1
|
Marzetti E, Di Lorenzo R, Calvani R, Pesce V, Landi F, Coelho-Júnior HJ, Picca A. From Cell Architecture to Mitochondrial Signaling: Role of Intermediate Filaments in Health, Aging, and Disease. Int J Mol Sci 2025; 26:1100. [PMID: 39940869 PMCID: PMC11817570 DOI: 10.3390/ijms26031100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The coordination of cytoskeletal proteins shapes cell architectures and functions. Age-related changes in cellular mechanical properties have been linked to decreased cellular and tissue dysfunction. Studies have also found a relationship between mitochondrial function and the cytoskeleton. Cytoskeleton inhibitors impact mitochondrial quality and function, including motility and morphology, membrane potential, and respiration. The regulatory properties of the cytoskeleton on mitochondrial functions are involved in the pathogenesis of several diseases. Disassembly of the axon's cytoskeleton and the release of neurofilament fragments have been documented during neurodegeneration. However, these changes can also be related to mitochondrial impairments, spanning from reduced mitochondrial quality to altered bioenergetics. Herein, we discuss recent research highlighting some of the pathophysiological roles of cytoskeleton disassembly in aging, neurodegeneration, and neuromuscular diseases, with a focus on studies that explored the relationship between intermediate filaments and mitochondrial signaling as relevant contributors to cellular health and disease.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Rosa Di Lorenzo
- Department of Biosciences, Biotechnologies and Environment, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy; (R.D.L.); (V.P.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Environment, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy; (R.D.L.); (V.P.)
| | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Hélio José Coelho-Júnior
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
- Department of Medicine and Surgery, LUM University, Str. Statale 100, 70010 Casamassima, Italy
| |
Collapse
|
2
|
Theme 4 In Vivo Experimental Models. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:136-157. [PMID: 39508665 DOI: 10.1080/21678421.2024.2403301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
|
3
|
Detka J, Płachtij N, Strzelec M, Manik A, Sałat K. p38α Mitogen-Activated Protein Kinase-An Emerging Drug Target for the Treatment of Alzheimer's Disease. Molecules 2024; 29:4354. [PMID: 39339348 PMCID: PMC11433989 DOI: 10.3390/molecules29184354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by the formation of amyloid β and tau protein aggregates in the brain, neuroinflammation, impaired cholinergic neurotransmission, and oxidative stress, resulting in the gradual loss of neurons and neuronal function, which leads to cognitive and memory deficits in AD patients. Chronic neuroinflammation plays a particularly important role in the progression of AD since the excessive release of proinflammatory cytokines from glial cells (microglia and astrocytes) induces neuronal damage, which subsequently causes microglial activation, thus facilitating further neurodegenerative changes. Mitogen-activated protein kinase (MAPK) p38α is one of the key enzymes involved in the control of innate immune response. The increased activation of the p38α MAPK pathway, observed in AD, has been for a long time associated not only with the maintenance of excessive inflammatory process but is also linked with pathophysiological hallmarks of this disease, and therefore is currently considered an attractive drug target for novel AD therapeutics. This review aims to summarize the current state of knowledge about the involvement of p38α MAPK in different aspects of AD pathophysiology and also provides insight into the possible therapeutic effects of novel p38α MAPK inhibitors, which are currently studied as potential drug candidates for AD treatment.
Collapse
Affiliation(s)
- Jan Detka
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| | - Natalia Płachtij
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| | - Martyna Strzelec
- Department of Transplantation, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, 265 Wielicka St., 30-663 Krakow, Poland;
| | - Aleksandra Manik
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| |
Collapse
|
4
|
Okekenwa S, Tsai M, Dooley P, Wang B, Comassio P, Moreira J, Kriefall N, Martin S, Morfini G, Brady S, Song Y. Divergent Molecular Pathways for Toxicity of Selected Mutant C9ORF72-derived Dipeptide Repeats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.28.558663. [PMID: 37808871 PMCID: PMC10557653 DOI: 10.1101/2023.09.28.558663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Expansion of a hexanucleotide repeat in a noncoding region of the C9ORF72 gene is responsible for a significant fraction of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) cases, but mechanisms linking mutant gene products to neuronal toxicity remain debatable. Pathogenesis was proposed to involve the production of toxic RNA species and/or accumulation of toxic dipeptide repeats (DPRs) but distinguishing between these mechanisms has been challenging. In this study, we first use complementary model systems for analyzing pathogenesis in adult-onset neurodegenerative diseases to characterize the pathogenicity of DPRs produced by Repeat Associated Non-ATG translation of C9ORF72 in specific cellular compartments: isolated axoplasm and giant synapse from the squid. Results showed selective axonal and presynaptic toxicity of GP-DPRs, independent of associated RNA. These effects involved a MAPK signaling pathway that affects fast axonal transport and synaptic function, a pathogenic mechanism shared with other mutant proteins associated with familial ALS, like SOD1 and FUS. In primary cultured neurons, GP but not other DPRs promote the "dying-back" axonopathy seen in ALS. Interestingly, GR- and PR-DPRs, which had no effect on axonal transport or synaptic transmission, were found to disrupt the nuclear membrane, promoting "dying-forward" neuropathy. All C9-DPR-mediated toxic effects observed in these studies are independent of whether the corresponding mRNAs contained hexanucleotide repeats or alternative codons. Finally, C9ORF72 human tissues confirmed a close association between GP and active P38 in degenerating motor neurons as well as GR-associated nuclear damage in the cortex. Collectively, our studies establish compartment-specific toxic effects of C9-DPRs associated with degeneration, suggesting that two independent pathogenic mechanisms may contribute to disease heterogeneity and/or synergize on disease progression in C9ORF72 patients with ALS and/or FTD symptoms.
Collapse
|
5
|
Dey B, Kumar A, Patel AB. Pathomechanistic Networks of Motor System Injury in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2024; 22:1778-1806. [PMID: 37622689 PMCID: PMC11284732 DOI: 10.2174/1570159x21666230824091601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 08/26/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common, adult-onset, progressive motor neurodegenerative disorder that results in death within 3 years of the clinical diagnosis. Due to the clinicopathological heterogeneity, any reliable biomarkers for diagnosis or prognosis of ALS have not been identified till date. Moreover, the only three clinically approved treatments are not uniformly effective in slowing the disease progression. Over the last 15 years, there has been a rapid advancement in research on the complex pathomechanistic landscape of ALS that has opened up new avenues for successful clinical translation of targeted therapeutics. Multiple studies suggest that the age-dependent interaction of risk-associated genes with environmental factors and endogenous modifiers is critical to the multi-step process of ALS pathogenesis. In this review, we provide an updated discussion on the dysregulated cross-talk between intracellular homeostasis processes, the unique molecular networks across selectively vulnerable cell types, and the multisystemic nature of ALS pathomechanisms. Importantly, this work highlights the alteration in epigenetic and epitranscriptomic landscape due to gene-environment interactions, which have been largely overlooked in the context of ALS pathology. Finally, we suggest that precision medicine research in ALS will be largely benefitted from the stratification of patient groups based on the clinical phenotype, onset and progression, genome, exposome, and metabolic identities.
Collapse
Affiliation(s)
- Bedaballi Dey
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Anant Bahadur Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
6
|
Kim JA, Park C, Sung JJ, Seo DJ, Choi SJ, Hong YH. Small RNA sequencing of circulating small extracellular vesicles microRNAs in patients with amyotrophic lateral sclerosis. Sci Rep 2023; 13:5528. [PMID: 37016037 PMCID: PMC10073149 DOI: 10.1038/s41598-023-32717-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/31/2023] [Indexed: 04/06/2023] Open
Abstract
Dysregulation of microRNAs (miRNA) in small extracellular vesicles (sEV) such as exosomes have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). Although circulating cell-free miRNA have been extensively investigated in ALS, sEV-derived miRNAs have not been systemically explored yet. Here, we performed small RNA sequencing analysis of serum sEV and identified 5 differentially expressed miRNA in a discovery cohort of 12 patients and 11 age- and sex-matched healthy controls (fold change > 2, p < 0.05). Two of them (up- and down-regulation of miR-23c and miR192-5p, respectively) were confirmed in a separate validation cohort (18 patients and 15 healthy controls) by droplet digital PCR. Bioinformatic analysis revealed that these two miRNAs interact with distinct sets of target genes and involve biological processes relevant to the pathomechanism of ALS. Our results suggest that circulating sEV from ALS patients have distinct miRNA profiles which may be potentially useful as a biomarker of the disease.
Collapse
Affiliation(s)
- Jin-Ah Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Canaria Park
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Do-Jin Seo
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Seok-Jin Choi
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoon-Ho Hong
- Department of Neurology, Neuroscience Research Institute, Medical Research Council, Seoul National University College of Medicine, Seoul National University Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea.
- Department of Neurology, Seoul National University Seoul Metropolitan Government Boramae Medical Center, 20 Boramaero-5-Gil, Dongjak-Gu, Seoul, 07061, Republic of Korea.
| |
Collapse
|
7
|
Russo K, Wharton KA. BMP/TGF-β signaling as a modulator of neurodegeneration in ALS. Dev Dyn 2022; 251:10-25. [PMID: 33745185 PMCID: PMC11929146 DOI: 10.1002/dvdy.333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
This commentary focuses on the emerging intersection between BMP/TGF-β signaling roles in nervous system function and the amyotrophic lateral sclerosis (ALS) disease state. Future research is critical to elucidate the molecular underpinnings of this intersection of the cellular processes disrupted in ALS and those influenced by BMP/TGF-β signaling, including synapse structure, neurotransmission, plasticity, and neuroinflammation. Such knowledge promises to inform us of ideal entry points for the targeted modulation of dysfunctional cellular processes in an effort to abrogate ALS pathologies. It is likely that different interventions are required, either at discrete points in disease progression, or across multiple dysfunctional processes which together lead to motor neuron degeneration and death. We discuss the challenging, but intriguing idea that modulation of the pleiotropic nature of BMP/TGF-β signaling could be advantageous, as a way to simultaneously treat defects in more than one cell process across different forms of ALS.
Collapse
Affiliation(s)
- Kathryn Russo
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island, USA
| | - Kristi A Wharton
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
8
|
Pathophysiology of neurodegenerative diseases: An interplay among axonal transport failure, oxidative stress, and inflammation? Semin Immunol 2022; 59:101628. [PMID: 35779975 PMCID: PMC9807734 DOI: 10.1016/j.smim.2022.101628] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023]
Abstract
Neurodegenerative diseases (NDs) are heterogeneous neurological disorders characterized by a progressive loss of selected neuronal populations. A significant risk factor for most NDs is aging. Considering the constant increase in life expectancy, NDs represent a global public health burden. Axonal transport (AT) is a central cellular process underlying the generation and maintenance of neuronal architecture and connectivity. Deficits in AT appear to be a common thread for most, if not all, NDs. Neuroinflammation has been notoriously difficult to define in relation to NDs. Inflammation is a complex multifactorial process in the CNS, which varies depending on the disease stage. Several lines of evidence suggest that AT defect, axonopathy and neuroinflammation are tightly interlaced. However, whether these impairments play a causative role in NDs or are merely a downstream effect of neuronal degeneration remains unsettled. We still lack reliable information on the temporal relationship between these pathogenic mechanisms, although several findings suggest that they may occur early during ND pathophysiology. This article will review the latest evidence emerging on whether the interplay between AT perturbations and some aspects of CNS inflammation can participate in ND etiology, analyze their potential as therapeutic targets, and the urge to identify early surrogate biomarkers.
Collapse
|
9
|
Karikari AA, Wruck W, Adjaye J. Transcriptome-based analysis of blood samples reveals elevation of DNA damage response, neutrophil degranulation, cancer and neurodegenerative pathways in Plasmodium falciparum patients. Malar J 2021; 20:383. [PMID: 34565410 PMCID: PMC8474955 DOI: 10.1186/s12936-021-03918-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Malaria caused by Plasmodium falciparum results in severe complications including cerebral malaria (CM) especially in children. While the majority of falciparum malaria survivors make a full recovery, there are reports of some patients ending up with neurological sequelae or cognitive deficit. METHODS An analysis of pooled transcriptome data of whole blood samples derived from two studies involving various P. falciparum infections, comprising mild malaria (MM), non-cerebral severe malaria (NCM) and CM was performed. Pathways and gene ontologies (GOs) elevated in the distinct P. falciparum infections were determined. RESULTS In all, 2876 genes were expressed in common between the 3 forms of falciparum malaria, with CM having the least number of expressed genes. In contrast to other research findings, the analysis from this study showed MM share similar biological processes with cancer and neurodegenerative diseases, NCM is associated with drug resistance and glutathione metabolism and CM is correlated with endocannabinoid signalling and non-alcoholic fatty liver disease (NAFLD). GO revealed the terms biogenesis, DNA damage response and IL-10 production in MM, down-regulation of cytoskeletal organization and amyloid-beta clearance in NCM and aberrant signalling, neutrophil degranulation and gene repression in CM. Differential gene expression analysis between CM and NCM showed the up-regulation of neutrophil activation and response to herbicides, while regulation of axon diameter was down-regulated in CM. CONCLUSIONS Results from this study reveal that P. falciparum-mediated inflammatory and cellular stress mechanisms may impair brain function in MM, NCM and CM. However, the neurological deficits predominantly reported in CM cases could be attributed to the down-regulation of various genes involved in cellular function through transcriptional repression, axonal dysfunction, dysregulation of signalling pathways and neurodegeneration. It is anticipated that the data from this study, might form the basis for future hypothesis-driven malaria research.
Collapse
Affiliation(s)
- Akua A. Karikari
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
10
|
Sahana TG, Zhang K. Mitogen-Activated Protein Kinase Pathway in Amyotrophic Lateral Sclerosis. Biomedicines 2021; 9:biomedicines9080969. [PMID: 34440173 PMCID: PMC8394856 DOI: 10.3390/biomedicines9080969] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 01/17/2023] Open
Abstract
Amyotrophic lateral sclerosis is a fatal motor neuron degenerative disease. Multiple genetic and non-genetic risk factors are associated with disease pathogenesis, and several cellular processes, including protein homeostasis, RNA metabolism, vesicle transport, etc., are severely impaired in ALS conditions. Despite the heterogeneity of the disease manifestation and progression, ALS patients show protein aggregates in the motor cortex and spinal cord tissue, which is believed to be at least partially caused by aberrant phase separation and the formation of persistent stress granules. Consistent with this notion, many studies have implicated cellular stress, such as ER stress, DNA damage, oxidative stress, and growth factor depletion, in ALS conditions. The mitogen-activated protein kinase (MAPK) pathway is a fundamental mitogen/stress-activated signal transduction pathway that regulates cell proliferation, differentiation, survival, and death. Here we summarize the fundamental role of MAPK in physiology and ALS pathogenesis. We also discuss pharmacological inhibitors targeting this pathway tested in pre-clinical models, suggesting their role as potential drug candidates.
Collapse
|
11
|
Benoit B, Baillet A, Poüs C. Cytoskeleton and Associated Proteins: Pleiotropic JNK Substrates and Regulators. Int J Mol Sci 2021; 22:8375. [PMID: 34445080 PMCID: PMC8395060 DOI: 10.3390/ijms22168375] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
This review extensively reports data from the literature concerning the complex relationships between the stress-induced c-Jun N-terminal kinases (JNKs) and the four main cytoskeleton elements, which are actin filaments, microtubules, intermediate filaments, and septins. To a lesser extent, we also focused on the two membrane-associated cytoskeletons spectrin and ESCRT-III. We gather the mechanisms controlling cytoskeleton-associated JNK activation and the known cytoskeleton-related substrates directly phosphorylated by JNK. We also point out specific locations of the JNK upstream regulators at cytoskeletal components. We finally compile available techniques and tools that could allow a better characterization of the interplay between the different types of cytoskeleton filaments upon JNK-mediated stress and during development. This overview may bring new important information for applied medical research.
Collapse
Affiliation(s)
- Béatrice Benoit
- Université Paris-Saclay, INSERM UMR-S-1193, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France; (A.B.); (C.P.)
| | - Anita Baillet
- Université Paris-Saclay, INSERM UMR-S-1193, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France; (A.B.); (C.P.)
| | - Christian Poüs
- Université Paris-Saclay, INSERM UMR-S-1193, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France; (A.B.); (C.P.)
- Biochimie-Hormonologie, AP-HP Université Paris-Saclay, Site Antoine Béclère, 157 Rue de la Porte de Trivaux, 92141 Clamart, France
| |
Collapse
|
12
|
Yadav RK, Minz E, Mehan S. Understanding Abnormal c-JNK/p38MAPK Signaling in Amyotrophic Lateral Sclerosis: Potential Drug Targets and Influences on Neurological Disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:417-429. [PMID: 33557726 DOI: 10.2174/1871527320666210126113848] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022]
Abstract
c-JNK (c-Jun N-terminal kinase) and p38 mitogen-activated protein kinase (MAPK) family members work in a cell-specific manner to regulate neuronal signals. The abnormal activation of these cellular signals can cause glutamate excitotoxicity, disrupted protein homeostasis, defective axonal transport, and synaptic dysfunction. Various pre-clinical and clinical findings indicate that the up-regulation of c-JNK and p38MAPK signaling is associated with neurological disorders. Exceptionally, a significant amount of experimental data has recently shown that dysregulated c-JNK and p38MAPK are implicated in the damage to the central nervous system, including amyotrophic lateral sclerosis. Furthermore, currently available information has shown that c- JNK/p38MAPK signaling inhibitors may be a promising therapeutic alternative for improving histopathological, functional, and demyelination defects related to motor neuron disabilities. Understanding the abnormal activation of c-JNK/p38MAPK signaling and the prediction of motor neuron loss may help identify important therapeutic interventions that could prevent neurocomplications. Based on the involvement of c-JNK/p38MAPK signaling in the brain, we have assumed that the downregulation of the c-JNK/p38MAPK signaling pathway could trigger neuroprotection and neurotrophic effects towards clinicopathological presentations of ALS and other brain diseases. Thus, this research-based review also outlines the inhibition of c-JNK and p38MAPK signal downregulation in the pursuit of disease-modifying therapies for ALS.
Collapse
Affiliation(s)
- Rajeshwar Kumar Yadav
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Elizabeth Minz
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
13
|
Guo W, Vandoorne T, Steyaert J, Staats KA, Van Den Bosch L. The multifaceted role of kinases in amyotrophic lateral sclerosis: genetic, pathological and therapeutic implications. Brain 2021; 143:1651-1673. [PMID: 32206784 PMCID: PMC7296858 DOI: 10.1093/brain/awaa022] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis is the most common degenerative disorder of motor neurons in adults. As there is no cure, thousands of individuals who are alive at present will succumb to the disease. In recent years, numerous causative genes and risk factors for amyotrophic lateral sclerosis have been identified. Several of the recently identified genes encode kinases. In addition, the hypothesis that (de)phosphorylation processes drive the disease process resulting in selective motor neuron degeneration in different disease variants has been postulated. We re-evaluate the evidence for this hypothesis based on recent findings and discuss the multiple roles of kinases in amyotrophic lateral sclerosis pathogenesis. We propose that kinases could represent promising therapeutic targets. Mainly due to the comprehensive regulation of kinases, however, a better understanding of the disturbances in the kinome network in amyotrophic lateral sclerosis is needed to properly target specific kinases in the clinic.
Collapse
Affiliation(s)
- Wenting Guo
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,KU Leuven-Stem Cell Institute (SCIL), Leuven, Belgium
| | - Tijs Vandoorne
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Jolien Steyaert
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Kim A Staats
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California, USA
| | - Ludo Van Den Bosch
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| |
Collapse
|
14
|
Lachén-Montes M, Mendizuri N, Ausin K, Andrés-Benito P, Ferrer I, Fernández-Irigoyen J, Santamaría E. Amyotrophic Lateral Sclerosis Is Accompanied by Protein Derangements in the Olfactory Bulb-Tract Axis. Int J Mol Sci 2020; 21:ijms21218311. [PMID: 33167591 PMCID: PMC7664257 DOI: 10.3390/ijms21218311] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by progressive muscle paralysis due to the degeneration of upper and lower motor neurons. Recent studies point out an involvement of the non-motor axis during disease progression. Despite smell impairment being considered a potential non-motor finding in ALS, the pathobiochemistry at the olfactory level remains unknown. Here, we applied an olfactory quantitative proteotyping approach to analyze the magnitude of the olfactory bulb (OB) proteostatic imbalance in ALS subjects (n = 12) with respect to controls (n = 8). Around 3% of the quantified OB proteome was differentially expressed, pinpointing aberrant protein expression involved in vesicle-mediated transport, macroautophagy, axon development and gliogenesis in ALS subjects. The overproduction of olfactory marker protein (OMP) points out an imbalance in the olfactory signal transduction in ALS. Accompanying the specific overexpression of glial fibrillary acidic protein (GFAP) and Bcl-xL in the olfactory tract (OT), a tangled disruption of signaling routes was evidenced across the OB–OT axis in ALS. In particular, the OB survival signaling dynamics clearly differ between ALS and frontotemporal lobar degeneration (FTLD), two faces of TDP-43 proteinopathy. To the best of our knowledge, this is the first report on high-throughput molecular characterization of the olfactory proteostasis in ALS.
Collapse
Affiliation(s)
- Mercedes Lachén-Montes
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain; (M.L.-M.); (N.M.)
- Proteored-ISCIII, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Naroa Mendizuri
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain; (M.L.-M.); (N.M.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Karina Ausin
- Proteored-ISCIII, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Pol Andrés-Benito
- Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Spain; (P.A.-B.); (I.F.)
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 28031 Madrid, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, 08007 Hospitalet de Llobregat, Spain
- Institute of Neurosciences, University of Barcelona, 08007 Barcelona, Spain
| | - Isidro Ferrer
- Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Spain; (P.A.-B.); (I.F.)
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 28031 Madrid, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, 08007 Hospitalet de Llobregat, Spain
- Institute of Neurosciences, University of Barcelona, 08007 Barcelona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain; (M.L.-M.); (N.M.)
- Proteored-ISCIII, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: (J.F.I.); (E.S.); Tel.: +34-848-425-740 (E.S.); Fax: +34-848-422-200 (E.S.)
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain; (M.L.-M.); (N.M.)
- Proteored-ISCIII, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: (J.F.I.); (E.S.); Tel.: +34-848-425-740 (E.S.); Fax: +34-848-422-200 (E.S.)
| |
Collapse
|
15
|
Guillaud L, El-Agamy SE, Otsuki M, Terenzio M. Anterograde Axonal Transport in Neuronal Homeostasis and Disease. Front Mol Neurosci 2020; 13:556175. [PMID: 33071754 PMCID: PMC7531239 DOI: 10.3389/fnmol.2020.556175] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Neurons are highly polarized cells with an elongated axon that extends far away from the cell body. To maintain their homeostasis, neurons rely extensively on axonal transport of membranous organelles and other molecular complexes. Axonal transport allows for spatio-temporal activation and modulation of numerous molecular cascades, thus playing a central role in the establishment of neuronal polarity, axonal growth and stabilization, and synapses formation. Anterograde and retrograde axonal transport are supported by various molecular motors, such as kinesins and dynein, and a complex microtubule network. In this review article, we will primarily discuss the molecular mechanisms underlying anterograde axonal transport and its role in neuronal development and maturation, including the establishment of functional synaptic connections. We will then provide an overview of the molecular and cellular perturbations that affect axonal transport and are often associated with axonal degeneration. Lastly, we will relate our current understanding of the role of axonal trafficking concerning anterograde trafficking of mRNA and its involvement in the maintenance of the axonal compartment and disease.
Collapse
Affiliation(s)
- Laurent Guillaud
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Sara Emad El-Agamy
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Miki Otsuki
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Marco Terenzio
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
16
|
Asih PR, Prikas E, Stefanoska K, Tan ARP, Ahel HI, Ittner A. Functions of p38 MAP Kinases in the Central Nervous System. Front Mol Neurosci 2020; 13:570586. [PMID: 33013322 PMCID: PMC7509416 DOI: 10.3389/fnmol.2020.570586] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein (MAP) kinases are a central component in signaling networks in a multitude of mammalian cell types. This review covers recent advances on specific functions of p38 MAP kinases in cells of the central nervous system. Unique and specific functions of the four mammalian p38 kinases are found in all major cell types in the brain. Mechanisms of p38 activation and downstream phosphorylation substrates in these different contexts are outlined and how they contribute to functions of p38 in physiological and under disease conditions. Results in different model organisms demonstrated that p38 kinases are involved in cognitive functions, including functions related to anxiety, addiction behavior, neurotoxicity, neurodegeneration, and decision making. Finally, the role of p38 kinases in psychiatric and neurological conditions and the current progress on therapeutic inhibitors targeting p38 kinases are covered and implicate p38 kinases in a multitude of CNS-related physiological and disease states.
Collapse
Affiliation(s)
- Prita R Asih
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Emmanuel Prikas
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kristie Stefanoska
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Amanda R P Tan
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Holly I Ahel
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Arne Ittner
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
17
|
Palomo V, Nozal V, Rojas-Prats E, Gil C, Martinez A. Protein kinase inhibitors for amyotrophic lateral sclerosis therapy. Br J Pharmacol 2020; 178:1316-1335. [PMID: 32737989 DOI: 10.1111/bph.15221] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/03/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that causes the progressive loss of motoneurons and, unfortunately, there is no effective treatment for this disease. Interconnecting multiple pathological mechanisms are involved in the neuropathology of this disease, including abnormal aggregation of proteins, neuroinflammation and dysregulation of the ubiquitin proteasome system. Such complex mechanisms, together with the lack of reliable animal models of the disease have hampered the development of drugs for this disease. Protein kinases, a key pharmacological target in several diseases, have been linked to ALS as they play a central role in the pathology of many diseases. Therefore several inhibitors are being currently trailed for clinical proof of concept in ALS patients. In this review, we examine the recent literature on protein kinase inhibitors currently in pharmaceutical development for this diseaseas future therapy for AS together with their involvement in the pathobiology of ALS. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Valle Palomo
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Vanesa Nozal
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | | | - Carmen Gil
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| |
Collapse
|
18
|
Advani D, Gupta R, Tripathi R, Sharma S, Ambasta RK, Kumar P. Protective role of anticancer drugs in neurodegenerative disorders: A drug repurposing approach. Neurochem Int 2020; 140:104841. [PMID: 32853752 DOI: 10.1016/j.neuint.2020.104841] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
The disease heterogeneity and little therapeutic progress in neurodegenerative diseases justify the need for novel and effective drug discovery approaches. Drug repurposing is an emerging approach that reinvigorates the classical drug discovery method by divulging new therapeutic uses of existing drugs. The common biological background and inverse tuning between cancer and neurodegeneration give weight to the conceptualization of repurposing of anticancer drugs as novel therapeutics. Many studies are available in the literature, which highlights the success story of anticancer drugs as repurposed therapeutics. Among them, kinase inhibitors, developed for various oncology indications evinced notable neuroprotective effects in neurodegenerative diseases. In this review, we shed light on the salient role of multiple protein kinases in neurodegenerative disorders. We also proposed a feasible explanation of the action of kinase inhibitors in neurodegenerative disorders with more attention towards neurodegenerative disorders. The problem of neurotoxicity associated with some anticancer drugs is also highlighted. Our review encourages further research to better encode the hidden potential of anticancer drugs with the aim of developing prospective repurposed drugs with no toxicity for neurodegenerative disorders.
Collapse
Affiliation(s)
- Dia Advani
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rohan Gupta
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rahul Tripathi
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
19
|
Suzuki N, Akiyama T, Warita H, Aoki M. Omics Approach to Axonal Dysfunction of Motor Neurons in Amyotrophic Lateral Sclerosis (ALS). Front Neurosci 2020; 14:194. [PMID: 32269505 PMCID: PMC7109447 DOI: 10.3389/fnins.2020.00194] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an intractable adult-onset neurodegenerative disease that leads to the loss of upper and lower motor neurons (MNs). The long axons of MNs become damaged during the early stages of ALS. Genetic and pathological analyses of ALS patients have revealed dysfunction in the MN axon homeostasis. However, the molecular pathomechanism for the degeneration of axons in ALS has not been fully elucidated. This review provides an overview of the proposed axonal pathomechanisms in ALS, including those involving the neuronal cytoskeleton, cargo transport within axons, axonal energy supply, clearance of junk protein, neuromuscular junctions (NMJs), and aberrant axonal branching. To improve understanding of the global changes in axons, the review summarizes omics analyses of the axonal compartments of neurons in vitro and in vivo, including a motor nerve organoid approach that utilizes microfluidic devices developed by this research group. The review also discusses the relevance of intra-axonal transcription factors frequently identified in these omics analyses. Local axonal translation and the relationship among these pathomechanisms should be pursued further. The development of novel strategies to analyze axon fractions provides a new approach to establishing a detailed understanding of resilience of long MN and MN pathology in ALS.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan.,Department of Neurology, Shodo-kai Southern Tohoku General Hospital, Miyagi, Japan
| | - Tetsuya Akiyama
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
20
|
|
21
|
Guo W, Stoklund Dittlau K, Van Den Bosch L. Axonal transport defects and neurodegeneration: Molecular mechanisms and therapeutic implications. Semin Cell Dev Biol 2019; 99:133-150. [PMID: 31542222 DOI: 10.1016/j.semcdb.2019.07.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/22/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
Because of the extremely polarized morphology, the proper functioning of neurons largely relies on the efficient cargo transport along the axon. Axonal transport defects have been reported in multiple neurodegenerative diseases as an early pathological feature. The discovery of mutations in human genes involved in the transport machinery provide a direct causative relationship between axonal transport defects and neurodegeneration. Here, we summarize the current genetic findings related to axonal transport in neurodegenerative diseases, and we discuss the relationship between axonal transport defects and other pathological changes observed in neurodegeneration. In addition, we summarize the therapeutic approaches targeting the axonal transport machinery in studies of neurodegenerative diseases. Finally, we review the technical advances in tracking axonal transport both in vivo and in vitro.
Collapse
Affiliation(s)
- Wenting Guo
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium; KU Leuven-Stem Cell Institute (SCIL), Leuven, Belgium
| | - Katarina Stoklund Dittlau
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| |
Collapse
|
22
|
Varidaki A, Hong Y, Coffey ET. Repositioning Microtubule Stabilizing Drugs for Brain Disorders. Front Cell Neurosci 2018; 12:226. [PMID: 30135644 PMCID: PMC6092511 DOI: 10.3389/fncel.2018.00226] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
Microtubule stabilizing agents are among the most clinically useful chemotherapeutic drugs. Mostly, they act to stabilize microtubules and inhibit cell division. While not without side effects, new generations of these compounds display improved pharmacokinetic properties and brain penetrance. Neurological disorders are intrinsically associated with microtubule defects, and efforts to reposition microtubule-targeting chemotherapeutic agents for treatment of neurodegenerative and psychiatric illnesses are underway. Here we catalog microtubule regulators that are associated with Alzheimer's and Parkinson's disease, amyotrophic lateral sclerosis, schizophrenia and mood disorders. We outline the classes of microtubule stabilizing agents used for cancer treatment, their brain penetrance properties and neuropathy side effects, and describe efforts to apply these agents for treatment of brain disorders. Finally, we summarize the current state of clinical trials for microtubule stabilizing agents under evaluation for central nervous system disorders.
Collapse
Affiliation(s)
- Artemis Varidaki
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, Biocity, Tykistokatu, Turku, Finland
| | - Ye Hong
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, Biocity, Tykistokatu, Turku, Finland
| | - Eleanor T Coffey
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, Biocity, Tykistokatu, Turku, Finland
| |
Collapse
|
23
|
Inhibiting p38 MAPK alpha rescues axonal retrograde transport defects in a mouse model of ALS. Cell Death Dis 2018; 9:596. [PMID: 29789529 PMCID: PMC5964181 DOI: 10.1038/s41419-018-0624-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 12/20/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by the degeneration of upper and lower motor neurons. Defects in axonal transport have been observed pre-symptomatically in the SOD1G93A mouse model of ALS, and have been proposed to play a role in motor neuron degeneration as well as in other pathologies of the nervous system, such as Alzheimer's disease and hereditary neuropathies. In this study, we screen a library of small-molecule kinase inhibitors towards the identification of pharmacological enhancers of the axonal retrograde transport of signalling endosomes, which might be used to normalise the rate of this process in diseased neurons. Inhibitors of p38 mitogen-activated protein kinases (p38 MAPK) were identified in this screen and were found to correct deficits in axonal retrograde transport of signalling endosomes in cultured primary SOD1G93A motor neurons. In vitro knockdown experiments revealed that the alpha isoform of p38 MAPK (p38 MAPKα) was the sole isoform responsible for SOD1G93A-induced transport deficits. Furthermore, we found that acute treatment with p38 MAPKα inhibitors restored the physiological rate of axonal retrograde transport in vivo in early symptomatic SOD1G93A mice. Our findings demonstrate the pathogenic effect of p38 MAPKα on axonal retrograde transport and identify a potential therapeutic strategy for ALS.
Collapse
|
24
|
Lei R, Lee JP, Francis MB, Kumar S. Structural Regulation of a Neurofilament-Inspired Intrinsically Disordered Protein Brush by Multisite Phosphorylation. Biochemistry 2018; 57:4019-4028. [PMID: 29557644 DOI: 10.1021/acs.biochem.8b00007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Intrinsically disordered proteins (IDPs) play central roles in numerous cellular processes. While IDP structure and function are often regulated by multisite phosphorylation, the biophysical mechanisms linking these post-translational modifications to IDP structure remain elusive. For example, the intrinsically disordered C-terminal sidearm domain of the neurofilament heavy subunit (NFH-SA) forms a dense brush along axonal NF backbones and is subject to extensive serine phosphorylation. Yet, biophysical insight into the relationship between phosphorylation and structure has been limited by the lack of paradigms in which NF brush conformational responses can be measured in the setting of controlled phosphorylation. Here, we approach this question by immobilizing a recombinant NFH-SA (rNFH-SA) as IDP brushes onto glass, and controllably phosphorylating the sequence in situ with mitogen-activated protein kinase 1 (ERK2) preactivated by mitogen-activated protein kinase kinase (MKK). We then monitor brush height changes using atomic force microscopy, which shows that phosphorylation induces significant brush swelling to an extent that strongly depends upon pH and ionic strength, consistent with a mechanism in which phosphorylation regulates brush structure through local electrostatic interactions. Further consistent with this mechanism, the phosphorylated rNFH-SA brush may be dramatically condensed with micromolar concentrations of divalent cations. Phosphorylation-induced height changes are qualitatively reversible via alkaline phosphatase-mediated dephosphorylation. Our study demonstrates that multisite phosphorylation controls NFH-SA structure through modulation of chain electrostatics and points to a general strategy for engineering IDP-based interfaces that can be reversibly and dynamically modulated by enzymes.
Collapse
Affiliation(s)
| | | | - Matthew B Francis
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | | |
Collapse
|
25
|
Gatto RG, Li W, Magin RL. Diffusion tensor imaging identifies presymptomatic axonal degeneration in the spinal cord of ALS mice. Brain Res 2017; 1679:45-52. [PMID: 29175489 DOI: 10.1016/j.brainres.2017.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 12/11/2022]
Abstract
Extensive pathological evidence indicates that axonal degeneration represents an early and critical event in amyotrophic lateral sclerosis (ALS). Unfortunately, few MRI studies have focused in the early detection of white matter (WM) alterations in the spinal cord region. To unveil these WM changes, we performed high resolution diffusion tensor imaging (DTI) and correlated the results with histological analysis of adjacent slices taken from the spinal cords of presymptomatic mice. The DTI studies demonstrated a significant reduction in fractional anisotropy (FA) as well as axial diffusivities (AD) and an increase in radial diffusivity (RD), predominantly at lower segments of the spinal cord. Increases in FA and a reduction in AD and RD were observed in spinal cord (SC) gray matter (GM). Diffusion changes are associated with early and progressive alterations in axonal connectivity following a distal to proximal progression. Histological data tagging neuronal, axonal and glial cell markers demonstrated presymptomatic alterations in spinal cord WM and GM. This study demonstrates that DTI methods are optimal preclinical imaging tools to detect structural anomalies in WM and GM spinal cord during early stages of the disease.
Collapse
Affiliation(s)
- Rodolfo G Gatto
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA.
| | - Weiguo Li
- Department of Bioengineering, University of Illinois at Chicago, School of Engineering, Chicago, IL 60612, USA
| | - Richard L Magin
- Department of Bioengineering, University of Illinois at Chicago, School of Engineering, Chicago, IL 60612, USA
| |
Collapse
|
26
|
De Vos KJ, Hafezparast M. Neurobiology of axonal transport defects in motor neuron diseases: Opportunities for translational research? Neurobiol Dis 2017; 105:283-299. [PMID: 28235672 PMCID: PMC5536153 DOI: 10.1016/j.nbd.2017.02.004] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/26/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Intracellular trafficking of cargoes is an essential process to maintain the structure and function of all mammalian cell types, but especially of neurons because of their extreme axon/dendrite polarisation. Axonal transport mediates the movement of cargoes such as proteins, mRNA, lipids, membrane-bound vesicles and organelles that are mostly synthesised in the cell body and in doing so is responsible for their correct spatiotemporal distribution in the axon, for example at specialised sites such as nodes of Ranvier and synaptic terminals. In addition, axonal transport maintains the essential long-distance communication between the cell body and synaptic terminals that allows neurons to react to their surroundings via trafficking of for example signalling endosomes. Axonal transport defects are a common observation in a variety of neurodegenerative diseases, and mutations in components of the axonal transport machinery have unequivocally shown that impaired axonal transport can cause neurodegeneration (reviewed in El-Kadi et al., 2007, De Vos et al., 2008; Millecamps and Julien, 2013). Here we review our current understanding of axonal transport defects and the role they play in motor neuron diseases (MNDs) with a specific focus on the most common form of MND, amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Kurt J De Vos
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Majid Hafezparast
- Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
27
|
Brady ST, Morfini GA. Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases. Neurobiol Dis 2017; 105:273-282. [PMID: 28411118 DOI: 10.1016/j.nbd.2017.04.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/17/2017] [Accepted: 04/10/2017] [Indexed: 01/07/2023] Open
Abstract
Neurons affected in a wide variety of unrelated adult-onset neurodegenerative diseases (AONDs) typically exhibit a "dying back" pattern of degeneration, which is characterized by early deficits in synaptic function and neuritic pathology long before neuronal cell death. Consistent with this observation, multiple unrelated AONDs including Alzheimer's disease, Parkinson's disease, Huntington's disease, and several motor neuron diseases feature early alterations in kinase-based signaling pathways associated with deficits in axonal transport (AT), a complex cellular process involving multiple intracellular trafficking events powered by microtubule-based motor proteins. These pathogenic events have important therapeutic implications, suggesting that a focus on preservation of neuronal connections may be more effective to treat AONDs than addressing neuronal cell death. While the molecular mechanisms underlying AT abnormalities in AONDs are still being analyzed, evidence has accumulated linking those to a well-established pathological hallmark of multiple AONDs: altered patterns of neuronal protein phosphorylation. Here, we present a short overview on the biochemical heterogeneity of major motor proteins for AT, their regulation by protein kinases, and evidence revealing cell type-specific AT specializations. When considered together, these findings may help explain how independent pathogenic pathways can affect AT differentially in the context of each AOND.
Collapse
Affiliation(s)
- Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Gerardo A Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
28
|
Gibbs KL, Greensmith L, Schiavo G. Regulation of Axonal Transport by Protein Kinases. Trends Biochem Sci 2016; 40:597-610. [PMID: 26410600 DOI: 10.1016/j.tibs.2015.08.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 12/25/2022]
Abstract
The intracellular transport of organelles, proteins, lipids, and RNA along the axon is essential for neuronal function and survival. This process, called axonal transport, is mediated by two classes of ATP-dependent motors, kinesins, and cytoplasmic dynein, which carry their cargoes along microtubule tracks. Protein kinases regulate axonal transport through direct phosphorylation of motors, adapter proteins, and cargoes, and indirectly through modification of the microtubule network. The misregulation of axonal transport by protein kinases has been implicated in the pathogenesis of several nervous system disorders. Here, we review the role of protein kinases acting directly on axonal transport and discuss how their deregulation affects neuronal function, paving the way for the exploitation of these enzymes as novel drug targets.
Collapse
Affiliation(s)
- Katherine L Gibbs
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, WC1N 3BG London, UK.
| |
Collapse
|
29
|
Reis KP, Heimfarth L, Pierozan P, Ferreira F, Loureiro SO, Fernandes CG, Carvalho RV, Pessoa-Pureur R. High postnatal susceptibility of hippocampal cytoskeleton in response to ethanol exposure during pregnancy and lactation. Alcohol 2015; 49:665-74. [PMID: 26314629 DOI: 10.1016/j.alcohol.2015.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 12/30/2022]
Abstract
Ethanol exposure to offspring during pregnancy and lactation leads to developmental disorders, including central nervous system dysfunction. In the present work, we have studied the effect of chronic ethanol exposure during pregnancy and lactation on the phosphorylating system associated with the astrocytic and neuronal intermediate filament (IF) proteins: glial fibrillary acidic protein (GFAP), and neurofilament (NF) subunits of low, medium, and high molecular weight (NFL, NFM, and NFH, respectively) in 9- and 21-day-old pups. Female rats were fed with 20% ethanol in their drinking water during pregnancy and lactation. The homeostasis of the IF phosphorylation was not altered in the cerebral cortex, cerebellum, or hippocampus of 9-day-old pups. However, GFAP, NFL, and NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. PKA had been activated in the hippocampus, and Ser55 in the N-terminal region of NFL was hyperphosphorylated. In addition, JNK/MAPK was activated and KSP repeats in the C-terminal region of NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. Decreased NFH immunocontent but an unaltered total NFH/phosphoNFH ratio suggested altered stoichiometry of NFs in the hippocampus of ethanol-exposed 21-day-old pups. In contrast to the high susceptibility of hippocampal cytoskeleton in developing rats, the homeostasis of the cytoskeleton of ethanol-fed adult females was not altered. Disruption of the cytoskeletal homeostasis in neural cells supports the view that regions of the brain are differentially vulnerable to alcohol insult during pregnancy and lactation, suggesting that modulation of JNK/MAPK and PKA signaling cascades target the hippocampal cytoskeleton in a window of vulnerability in 21-day-old pups. Our findings are relevant, since disruption of the cytoskeleton in immature hippocampus could contribute to later hippocampal damage associated with ethanol toxicity.
Collapse
Affiliation(s)
- Karina Pires Reis
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Luana Heimfarth
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Paula Pierozan
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Fernanda Ferreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | | | | | - Rônan Vivian Carvalho
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Regina Pessoa-Pureur
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
30
|
Wang H, Wu M, Zhan C, Ma E, Yang M, Yang X, Li Y. Neurofilament proteins in axonal regeneration and neurodegenerative diseases. Neural Regen Res 2015; 7:620-6. [PMID: 25745454 PMCID: PMC4346988 DOI: 10.3969/j.issn.1673-5374.2012.08.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/05/2012] [Indexed: 12/21/2022] Open
Abstract
Neurofilament protein is a component of the mature neuronal cytoskeleton, and it interacts with the zygosome, which is mediated by neurofilament-related proteins. Neurofilament protein regulates enzyme function and the structure of linker proteins. In addition, neurofilament gene expression plays an important role in nervous system development. Previous studies have shown that neurofilament gene transcriptional regulation is crucial for neurofilament protein expression, especially in axonal regeneration and degenerative diseases. Post-transcriptional regulation increased neurofilament protein gene transcription during axonal regeneration, ultimately resulting in a pattern of neurofilament protein expression. An expression imbalance of post-transcriptional regulatory proteins and other disorders could lead to amyotrophic lateral sclerosis or other neurodegenerative diseases. These findings indicated that after transcription, neurofilament protein regulated expression of related proteins and promoted regeneration of damaged axons, suggesting that regulation disorders could lead to neurodegenerative diseases.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Minfei Wu
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Chuanjun Zhan
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Enyuan Ma
- Department of Orthopedic Surgery, Beihua University Affiliated Hospital, Jilin 132000, Jilin Province, China
| | - Maoguang Yang
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Xiaoyu Yang
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Yingpu Li
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
31
|
Casci I, Pandey UB. A fruitful endeavor: modeling ALS in the fruit fly. Brain Res 2014; 1607:47-74. [PMID: 25289585 DOI: 10.1016/j.brainres.2014.09.064] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/26/2014] [Accepted: 09/27/2014] [Indexed: 12/11/2022]
Abstract
For over a century Drosophila melanogaster, commonly known as the fruit fly, has been instrumental in genetics research and disease modeling. In more recent years, it has been a powerful tool for modeling and studying neurodegenerative diseases, including the devastating and fatal amyotrophic lateral sclerosis (ALS). The success of this model organism in ALS research comes from the availability of tools to manipulate gene/protein expression in a number of desired cell-types, and the subsequent recapitulation of cellular and molecular phenotypic features of the disease. Several Drosophila models have now been developed for studying the roles of ALS-associated genes in disease pathogenesis that allowed us to understand the molecular pathways that lead to motor neuron degeneration in ALS patients. Our primary goal in this review is to highlight the lessons we have learned using Drosophila models pertaining to ALS research. This article is part of a Special Issue entitled ALS complex pathogenesis.
Collapse
Affiliation(s)
- Ian Casci
- Department of Pediatrics, Child Neurology and Neurobiology, Children׳s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA; Human Genetics Graduate Program, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, Child Neurology and Neurobiology, Children׳s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA.
| |
Collapse
|
32
|
Xing B, Bachstetter AD, Van Eldik LJ. Inhibition of neuronal p38α, but not p38β MAPK, provides neuroprotection against three different neurotoxic insults. J Mol Neurosci 2014; 55:509-18. [PMID: 25012593 PMCID: PMC4303701 DOI: 10.1007/s12031-014-0372-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/01/2014] [Indexed: 12/13/2022]
Abstract
The p38 mitogen-activated protein kinase (MAPK) pathway plays a key role in pathological glial activation and neuroinflammatory responses. Our previous studies demonstrated that microglial p38α and not the p38β isoform is an important contributor to stressor-induced proinflammatory cytokine upregulation and glia-dependent neurotoxicity. However, the contribution of neuronal p38α and p38β isoforms in responses to neurotoxic agents is less well understood. In the current study, we used cortical neurons from wild-type or p38β knockout mice, and wild-type neurons treated with two highly selective inhibitors of p38α MAPK. Neurons were treated with one of three neurotoxic insults (L-glutamate, sodium nitroprusside, and oxygen-glucose deprivation), and neurotoxicity was assessed. All three stimuli led to neuronal death and neurite degeneration, and the degree of neurotoxicity induced in wild-type and p38β knockout neurons was not significantly different. In contrast, selective inhibition of neuronal p38α was neuroprotective. Our results show that neuronal p38β is not required for neurotoxicity induced by multiple toxic insults, but that p38α in the neuron contributes quantitatively to the neuronal dysfunction responses. These data are consistent with our previous findings of the critical importance of microglia p38α compared to p38β, and continue to support selective targeting of the p38α isoform as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Bin Xing
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | | | | |
Collapse
|
33
|
Mechanisms involved in spinal cord central synapse loss in a mouse model of spinal muscular atrophy. J Neuropathol Exp Neurol 2014; 73:519-35. [PMID: 24806302 DOI: 10.1097/nen.0000000000000074] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Motoneuron (MN) cell death is the histopathologic hallmark of spinal muscular atrophy (SMA), although MN loss seems to be a late event. Conversely, disruption of afferent synapses on MNs has been shown to occur early in SMA. Using a mouse model of severe SMA (SMNΔ7), we examined the mechanisms involved in impairment of central synapses. We found that MNs underwent progressive degeneration in the course of SMA, with MN loss still occurring at late stages. Loss of afferent inputs to SMA MNs was detected at embryonic stages, long before MN death. Reactive microgliosis and astrogliosis were present in the spinal cord of diseased animals after the onset of MN loss. Ultrastructural observations indicate that dendrites and microglia phagocytose adjacent degenerating presynaptic terminals. Neuronal nitric oxide synthase was upregulated in SMNΔ7 MNs, and there was an increase in phosphorylated myosin light chain expression in synaptic afferents on MNs; these observations implicate nitric oxide in MN deafferentation and suggest that the RhoA/ROCK pathway is activated. Together, our observations suggest that the earliest change occurring in SMNΔ7 mice is the loss of excitatory glutamatergic synaptic inputs to MNs; reduced excitability may enhance their vulnerability to degeneration and death.
Collapse
|
34
|
Shimamura M, Kyotani A, Azuma Y, Yoshida H, Binh Nguyen T, Mizuta I, Yoshida T, Mizuno T, Nakagawa M, Tokuda T, Yamaguchi M. Genetic link between Cabeza, a Drosophila homologue of Fused in Sarcoma (FUS), and the EGFR signaling pathway. Exp Cell Res 2014; 326:36-45. [PMID: 24928275 DOI: 10.1016/j.yexcr.2014.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 05/17/2014] [Accepted: 06/04/2014] [Indexed: 12/12/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that causes progressive muscular weakness. Fused in Sarcoma (FUS) that has been identified in familial ALS is an RNA binding protein that is normally localized in the nucleus. However, its function in vivo is not fully understood. Drosophila has Cabeza (Caz) as a FUS homologue and specific knockdown of Caz in the eye imaginal disc and pupal retina using a GMR-GAL4 driver was here found to induce an abnormal morphology of the adult compound eyes, a rough eye phenotype. This was partially suppressed by expression of the apoptosis inhibitor P35. Knockdown of Caz exerted no apparent effect on differentiation of photoreceptor cells. However, immunostaining with an antibody to Cut that marks cone cells revealed fusion of these and ommatidia of pupal retinae. These results indicate that Caz knockdown induces apoptosis and also inhibits differentiation of cone cells, resulting in abnormal eye morphology in adults. Mutation in EGFR pathway-related genes, such as rhomboid-1, rhomboid-3 and mirror suppressed the rough eye phenotype induced by Caz knockdown. Moreover, the rhomboid-1 mutation rescued the fusion of cone cells and ommatidia observed in Caz knockdown flies. The results suggest that Caz negatively regulates the EGFR signaling pathway required for determination of cone cell fate in Drosophila.
Collapse
Affiliation(s)
- Mai Shimamura
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Akane Kyotani
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yumiko Azuma
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho,Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Thanh Binh Nguyen
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ikuko Mizuta
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho,Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tomokatsu Yoshida
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho,Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho,Kamigyo-ku, Kyoto 602-8566, Japan
| | - Masanori Nakagawa
- North Medical Center, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takahiko Tokuda
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho,Kamigyo-ku, Kyoto 602-8566, Japan; Department of Molecular Pathobiology of Brain Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
35
|
Neurofilament light antibodies in serum reflect response to natalizumab treatment in multiple sclerosis. Mult Scler 2014; 20:1355-62. [DOI: 10.1177/1352458514521887] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background: Increased levels of antibodies to neurofilament light protein (NF-L) in biological fluids have been found to reflect neuroinflammatory responses and neurodegeneration in multiple sclerosis (MS). Objective: To evaluate whether levels of serum antibodies against NF-L correlate with clinical variants and treatment response in MS. Methods: The autoantibody reactivity to NF-L protein was tested in serum samples from patients with relapsing–remitting MS (RRMS) ( n=22) and secondary progressive MS (SPMS) ( n=26). Two other cohorts of RRMS patients under treatment with natalizumab were analysed cross-sectionally ( n=16) and longitudinally ( n=24). The follow-up samples were taken at 6, 12, 18 and 24 months after treatment, and the NF-L antibody levels were compared against baseline levels. Results: NF-L antibodies were higher in MS clinical groups than healthy controls and in RRMS compared to SPMS patients ( p<0.001). NF-L antibody levels were lower in natalizumab treated than in untreated patients ( p<0.001). In the longitudinal series, NF-L antibody levels decreased over time and a significant difference was found following 24 months of treatment compared with baseline measurements ( p=0.001). Conclusions: Drug efficacy in MS treatment indicates the potential use of monitoring the content of antibodies against the NF-L chain as a predictive biomarker of treatment response in MS.
Collapse
|
36
|
Dapper JD, Crish SD, Pang IH, Calkins DJ. Proximal inhibition of p38 MAPK stress signaling prevents distal axonopathy. Neurobiol Dis 2013; 59:26-37. [PMID: 23859799 DOI: 10.1016/j.nbd.2013.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/04/2013] [Indexed: 12/21/2022] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) isoforms are phosphorylated by a variety of stress stimuli in neurodegenerative disease and act as upstream activators of myriad pathogenic processes. Thus, p38 MAPK inhibitors are of growing interest as possible therapeutic interventions. Axonal dysfunction is an early component of most neurodegenerative disorders, including the most prevalent optic neuropathy, glaucoma. Sensitivity to intraocular pressure at an early stage disrupts anterograde transport along retinal ganglion cell (RGC) axons to projection targets in the brain with subsequent degeneration of the axons themselves; RGC body loss is much later. Here we show that elevated ocular pressure in rats increases p38 MAPK activation in retina, especially in RGC bodies. Topical eye-drop application of a potent and selective inhibitor of the p38 MAPK catalytic domain (Ro3206145) prevented both the degradation of anterograde transport to the brain and degeneration of axons in the optic nerve. Ro3206145 reduced in the retina phosphorylation of tau and heat-shock protein 27, both down-stream targets of p38 MAPK activation implicated in glaucoma, as well as expression of two inflammatory responses. We also observed increased p38 MAPK activation in mouse models. Thus, inhibition of p38 MAPK signaling in the retina may represent a therapeutic target for preventing early pathogenesis in optic neuropathies.
Collapse
Affiliation(s)
- Jason D Dapper
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | |
Collapse
|
37
|
Daniel B, Green O, Viskind O, Gruzman A. Riluzole increases the rate of glucose transport in L6 myotubes and NSC-34 motor neuron-like cells via AMPK pathway activation. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:434-43. [DOI: 10.3109/21678421.2013.808226] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Holmgren A, Bouhy D, De Winter V, Asselbergh B, Timmermans JP, Irobi J, Timmerman V. Charcot-Marie-Tooth causing HSPB1 mutations increase Cdk5-mediated phosphorylation of neurofilaments. Acta Neuropathol 2013; 126:93-108. [PMID: 23728742 PMCID: PMC3963106 DOI: 10.1007/s00401-013-1133-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/03/2013] [Accepted: 05/21/2013] [Indexed: 01/21/2023]
Abstract
Mutations in the small heat shock protein HSPB1 (HSP27) are a cause of axonal Charcot-Marie-Tooth neuropathy (CMT2F) and distal hereditary motor neuropathy. To better understand the effect of mutations in HSPB1 on the neuronal cytoskeleton, we stably transduced neuronal cells with wild-type and mutant HSPB1 and investigated axonal transport of neurofilaments (NFs). We observed that mutant HSPB1 affected the binding of NFs to the anterograde motor protein kinesin, reducing anterograde transport of NFs. These deficits were associated with an increased phosphorylation of NFs and cyclin-dependent kinase Cdk5. As Cdk5 mediates NF phosphorylation, inhibition of Cdk5/p35 restored NF phosphorylation level, as well as NF binding to kinesin in mutant HSPB1 neuronal cells. Altogether, we demonstrate that HSPB1 mutations induce hyperphosphorylation of NFs through Cdk5 and reduce anterograde transport of NFs.
Collapse
Affiliation(s)
- Anne Holmgren
- Department of Molecular Genetics, VIB and University of Antwerp, 2610 Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, 2610 Antwerpen, Belgium
| | - Delphine Bouhy
- Department of Molecular Genetics, VIB and University of Antwerp, 2610 Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, 2610 Antwerpen, Belgium
| | - Vicky De Winter
- Department of Molecular Genetics, VIB and University of Antwerp, 2610 Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, 2610 Antwerpen, Belgium
| | - Bob Asselbergh
- Department of Molecular Genetics, VIB and University of Antwerp, 2610 Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, 2610 Antwerpen, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2020 Antwerpen, Belgium
| | - Joy Irobi
- Department of Molecular Genetics, VIB and University of Antwerp, 2610 Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, 2610 Antwerpen, Belgium
| | - Vincent Timmerman
- Department of Molecular Genetics, VIB and University of Antwerp, 2610 Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, 2610 Antwerpen, Belgium
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| |
Collapse
|
39
|
Binukumar BK, Shukla V, Amin ND, Reddy P, Skuntz S, Grant P, Pant HC. Topographic regulation of neuronal intermediate filaments by phosphorylation, role of peptidyl-prolyl isomerase 1: significance in neurodegeneration. Histochem Cell Biol 2013; 140:23-32. [PMID: 23793952 DOI: 10.1007/s00418-013-1108-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2013] [Indexed: 11/30/2022]
Abstract
The neuronal cytoskeleton is tightly regulated by phosphorylation and dephosphorylation reactions mediated by numerous associated kinases, phosphatases and their regulators. Defects in the relative kinase and phosphatase activities and/or deregulation of compartment-specific phosphorylation result in neurodegenerative disorders. The largest family of cytoskeletal proteins in mammalian cells is the superfamily of intermediate filaments (IFs). The neurofilament (NF) proteins are the major IFs. Aggregated forms of hyperphosphorylated tau and phosphorylated NFs are found in pathological cell body accumulations in the central nervous system of patients suffering from Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. The precise mechanisms for this compartment-specific phosphorylation of cytoskeletal proteins are not completely understood. In this review, we focus on the mechanisms of neurofilament phosphorylation in normal physiology and neurodegenerative diseases. We also address the recent breakthroughs in our understanding the role of different kinases and phosphatases involved in regulating the phosphorylation status of the NFs. In addition, special emphasis has been given to describe the role of phosphatases and Pin1 in phosphorylation of NFs.
Collapse
Affiliation(s)
- B K Binukumar
- Laboratory of Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Morfini GA, Bosco DA, Brown H, Gatto R, Kaminska A, Song Y, Molla L, Baker L, Marangoni MN, Berth S, Tavassoli E, Bagnato C, Tiwari A, Hayward LJ, Pigino GF, Watterson DM, Huang CF, Banker G, Brown RH, Brady ST. Inhibition of fast axonal transport by pathogenic SOD1 involves activation of p38 MAP kinase. PLoS One 2013; 8:e65235. [PMID: 23776455 PMCID: PMC3680447 DOI: 10.1371/journal.pone.0065235] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/23/2013] [Indexed: 12/22/2022] Open
Abstract
Dying-back degeneration of motor neuron axons represents an established feature of familial amyotrophic lateral sclerosis (FALS) associated with superoxide dismutase 1 (SOD1) mutations, but axon-autonomous effects of pathogenic SOD1 remained undefined. Characteristics of motor neurons affected in FALS include abnormal kinase activation, aberrant neurofilament phosphorylation, and fast axonal transport (FAT) deficits, but functional relationships among these pathogenic events were unclear. Experiments in isolated squid axoplasm reveal that FALS-related SOD1 mutant polypeptides inhibit FAT through a mechanism involving a p38 mitogen activated protein kinase pathway. Mutant SOD1 activated neuronal p38 in mouse spinal cord, neuroblastoma cells and squid axoplasm. Active p38 MAP kinase phosphorylated kinesin-1, and this phosphorylation event inhibited kinesin-1. Finally, vesicle motility assays revealed previously unrecognized, isoform-specific effects of p38 on FAT. Axon-autonomous activation of the p38 pathway represents a novel gain of toxic function for FALS-linked SOD1 proteins consistent with the dying-back pattern of neurodegeneration characteristic of ALS.
Collapse
Affiliation(s)
- Gerardo A. Morfini
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Daryl A. Bosco
- Department of Neurology, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Hannah Brown
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Rodolfo Gatto
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Agnieszka Kaminska
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Yuyu Song
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Linda Molla
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Lisa Baker
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - M. Natalia Marangoni
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Sarah Berth
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Ehsan Tavassoli
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Carolina Bagnato
- Department of Natural Sciences and Engineering. National University of Rio Negro, Rio Negro, Argentina
| | - Ashutosh Tiwari
- Department of Chemistry, Michigan Technological University, Houghton, Michigan, United States of America
| | - Lawrence J. Hayward
- Department of Neurology, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Gustavo F. Pigino
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - D. Martin Watterson
- Center for Molecular Innovation and Drug Discovery and Department of Molecular Pharmacology & Biological Chemistry, Northwestern University, Chicago, IIllinois, United States of America
| | - Chun-Fang Huang
- The Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Gary Banker
- The Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Robert H. Brown
- Department of Neurology, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Scott T. Brady
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| |
Collapse
|
41
|
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, NY 10962, USA.
| | | | | | | |
Collapse
|
42
|
|
43
|
|
44
|
Holmgren A, Bouhy D, Timmerman V. Neurofilament phosphorylation and their proline-directed kinases in health and disease. J Peripher Nerv Syst 2012; 17:365-76. [DOI: 10.1111/j.1529-8027.2012.00434.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
|
46
|
Chiu YY, Lin CT, Huang JW, Hsu KC, Tseng JH, You SR, Yang JM. KIDFamMap: a database of kinase-inhibitor-disease family maps for kinase inhibitor selectivity and binding mechanisms. Nucleic Acids Res 2012. [PMID: 23193279 PMCID: PMC3531076 DOI: 10.1093/nar/gks1218] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Kinases play central roles in signaling pathways and are promising therapeutic targets for many diseases. Designing selective kinase inhibitors is an emergent and challenging task, because kinases share an evolutionary conserved ATP-binding site. KIDFamMap (http://gemdock.life.nctu.edu.tw/KIDFamMap/) is the first database to explore kinase-inhibitor families (KIFs) and kinase-inhibitor-disease (KID) relationships for kinase inhibitor selectivity and mechanisms. This database includes 1208 KIFs, 962 KIDs, 55 603 kinase-inhibitor interactions (KIIs), 35 788 kinase inhibitors, 399 human protein kinases, 339 diseases and 638 disease allelic variants. Here, a KIF can be defined as follows: (i) the kinases in the KIF with significant sequence similarity, (ii) the inhibitors in the KIF with significant topology similarity and (iii) the KIIs in the KIF with significant interaction similarity. The KIIs within a KIF are often conserved on some consensus KIDFamMap anchors, which represent conserved interactions between the kinase subsites and consensus moieties of their inhibitors. Our experimental results reveal that the members of a KIF often possess similar inhibition profiles. The KIDFamMap anchors can reflect kinase conformations types, kinase functions and kinase inhibitor selectivity. We believe that KIDFamMap provides biological insights into kinase inhibitor selectivity and binding mechanisms.
Collapse
Affiliation(s)
- Yi-Yuan Chiu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30050, Taiwan
| | | | | | | | | | | | | |
Collapse
|
47
|
Heimfarth L, Loureiro SO, Dutra MF, Andrade C, Pettenuzzo L, Guma FTCR, Gonçalves CAS, da Rocha JBT, Pessoa-Pureur R. In vivo treatment with diphenyl ditelluride induces neurodegeneration in striatum of young rats: Implications of MAPK and Akt pathways. Toxicol Appl Pharmacol 2012; 264:143-52. [DOI: 10.1016/j.taap.2012.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/09/2012] [Accepted: 07/15/2012] [Indexed: 11/28/2022]
|
48
|
Redler RL, Dokholyan NV. The complex molecular biology of amyotrophic lateral sclerosis (ALS). PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:215-62. [PMID: 22482452 DOI: 10.1016/b978-0-12-385883-2.00002-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder that causes selective death of motor neurons followed by paralysis and death. A subset of ALS cases is caused by mutations in the gene for Cu, Zn superoxide dismutase (SOD1), which impart a toxic gain of function to this antioxidant enzyme. This neurotoxic property is widely believed to stem from an increased propensity to misfold and aggregate caused by decreased stability of the native homodimer or a tendency to lose stabilizing posttranslational modifications. Study of the molecular mechanisms of SOD1-related ALS has revealed a complex array of interconnected pathological processes, including glutamate excitotoxicity, dysregulation of neurotrophic factors and axon guidance proteins, axonal transport defects, mitochondrial dysfunction, deficient protein quality control, and aberrant RNA processing. Many of these pathologies are directly exacerbated by misfolded and aggregated SOD1 and/or cytosolic calcium overload, suggesting the primacy of these events in disease etiology and their potential as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rachel L Redler
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
49
|
Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ. Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 2012; 7:616-30. [PMID: 22051914 DOI: 10.1038/nrneurol.2011.152] [Citation(s) in RCA: 459] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a genetically diverse disease. At least 15 ALS-associated gene loci have so far been identified, and the causative gene is known in approximately 30% of familial ALS cases. Less is known about the factors underlying the sporadic form of the disease. The molecular mechanisms of motor neuron degeneration are best understood in the subtype of disease caused by mutations in superoxide dismutase 1, with a current consensus that motor neuron injury is caused by a complex interplay between multiple pathogenic processes. A key recent finding is that mutated TAR DNA-binding protein 43 is a major constituent of the ubiquitinated protein inclusions in ALS, providing a possible link between the genetic mutation and the cellular pathology. New insights have also indicated the importance of dysregulated glial cell-motor neuron crosstalk, and have highlighted the vulnerability of the distal axonal compartment early in the disease course. In addition, recent studies have suggested that disordered RNA processing is likely to represent a major contributing factor to motor neuron disease. Ongoing research on the cellular pathways highlighted in this Review is predicted to open the door to new therapeutic interventions to slow disease progression in ALS.
Collapse
Affiliation(s)
- Laura Ferraiuolo
- Academic Neurology Unit, Sheffield Institute for Translational Neuroscience, Department of Neuroscience, School of Medicine and Biomedical Sciences, University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | | | | | | | | |
Collapse
|
50
|
Quinlan KA. Links between electrophysiological and molecular pathology of amyotrophic lateral sclerosis. Integr Comp Biol 2011; 51:913-25. [PMID: 21989221 DOI: 10.1093/icb/icr116] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple deficits have been described in amyotrophic lateral sclerosis (ALS), from the first changes in normal functioning of the motoneurons and glia to the eventual loss of spinal and cortical motoneurons. In this review, current results, including changes in size, and electrical properties of motoneurons, glutamate excitotoxicity, calcium buffering, deficits in mitochondrial and cellular transport, impediments to proteostasis which lead to stress of the endoplasmic reticulum (ER), and glial contributions to motoneuronal vulnerability are recapitulated. Results are mainly drawn from the mutant SOD1 mouse model of ALS, and emphasis is placed on early changes that precede the onset of symptoms and the interplay between molecular and electrical processes.
Collapse
Affiliation(s)
- Katharina A Quinlan
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|