1
|
Shrinivasamurthy M, Benakanal SV, Kakanahalli N. The Study of Clinical Phenotypes and Analysis of Mutations in L1 Syndrome. Ann Neurosci 2025; 32:38-46. [PMID: 40026328 PMCID: PMC11869245 DOI: 10.1177/09727531231185224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/06/2023] [Indexed: 03/05/2025] Open
Abstract
Background L1CAM protein plays a crucial role during early development and mutations in L1CAM cause L1 syndrome. L1 syndrome demonstrates a highly variable presentation within and between families. The clinical symptoms of L1 syndrome include mental retardation, hydrocephalus, spasticity, aphasia, and adducted thumb. Mutations in L1CAM gene were found to affect structurally essential key residues in extracellular region of L1 leading to changes in protein binding properties. In most cases, these mutations create unexpected phenotypes which need to be understood thoroughly. Purpose The L1 syndrome patients were identified by various phenotypes like mental retardation, hydrocephalus, aphasia, spasticity, adducted thumb, etc., and the patients or mental retardation (MR) children who had more than three symptoms. This study aimed to screen mutations in multiple exons by Sanger sequencing. Methods The present study employed primers which are designed for specific exons of L1CAM gene to amplify and sequence the amplified product to detect the mutations in L1 syndrome patients by the Sanger sequencing. Chi-square test was used to determine the mutation detection rate with the number of L1 syndrome phenotypes and several in silico programs were used to investigate potential effects of the variants. Results The nine different mutations in six patients. The mutation detection rate was high (83.33%) in patients with more than one L1 syndrome phenotype and in patients with more than one affected member in a family compared to patients with single phenotypes and negative family history (16.6%). Conclusion The mutation detection rate was related to the presence of typical L1 syndrome phenotypes and the family history. Screening of L1CAM gene mutations in the Indian population is much needed to analyze the mutations and understand the mechanism underlying L1 disease. The present study has identified some novel mutations which are implicated in alterations in various biological functions during development leading to pathogenesis of L1 syndrome.
Collapse
Affiliation(s)
- Madhan Shrinivasamurthy
- Department of Applied Zoology, Kuvempu University, Jnanasahyadri, Shankaraghatta, Shivamogga, Karnataka, India
| | - Shreeshail V Benakanal
- Department of Paediatrics, Shivamogga Institute of Medical Sciences, Shivamogga, Karnataka, India
| | - Nagaraj Kakanahalli
- Department of Applied Zoology, Kuvempu University, Jnanasahyadri, Shankaraghatta, Shivamogga, Karnataka, India
| |
Collapse
|
2
|
Saha A, Gavert N, Brabletz T, Ben-Ze’ev A. A Necessary Role for Cyclin D2 Induction During Colon Cancer Progression Mediated by L1. Cells 2024; 13:1810. [PMID: 39513917 PMCID: PMC11544798 DOI: 10.3390/cells13211810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The cell adhesion molecule L1CAM (L1), mainly known for its function in brain cells, is a Wnt/β-catenin signaling target gene in colorectal cancer (CRC) cells, where it promotes invasion and liver metastasis. We interrogated which genes are expressed at increased levels in human CRC tissue and induced in CRC cell lines overexpressing L1. We found increased cyclin D2 levels in CRC tissue and LS 174T and HCT 116 human CRC cells overexpressing L1. Increased cyclin D2 in CRC cells was associated with higher proliferation rates, faster motility, tumorigenesis, and liver metastasis. The suppression of cyclin D2 expression by shRNA to cyclin D2 blocked the increase in these cellular properties of L1-expressing cells. The overexpression of cyclin D2 in the absence of L1 also conferred tumorigenic properties similar to L1 expression. The pathways involved in the elevation of cyclin D2 by L1 include NF-κB, Akt, and β-catenin signaling but not the Erk pathway. We found that in a significant percentage of human CRC tissue samples, cyclin D2 is expressed at high levels in the nuclei of cancer cells. At the same time, the adjacent normal mucosa was negative for cyclin D2 staining. The results suggest that the increased cyclin D2 expression by L1 is required to induce proliferative, motile tumor development in CRC tissue and can serve as a diagnostic marker and a target for CRC therapy.
Collapse
Affiliation(s)
- Arka Saha
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.S.); (N.G.)
| | - Nancy Gavert
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.S.); (N.G.)
| | - Thomas Brabletz
- Department of Experimental Medicine I, Nikolaus-Feibiger-Center for Molecular Medicine, University of Erlangen-Nuernberg, 91054 Erlangen, Germany;
| | - Avri Ben-Ze’ev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.S.); (N.G.)
| |
Collapse
|
3
|
Galectins—Potential Therapeutic Targets for Neurodegenerative Disorders. Int J Mol Sci 2022; 23:ijms231911012. [PMID: 36232314 PMCID: PMC9569834 DOI: 10.3390/ijms231911012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Advancements in medicine have increased the longevity of humans, resulting in a higher incidence of chronic diseases. Due to the rise in the elderly population, age-dependent neurodegenerative disorders are becoming increasingly prevalent. The available treatment options only provide symptomatic relief and do not cure the underlying cause of the disease. Therefore, it has become imperative to discover new markers and therapies to modulate the course of disease progression and develop better treatment options for the affected individuals. Growing evidence indicates that neuroinflammation is a common factor and one of the main inducers of neuronal damage and degeneration. Galectins (Gals) are a class of β-galactoside-binding proteins (lectins) ubiquitously expressed in almost all vital organs. Gals modulate various cellular responses and regulate significant biological functions, including immune response, proliferation, differentiation, migration, and cell growth, through their interaction with glycoproteins and glycolipids. In recent years, extensive research has been conducted on the Gal superfamily, with Gal-1, Gal-3, and Gal-9 in prime focus. Their roles have been described in modulating neuroinflammation and neurodegenerative processes. In this review, we discuss the role of Gals in the causation and progression of neurodegenerative disorders. We describe the role of Gals in microglia and astrocyte modulation, along with their pro- and anti-inflammatory functions. In addition, we discuss the potential use of Gals as a novel therapeutic target for neuroinflammation and restoring tissue damage in neurodegenerative diseases.
Collapse
|
4
|
The Life of a Trailing Spouse. J Neurosci 2021; 41:3-10. [PMID: 33408132 DOI: 10.1523/jneurosci.2874-20.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Abstract
In 1981, I published a paper in the first issue of the Journal of Neuroscience with my postdoctoral mentor, Alan Pearlman. It reported a quantitative analysis of the receptive field properties of neurons in reeler mouse visual cortex and the surprising conclusion that although the neuronal somas were strikingly malpositioned, their receptive fields were unchanged. This suggested that in mouse cortex at least, neuronal circuits have very robust systems in place to ensure the proper formation of connections. This had the unintended consequence of transforming me from an electrophysiologist into a cellular and molecular neuroscientist who studied cell adhesion molecules and the molecular mechanisms they use to regulate axon growth. It took me a surprisingly long time to appreciate that your science is driven by the people around you and by the technologies that are locally available. As a professional puzzler, I like all different kinds of puzzles, but the most fun puzzles involve playing with other puzzlers. This is my story of learning how to find like-minded puzzlers to solve riddles about axon growth and regeneration.
Collapse
|
5
|
Higuero AM, Díez-Revuelta N, Abad-Rodríguez J. The sugar code in neuronal physiology. Histochem Cell Biol 2016; 147:257-267. [PMID: 27999993 DOI: 10.1007/s00418-016-1519-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
Carbohydrate-related interactions are necessary for the correct development and function of the nervous system. As we illustrate with several examples, those interactions are controlled by carbohydrate-modifying enzymes and by carbohydrate-binding proteins that regulate a plethora of complex axonal processes. Among others, glycan-related proteins as sialidase Neu3 or galectins-1, -3, and -4 play central roles in the determination of axonal fate, axon growth, guidance and regeneration, as well as in polarized axonal glycoprotein transport. In addition, myelination is also highly dependent on glycans, and the stabilization of myelin architecture requires the interaction of the myelin-associated glycoprotein (siglec-4) with gangliosides in the axonal membrane. The roles of glycans in neuroscience are far from being completely understood, though the cases presented here underscore the importance and potential of carbohydrates to establish with precision key molecular mechanisms of the physiology of the nervous system. New specific applications in diagnosis as well as the definition of new molecular targets to treat neurological diseases related to lectins and/or glycans are envisioned in the future.
Collapse
Affiliation(s)
- Alonso M Higuero
- Membrane Biology and Axonal Repair Laboratory, National Hospital for Paraplegics (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Natalia Díez-Revuelta
- Membrane Biology and Axonal Repair Laboratory, National Hospital for Paraplegics (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory, National Hospital for Paraplegics (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain.
| |
Collapse
|
6
|
Abstract
Galectin-4, a tandem repeat member of the β-galactoside-binding proteins, possesses two carbohydrate-recognition domains (CRD) in a single peptide chain. This lectin is mostly expressed in epithelial cells of the intestinal tract and secreted to the extracellular. The two domains have 40% similarity in amino acid sequence, but distinctly binding to various ligands. Just because the two domains bind to different ligands simultaneously, galectin-4 can be a crosslinker and crucial regulator in a large number of biological processes. Recent evidence shows that galectin-4 plays an important role in lipid raft stabilization, protein apical trafficking, cell adhesion, wound healing, intestinal inflammation, tumor progression, etc. This article reviews the physiological and pathological features of galectin-4 and its important role in such processes.
Collapse
|
7
|
Abad-Rodríguez J, Díez-Revuelta N. Axon glycoprotein routing in nerve polarity, function, and repair. Trends Biochem Sci 2015; 40:385-96. [PMID: 25936977 DOI: 10.1016/j.tibs.2015.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/13/2015] [Accepted: 03/31/2015] [Indexed: 02/04/2023]
Abstract
Nervous system function relies on the capacity of neurons to organize specialized domains for impulse reception or transmission. Such a polarized architecture relies on highly discriminatory and efficient mechanisms for the transport and targeting of required molecules to their functional positions. Glycans play a central role in polarized traffic based on their extraordinary capacity to encrypt bio-information. Glycan-based interactions exquisitely regulate cargo selection, trafficking, and targeting to the axon membrane. This generates segregated functional domains, where basal nerve processes such as axon growth, synaptic activity, or myelination take place. Deciphering the details of the glycan structures and carbohydrate-binding molecules that underlie these mechanisms improves our knowledge of nerve physiology and defines novel specific approaches for neurological treatments.
Collapse
Affiliation(s)
- José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain.
| | - Natalia Díez-Revuelta
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| |
Collapse
|
8
|
Towards a molecular characterization of autism spectrum disorders: an exome sequencing and systems approach. Transl Psychiatry 2014; 4:e394. [PMID: 24893065 PMCID: PMC4080319 DOI: 10.1038/tp.2014.38] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 04/22/2014] [Indexed: 12/30/2022] Open
Abstract
The hypothetical 'AXAS' gene network model that profiles functional patterns of heterogeneous DNA variants overrepresented in autism spectrum disorder (ASD), X-linked intellectual disability, attention deficit and hyperactivity disorder and schizophrenia was used in this current study to analyze whole exome sequencing data from an Australian ASD cohort. An optimized DNA variant filtering pipeline was used to identify loss-of-function DNA variations. Inherited variants from parents with a broader autism phenotype and de novo variants were found to be significantly associated with ASD. Gene ontology analysis revealed that putative rare causal variants cluster in key neurobiological processes and are overrepresented in functions involving neuronal development, signal transduction and synapse development including the neurexin trans-synaptic complex. We also show how a complex gene network model can be used to fine map combinations of inherited and de novo variations in families with ASD that converge in the L1CAM pathway. Our results provide an important step forward in the molecular characterization of ASD with potential for developing a tool to analyze the pathogenesis of individual affected families.
Collapse
|
9
|
Nagaraj K, Mualla R, Hortsch M. The L1 Family of Cell Adhesion Molecules: A Sickening Number of Mutations and Protein Functions. ADVANCES IN NEUROBIOLOGY 2014; 8:195-229. [DOI: 10.1007/978-1-4614-8090-7_9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Differential effects of human L1CAM mutations on complementing guidance and synaptic defects in Drosophila melanogaster. PLoS One 2013; 8:e76974. [PMID: 24155914 PMCID: PMC3796554 DOI: 10.1371/journal.pone.0076974] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/05/2013] [Indexed: 01/17/2023] Open
Abstract
A large number of different pathological L1CAM mutations have been identified that result in a broad spectrum of neurological and non-neurological phenotypes. While many of these mutations have been characterized for their effects on homophilic and heterophilic interactions, as well as expression levels in vitro, there are only few studies on their biological consequences in vivo. The single L1-type CAM gene in Drosophila, neuroglian (nrg), has distinct functions during axon guidance and synapse formation and the phenotypes of nrg mutants can be rescued by the expression of human L1CAM. We previously showed that the highly conserved intracellular FIGQY Ankyrin-binding motif is required for L1CAM-mediated synapse formation, but not for neurite outgrowth or axon guidance of the Drosophila giant fiber (GF) neuron. Here, we use the GF as a model neuron to characterize the pathogenic L120V, Y1070C, C264Y, H210Q, E309K and R184Q extracellular L1CAM missense mutations and a L1CAM protein with a disrupted ezrin-moesin-radixin (ERM) binding site to investigate the signaling requirements for neuronal development. We report that different L1CAM mutations have distinct effects on axon guidance and synapse formation. Furthermore, L1CAM homophilic binding and signaling via the ERM motif is essential for axon guidance in Drosophila. In addition, the human pathological H210Q, R184Q and Y1070C, but not the E309K and L120V L1CAM mutations affect outside-in signaling via the FIGQY Ankyrin binding domain which is required for synapse formation. Thus, the pathological phenotypes observed in humans are likely to be caused by the disruption of signaling required for both, guidance and synaptogenesis.
Collapse
|
11
|
Velasco S, Díez-Revuelta N, Hernández-Iglesias T, Kaltner H, André S, Gabius HJ, Abad-Rodríguez J. Neuronal Galectin-4 is required for axon growth and for the organization of axonal membrane L1 delivery and clustering. J Neurochem 2013; 125:49-62. [DOI: 10.1111/jnc.12148] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/05/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Silvia Velasco
- Membrane Biology and Axonal Repair Laboratory; Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n; Toledo Spain
| | - Natalia Díez-Revuelta
- Membrane Biology and Axonal Repair Laboratory; Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n; Toledo Spain
| | | | - Herbert Kaltner
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität; München Germany
| | - Sabine André
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität; München Germany
| | - Hans-Joachim Gabius
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität; München Germany
| | - José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory; Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n; Toledo Spain
| |
Collapse
|
12
|
Tagliavacca L, Colombo F, Racchetti G, Meldolesi J. L1CAM and its cell-surface mutants: new mechanisms and effects relevant to the physiology and pathology of neural cells. J Neurochem 2012; 124:397-409. [PMID: 22973895 PMCID: PMC3557714 DOI: 10.1111/jnc.12015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/05/2012] [Accepted: 09/08/2012] [Indexed: 11/27/2022]
Abstract
The L1 syndrome, a genetic disease that affects 1/30 000 newborn males, is sustained by numerous missense mutations of L1 cell adhesion molecule (L1CAM), an adhesion surface protein active also in transmembrane signaling, essential for the development and function of neurons. To investigate the cell biology of L1CAM, we employed a high RE1-silencing transcription (factor) clone of the pheochromocytoma PC12 line, defective in L1CAM expression and neurite outgrowth. The clone was transfected with wild-type L1CAM and four missense, disease-inducing point mutants encoding proteins distributed to the cell surface. The mutant-expressing cells, defective in adhesion to extracellular matrix proteins and in migration, exhibited unchanged proliferation. The nerve growth factor (NGF)-induced neurite outgrowth was re-established in defective clone cells transfected with the wild-type and the H210Q and I219T L1CAMs mutants, but not in the others. The stimulated outgrowth was confirmed in a second defective PC12 clone over-expressing the NGF receptor TrkA, treated with NGF and/or a recombinant L1CAM chimera. These results revealed a new function of L1CAM, a positive, robust and dose-dependent modulation of the TrkA receptor activated spontaneously or by NGF. The variable effects observed with the different L1CAM mutants suggest that this function contributes to the marked heterogeneity of symptoms and severity observed in the patients affected by the L1 syndrome.
Collapse
Affiliation(s)
- Luigina Tagliavacca
- Department of Neuroscience, Vita-Salute San Raffaele University and San Raffaele Institute, Milano, Italy
| | | | | | | |
Collapse
|
13
|
Kishimoto T, Itoh K, Umekage M, Tonosaki M, Yaoi T, Fukui K, Lemmon VP, Fushiki S. Downregulation of L1 perturbs neuronal migration and alters the expression of transcription factors in murine neocortex. J Neurosci Res 2012; 91:42-50. [PMID: 23073969 PMCID: PMC3533181 DOI: 10.1002/jnr.23141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/15/2012] [Accepted: 08/21/2012] [Indexed: 01/12/2023]
Abstract
L1 is a cell adhesion molecule associated with a spectrum of human neurological diseases, the most well-known being X-linked hydrocephalus. L1 knockout (L1-KO) mice have revealed a variety of functions of L1 that were crucial in brain development in different brain regions. However; the function of L1 in neuronal migration during cortical histogenesis remains to be clarified. We therefore investigated the corticogenesis of mouse embryos in which L1 molecules were knocked down in selected neurons, by employing in utero electroporation with shRNAs targeting L1 (L1 shRNA). Although more than 50% of the cells transfected with no small hairpin RNA (shRNA; monster green fluorescent protein: MGFP only) vector at embryonic day 13 (E13) reached the cortical plate at E16, significantly fewer (27%) cells transfected with L1 shRNA migrated to the same extent. At E17, 22% of cells transfected with the MGFP-only vector were found in the intermediate zone, and significantly more (34%) cells transfected with L1 shRNA remained in the same zone. Furthermore, the directions of the leading process of neurons transfected with L1 shRNA became more dispersed compared with cells with the MGFP-only vector. In addition, two transcription factors expressed in the neurons, Satb2 and Tbr1, were shown to be reduced or aberrantly expressed in neurons transfected with L1 shRNA. These observations suggest that L1 plays an important role in regulating the locomotion and orientation of migrating neurons and the expression of transcription factors during neocortical development that might partially be responsible for the abnormal tract formation seen in L1-KO mice. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tomokazu Kishimoto
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Role of L1CAM for axon sprouting and branching. Cell Tissue Res 2012; 349:39-48. [DOI: 10.1007/s00441-012-1345-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/25/2012] [Indexed: 01/02/2023]
|
15
|
Activation of ezrin/radixin/moesin mediates attractive growth cone guidance through regulation of growth cone actin and adhesion receptors. J Neurosci 2012; 32:282-96. [PMID: 22219290 DOI: 10.1523/jneurosci.4794-11.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The development of a functioning neural network relies on responses of axonal growth cones to molecular guidance cues that are encountered en route to their target tissue. Nerve growth factor (NGF) and neurotrophin-3 serve as attractive cues for chick embryo sensory growth cones in vitro and in vivo, but little is known about the actin-binding proteins necessary to mediate this response. The evolutionarily conserved ezrin/radixin/moesin (ERM) family of proteins can tether actin filaments to the cell membrane when phosphorylated at a conserved threonine residue. Here we show that acute neurotrophin stimulation rapidly increases active phospho-ERM levels in chick sensory neuron growth cone filopodia, coincident with an increase in filopodial L1 and β-integrin. Disrupting ERM function with a dominant-negative construct (DN-ERM) results in smaller and less motile growth cones with disorganized actin filaments. Previously, we found that NGF treatment increases actin-depolymerizing factor (ADF)/cofilin activity and growth cone F-actin (Marsick et al., 2010). Here, we show this F-actin increase, as well as attractive turning to NGF, is blocked when ERM function is disrupted despite normal activation of ADF/cofilin. We further show that DN-ERM expression disrupts leading edge localization of active ADF/cofilin and free F-actin barbed ends. Moreover, filopodial phospho-ERM levels are increased by incorporation of active ADF/cofilin and reduced by knockdown of L1CAM.Together, these data suggest that ERM proteins organize actin filaments in sensory neuron growth cones and are crucial for neurotrophin-induced remodeling of F-actin and redistribution of adhesion receptors.
Collapse
|
16
|
Marx M, Diestel S, Bozon M, Keglowich L, Drouot N, Bouché E, Frebourg T, Minz M, Saugier-Veber P, Castellani V, Schäfer MKE. Pathomechanistic characterization of two exonic L1CAM variants located in trans in an obligate carrier of X-linked hydrocephalus. Neurogenetics 2012; 13:49-59. [PMID: 22222883 DOI: 10.1007/s10048-011-0307-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/07/2011] [Indexed: 11/29/2022]
Abstract
Mutations in the gene encoding the neural cell adhesion molecule L1CAM cause several neurological disorders collectively referred to as L1 syndrome. We report here a family case of X-linked hydrocephalus in which an obligate female carrier has two exonic L1CAM missense mutations in trans substituting amino acids in the first (p.W635C) or second (p.V768I) fibronectin-type III domains. We performed various biochemical and cell biological in vitro assays to evaluate the pathogenicity of these variants. Mutant L1-W635C protein accumulates in the endoplasmic reticulum (ER), is not transported into axons, and fails to promote L1CAM-mediated cell-cell adhesion as well as neurite growth. Immunoprecipitation experiments show that L1-W635C associates with the molecular ER chaperone calnexin and is modified by poly-ubiquitination. The mutant L1-V768I protein localizes at the cell surface, is not retained in the ER, and promotes neurite growth similar to wild-type L1CAM. However, the p.V768I mutation impairs L1CAM-mediated cell-cell adhesion albeit less severe than L1-W635C. These data indicate that p.W635C is a novel loss-of-function L1 syndrome mutation. The p.V768I mutation may represent a non-pathogenic variant or a variant associated with low penetrance. The poly-ubiquitination of L1-W635C and its association with the ER chaperone calnexin provide further insights into the molecular mechanisms underlying defective cell surface trafficking of L1CAM in L1 syndrome.
Collapse
Affiliation(s)
- Mariola Marx
- Institute of Anatomy and Cell Biology, Center for Neurosciences, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cui X, Weng Y, Frappé I, Burgess A, Girão da Cruz MT, Schachner M, Aubert I. The cell adhesion molecule L1 regulates the expression of choline acetyltransferase and the development of septal cholinergic neurons. Brain Behav 2011; 1:73-86. [PMID: 22399087 PMCID: PMC3236547 DOI: 10.1002/brb3.15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/02/2011] [Accepted: 08/09/2011] [Indexed: 01/06/2023] Open
Abstract
Mutations in the L1 gene cause severe brain malformations and mental retardation. We investigated the potential roles of L1 in the regulation of choline acetyltransferase (ChAT) and in the development of septal cholinergic neurons, which are known to project to the hippocampus and play key roles in cognitive functions. Using stereological approaches, we detected significantly fewer ChAT-positive cholinergic neurons in the medial septum and vertical limb of the diagonal band of Broca (MS/VDB) of 2-week-old L1-deficient mice compared to wild-type littermates (1644 ± 137 vs. 2051 ± 165, P = 0.038). ChAT protein levels in the septum were 53% lower in 2-week-old L1-deficient mice compared to wild-type littermates. ChAT activity in the septum was significantly reduced in L1-deficient mice compared to wild-type littermates at 1 (34%) and 2 (40%) weeks of age. In vitro, increasing doses of L1-Fc induced ChAT activity in septal neurons with a significant linear trend (*P = 0.0065). At 4 weeks of age in the septum and at all time points investigated in the caudate-putamen (CPu), the number of ChAT-positive neurons and the levels of ChAT activity were not statistically different between L1-deficient mice and wild-type littermates. The total number of cells positive for the neuronal nuclear antigen (NeuN) in the MS/VDB and CPu was not statistically different in L1-deficient mice compared to wild-type littermates, and comparable expression of the cell cycle marker Ki67 was observed. Our results indicate that L1 is required for the timely maturation of septal cholinergic neurons and that L1 promotes the expression and activity of ChAT in septal neurons.
Collapse
Affiliation(s)
- Xuezhi Cui
- Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, M4N 3M5, Canada
| | - Ying‐Qi Weng
- Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, M4N 3M5, Canada
| | - Isabelle Frappé
- Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, M4N 3M5, Canada
| | - Alison Burgess
- Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | | | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
- Zentrum fuer Molekulare Neurobiologie, Universitaetskrankenhaus Hamburg‐Eppendorf, Hamburg, 20246, Germany
- Center for Neuroscience, Shantou University Medical College, Shantou, 515041, P.R. China
| | - Isabelle Aubert
- Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| |
Collapse
|
18
|
Sepulveda B, Carcea I, Zhao B, Salton SR, Benson DL. L1 cell adhesion molecule promotes resistance to alcohol-induced silencing of growth cone responses to guidance cues. Neuroscience 2011; 180:30-40. [PMID: 21335065 PMCID: PMC3070798 DOI: 10.1016/j.neuroscience.2011.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/20/2011] [Accepted: 02/08/2011] [Indexed: 01/05/2023]
Abstract
Alcohol exposure in utero is a common cause of mental retardation, but the targets and mechanisms of action are poorly understood. Several lines of data point toward alterations in cortical connectivity, suggesting that axon guidance may be vulnerable to alcohol exposure. To test this, we asked whether ethanol directly affects cortical axonal growth cone responses to guidance cues. We find that even low concentrations of ethanol (12.5 mM; 57.2 mg/dl) commonly observed in social drinking prevent growth cone responses to three mechanistically independent guidance cues, Semaphorin3A, Lysophosphatidic Acid, and Netrin-1. However, this effect is highly dependent on substrate; axonal growth cones extending on an L1 cell adhesion molecule (L1CAM) substrate retain responsiveness to cues following exposure to ethanol, while those growing on poly-L-lysine or N-cadherin do not. The effects of ethanol on axon extension are, by contrast, quite modest. Quantitative assessments of the effects of ethanol on the surface distribution of L1CAM in growth cones suggest that L1CAM homophilic interactions may be particularly relevant for retaining growth cone responsiveness following ethanol exposure. Together, our findings indicate that ethanol can directly and generally alter growth cone responses to guidance cues, that a substrate of L1CAM effectively antagonizes this effect, and that cortical axonal growth cone vulnerability to ethanol may be predicted in part based on the environment through which they are extending.
Collapse
Affiliation(s)
- Bryan Sepulveda
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Ioana Carcea
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Becky Zhao
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Stephen R.J. Salton
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
- Brookdale Department of Geriatrics and Palliative Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Deanna L. Benson
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| |
Collapse
|
19
|
Gavert N, Vivanti A, Hazin J, Brabletz T, Ben-Ze'ev A. L1-mediated colon cancer cell metastasis does not require changes in EMT and cancer stem cell markers. Mol Cancer Res 2010; 9:14-24. [PMID: 21123622 DOI: 10.1158/1541-7786.mcr-10-0406] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant activation of Wnt/β-catenin signaling is common in most sporadic and inherited colorectal cancer (CRC) cells leading to elevated β-catenin/TCF transactivation. We previously identified the neural cell adhesion molecule L1 as a target gene of β-catenin/TCF in CRC cells. Forced expression of L1 confers increased cell motility, invasion, and tumorigenesis, and the induction of human CRC cell metastasis to the liver. In human CRC tissue, L1 is exclusively localized at the invasive front of such tumors in a subpopulation of cells displaying nuclear β-catenin. We determined whether L1 expression confers metastatic capacities by inducing an epithelial to mesenchymal transition (EMT) and whether L1 cosegregates with cancer stem cell (CSC) markers. We found that changes in L1 levels do not affect the organization or expression of E-cadherin in cell lines, or in invading CRC tissue cells, and no changes in other epithelial or mesenchymal markers were detected after L1 transfection. The introduction of major EMT regulators (Slug and Twist) into CRC cell lines reduced the levels of E-cadherin and induced fibronectin and vimentin, but unlike L1, Slug and Twist expression was insufficient for conferring metastasis. In CRC cells L1 did not specifically cosegregate with CSC markers including CD133, CD44, and EpCAM. L1-mediated metastasis required NF-κB signaling in cells harboring either high or low levels of endogenous E-cadherin. The results suggest that L1-mediated metastasis of CRC cells does not require changes in EMT and CSC markers and operates by activating NF-κβ signaling.
Collapse
Affiliation(s)
- Nancy Gavert
- Department of Molecular Cell Biology, Weizmann Institute of Science, P. O. Box 26, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
20
|
Liu H, Focia PJ, He X. Homophilic adhesion mechanism of neurofascin, a member of the L1 family of neural cell adhesion molecules. J Biol Chem 2010; 286:797-805. [PMID: 21047790 DOI: 10.1074/jbc.m110.180281] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The L1 family neural cell adhesion molecules play key roles in specifying the formation and remodeling of the neural network, but their homophilic interaction that mediates adhesion is not well understood. We report two crystal structures of a dimeric form of the headpiece of neurofascin, an L1 family member. The four N-terminal Ig-like domains of neurofascin form a horseshoe shape, akin to several other immunoglobulin superfamily cell adhesion molecules such as hemolin, axonin, and Dscam. The neurofascin dimer, captured in two crystal forms with independent packing patterns, reveals a pair of horseshoes in trans-synaptic adhesion mode. The adhesion interaction is mediated mostly by the second Ig-like domain, which features an intermolecular β-sheet formed by the joining of two individual GFC β-sheets and a large but loosely packed hydrophobic cluster. Mutagenesis combined with gel filtration assays suggested that the side chain hydrogen bonds at the intermolecular β-sheet are essential for the homophilic interaction and that the residues at the hydrophobic cluster play supplementary roles. Our structures reveal a conserved homophilic adhesion mode for the L1 family and also shed light on how the pathological mutations of L1 affect its structure and function.
Collapse
Affiliation(s)
- Heli Liu
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
21
|
L1 syndrome mutations impair neuronal L1 function at different levels by divergent mechanisms. Neurobiol Dis 2010; 40:222-37. [PMID: 20621658 DOI: 10.1016/j.nbd.2010.05.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/19/2010] [Accepted: 05/25/2010] [Indexed: 11/22/2022] Open
Abstract
Mutations in the human L1CAM gene cause neurodevelopmental disorders collectively referred to as L1 syndrome. Here, we investigated cellular pathomechanisms underlying two L1 syndrome mutations, R184Q and W1036L. We demonstrate that these mutations cause partial endoplasmic reticulum (ER) retention of L1, reduce L1 cell surface expression, but do not induce ER stress in neuronal NSC-34 cells. We provide evidence that surface trafficking of mutated L1 is affected by defective sorting to ER exit sites and attenuated ER export. However, in differentiated neuronal cultures and long-term cultured hippocampal slices, the L1-R184Q protein is restricted to cell bodies, whereas L1-W1036L also aberrantly localizes to dendrites. These trafficking defects preclude axonal targeting of L1, thereby affecting L1-mediated axon growth and arborization. Our results indicate that L1 syndrome mutations impair neuronal L1 function at different levels, firstly by attenuating ER export and secondly by interfering with polarized neuronal trafficking.
Collapse
|
22
|
Gavert N, Ben-Shmuel A, Lemmon V, Brabletz T, Ben-Ze'ev A. Nuclear factor-kappaB signaling and ezrin are essential for L1-mediated metastasis of colon cancer cells. J Cell Sci 2010; 123:2135-43. [PMID: 20501702 DOI: 10.1242/jcs.069542] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hyperactivation of beta-catenin-T-cell-factor (TCF)-regulated gene transcription is a hallmark of colorectal cancer (CRC). The cell-neural adhesion molecule L1CAM (hereafter referred to as L1) is a target of beta-catenin-TCF, exclusively expressed at the CRC invasive front in humans. L1 overexpression in CRC cells increases cell growth and motility, and promotes liver metastasis. Genes induced by L1 are also expressed in human CRC tissue but the mechanisms by which L1 confers metastasis are still unknown. We found that signaling by the nuclear factor kappaB (NF-kappaB) is essential, because inhibition of signaling by the inhibitor of kappaB super repressor (IkappaB-SR) blocked L1-mediated metastasis. Overexpression of the NF-kappaB p65 subunit was sufficient to increase CRC cell proliferation, motility and metastasis. Binding of the L1 cytodomain to ezrin - a cytoskeleton-crosslinking protein - is necessary for metastasis because when binding to L1 was interrupted or ezrin gene expression was suppressed with specific shRNA, metastasis did not occur. L1 and ezrin bound to and mediated the phosphorylation of IkappaB. We also observed a complex containing IkappaB, L1 and ezrin in the juxtamembrane region of CRC cells. Furthermore, we found that L1, ezrin and phosphorylated p65 are co-expressed at the invasive front in human CRC tissue, indicating that L1-mediated activation of NF-kappaB signaling involving ezrin is a major route of CRC progression.
Collapse
Affiliation(s)
- Nancy Gavert
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
23
|
Díez-Revuelta N, Velasco S, André S, Kaltner H, Kübler D, Gabius HJ, Abad-Rodríguez J. Phosphorylation of adhesion- and growth-regulatory human galectin-3 leads to the induction of axonal branching by local membrane L1 and ERM redistribution. J Cell Sci 2010; 123:671-81. [PMID: 20124415 DOI: 10.1242/jcs.058198] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Serine phosphorylation of the beta-galactoside-binding protein galectin-3 (Gal-3) impacts nuclear localization but has unknown consequences for extracellular activities. Herein, we reveal that the phosphorylated form of galectin-3 (pGal-3), adsorbed to substratum surfaces or to heparan sulphate proteoglycans, is instrumental in promoting axon branching in cultured hippocampal neurons by local actin destabilization. pGal-3 interacts with neural cell adhesion molecule L1, and enhances L1 association with Thy-1-rich membrane microdomains. Concomitantly, membrane-actin linker proteins ezrin-radixin-moesin (ERM) are recruited to the same membrane site via interaction with the intracellular domain of L1. We propose that the local regulation of the L1-ERM-actin pathway, at the level of the plasma membrane, underlies pGal-3-induced axon branching, and that galectin phosphorylation in situ could act as a molecular switch for the axon response to Gal-3.
Collapse
Affiliation(s)
- Natalia Díez-Revuelta
- Membrane Biology and Axonal Repair Laboratory. Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, E-45071 Toledo, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Nagaraj K, Kristiansen LV, Skrzynski A, Castiella C, Garcia-Alonso L, Hortsch M. Pathogenic human L1-CAM mutations reduce the adhesion-dependent activation of EGFR. Hum Mol Genet 2009; 18:3822-31. [PMID: 19617634 PMCID: PMC2748892 DOI: 10.1093/hmg/ddp325] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/08/2009] [Accepted: 07/16/2009] [Indexed: 11/13/2022] Open
Abstract
L1-cell adhesion molecule (L1-CAM) belongs to a functionally conserved group of neural cell adhesion molecules that are implicated in many aspects of nervous system development. In many neuronal cells the adhesive function of L1-type CAMs induces cellular signaling processes that involves the activation of neuronal tyrosine protein kinases and among other functions regulates axonal growth and guidance. Mutations in the human L1-CAM gene are responsible for a complex neurodevelopmental condition, generally referred to as L1 syndrome. Several pathogenic L1-CAM mutations have been identified in humans that cause L1 syndrome in affected individuals without affecting the level of L1-CAM-mediated homophilic cell adhesion when tested in vitro. In this study, an analysis of two different pathogenic human L1-CAM molecules indicates that although both induce normal L1-CAM-mediated cell aggregation, they are defective in stimulating human epidermal growth factor receptor tyrosine kinase activity in vitro and are unable to rescue L1 loss-of-function conditions in a Drosophila transgenic model in vivo. These results indicate that the L1 syndrome-associated phenotype might involve the disruption of L1-CAM's functions at different levels. Either by reducing or abolishing L1-CAM protein expression, by interfering with L1-CAM's cell surface expression, by reducing L1-CAM's adhesive ability or by impeding further downstream adhesion-dependent signaling processes.
Collapse
Affiliation(s)
- Kakanahalli Nagaraj
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Lars V. Kristiansen
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- The Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark and
- Instituto de Neurociencias CSIC-UMH, Universidad Miguel Hernandez, 03550 Sant Joan d'Alacant, Spain
| | - Adam Skrzynski
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Carlos Castiella
- Instituto de Neurociencias CSIC-UMH, Universidad Miguel Hernandez, 03550 Sant Joan d'Alacant, Spain
| | - Luis Garcia-Alonso
- Instituto de Neurociencias CSIC-UMH, Universidad Miguel Hernandez, 03550 Sant Joan d'Alacant, Spain
| | - Michael Hortsch
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
25
|
Yeaney NK, He M, Tang N, Malouf AT, O’Riordan MA, Lemmon V, Bearer CF. Ethanol inhibits L1 cell adhesion molecule tyrosine phosphorylation and dephosphorylation and activation of pp60(src). J Neurochem 2009; 110:779-90. [PMID: 19457108 PMCID: PMC2730836 DOI: 10.1111/j.1471-4159.2009.06143.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fetal alcohol syndrome is a leading cause of mental retardation. The neuropathology found in patients with fetal alcohol syndrome overlaps with those with mutations in the gene for cell adhesion molecule (L1). We have previously shown that L1-mediated neurite outgrowth and L1 activation of extracellular receptor kinases 1/2 are inhibited at low concentrations of ethanol. One possible mechanism for this effect is through disruption of a tyrosine-based sorting signal, Y(1176)RSLE, on the cytoplasmic domain of L1. Our goal was to determine if ethanol inhibited the sorting signal or its phosphorylation state. Using cerebellar granule neurons and dorsal root ganglion neurons, we found that ethanol had no effect on L1 distribution to the growth cone or its ability to be expressed on the cell surface as determined by confocal microscopy. In cerebellar granule neurons, clustering of L1 resulted in increased dephosphorylation of Y(1176), increased L1 tyrosine phosphorylation, and an increase in the activation of pp60(src) as measured by immunoblot. All changes were inhibited by 25 mM ethanol. Using PP2 to inhibit pp60(src) activation resulted in inhibition of increases in L1 tyrosine and extracellular receptor kinases 1/2 phosphorylation, and Y(1176) dephosphorylation. We conclude that ethanol disrupts L1 trafficking/signaling following its expression on the surface of the growth cone, and prior to its activation of pp60(src).
Collapse
Affiliation(s)
| | - Min He
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ningfeng Tang
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Alfred T. Malouf
- Department of Pediatrics, University Hospitals of Cleveland, Cleveland, OH 44106
| | | | - Vance Lemmon
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Cynthia F. Bearer
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
26
|
Hoffman EJ, Mintz CD, Wang S, McNickle DG, Salton SR, Benson DL. Effects of ethanol on axon outgrowth and branching in developing rat cortical neurons. Neuroscience 2008; 157:556-65. [PMID: 18926887 PMCID: PMC2626542 DOI: 10.1016/j.neuroscience.2008.08.071] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/29/2008] [Accepted: 08/29/2008] [Indexed: 11/26/2022]
Abstract
Humans exposed prenatally to ethanol can exhibit brain abnormalities and cognitive impairment similar to those seen in patients expressing mutant forms of the L1 cell adhesion molecule (L1CAM). The resemblance suggests that L1CAM may be a target for ethanol, and consistent with this idea, ethanol can inhibit L1CAM adhesion in cell lines and L1CAM-mediated outgrowth and signaling in cerebellar granule neurons. However, it is not known whether ethanol inhibits L1CAM function in other neuron types known to require L1CAM for appropriate development. Here we asked whether ethanol alters L1CAM function in neurons of the rat cerebral cortex. We find that ethanol does not alter axonal polarization, L1CAM-dependent axon outgrowth or branching, or L1CAM recycling in axonal growth cones. Thus, ethanol inhibition of L1CAM is highly dependent on neuronal context.
Collapse
Affiliation(s)
- Ellen J. Hoffman
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 1002
| | - C. David Mintz
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 1002
| | - Sophia Wang
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 1002
| | - Daniel G. McNickle
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 1002
| | - Stephen R.J. Salton
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 1002
| | - Deanna L. Benson
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 1002
| |
Collapse
|
27
|
Blackmore M, Letourneau PC. L1, beta1 integrin, and cadherins mediate axonal regeneration in the embryonic spinal cord. ACTA ACUST UNITED AC 2007; 66:1564-83. [PMID: 17058193 DOI: 10.1002/neu.20311] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Embryonic birds and mammals are capable of axon regeneration after spinal cord injury, but this ability is lost during a discrete developmental transition. We recently showed that changes within maturing neurons, as opposed to changes solely in the spinal cord environment, significantly restrict axon regeneration during development. The developmental changes within neurons that limit axon regeneration remain unclear. One gap in knowledge is the identity of the adhesive receptors that embryonic neurons use to extend axons in the spinal cord. Here we test the roles of L1/NgCAM, beta1 integrin, and cadherins, using a coculture system in which embryonic chick brainstem neurons regenerate axons into an explant of embryonic spinal cord. By in vivo and in vitro methods, we found that brainstem neurons reduce axonal expression of L1 as they mature. Disrupting either L1 or beta1 integrin function individually in our coculture system partially inhibited growth of brainstem axons in spinal cords, while disrupting cadherin function alone had no effect. However, when all three adhesive receptors were blocked simultaneously, axon growth in the spinal cord was reduced by 90%. Using immunohistochemistry and in situ hybridization we show that during the period when neurons lose their regenerative capacity they reduce expression of mRNA for N-cadherin, and reduce axonal L1/NgCAM protein through a post-transcriptional mechanism. These data show that embryonic neurons use L1/NgCAM, beta1 integrin, and cadherin receptors for axon regeneration in the embryonic spinal cord, and raise the possibility that a reduced expression of these essential receptors may contribute to the low-regenerative capacity of older neurons.
Collapse
Affiliation(s)
- Murray Blackmore
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
28
|
Schultheis M, Diestel S, Schmitz B. The role of cytoplasmic serine residues of the cell adhesion molecule L1 in neurite outgrowth, endocytosis, and cell migration. Cell Mol Neurobiol 2007; 27:11-31. [PMID: 17151951 PMCID: PMC11517402 DOI: 10.1007/s10571-006-9113-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 07/14/2006] [Indexed: 10/23/2022]
Abstract
1. The cell adhesion molecule L1 has been implicated in adhesion and migration of cells, in axon growth, guidance, and fasciculation, in myelination and synaptic plasticity. The cytoplasmic domain of neuronal L1 is highly conserved between species and has been shown to be phosphorylated at serine and tyrosine residues. 2. To investigate the significance of L1 serine phosphorylation, mutants of L1 were generated in which ser-1152, ser-1181, ser-1204, and ser-1248 were exchanged for leucine and rat B35 neuroblastoma cells were stably transfected with the L1-cDNA constructs. 3. Neurite outgrowth on poly-L-lysine (PLL) as substrate was determined either with or without differentiation into a neuronal phenotype with dbcAMP. In addition, antibody-induced endocytosis and cell migration were examined. 4. Our observations indicate that phosphorylation of single serine residues of the cytoplasmic domain of L1 contributes to neurite outgrowth through different mechanisms. Neurite growth is increased when ser-1152 or ser-1181 is replaced by a non-phosphorylatable leucine and decreased when ser-1204 or ser-1248 is mutated to leucine. Furthermore, mutation of ser-1181 to leucine results in strongly enhanced antibody-induced endocytosis of L1 and also in enhanced cell migration.
Collapse
Affiliation(s)
- M. Schultheis
- Department of Biochemistry, Institute of Animal Sciences, University of Bonn, Katzenburgweg 9a, 53115 Bonn, Germany
| | - S. Diestel
- Department of Biochemistry, Institute of Animal Sciences, University of Bonn, Katzenburgweg 9a, 53115 Bonn, Germany
| | - B. Schmitz
- Department of Biochemistry, Institute of Animal Sciences, University of Bonn, Katzenburgweg 9a, 53115 Bonn, Germany
| |
Collapse
|
29
|
Buchser WJ, Pardinas JR, Shi Y, Bixby JL, Lemmon VP. 96-well electroporation method for transfection of mammalian central neurons. Biotechniques 2006; 41:619-24. [PMID: 17140120 PMCID: PMC2424126 DOI: 10.2144/000112279] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Manipulating gene expression in primary neurons has been a goal for many scientists for over 20 years. Vertebrate central nervous system neurons are classically difficult to transfect. Most lipid reagents are inefficient and toxic to the cells, and time-consuming methods such as viral infections are often required to obtain better efficiencies. We have developed an efficient method for the transfection of cerebellar granule neurons and hippocampal neurons with standard plasmid vectors. Using 96-well electroporation plates, square-wave pulses can introduce 96 different plasmids into neurons in a single step. The procedure results in greater than 20% transfection efficiencies and requires only simple solutions of nominal cost. In addition to enabling the rapid optimization of experimental protocols with multiple parameters, this procedure enables the use of high content screening methods to characterize neuronal phenotypes.
Collapse
|
30
|
Godenschwege TA, Kristiansen LV, Uthaman SB, Hortsch M, Murphey RK. A conserved role for Drosophila Neuroglian and human L1-CAM in central-synapse formation. Curr Biol 2006; 16:12-23. [PMID: 16401420 DOI: 10.1016/j.cub.2005.11.062] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 11/21/2005] [Accepted: 11/22/2005] [Indexed: 11/22/2022]
Abstract
BACKGROUND Drosophila Neuroglian (Nrg) and its vertebrate homolog L1-CAM are cell-adhesion molecules (CAM) that have been well studied in early developmental processes. Mutations in the human gene result in a broad spectrum of phenotypes (the CRASH-syndrome) that include devastating neurological disorders such as spasticity and mental retardation. Although the role of L1-CAMs in neurite extension and axon pathfinding has been extensively studied, much less is known about their role in synapse formation. RESULTS We found that a single extracellular missense mutation in nrg(849) mutants disrupted the physiological function of a central synapse in Drosophila. The identified giant neuron in nrg(849) mutants made a synaptic terminal on the appropriate target, but ultrastructural analysis revealed in the synaptic terminal a dramatic microtubule reduction, which was likely to be the cause for disrupted active zones. Our results reveal that tyrosine phosphorylation of the intracellular ankyrin binding motif was reduced in mutants, and cell-autonomous rescue experiments demonstrated the indispensability of this tyrosine in giant-synapse formation. We also show that this function in giant-synapse formation was conserved in human L1-CAM but neither in human L1-CAM with a pathological missense mutation nor in two isoforms of the paralogs NrCAM and Neurofascin. CONCLUSIONS We conclude that Nrg has a function in synapse formation by organizing microtubules in the synaptic terminal. This novel synaptic function is conserved in human L1-CAM but is not common to all L1-type proteins. Finally, our findings suggest that some aspects of L1-CAM-related neurological disorders in humans may result from a disruption in synapse formation rather than in axon pathfinding.
Collapse
Affiliation(s)
- Tanja A Godenschwege
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA.
| | | | | | | | | |
Collapse
|
31
|
Cheng L, Itoh K, Lemmon V. L1-mediated branching is regulated by two ezrin-radixin-moesin (ERM)-binding sites, the RSLE region and a novel juxtamembrane ERM-binding region. J Neurosci 2005; 25:395-403. [PMID: 15647482 PMCID: PMC2860578 DOI: 10.1523/jneurosci.4097-04.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We investigated how the neural cell adhesion molecule L1 mediates neurite outgrowth through L1-L1 homophilic interactions. Wild-type L1 and L1 with mutations in the cytoplasmic domain (CD) were introduced into L1 knock-out neurons, and transfected neurons were grown on an L1 substrate. Neurite length and branching were compared between wild-type L1 and L1CD mutations. Surprisingly, the L1CD is not required for L1-mediated neurite outgrowth but plays a critical role in neurite branching, through both the juxtamembrane region and the RSLE region. We demonstrate that both regions serve as ezrin-moesin-radixin-binding sites. A truncation mutant that deletes 110 of 114 amino acids of the L1CD still supports neurite outgrowth on an L1 substrate, suggesting that a coreceptor binds to L1 in cis and mediates neurite outgrowth and that L1-ankyrin interactions are not essential for neurite initiation or outgrowth. These data are consistent with a model in which L1 can influence L1-mediated neurite outgrowth and branching through both the L1CD and a coreceptor.
Collapse
Affiliation(s)
- Ling Cheng
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
32
|
Cheng L, Lemmon S, Lemmon V. RanBPM is an L1-interacting protein that regulates L1-mediated mitogen-activated protein kinase activation. J Neurochem 2005; 94:1102-10. [PMID: 16000162 PMCID: PMC2424128 DOI: 10.1111/j.1471-4159.2005.03254.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A yeast two-hybrid screen using the last 28 amino acids of the cytoplasmic domain of the neural cell adhesion molecule L1 identified RanBPM as an L1-interacting protein. RanBPM associates with L1 in vivo and the N-terminal region of RanBPM (N-RanBPM), containing the SPRY domain, is sufficient for the interaction with L1 in a glutathione S-transferase pull-down assay. L1 antibody patching dramatically changes the subcellular localization of N-RanBPM in transfected COS cells. Overexpression of N-RanBPM in COS cells reduces L1-triggered extracellular signal-regulated kinase 1/2 activation by 50% and overexpression of N-RanBPM in primary neurons inhibits L1-mediated neurite outgrowth and branching. These data suggest that RanBPM is an adaptor protein that links L1 to the extracellular signal-regulated kinase/MAPK pathway.
Collapse
Affiliation(s)
- Ling Cheng
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
| | - Sandra Lemmon
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, Florida, USA
| | - Vance Lemmon
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
| |
Collapse
|