Cell-type specific RNAi knockdown experiments reveal that Nrg, Sema-1a and PlexA are required in IPCs and glia to control normal morphological differentiation of IPCs albeit with a stronger contribution of Nrg and Sema-1a in glia and of PlexA in the IPCs. These observations provide new insights into the development of the IPC neurons and identify a novel role for Sema-1a in glia. In addition, we show that Nrg, Sema-1a and PlexA in glia and IPCs not only regulate morphological but also functional differentiation of the IPCs and that the functional deficits are likely independent of the morphological phenotypes. The requirements of nrg, Sema-1a, and PlexA in IPC development and the expression of their vertebrate counterparts in the hypothalamic-pituitary axis, suggest that these functions may be evolutionarily conserved in the establishment of vertebrate endocrine systems.
Collapse
|
10
|
Pasterkamp RJ, Burk K. Axon guidance receptors: Endocytosis, trafficking and downstream signaling from endosomes. Prog Neurobiol 2020; 198:101916. [PMID: 32991957 DOI: 10.1016/j.pneurobio.2020.101916] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/06/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
During the development of the nervous system, axons extend through complex environments. Growth cones at the axon tip allow axons to find and innervate their appropriate targets and form functional synapses. Axon pathfinding requires axons to respond to guidance signals and these cues need to be detected by specialized receptors followed by intracellular signal integration and translation. Several downstream signaling pathways have been identified for axon guidance receptors and it has become evident that these pathways are often initiated from intracellular vesicles called endosomes. Endosomes allow receptors to traffic intracellularly, re-locating receptors from one cellular region to another. The localization of axon guidance receptors to endosomal compartments is crucial for their function, signaling output and expression levels. For example, active receptors within endosomes can recruit downstream proteins to the endosomal membrane and facilitate signaling. Also, endosomal trafficking can re-locate receptors back to the plasma membrane to allow re-activation or mediate downregulation of receptor signaling via degradation. Accumulating evidence suggests that axon guidance receptors do not follow a pre-set default trafficking route but may change their localization within endosomes. This re-routing appears to be spatially and temporally regulated, either by expression of adaptor proteins or co-receptors. These findings shed light on how signaling in axon guidance is regulated and diversified - a mechanism which explains how a limited set of guidance cues can help to establish billions of neuronal connections. In this review, we summarize and discuss our current knowledge of axon guidance receptor trafficking and provide directions for future research.
Collapse
Affiliation(s)
- R J Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, the Netherlands.
| | - K Burk
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration, 37075 Göttingen, Germany.
| |
Collapse
|
11
|
Neuropilin: Handyman and Power Broker in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:31-67. [PMID: 32030684 DOI: 10.1007/978-3-030-35582-1_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neuropilin-1 and neuropilin-2 form a small family of transmembrane receptors, which, due to the lack of a cytosolic protein kinase domain, act primarily as co-receptors for various ligands. Performing at the molecular level both the executive and organizing functions of a handyman as well as of a power broker, they are instrumental in controlling the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. In this setting, the various neuropilin ligands and interaction partners on various cells of the tumor microenvironment, such as cancer cells, endothelial cells, cancer-associated fibroblasts, and immune cells, are surveyed. The suitability of various neuropilin-targeting substances and the intervention in neuropilin-mediated interactions is considered as a possible building block of tumor therapy.
Collapse
|
12
|
Skilled Movements in Mice Require Inhibition of Corticospinal Axon Collateral Formation in the Spinal Cord by Semaphorin Signaling. J Neurosci 2019; 39:8885-8899. [PMID: 31537704 DOI: 10.1523/jneurosci.2832-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 11/21/2022] Open
Abstract
Corticospinal (CS) neurons in layer V of the sensorimotor cortex are essential for voluntary motor control. Those neurons project axons to specific segments along the rostro-caudal axis of the spinal cord, and reach their spinal targets by sending collateral branches interstitially along axon bundles. Currently, little is known how CS axon collaterals are formed in the proper spinal cord regions. Here, we show that the semaphorin3A (Sema3A)-neuropilin-1 (Npn-1) signaling pathway is an essential negative regulator of CS axon collateral formation in the spinal cord from mice of either sex. Sema3A is expressed in the ventral spinal cord, whereas CS neurons express Npn-1, suggesting that Sema3A might prevent CS axons from entering the ventral spinal cord. Indeed, the ectopic expression of Sema3A in the spinal cord in vivo inhibits CS axon collateral formation, whereas Sema3A or Npn-1 mutant mice have ectopic CS axon collateral formation within the ventral spinal cord compared with littermate controls. Finally, Npn-1 mutant mice exhibit impaired skilled movements, likely because of aberrantly formed CS connections in the ventral spinal cord. These genetic findings reveal that Sema3A-Npn-1 signaling-mediated inhibition of CS axon collateral formation is critical for proper CS circuit formation and the ability to perform skilled motor behaviors.SIGNIFICANCE STATEMENT CS neurons project axons to the spinal cord to control skilled movements in mammals. Previous studies revealed some of the molecular mechanisms underlying different phases of CS circuit development such as initial axon guidance in the brain, and midline crossing in the brainstem and spinal cord. However, the molecular mechanisms underlying CS axon collateral formation in the spinal gray matter has remained obscure. In this study, using in vivo gain-of- and loss-of-function experiments, we show that Sema3A-Npn-1 signaling functions to inhibit CS axon collateral formation in the ventral spinal cord, allowing for the development of proper skilled movements in mice.
Collapse
|
13
|
Ye X, Qiu Y, Gao Y, Wan D, Zhu H. A Subtle Network Mediating Axon Guidance: Intrinsic Dynamic Structure of Growth Cone, Attractive and Repulsive Molecular Cues, and the Intermediate Role of Signaling Pathways. Neural Plast 2019; 2019:1719829. [PMID: 31097955 PMCID: PMC6487106 DOI: 10.1155/2019/1719829] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 01/01/2023] Open
Abstract
A fundamental feature of both early nervous system development and axon regeneration is the guidance of axonal projections to their targets in order to assemble neural circuits that control behavior. In the navigation process where the nerves grow toward their targets, the growth cones, which locate at the tips of axons, sense the environment surrounding them, including varies of attractive or repulsive molecular cues, then make directional decisions to adjust their navigation journey. The turning ability of a growth cone largely depends on its highly dynamic skeleton, where actin filaments and microtubules play a very important role in its motility. In this review, we summarize some possible mechanisms underlying growth cone motility, relevant molecular cues, and signaling pathways in axon guidance of previous studies and discuss some questions regarding directions for further studies.
Collapse
Affiliation(s)
- Xiyue Ye
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Yan Qiu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Yuqing Gao
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Dong Wan
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Huifeng Zhu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| |
Collapse
|
14
|
Gorla M, Santiago C, Chaudhari K, Layman AAK, Oliver PM, Bashaw GJ. Ndfip Proteins Target Robo Receptors for Degradation and Allow Commissural Axons to Cross the Midline in the Developing Spinal Cord. Cell Rep 2019; 26:3298-3312.e4. [PMID: 30893602 PMCID: PMC6913780 DOI: 10.1016/j.celrep.2019.02.080] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 01/29/2019] [Accepted: 02/20/2019] [Indexed: 12/27/2022] Open
Abstract
Commissural axons initially respond to attractive signals at the midline, but once they cross, they become sensitive to repulsive cues. This switch prevents axons from re-entering the midline. In insects and mammals, negative regulation of Roundabout (Robo) receptors prevents premature response to the midline repellant Slit. In Drosophila, the endosomal protein Commissureless (Comm) prevents Robo1 surface expression before midline crossing by diverting Robo1 into late endosomes. Notably, Comm is not conserved in vertebrates. We identified two Nedd-4-interacting proteins, Ndfip1 and Ndfip2, that act analogously to Comm to localize Robo1 to endosomes. Ndfip proteins recruit Nedd4 E3 ubiquitin ligases to promote Robo1 ubiquitylation and degradation. Ndfip proteins are expressed in commissural axons in the developing spinal cord and removal of Ndfip proteins results in increased Robo1 expression and reduced midline crossing. Our results define a conserved Robo1 intracellular sorting mechanism between flies and mammals to avoid premature responsiveness to Slit.
Collapse
Affiliation(s)
- Madhavi Gorla
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Celine Santiago
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karina Chaudhari
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Awo Akosua Kesewa Layman
- The Children's Hospital of Philadelphia, Division of Protective Immunity, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104, USA
| | - Paula M Oliver
- The Children's Hospital of Philadelphia, Division of Protective Immunity, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Niland S, Eble JA. Neuropilins in the Context of Tumor Vasculature. Int J Mol Sci 2019; 20:ijms20030639. [PMID: 30717262 PMCID: PMC6387129 DOI: 10.3390/ijms20030639] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 01/09/2023] Open
Abstract
Neuropilin-1 and Neuropilin-2 form a small family of plasma membrane spanning receptors originally identified by the binding of semaphorin and vascular endothelial growth factor. Having no cytosolic protein kinase domain, they function predominantly as co-receptors of other receptors for various ligands. As such, they critically modulate the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. This review highlights the diverse neuropilin ligands and interacting partners on endothelial cells, which are relevant in the context of the tumor vasculature and the tumor microenvironment. In addition to tumor cells, the latter contains cancer-associated fibroblasts, immune cells, and endothelial cells. Based on the prevalent neuropilin-mediated interactions, the suitability of various neuropilin-targeted substances for influencing tumor angiogenesis as a possible building block of a tumor therapy is discussed.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
16
|
Abstract
Neurons can endocytose soluble semaphorins to either initiate or interrupt signaling at the cell membrane. Depending on the cell type and even on the specific subcellular domain, the endocytic process will differ in intensity, speed, and modality, and will subsequently facilitate diverse actions of semaphorin molecules. Therefore, in order to understand the physiology of guidance cues like semaphorins it is important to visualize endocytic events with good spatial and temporal resolution. Here, we describe methods to visualize endocytosed Semaphorin3A (Sema3A) molecules and to characterize the rate and pathway of internalization in primary rat neuronal cultures using semiconductor quantum dot nanoparticles (Q-dots).
Collapse
|
17
|
Abstract
The hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurologic disorders with the common feature of prominent lower-extremity spasticity, resulting from a length-dependent axonopathy of corticospinal upper motor neurons. The HSPs exist not only in "pure" forms but also in "complex" forms that are associated with additional neurologic and extraneurologic features. The HSPs are among the most genetically diverse neurologic disorders, with well over 70 distinct genetic loci, for which about 60 mutated genes have already been identified. Numerous studies elucidating the molecular pathogenesis underlying HSPs have highlighted the importance of basic cellular functions - especially membrane trafficking, mitochondrial function, organelle shaping and biogenesis, axon transport, and lipid/cholesterol metabolism - in axon development and maintenance. An encouragingly small number of converging cellular pathogenic themes have been identified for the most common HSPs, and some of these pathways present compelling targets for future therapies.
Collapse
Affiliation(s)
- Craig Blackstone
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
18
|
Boubakar L, Falk J, Ducuing H, Thoinet K, Reynaud F, Derrington E, Castellani V. Molecular Memory of Morphologies by Septins during Neuron Generation Allows Early Polarity Inheritance. Neuron 2017; 95:834-851.e5. [DOI: 10.1016/j.neuron.2017.07.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 05/23/2017] [Accepted: 07/24/2017] [Indexed: 01/22/2023]
|
19
|
Yamane M, Yamashita N, Hida T, Kamiya Y, Nakamura F, Kolattukudy P, Goshima Y. A functional coupling between CRMP1 and Na v1.7 for retrograde propagation of Semaphorin3A signaling. J Cell Sci 2017; 130:1393-1403. [PMID: 28254884 DOI: 10.1242/jcs.199737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/22/2017] [Indexed: 12/19/2022] Open
Abstract
Semaphorin3A (Sema3A) is a secreted type of axon guidance molecule that regulates axon wiring through complexes of neuropilin-1 (NRP1) with PlexinA protein receptors. Sema3A regulates the dendritic branching through tetrodotoxin (TTX)-sensitive retrograde axonal transport of PlexA proteins and tropomyosin-related kinase A (TrkA) complex. We here demonstrate that Nav1.7 (encoded by SCN9A), a TTX-sensitive Na+ channel, by coupling with collapsin response mediator protein 1 (CRMP1), mediates the Sema3A-induced retrograde transport. In mouse dorsal root ganglion (DRG) neurons, Sema3A increased co-localization of PlexA4 and TrkA in the growth cones and axons. TTX treatment and RNAi knockdown of Nav1.7 sustained Sema3A-induced colocalized signals of PlexA4 and TrkA in growth cones and suppressed the subsequent localization of PlexA4 and TrkA in distal axons. A similar localization phenotype was observed in crmp1-/- DRG neurons. Sema3A induced colocalization of CRMP1 and Nav1.7 in the growth cones. The half maximal voltage was increased in crmp1-/- neurons when compared to that in wild type. In HEK293 cells, introduction of CRMP1 lowered the threshold of co-expressed exogenous Nav1.7. These results suggest that Nav1.7, by coupling with CRMP1, mediates the axonal retrograde signaling of Sema3A.
Collapse
Affiliation(s)
- Masayuki Yamane
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Naoya Yamashita
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan .,Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tomonobu Hida
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan.,RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Yoshinori Kamiya
- Department of Anesthesiology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, 4132 Urasa, Minami-uonuma, Niigata 949-7302, Japan
| | - Fumio Nakamura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Pappachan Kolattukudy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
20
|
Rizzolio S, Tamagnone L. Antibody-Feeding Assay: A Method to Track the Internalization of Neuropilin-1 and Other Cell Surface Receptors. Methods Mol Biol 2017; 1493:311-319. [PMID: 27787861 DOI: 10.1007/978-1-4939-6448-2_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ligand-induced endocytosis of receptors exposed on the plasma membrane is a fundamental regulatory step for their functional activation and interaction with intracellular signal transducers. Thus, elucidating the timing of endocytosis and tracing the intracellular fate of receptors is instrumental to understand their signaling cascade in different conditions. Here we describe an assay for the study of endocytosis and intracellular trafficking of individual surface receptors, in living cells subject to different experimental challenges. We applied this method for studying the functional interaction between semaphorin coreceptor Neuropilin-1 and a tyrosine kinase receptor exposed on the cell surface.
Collapse
Affiliation(s)
- Sabrina Rizzolio
- Laboratory of Cancer Cell Biology, Candiolo Cancer Institute-FPO, IRCCS, Str. Prov. 142, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Torino, c/o IRCCS, S.P. 142, 10060, Candiolo, TO, Italy
| | - Luca Tamagnone
- Laboratory of Cancer Cell Biology, Candiolo Cancer Institute-FPO, IRCCS, Str. Prov. 142, 10060, Candiolo, TO, Italy.
- Department of Oncology, University of Torino, c/o IRCCS, S.P. 142, 10060, Candiolo, TO, Italy.
| |
Collapse
|
21
|
Gennarini G, Bizzoca A, Picocci S, Puzzo D, Corsi P, Furley AJW. The role of Gpi-anchored axonal glycoproteins in neural development and neurological disorders. Mol Cell Neurosci 2016; 81:49-63. [PMID: 27871938 DOI: 10.1016/j.mcn.2016.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/06/2023] Open
Abstract
This review article focuses on the Contactin (CNTN) subset of the Immunoglobulin supergene family (IgC2/FNIII molecules), whose components share structural properties (the association of Immunoglobulin type C2 with Fibronectin type III domains), as well as a general role in cell contact formation and axonal growth control. IgC2/FNIII molecules include 6 highly related components (CNTN 1-6), associated with the cell membrane via a Glycosyl Phosphatidyl Inositol (GPI)-containing lipid tail. Contactin 1 and Contactin 2 share ~50 (49.38)% identity at the aminoacid level. They are components of the cell surface, from which they may be released in soluble forms. They bind heterophilically to multiple partners in cis and in trans, including members of the related L1CAM family and of the Neurexin family Contactin-associated proteins (CNTNAPs or Casprs). Such interactions are important for organising the neuronal membrane, as well as for modulating the growth and pathfinding of axon tracts. In addition, they also mediate the functional maturation of axons by promoting their interactions with myelinating cells at the nodal, paranodal and juxtaparanodal regions. Such interactions also mediate differential ionic channels (both Na+ and K+) distribution, which is of critical relevance in the generation of the peak-shaped action potential. Indeed, thanks to their interactions with Ankyrin G, Na+ channels map within the nodal regions, where they drive axonal depolarization. However, no ionic channels are found in the flanking Contactin1-containing paranodal regions, where CNTN1 interactions with Caspr1 and with the Ig superfamily component Neurofascin 155 in cis and in trans, respectively, build a molecular barrier between the node and the juxtaparanode. In this region K+ channels are clustered, depending upon molecular interactions with Contactin 2 and with Caspr2. In addition to these functions, the Contactins appear to have also a role in degenerative and inflammatory disorders: indeed Contactin 2 is involved in neurodegenerative disorders with a special reference to the Alzheimer disease, given its ability to work as a ligand of the Alzheimer Precursor Protein (APP), which results in increased Alzheimer Intracellular Domain (AICD) release in a γ-secretase-dependent manner. On the other hand Contactin 1 drives Notch signalling activation via the Hes pathway, which could be consistent with its ability to modulate neuroinflammation events, and with the possibility that Contactin 1-dependent interactions may participate to the pathogenesis of the Multiple Sclerosis and of other inflammatory disorders.
Collapse
Affiliation(s)
- Gianfranco Gennarini
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy.
| | - Antonella Bizzoca
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Sabrina Picocci
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Patrizia Corsi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Andrew J W Furley
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2NT, UK
| |
Collapse
|
22
|
Telley L, Cadilhac C, Cioni JM, Saywell V, Jahannault-Talignani C, Huettl RE, Sarrailh-Faivre C, Dayer A, Huber AB, Ango F. Dual Function of NRP1 in Axon Guidance and Subcellular Target Recognition in Cerebellum. Neuron 2016; 91:1276-1291. [PMID: 27618676 DOI: 10.1016/j.neuron.2016.08.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 02/05/2016] [Accepted: 07/30/2016] [Indexed: 11/17/2022]
Abstract
Subcellular target recognition in the CNS is the culmination of a multiple-step program including axon guidance, target recognition, and synaptogenesis. In cerebellum, basket cells (BCs) innervate the soma and axon initial segment (AIS) of Purkinje cells (PCs) to form the pinceau synapse, but the underlying mechanisms remain incompletely understood. Here, we demonstrate that neuropilin-1 (NRP1), a Semaphorin receptor expressed in BCs, controls both axonal guidance and subcellular target recognition. We show that loss of Semaphorin 3A function or specific deletion of NRP1 in BCs alters the stereotyped organization of BC axon and impairs pinceau synapse formation. Further, we identified NRP1 as a trans-synaptic binding partner of the cell adhesion molecule neurofascin-186 (NF186) expressed in the PC AIS during pinceau synapse formation. These findings identify a dual function of NRP1 in both axon guidance and subcellular target recognition in the construction of GABAergic circuitry.
Collapse
Affiliation(s)
- Ludovic Telley
- Department of Neurobiology, Institut de Génomique Fonctionnelle, CNRS, UMR5203, 34090 Montpellier, France; INSERM, U1191, 34094 Montpellier, France; Université de Montpellier, 34090 Montpellier, France; Department of Basic Neurosciences, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland
| | - Christelle Cadilhac
- Department of Neurobiology, Institut de Génomique Fonctionnelle, CNRS, UMR5203, 34090 Montpellier, France; INSERM, U1191, 34094 Montpellier, France; Université de Montpellier, 34090 Montpellier, France; Department of Basic Neurosciences, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland
| | - Jean-Michel Cioni
- Department of Neurobiology, Institut de Génomique Fonctionnelle, CNRS, UMR5203, 34090 Montpellier, France; INSERM, U1191, 34094 Montpellier, France; Université de Montpellier, 34090 Montpellier, France; Department of Physiology Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge CB2 3DY, UK
| | - Veronique Saywell
- Department of Neurobiology, Institut de Génomique Fonctionnelle, CNRS, UMR5203, 34090 Montpellier, France; INSERM, U1191, 34094 Montpellier, France; Université de Montpellier, 34090 Montpellier, France
| | - Céline Jahannault-Talignani
- Department of Neurobiology, Institut de Génomique Fonctionnelle, CNRS, UMR5203, 34090 Montpellier, France; INSERM, U1191, 34094 Montpellier, France; Université de Montpellier, 34090 Montpellier, France
| | - Rosa E Huettl
- Institute of Developmental Genetics, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Alexandre Dayer
- Department of Basic Neurosciences, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland; Department of Mental Health and Psychiatry, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland
| | - Andrea B Huber
- Institute of Developmental Genetics, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Fabrice Ango
- Department of Neurobiology, Institut de Génomique Fonctionnelle, CNRS, UMR5203, 34090 Montpellier, France; INSERM, U1191, 34094 Montpellier, France; Université de Montpellier, 34090 Montpellier, France.
| |
Collapse
|
23
|
Chen SL, Cai SR, Zhang XH, Li WF, Zhai ET, Peng JJ, Wu H, Chen CQ, Ma JP, Wang Z, He YL. Targeting CRMP-4 by lentivirus-mediated RNA interference inhibits SW480 cell proliferation and colorectal cancer growth. Exp Ther Med 2016; 12:2003-2008. [PMID: 27698685 PMCID: PMC5038199 DOI: 10.3892/etm.2016.3588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 02/02/2016] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to investigate the expression level of collapsin response mediator protein 4 (CRMP-4) in human colorectal cancer (CRC) tissue and to evauluate its impact on SW480 cell proliferation, in addition to tumor growth in a mouse xenograft model. Clinical CRC tissue samples were collected to detect the CRMP-4 protein expression levels using western blot and immunohistochemistry analyses. A specific small interfering RNA sequence targeting the CRMP-4 gene (DPYSL3) was constructed and transfected into an SW480 cell line using a lentivirus vector to obtain a stable cell line with low expression of CRMP-4. The effectiveness of the interference was evaluated using western blot and reverse transcription-quantitative polymerase chain reaction, and the cell proliferation was determined using MTT and BrdU colorimetric methods. Tumor growth was assessed by subcutaneously inoculating the constructed cells into BALB/c nude mice. The protein expression levels of CRMP-4 were markedly increased in colon tumor tissue of the human samples. The proliferation of SW480 cells and the tumor growth rate in nude mice of the si-CPMR-4 group were evidently depressed compared with the si-scramble group. Thus, the present results suggest that CRMP-4 may be involved in the pathogenesis of CRC.
Collapse
Affiliation(s)
- Si-Le Chen
- Department of Gastrointestinal and Pancreatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shi-Rong Cai
- Department of Gastrointestinal and Pancreatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xin-Hua Zhang
- Department of Gastrointestinal and Pancreatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wen-Feng Li
- Department of Gastrointestinal and Pancreatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Er-Tao Zhai
- Department of Gastrointestinal and Pancreatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jian-Jun Peng
- Department of Gastrointestinal and Pancreatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hui Wu
- Department of Gastrointestinal and Pancreatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chuang-Qi Chen
- Department of Gastrointestinal and Pancreatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jin-Ping Ma
- Department of Gastrointestinal and Pancreatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhao Wang
- Department of Gastrointestinal and Pancreatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yu-Long He
- Department of Gastrointestinal and Pancreatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
24
|
Konopacki FA, Wong HHW, Dwivedy A, Bellon A, Blower MD, Holt CE. ESCRT-II controls retinal axon growth by regulating DCC receptor levels and local protein synthesis. Open Biol 2016; 6:150218. [PMID: 27248654 PMCID: PMC4852451 DOI: 10.1098/rsob.150218] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/13/2016] [Indexed: 01/08/2023] Open
Abstract
Endocytosis and local protein synthesis (LPS) act coordinately to mediate the chemotropic responses of axons, but the link between these two processes is poorly understood. The endosomal sorting complex required for transport (ESCRT) is a key regulator of cargo sorting in the endocytic pathway, and here we have investigated the role of ESCRT-II, a critical ESCRT component, in Xenopus retinal ganglion cell (RGC) axons. We show that ESCRT-II is present in RGC axonal growth cones (GCs) where it co-localizes with endocytic vesicle GTPases and, unexpectedly, with the Netrin-1 receptor, deleted in colorectal cancer (DCC). ESCRT-II knockdown (KD) decreases endocytosis and, strikingly, reduces DCC in GCs and leads to axon growth and guidance defects. ESCRT-II-depleted axons fail to turn in response to a Netrin-1 gradient in vitro and many axons fail to exit the eye in vivo. These defects, similar to Netrin-1/DCC loss-of-function phenotypes, can be rescued in whole (in vitro) or in part (in vivo) by expressing DCC. In addition, ESCRT-II KD impairs LPS in GCs and live imaging reveals that ESCRT-II transports mRNAs in axons. Collectively, our results show that the ESCRT-II-mediated endocytic pathway regulates both DCC and LPS in the axonal compartment and suggest that ESCRT-II aids gradient sensing in GCs by coupling endocytosis to LPS.
Collapse
Affiliation(s)
- Filip A Konopacki
- Department of Physiology Development Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Hovy Ho-Wai Wong
- Department of Physiology Development Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Asha Dwivedy
- Department of Physiology Development Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Anaïs Bellon
- Department of Physiology Development Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Michael D Blower
- Department of Molecular Biology, Harvard Medical School, Simches Research Center, Boston, MA 02114, USA
| | - Christine E Holt
- Department of Physiology Development Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
25
|
Yamashita N, Yamane M, Suto F, Goshima Y. TrkA mediates retrograde semaphorin 3A signaling through plexin A4 to regulate dendritic branching. J Cell Sci 2016; 129:1802-14. [PMID: 26945060 DOI: 10.1242/jcs.184580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/26/2016] [Indexed: 02/03/2023] Open
Abstract
Semaphorin 3A (Sema3A), a secretory semaphorin, exerts various biological actions through a complex between neuropilin-1 and plexin-As (PlexAs). Sema3A induces retrograde signaling, which is involved in regulating dendritic localization of GluA2 (also known as GRIA2), an AMPA receptor subunit. Here, we investigated a possible interaction between retrograde signaling pathways for Sema3A and nerve growth factor (NGF). Sema3A induces colocalization of PlexA4 (also known as PLXNA4) signals with those of tropomyosin-related kinase A (TrkA, also known as NTRK1) in growth cones, and these colocalized signals were then observed along the axons. The time-lapse imaging of PlexA4 and several TrkA mutants showed that the kinase and dynein-binding activity of TrkA were required for Sema3A-induced retrograde transport of the PlexA4-TrkA complex along the axons. The inhibition of the phosphoinositide 3-kinase (PI3K)-Akt signal, a downstream signaling pathway of TrkA, in the distal axon suppressed Sema3A-induced dendritic localization of GluA2. The knockdown of TrkA suppressed Sema3A-induced dendritic localization of GluA2 and that suppressed Sema3A-regulated dendritic branching both in vitro and in vivo These findings suggest that by interacting with PlexA4, TrkA plays a crucial role in redirecting local Sema3A signaling to retrograde axonal transport, thereby regulating dendritic GluA2 localization and patterning.
Collapse
Affiliation(s)
- Naoya Yamashita
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Masayuki Yamane
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Fumikazu Suto
- National Center of Neurology and Psychiatry, National Institute of Neuroscience, Department of Ultrastructural Research, 4-1-1, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
26
|
Dong B, Moseley-Alldredge M, Schwieterman AA, Donelson CJ, McMurry JL, Hudson ML, Chen L. EFN-4 functions in LAD-2-mediated axon guidance in Caenorhabditis elegans. Development 2016; 143:1182-91. [PMID: 26903502 DOI: 10.1242/dev.128934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 02/12/2016] [Indexed: 11/20/2022]
Abstract
During development of the nervous system, growing axons rely on guidance molecules to direct axon pathfinding. A well-characterized family of guidance molecules are the membrane-associated ephrins, which together with their cognate Eph receptors, direct axon navigation in a contact-mediated fashion. InC. elegans, the ephrin-Eph signaling system is conserved and is best characterized for their roles in neuroblast migration during early embryogenesis. This study demonstrates a role for the C. elegans ephrin EFN-4 in axon guidance. We provide both genetic and biochemical evidence that is consistent with the C. elegans divergent L1 cell adhesion molecule LAD-2 acting as a non-canonical ephrin receptor to EFN-4 to promote axon guidance. We also show that EFN-4 probably functions as a diffusible factor because EFN-4 engineered to be soluble can promote LAD-2-mediated axon guidance. This study thus reveals a potential additional mechanism for ephrins in regulating axon guidance and expands the repertoire of receptors by which ephrins can signal.
Collapse
Affiliation(s)
- Bingyun Dong
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Melinda Moseley-Alldredge
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alicia A Schwieterman
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Cory J Donelson
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Jonathan L McMurry
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Martin L Hudson
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Lihsia Chen
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
27
|
Cell Adhesion Molecules and Ubiquitination-Functions and Significance. BIOLOGY 2015; 5:biology5010001. [PMID: 26703751 PMCID: PMC4810158 DOI: 10.3390/biology5010001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/02/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022]
Abstract
Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system.
Collapse
|
28
|
Klingler E, Martin PM, Garcia M, Moreau-Fauvarque C, Falk J, Chareyre F, Giovannini M, Chédotal A, Girault JA, Goutebroze L. The cytoskeleton-associated protein SCHIP1 is involved in axon guidance, and is required for piriform cortex and anterior commissure development. Development 2015; 142:2026-36. [DOI: 10.1242/dev.119248] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/10/2015] [Indexed: 01/14/2023]
Abstract
ABSTRACT
SCHIP1 is a cytoplasmic partner of cortical cytoskeleton ankyrins. The IQCJ-SCHIP1 isoform is a component of axon initial segments and nodes of Ranvier of mature axons in peripheral and central nervous systems, where it associates with membrane complexes comprising cell adhesion molecules. SCHIP1 is also expressed in the mouse developing central nervous system during embryonic stages of active axonogenesis. Here, we identify a new and early role for SCHIP1 during axon development and establishment of the anterior commissure (AC). The AC is composed of axons from the piriform cortex, the anterior olfactory nucleus and the amygdala. Schip1 mutant mice displayed early defects in AC development that might result from impaired axon growth and guidance. In addition, mutant mice presented a reduced thickness of the piriform cortex, which affected projection neurons in layers 2/3 and was likely to result from cell death rather than from impairment of neuron generation or migration. Piriform cortex neurons from E14.5 mutant embryos displayed axon initiation/outgrowth delay and guidance defects in vitro. The sensitivity of growth cones to semaphorin 3F and Eph receptor B2, two repulsive guidance cues crucial for AC development, was increased, providing a possible basis for certain fiber tract alterations. Thus, our results reveal new evidence for the involvement of cortical cytoskeleton-associated proteins in the regulation of axon development and their importance for the formation of neuronal circuits.
Collapse
Affiliation(s)
- Esther Klingler
- INSERM, UMR-S 839, Paris F-75005, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France
- Institut du Fer à Moulin, Paris F-75005, France
| | - Pierre-Marie Martin
- INSERM, UMR-S 839, Paris F-75005, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France
- Institut du Fer à Moulin, Paris F-75005, France
| | - Marta Garcia
- INSERM, UMR-S 839, Paris F-75005, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France
- Institut du Fer à Moulin, Paris F-75005, France
| | - Caroline Moreau-Fauvarque
- Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France
- Institut de la Vision, INSERM, UMR-S 968, Paris F-75012, France
- CNRS, UMR 7210, Paris F-75012, France
| | - Julien Falk
- Université Claude Bernard Lyon 1, CNRS, UMR 5534, CGphiMC, Lyon F-69622, France
| | - Fabrice Chareyre
- House Research Institute, Center for Neural Tumor Research, Los Angeles, CA 90095-1624, USA
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA 90027, USA
| | - Alain Chédotal
- Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France
- Institut de la Vision, INSERM, UMR-S 968, Paris F-75012, France
- CNRS, UMR 7210, Paris F-75012, France
| | - Jean-Antoine Girault
- INSERM, UMR-S 839, Paris F-75005, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France
- Institut du Fer à Moulin, Paris F-75005, France
| | - Laurence Goutebroze
- INSERM, UMR-S 839, Paris F-75005, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France
- Institut du Fer à Moulin, Paris F-75005, France
| |
Collapse
|
29
|
Tojima T, Kamiguchi H. Exocytic and endocytic membrane trafficking in axon development. Dev Growth Differ 2015; 57:291-304. [DOI: 10.1111/dgd.12218] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Takuro Tojima
- Laboratory for Neuronal Growth Mechanisms; RIKEN Brain Science Institute; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Hiroyuki Kamiguchi
- Laboratory for Neuronal Growth Mechanisms; RIKEN Brain Science Institute; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
30
|
Yu L, Reynaud F, Falk J, Spencer A, Ding YD, Baumlé V, Lu R, Castellani V, Yuan C, Rudkin BB. Highly efficient method for gene delivery into mouse dorsal root ganglia neurons. Front Mol Neurosci 2015; 8:2. [PMID: 25698920 PMCID: PMC4313362 DOI: 10.3389/fnmol.2015.00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/06/2015] [Indexed: 01/21/2023] Open
Abstract
The development of gene transfection technologies has greatly advanced our understanding of life sciences. While use of viral vectors has clear efficacy, it requires specific expertise and biological containment conditions. Electroporation has become an effective and commonly used method for introducing DNA into neurons and in intact brain tissue. The present study describes the use of the Neon® electroporation system to transfect genes into dorsal root ganglia neurons isolated from embryonic mouse Day 13.5–16. This cell type has been particularly recalcitrant and refractory to physical or chemical methods for introduction of DNA. By optimizing the culture condition and parameters including voltage and duration for this specific electroporation system, high efficiency (60–80%) and low toxicity (>60% survival) were achieved with robust differentiation in response to Nerve growth factor (NGF). Moreover, 3–50 times fewer cells are needed (6 × 104) compared with other traditional electroporation methods. This approach underlines the efficacy of this type of electroporation, particularly when only limited amount of cells can be obtained, and is expected to greatly facilitate the study of gene function in dorsal root ganglia neuron cultures.
Collapse
Affiliation(s)
- Lingli Yu
- Differentiation and Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR 5239, Centre National de la Recherche Scientifique, Ecole normale Supérieure de Lyon, University of Lyon 1 Claude Bernard, University of Lyon Lyon, France ; Laboratory of Molecular and Cellular Neurophysiology, East China Normal University Shanghai, China ; Joint Laboratory of Neuropathogenesis, Key Laboratory of Brain Functional Genomics, Chinese Ministry of Education, East China Normal University, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon Shanghai, China
| | - Florie Reynaud
- Centre de Génétique et Physiologie Moléculaire et Cellulaire, UMR Centre National de la Recherche Scientifique 5534, University of Lyon 1 Claude Bernard, University of Lyon Villeurbanne, France
| | - Julien Falk
- Centre de Génétique et Physiologie Moléculaire et Cellulaire, UMR Centre National de la Recherche Scientifique 5534, University of Lyon 1 Claude Bernard, University of Lyon Villeurbanne, France
| | - Ambre Spencer
- Differentiation and Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR 5239, Centre National de la Recherche Scientifique, Ecole normale Supérieure de Lyon, University of Lyon 1 Claude Bernard, University of Lyon Lyon, France ; Laboratory of Molecular and Cellular Neurophysiology, East China Normal University Shanghai, China ; Joint Laboratory of Neuropathogenesis, Key Laboratory of Brain Functional Genomics, Chinese Ministry of Education, East China Normal University, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon Shanghai, China
| | - Yin-Di Ding
- Differentiation and Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR 5239, Centre National de la Recherche Scientifique, Ecole normale Supérieure de Lyon, University of Lyon 1 Claude Bernard, University of Lyon Lyon, France ; Laboratory of Molecular and Cellular Neurophysiology, East China Normal University Shanghai, China ; Joint Laboratory of Neuropathogenesis, Key Laboratory of Brain Functional Genomics, Chinese Ministry of Education, East China Normal University, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon Shanghai, China
| | - Véronique Baumlé
- Differentiation and Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR 5239, Centre National de la Recherche Scientifique, Ecole normale Supérieure de Lyon, University of Lyon 1 Claude Bernard, University of Lyon Lyon, France ; Joint Laboratory of Neuropathogenesis, Key Laboratory of Brain Functional Genomics, Chinese Ministry of Education, East China Normal University, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon Shanghai, China
| | - Ruisheng Lu
- Laboratory of Molecular and Cellular Neurophysiology, East China Normal University Shanghai, China ; Joint Laboratory of Neuropathogenesis, Key Laboratory of Brain Functional Genomics, Chinese Ministry of Education, East China Normal University, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon Shanghai, China
| | - Valérie Castellani
- Centre de Génétique et Physiologie Moléculaire et Cellulaire, UMR Centre National de la Recherche Scientifique 5534, University of Lyon 1 Claude Bernard, University of Lyon Villeurbanne, France
| | - Chonggang Yuan
- Differentiation and Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR 5239, Centre National de la Recherche Scientifique, Ecole normale Supérieure de Lyon, University of Lyon 1 Claude Bernard, University of Lyon Lyon, France ; Joint Laboratory of Neuropathogenesis, Key Laboratory of Brain Functional Genomics, Chinese Ministry of Education, East China Normal University, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon Shanghai, China
| | - Brian B Rudkin
- Laboratory of Molecular and Cellular Neurophysiology, East China Normal University Shanghai, China ; Joint Laboratory of Neuropathogenesis, Key Laboratory of Brain Functional Genomics, Chinese Ministry of Education, East China Normal University, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon Shanghai, China
| |
Collapse
|
31
|
Nasarre P, Gemmill RM, Drabkin HA. The emerging role of class-3 semaphorins and their neuropilin receptors in oncology. Onco Targets Ther 2014; 7:1663-87. [PMID: 25285016 PMCID: PMC4181631 DOI: 10.2147/ott.s37744] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The semaphorins, discovered over 20 years ago, are a large family of secreted or transmembrane and glycophosphatidylinositol -anchored proteins initially identified as axon guidance molecules crucial for the development of the nervous system. It has now been established that they also play important roles in organ development and function, especially involving the immune, respiratory, and cardiovascular systems, and in pathological disorders, including cancer. During tumor progression, semaphorins can have both pro- and anti-tumor functions, and this has created complexities in our understanding of these systems. Semaphorins may affect tumor growth and metastases by directly targeting tumor cells, as well as indirectly by interacting with and influencing cells from the micro-environment and vasculature. Mechanistically, semaphorins, through binding to their receptors, neuropilins and plexins, affect pathways involved in cell adhesion, migration, invasion, proliferation, and survival. Importantly, neuropilins also act as co-receptors for several growth factors and enhance their signaling activities, while class 3 semaphorins may interfere with this. In this review, we focus on the secreted class 3 semaphorins and their neuropilin co-receptors in cancer, including aspects of their signaling that may be clinically relevant.
Collapse
Affiliation(s)
- Patrick Nasarre
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| | - Robert M Gemmill
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| | - Harry A Drabkin
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
32
|
Zhang H, Wang Y, Wong J, Lim KL, Liou YC, Wang H, Yu F. Endocytic Pathways Downregulate the L1-type Cell Adhesion Molecule Neuroglian to Promote Dendrite Pruning in Drosophila. Dev Cell 2014; 30:463-78. [DOI: 10.1016/j.devcel.2014.06.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/23/2014] [Accepted: 06/17/2014] [Indexed: 11/27/2022]
|
33
|
Plexin-A4-dependent retrograde semaphorin 3A signalling regulates the dendritic localization of GluA2-containing AMPA receptors. Nat Commun 2014; 5:3424. [DOI: 10.1038/ncomms4424] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/11/2014] [Indexed: 01/07/2023] Open
|
34
|
Abstract
The elongation rate of axons is tightly regulated during development. Recycling of the plasma membrane is known to regulate axon extension; however, the specific molecules involved in recycling within the growth cone have not been fully characterized. Here, we investigated whether the small GTPases Rab4 and Rab5 involved in short-loop recycling regulate the extension of Xenopus retinal axons. We report that, in growth cones, Rab5 and Rab4 proteins localize to endosomes, which accumulate markers that are constitutively recycled. Fluorescence recovery after photo-bleaching experiments showed that Rab5 and Rab4 are recruited to endosomes in the growth cone, suggesting that they control recycling locally. Dynamic image analysis revealed that Rab4-positive carriers can bud off from Rab5 endosomes and move to the periphery of the growth cone, suggesting that both Rab5 and Rab4 contribute to recycling within the growth cone. Inhibition of Rab4 function with dominant-negative Rab4 or Rab4 morpholino and constitutive activation of Rab5 decreases the elongation of retinal axons in vitro and in vivo, but, unexpectedly, does not disrupt axon pathfinding. Thus, Rab5- and Rab4-mediated control of endosome trafficking appears to be crucial for axon growth. Collectively, our results suggest that recycling from Rab5-positive endosomes via Rab4 occurs within the growth cone and thereby supports axon elongation.
Collapse
|
35
|
Warren PM, Alilain WJ. The challenges of respiratory motor system recovery following cervical spinal cord injury. PROGRESS IN BRAIN RESEARCH 2014; 212:173-220. [DOI: 10.1016/b978-0-444-63488-7.00010-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Kaplan A, Kent CB, Charron F, Fournier AE. Switching responses: spatial and temporal regulators of axon guidance. Mol Neurobiol 2013; 49:1077-86. [PMID: 24271658 DOI: 10.1007/s12035-013-8582-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/31/2013] [Indexed: 11/29/2022]
Abstract
The ability of the axonal growth cone to switch between attraction and repulsion in response to guidance cues in the extracellular environment during nervous system development is fundamental to the precise wiring of complex neural circuits. Regulation of cell-surface receptors by means of transcriptional control, local translation, trafficking and proteolytic processing are powerful mechanisms to regulate the response of the growth cone. Important work has also revealed how intracellular signalling pathways, including calcium and cyclic nucleotide signalling, can alter the directional response elicited by a particular cue. Here, we describe how these multiple regulatory mechanisms influence growth cone turning behaviour. We focus on recent evidence that suggests a significant role for 14-3-3 adaptor proteins in modifying growth cone turning behaviour and mediating directional polarity switches during development. Characterizing how 14-3-3 s regulate growth cone signalling will provide invaluable insight into nervous system development and may facilitate the identification of novel targets for promoting nerve regeneration following injury.
Collapse
Affiliation(s)
- Andrew Kaplan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | | | | | | |
Collapse
|
37
|
Salinas S, Zussy C, Loustalot F, Henaff D, Menendez G, Morton PE, Parsons M, Schiavo G, Kremer EJ. Disruption of the coxsackievirus and adenovirus receptor-homodimeric interaction triggers lipid microdomain- and dynamin-dependent endocytosis and lysosomal targeting. J Biol Chem 2013; 289:680-95. [PMID: 24273169 DOI: 10.1074/jbc.m113.518365] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The coxsackievirus and adenovirus receptor (CAR) serves as a docking factor for some adenovirus (AdV) types and group B coxsackieviruses. Its role in AdV internalization is unclear as studies suggest that its intracellular domain is dispensable for some AdV infection. We previously showed that in motor neurons, AdV induced CAR internalization and co-transport in axons, suggesting that CAR was linked to endocytic and long-range transport machineries. Here, we characterized the mechanisms of CAR endocytosis in neurons and neuronal cells. We found that CAR internalization was lipid microdomain-, actin-, and dynamin-dependent, and subsequently followed by CAR degradation in lysosomes. Moreover, ligands that disrupted the homodimeric CAR interactions in its D1 domains triggered an internalization cascade involving sequences in its intracellular tail.
Collapse
Affiliation(s)
- Sara Salinas
- From the Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, Montpellier, Universités de Montpellier I & II, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Leung LC, Urbančič V, Baudet ML, Dwivedy A, Bayley TG, Lee AC, Harris WA, Holt CE. Coupling of NF-protocadherin signaling to axon guidance by cue-induced translation. Nat Neurosci 2013; 16:166-73. [PMID: 23292679 PMCID: PMC3701881 DOI: 10.1038/nn.3290] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/26/2012] [Indexed: 02/07/2023]
Abstract
Cell adhesion molecules and diffusible cues both regulate axon pathfinding, yet how these two modes of signaling interact is poorly understood. The homophilic cell adhesion molecule NF-protocadherin (NFPC) is expressed in the mid-dorsal optic tract neuroepithelium and in the axons of developing retinal ganglion cells (RGC) in Xenopus laevis. Here we report that targeted disruption of NFPC function in RGC axons or the optic tract neuroepithelium results in unexpectedly localized pathfinding defects at the caudal turn in the mid-optic tract. Semaphorin 3A (Sema3A), which lies adjacent to this turn, stimulates rapid, protein synthesis-dependent increases in growth cone NFPC and its cofactor, TAF1, in vitro. In vivo, growth cones exhibit marked increases in NFPC translation reporter activity in this mid-optic tract region that are attenuated by blocking neuropilin-1 function. Our results suggest that translation-linked coupling between regionally localized diffusible cues and cell adhesion can help axons navigate discrete segments of the pathway.
Collapse
Affiliation(s)
| | | | | | - Asha Dwivedy
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| | | | - Aih Cheun Lee
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| | - William A. Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| | - Christine E. Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| |
Collapse
|
39
|
Abstract
Cell adhesion molecules of the immunoglobulin-super-family (IgSF-CAMs) do not only have a physical effect, mediating merely attachment between cell surfaces. For navigating axons, IgSF-CAMs also exert an instructive impact: Upon activation, they elicit intracellular signalling cascades in the tip of the axon, the growth cone, which regulate in a spatio-temporally concerted action both speed and direction of the axon. Density and distribution of IgSF-CAMs in the growth cone plasma membrane play important roles for the activation of IgSF-CAMs, their clustering, and the adhesive forces they acquire, as well as for the local restriction and effective propagation of their intracellular signals.
Collapse
|
40
|
Hota PK, Buck M. Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 2012; 69:3765-805. [PMID: 22744749 PMCID: PMC11115013 DOI: 10.1007/s00018-012-1019-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
Abstract
Plexin transmembrane receptors and their semaphorin ligands, as well as their co-receptors (Neuropilin, Integrin, VEGFR2, ErbB2, and Met kinase) are emerging as key regulatory proteins in a wide variety of developmental, regenerative, but also pathological processes. The diverse arenas of plexin function are surveyed, including roles in the nervous, cardiovascular, bone and skeletal, and immune systems. Such different settings require considerable specificity among the plexin and semaphorin family members which in turn are accompanied by a variety of cell signaling networks. Underlying the latter are the mechanistic details of the interactions and catalytic events at the molecular level. Very recently, dramatic progress has been made in solving the structures of plexins and of their complexes with associated proteins. This molecular level information is now suggesting detailed mechanisms for the function of both the extracellular as well as the intracellular plexin regions. Specifically, several groups have solved structures for extracellular domains for plexin-A2, -B1, and -C1, many in complex with semaphorin ligands. On the intracellular side, the role of small Rho GTPases has been of particular interest. These directly associate with plexin and stimulate a GTPase activating (GAP) function in the plexin catalytic domain to downregulate Ras GTPases. Structures for the Rho GTPase binding domains have been presented for several plexins, some with Rnd1 bound. The entire intracellular domain structure of plexin-A1, -A3, and -B1 have also been solved alone and in complex with Rac1. However, key aspects of the interplay between GTPases and plexins remain far from clear. The structural information is helping the plexin field to focus on key questions at the protein structural, cellular, as well as organism level that collaboratoria of investigations are likely to answer.
Collapse
Affiliation(s)
- Prasanta K. Hota
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| |
Collapse
|
41
|
TAG1 regulates the endocytic trafficking and signaling of the semaphorin3A receptor complex. J Neurosci 2012; 32:10370-82. [PMID: 22836270 DOI: 10.1523/jneurosci.5874-11.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endocytic trafficking of membrane proteins is essential for neuronal structure and function. We show that Transient Axonal Glycoprotein 1 (TAG1 or CNTN2), a contactin-related adhesion molecule, plays a central role in the differential trafficking of components of the semaphorin3A (Sema3A) receptor complex into distinct endosomal compartments in murine spinal sensory neuron growth cones. The semaphorin3A receptor is composed of Neuropilin1 (NRP1), PlexinA4, and L1, with NRP1 being the ligand-binding component. TAG1 interacts with NRP1, causing a change in its association with L1 in the Sema3A response such that L1 is lost from the complex following Sema3A binding. Initially, however, L1 and NRP1 endocytose together and only become separated intracellularly, with NRP1 becoming associated with endosomes enriched in lipid rafts and colocalizing with TAG1 and PlexinA4. When TAG1 is missing, NRP1 and L1 fail to separate and NRP1 does not become raft associated; colocalization with PlexinA4 is reduced and Plexin signaling is not initiated. These observations identify a novel role for TAG1 in modulating the intracellular sorting of signaling receptor complexes.
Collapse
|
42
|
Prud'homme GJ, Glinka Y. Neuropilins are multifunctional coreceptors involved in tumor initiation, growth, metastasis and immunity. Oncotarget 2012; 3:921-39. [PMID: 22948112 PMCID: PMC3660061 DOI: 10.18632/oncotarget.626] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 09/01/2012] [Indexed: 12/17/2022] Open
Abstract
The neuropilins (Nrps) are multifunctional proteins involved in development, immunity and cancer. Neuropilin-1 (Nrp1), or its homologue neuropilin-2 (Nrp2), are coreceptors that enhance responses to several growth factors (GFs) and other mediators. Nrps are coreceptors for the class 3 semaphorins (SEMA3), involved in axonal guidance, and several members of the vascular endothelial growth factor (VEGF) family. However, recent findings reveal they have a much broader spectrum of activity. They bind transforming growth factor β1 (TGF-β1) and its receptors, hepatocyte growth factor (HGF) and its receptor (cMet), platelet derived growth factor (PDGF) and its receptors, fibroblast growth factors (FGFs), and integrins. Nrps also promote Hedgehog signaling. These ligands and pathways are all relevant to angiogenesis and wound healing. In the immune system, the Nrps are expressed primarily by dendritic cells (DCs) and regulatory T cells (Tregs), and exert mainly inhibitory effects. In cancer, Nrps have been linked to a poor prognosis, which is consistent with their numerous interactions with ligands and receptors that promote tumor progression. We hypothesize that Nrps boost responses by capturing ligands, regulating GF receptor expression, endocytosis and recycling, and possibly also by signaling independently. Importantly, they promote epithelial-mesenchymal transition (EMT), and the survival of cancer stem cells. The recent finding that Nrps bind and internalize cell-penetrating peptides (CPPs) with arginine/lysine-rich C-terminal motifs (C-end rule; e.g., RXXR) is of interest. These CPPs can be coupled to large drugs for cancer therapy. Almost all studies have been preclinical, but findings suggest Nrps are excellent targets for anti-cancer drug development.
Collapse
Affiliation(s)
- Gérald J Prud'homme
- Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, ON, Canada.
| | | |
Collapse
|
43
|
Sharma A, Verhaagen J, Harvey AR. Receptor complexes for each of the Class 3 Semaphorins. Front Cell Neurosci 2012; 6:28. [PMID: 22783168 PMCID: PMC3389612 DOI: 10.3389/fncel.2012.00028] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/20/2012] [Indexed: 01/08/2023] Open
Abstract
The Class 3 Semaphorins (Sema3s) are a sub-family of proteins whose known biological roles are varied and growing. The mechanism of action of the Sema3s requires binding to transmembrane receptors that comprise heteromeric complexes of Neuropilins, Plexins and cell adhesion molecules (CAMs). However, knowledge of the receptor components of the Sema3s remains incomplete, and there may be receptor components which are as yet undiscovered. The receptor complexes of the Sema3s share receptor components with each other, and it is the specific combination of these components within a heteromeric complex that is thought to give rise to selective binding and signalling for individual Sema3s. This crosstalk makes it experimentally difficult to define a single holoreceptor for each Sema3. Furthermore, the receptor composition for a given Sema3 may differ between cell types, and change as a function of developmental state or pathological situation. Nevertheless, there are at least some known differences in the constitutive structure of the receptors for the Sema3s. For example in neural cells, Sema3a and Sema3f signal through different Neuropilins (Nrp1 and Nrp2 respectively) and L1cam only appears important for Sema3a signaling, while Nrcam forms a complex with Nrp2. Further complexity arises from crosstalk of other families of ligands (e.g., VEGF) with Sema3 receptor components. Thus the Sema3s, which have been shown as antagonists for each other, can also act as antagonists for other families of molecules. This review compiles experimental evidence describing the receptor components for the Sema3s, detailing the current state of knowledge of which components are important for signaling of each Sema3 before going on to consider possible future directions for the field.
Collapse
Affiliation(s)
- Anil Sharma
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley WA, Australia
| | | | | |
Collapse
|
44
|
Abstract
Endocytosis and endosomal trafficking play a multitude of roles in cellular function beyond regulating entry of essential nutrients. In this review, we discuss the cell biological principles of endosomal trafficking, the neuronal adaptations to endosomal organization, and the role of endosomal trafficking in neural development. In particular, we consider how cell fate decisions, polarity, migration, and axon outgrowth and guidance are influenced by five endosomal tricks: dynamic modulation of receptor levels by endocytosis and recycling, cargo-specific responses via cargo-specific endocytic regulators, cell-type-specific endocytic regulation, ligand-specific endocytic regulation, and endosomal regulation of ligand processing and trafficking.
Collapse
Affiliation(s)
- Chan Choo Yap
- Department of Neuroscience, University of Virginia, 409 Lane Road, Charlottesville, VA 22908, USA
| | | |
Collapse
|
45
|
Abstract
Human voluntary movement is controlled by the pyramidal motor system, a long CNS pathway comprising corticospinal and lower motor neurons. Hereditary spastic paraplegias (HSPs) are a large, genetically diverse group of inherited neurologic disorders characterized by a length-dependent distal axonopathy of the corticospinal tracts, resulting in lower limb spasticity and weakness. A range of studies are converging on alterations in the shaping of organelles, particularly the endoplasmic reticulum, as well as intracellular membrane trafficking and distribution as primary defects underlying the HSPs, with clear relevance for other long axonopathies affecting peripheral nerves and lower motor neurons.
Collapse
Affiliation(s)
- Craig Blackstone
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
46
|
Role of L1CAM for axon sprouting and branching. Cell Tissue Res 2012; 349:39-48. [DOI: 10.1007/s00441-012-1345-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/25/2012] [Indexed: 01/02/2023]
|
47
|
Ruediger T, Zimmer G, Barchmann S, Castellani V, Bagnard D, Bolz J. Integration of opposing semaphorin guidance cues in cortical axons. ACTA ACUST UNITED AC 2012; 23:604-14. [PMID: 22368082 DOI: 10.1093/cercor/bhs044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previous work demonstrated that members of the semaphorin family, Sema3A and Sema3C, act as repulsive and attractive guidance signals, respectively, for cortical axons. During the development of corticofugal projections, these semaphorins are expressed in adjacent cortical zones, but there is a considerable overlap between Sema3A and Sema3C expression in the subventricular zone. We used different in vitro assays to examine the response of cortical axons exposed to defined mixtures of these opposing guidance cues. Results showed that even at very low concentrations, Sema3A overrides the effects of Sema3C. Moreover, experiments with function-blocking antibodies directed against neuropilin provided insights into how cortical axons integrate disparate guidance signals at the receptor level. These in vitro data suggest that the pathway of corticofugal axons is defined by an attractive cue in the intermediate zone, where Sema3C is expressed alone. To directly test this hypothesis in vivo, we performed axon-tracing experiments in Sema3C-deficient mice. Compared with wild-type animals, corticofugal axons take a more superficial route in Sema3C(-/-) mice, and the corticofugal pathway is more compacted. This phenotype is expected when an attractive cue for cortical axons, Sema3C, is eliminated and a repulsive cue, Sema3A, becomes predominant.
Collapse
Affiliation(s)
- Tina Ruediger
- Institut für Allgemeine Zoologie und Tierphysiologie, Universität Jena, 07743 Jena, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Thelen K, Maier B, Faber M, Albrecht C, Fischer P, Pollerberg GE. Translation of the cell adhesion molecule ALCAM in axonal growth cones – regulation and functional importance. J Cell Sci 2012; 125:1003-14. [DOI: 10.1242/jcs.096149] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ALCAM is a cell adhesion molecule that is present on extending axons and has been shown to be crucial for elongation and navigation of retinal ganglion cell (RGC) axons. In the present study, we show that ALCAM mRNA is present in axonal growth cones of RGCs in vivo and in vitro, and that translation of ALCAM occurs in RGC growth cones separated from their soma. This growth cone translation is regulated by the 3′-untranslated region (3′-UTR) of ALCAM and depends on the activity of the kinases ERK and TOR (target of rapamycin). We also investigated the impact of the growth cone translation of ALCAM on axonal functions. Growth cone translation of ALCAM is crucial for the enhanced elongation of axons extending in contact with ALCAM protein. The local translation of ALCAM in the growth cone is able to rapidly counterbalance experimentally induced ALCAM internalization, thereby contributing to the maintenance of constant ALCAM levels in the plasma membrane. Assays where RGC axons have the choice to grow on laminin or both ALCAM and laminin – as is the case in the developing retina – reveal that the axonal preference for ALCAM-containing lanes depends on translation of ALCAM in growth cones. Taken together, these results show for the first time that translation of a cell adhesion molecule in growth cones, as well as the impact of this local translation on the behavior of axon and growth cone.
Collapse
Affiliation(s)
- Karsten Thelen
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | - Bettina Maier
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | - Marc Faber
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | - Christian Albrecht
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | - Paulina Fischer
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | - G. Elisabeth Pollerberg
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| |
Collapse
|
49
|
Zylbersztejn K, Petkovic M, Burgo A, Deck M, Garel S, Marcos S, Bloch-Gallego E, Nothias F, Serini G, Bagnard D, Binz T, Galli T. The vesicular SNARE Synaptobrevin is required for Semaphorin 3A axonal repulsion. ACTA ACUST UNITED AC 2012; 196:37-46. [PMID: 22213797 PMCID: PMC3255983 DOI: 10.1083/jcb.201106113] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Semaphorin 3A-mediated signaling and axonal repulsion in the mouse brain require Synaptobrevin-dependent vesicular traffic. Attractive and repulsive molecules such as Semaphorins (Sema) trigger rapid responses that control the navigation of axonal growth cones. The role of vesicular traffic in axonal guidance is still largely unknown. The exocytic vesicular soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor (SNARE) Synaptobrevin 2 (Syb2) is known for mediating neurotransmitter release in mature neurons, but its potential role in axonal guidance remains elusive. Here we show that Syb2 is required for Sema3A-dependent repulsion but not Sema3C-dependent attraction in cultured neurons and in the mouse brain. Syb2 associated with Neuropilin 1 and Plexin A1, two essential components of the Sema3A receptor, via its juxtatransmembrane domain. Sema3A receptor and Syb2 colocalize in endosomal membranes. Moreover, upon Sema3A treatment, Syb2-deficient neurons failed to collapse and transport Plexin A1 to cell bodies. Reconstitution of Sema3A receptor in nonneuronal cells revealed that Sema3A further inhibited the exocytosis of Syb2. Therefore, Sema3A-mediated signaling and axonal repulsion require Syb2-dependent vesicular traffic.
Collapse
Affiliation(s)
- Kathleen Zylbersztejn
- University Paris Diderot, Sorbonne Paris Cité, Jacques Monod Institute, Centre National de la Recherche Scientifique UMR7592, Program in Development and Neurobiology, Paris, 75013 France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chew DJ, Fawcett JW, Andrews MR. The challenges of long-distance axon regeneration in the injured CNS. PROGRESS IN BRAIN RESEARCH 2012. [PMID: 23186719 DOI: 10.1016/b978-0-444-59544-7.00013-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Injury to the central nervous system (CNS) that results in long-tract axonal damage typically leads to permanent functional deficits in areas innervated at, and below, the level of the lesion. The initial ischemia, inflammation, and neurodegeneration are followed by a progressive generation of scar tissue, dieback of transected axons, and demyelination, creating an area inhibitory to regrowth and recovery. Two ways to combat this inhibition is to therapeutically target the extrinsic and intrinsic properties of the axon-scar environment. Scar tissue within and surrounding the lesion site can be broken down using an enzyme known as chondroitinase. Negative regulators of adult neuronal growth, such as Nogo, can be neutralized with antibodies. Both therapies greatly improve functional recovery in animal models. Alternatively, modifying the intrinsic growth properties of CNS neurons through gene therapy or pharmacotherapy has also shown promising axonal regeneration after injury. Despite these promising therapies, the main challenge of long-distance axon regeneration still remains; achieving a level of functional and organized connectivity below the level of the lesion that mimics the intact CNS.
Collapse
Affiliation(s)
- Daniel J Chew
- Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | | | | |
Collapse
|