1
|
Taira H, Li L, Koyama A, Toyoshima R, Yamamoto T, Ito Y, Sugimoto E, Mizuno Y, Awaji K, Sato S, Shibata S. EGF-Induced Macropinocytosis Promotes NAV1-Dependent Internalization of Occludin in Keratinocytes. FASEB J 2025; 39:e70564. [PMID: 40266031 PMCID: PMC12017258 DOI: 10.1096/fj.202402876r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/05/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Epidermal keratinocytes form the outermost layer of the skin and serve as a pivotal barrier against external insults. This barrier, however, can be compromised in conditions such as atopic dermatitis (AD), where both genetic and environmental factors contribute to its disruption. Recent studies have indicated that macropinocytosis, a non-selective endocytic process, is involved in the internalization of barrier proteins. In this study, we explored the role of macropinocytosis in differentiated keratinocytes and its potential impact on skin barrier integrity in AD. Our results demonstrated that epidermal growth factor (EGF), but not the type 2 cytokines IL-4 and IL-13, significantly promoted macropinocytosis in differentiated HaCaT keratinocytes. EGF stimulation increased the uptake of 70 kDa dextran and induced the internalization of occludin, a component of tight junction proteins. Furthermore, enhanced macropinocytosis was observed in the epidermis of a mouse model of AD, accompanied by elevated EGF expression in the skin, indicating that the AD skin microenvironment may drive this process. NAV1 was identified as a critical regulator of EGF-induced macropinocytosis, as its knockdown significantly impaired this process. Transcriptome analysis of NAV1-knockdown cells further revealed changes in the expression of Rho family GTPases, including CDC42 and MMP14, suggesting that NAV1 modulates macropinocytosis through Rho-dependent pathways. These findings provide new insights into the regulation of macropinocytosis in keratinocytes and its potential contribution to the barrier dysfunction observed in AD.
Collapse
Affiliation(s)
- Haruka Taira
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Lixin Li
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Asumi Koyama
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Rino Toyoshima
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Toyoki Yamamoto
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yukiko Ito
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Eiki Sugimoto
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yuka Mizuno
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kentaro Awaji
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Shinichi Sato
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Sayaka Shibata
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
2
|
Perez L, Ambroise J, Bearzatto B, Froidure A, Pilette C, Yakoub Y, Palmai-Pallag M, Bouzin C, Ryelandt L, Pavan C, Huaux F, Lison D. Unique transcriptomic responses of rat and human alveolar macrophages in an in vitro model of overload with TiO 2 and carbon black. Part Fibre Toxicol 2025; 22:8. [PMID: 40281615 PMCID: PMC12023592 DOI: 10.1186/s12989-025-00624-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Chronic inhalation of titanium dioxide or carbon black can lead, at high exposure, to lung overload, and can induce chronic inflammation and lung cancer in rats. Whether this rat adverse response is predictive for humans has been questioned for more than 40 years. Currently, these particles are conservatively considered as possible human carcinogens. OBJECTIVE To clarify the mechanisms of the adverse rat response to lung overload and its human relevance. METHODS Primary rat and human alveolar macrophages were exposed in vitro to control, non-overload or overload doses of titanium dioxide (P25) or carbon black (Printex 90) particles, and their activation profile was examined by untargeted transcriptomics. RESULTS Rat macrophages were largely the most responsive to particle overload. In particular, eighteen genes were identified as robust markers of P25 and Printex 90 overload in rat cells. The known functions of these genes can be related to the potential mechanisms of the adverse outcomes recorded in rats in vivo. Most of these 18 genes were similarly modulated in human macrophages, but with a markedly lower magnitude. In addition, a 16 gene signature was observed upon overload in human macrophages, but not in rat macrophages. CONCLUSIONS These findings provide insights into the mechanisms of lung overload and inflammation in rats, and highlight similarities and differences in transcriptomic responses of rat and human alveolar macrophages.
Collapse
Affiliation(s)
- Laeticia Perez
- Louvain Centre for Toxicology and Applied Pharmacology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium.
| | - Jérôme Ambroise
- Centre de Technologies Moléculaires Appliquées , Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Bertrand Bearzatto
- Centre de Technologies Moléculaires Appliquées , Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Antoine Froidure
- Pôle Pneumologie, ORL (Airways) et dermatologie (Skin), Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Charles Pilette
- Pôle Pneumologie, ORL (Airways) et dermatologie (Skin), Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Yousof Yakoub
- Louvain Centre for Toxicology and Applied Pharmacology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Mihaly Palmai-Pallag
- Secteur des Sciences de la santé , Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform (2IP; RRID:SCR_023378), Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Laurence Ryelandt
- Institute of Mechanics, Materials and Civil Engineering, Université Catholique de Louvain, Louvain-la- Neuve, Belgium
| | - Cristina Pavan
- Department of Chemistry, University of Turin, Turin, Italy
| | - François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Dominique Lison
- Louvain Centre for Toxicology and Applied Pharmacology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
3
|
Li W, Chen Y, Zhang Y, Wen W, Lu Y. Comprehensive analysis of the relationship between RNA modification writers and immune microenvironment in head and neck squamous cell carcinoma. BMC Immunol 2024; 25:76. [PMID: 39533178 PMCID: PMC11558979 DOI: 10.1186/s12865-024-00667-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVES Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Four types of RNA modification writers (m6A, m1A, A-I editing, and APA) are widely involved in tumorigenesis and the TME. We aimed to comprehensively explore the role of the four RNA modification writers in the progression and immune microenvironment of HNSCC. MATERIALS AND METHODS We first obtained transcription profile data and transcriptional variation of the four types of RNA modification writers from The Cancer Genome Atlas (TCGA) database. HNSCC patients in TCGA dataset were divided into different clusters based on the four types of RNA modification writers. Univariate Cox and Least absolute shrinkage and selection operator (LASSO) analyses were performed to conduct a Writer-score scoring system, which was successfully verified in the GSE65858 dataset and our clinical sample dataset. Finally, we evaluated the relationship between different RNA modification clusters (Writer-score) and immunological characteristics of HNSCC. RESULTS Two different RNA modification clusters (A and B) were obtained. These RNA modification clusters (Writer-score) were strongly associated with immunological characteristics (immunomodulators, cancer immunity cycles, infiltrating immune cells (TIICs), inhibitory immune checkpoints, and T cell inflamed score (TIS)) of HNSCC. CONCLUSIONS This study identified two different RNA modification clusters and explored the potential relationship between RNA modification clusters (Writer-score) and immunological characteristics, offering a new theoretical basis for precision immunotherapy in patients with HNSCC.
Collapse
Affiliation(s)
- Wei Li
- The First Clinical College of China Medical University, Shenyang, China
| | - Ying Chen
- Department of Ultrasound, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Yao Zhang
- Department of Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wen Wen
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingying Lu
- The First Clinical College of Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
4
|
Koss KM, Son T, Li C, Hao Y, Cao J, Churchward MA, Zhang ZJ, Wertheim JA, Derda R, Todd KG. Toward discovering a novel family of peptides targeting neuroinflammatory states of brain microglia and astrocytes. J Neurochem 2024; 168:3386-3414. [PMID: 37171455 PMCID: PMC10640667 DOI: 10.1111/jnc.15840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
Microglia are immune-derived cells critical to the development and healthy function of the brain and spinal cord, yet are implicated in the active pathology of many neuropsychiatric disorders. A range of functional phenotypes associated with the healthy brain or disease states has been suggested from in vivo work and were modeled in vitro as surveying, reactive, and primed sub-types of primary rat microglia and mixed microglia/astrocytes. It was hypothesized that the biomolecular profile of these cells undergoes a phenotypical change as well, and these functional phenotypes were explored for potential novel peptide binders using a custom 7 amino acid-presenting M13 phage library (SX7) to identify unique peptides that bind differentially to these respective cell types. Surveying glia were untreated, reactive were induced with a lipopolysaccharide treatment, recovery was modeled with a potent anti-inflammatory treatment dexamethasone, and priming was determined by subsequently challenging the cells with interferon gamma. Microglial function was profiled by determining the secretion of cytokines and nitric oxide, and expression of inducible nitric oxide synthase. After incubation with the SX7 phage library, populations of SX7-positive microglia and/or astrocytes were collected using fluorescence-activated cell sorting, SX7 phage was amplified in Escherichia coli culture, and phage DNA was sequenced via next-generation sequencing. Binding validation was done with synthesized peptides via in-cell westerns. Fifty-eight unique peptides were discovered, and their potential functions were assessed using a basic local alignment search tool. Peptides potentially originated from proteins ranging in function from a variety of supportive glial roles, including synapse support and pruning, to inflammatory incitement including cytokine and interleukin activation, and potential regulation in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- K M Koss
- Comprehensive Transplant Center and Department of Surgery, Feinberg School of Medicine, Northwestern University, Illinois, Chicago, USA
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Alberta, Edmonton, Canada
- Department of Surgery, University of Arizona College of Medicine, Arizona, Tucson, USA
| | - T Son
- Comprehensive Transplant Center and Department of Surgery, Feinberg School of Medicine, Northwestern University, Illinois, Chicago, USA
| | - C Li
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, AB T6G 2G2, Canada
| | - Y Hao
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, AB T6G 2G2, Canada
| | - J Cao
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, AB T6G 2G2, Canada
- 48Hour Discovery Inc, 11421 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada
| | - M A Churchward
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Alberta, Edmonton, Canada
- Department of Biology and Environmental Sciences, Concordia University of Edmonton, Alberta, Edmonton, Canada
| | - Z J Zhang
- Comprehensive Transplant Center and Department of Surgery, Feinberg School of Medicine, Northwestern University, Illinois, Chicago, USA
| | - J A Wertheim
- Comprehensive Transplant Center and Department of Surgery, Feinberg School of Medicine, Northwestern University, Illinois, Chicago, USA
- Department of Surgery, University of Arizona College of Medicine, Arizona, Tucson, USA
| | - R Derda
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, AB T6G 2G2, Canada
- 48Hour Discovery Inc, 11421 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada
| | - K G Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Alberta, Edmonton, Canada
- Department of Biomedical Engineering, University of Alberta, Alberta, Edmonton, Canada
| |
Collapse
|
5
|
Ghaffar A, Akhter T, Strømme P, Misceo D, Khan A, Frengen E, Umair M, Isidor B, Cogné B, Khan AA, Bruel AL, Sorlin A, Kuentz P, Chiaverini C, Innes AM, Zech M, Baláž M, Havrankova P, Jech R, Ahmed ZM, Riazuddin S, Riazuddin S. Variants of NAV3, a neuronal morphogenesis protein, cause intellectual disability, developmental delay, and microcephaly. Commun Biol 2024; 7:831. [PMID: 38977784 PMCID: PMC11231287 DOI: 10.1038/s42003-024-06466-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
Microtubule associated proteins (MAPs) are widely expressed in the central nervous system, and have established roles in cell proliferation, myelination, neurite formation, axon specification, outgrowth, dendrite, and synapse formation. We report eleven individuals from seven families harboring predicted pathogenic biallelic, de novo, and heterozygous variants in the NAV3 gene, which encodes the microtubule positive tip protein neuron navigator 3 (NAV3). All affected individuals have intellectual disability (ID), microcephaly, skeletal deformities, ocular anomalies, and behavioral issues. In mouse brain, Nav3 is expressed throughout the nervous system, with more prominent signatures in postmitotic, excitatory, inhibiting, and sensory neurons. When overexpressed in HEK293T and COS7 cells, pathogenic variants impaired NAV3 ability to stabilize microtubules. Further, knocking-down nav3 in zebrafish led to severe morphological defects, microcephaly, impaired neuronal growth, and behavioral impairment, which were rescued with co-injection of WT NAV3 mRNA and not by transcripts encoding the pathogenic variants. Our findings establish the role of NAV3 in neurodevelopmental disorders, and reveal its involvement in neuronal morphogenesis, and neuromuscular responses.
Collapse
Affiliation(s)
- Amama Ghaffar
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, MD, USA
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Tehmeena Akhter
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, MD, USA
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Petter Strømme
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Amjad Khan
- Faculty of Biological Sciences, Department of Zoology, University of Lakki Marwat, 28420, Khyber, Pakhtunkhwa, Pakistan
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübinge, 72076, Germany
- Alexander von Humboldt Fellowship Foundation, Berlin, 10117, Germany
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Muhammad Umair
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000, Nantes, France
| | - Benjamin Cogné
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000, Nantes, France
| | - Asma A Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ange-Line Bruel
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement", FHU-TRANSLAD, Université de Bourgogne Franche-Comté, Dijon, France
| | - Arthur Sorlin
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement", FHU-TRANSLAD, Université de Bourgogne Franche-Comté, Dijon, France
- National Center of Genetics (NCG), Laboratoire national de santé (LNS), 1, rue Louis Rech, L-3555, Dudelange, Luxembourg
| | - Paul Kuentz
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement", FHU-TRANSLAD, Université de Bourgogne Franche-Comté, Dijon, France
| | | | - A Micheil Innes
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - Marek Baláž
- First Department of Neurology, Faculty of Medicine, St. Anne's University Hospital, and CEITEC, Masaryk University, Brno, Czech Republic
| | - Petra Havrankova
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Robert Jech
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Zubair M Ahmed
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, MD, USA
| | - Sheikh Riazuddin
- Jinnah Burn and Reconstructive Surgery Centre, Allama Iqbal Medical Research, University of Health Sciences, Lahore, Pakistan
| | - Saima Riazuddin
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
6
|
Sandeep P, Sharma P, Luhach K, Dhiman N, Kharkwal H, Sharma B. Neuron navigators: A novel frontier with physiological and pathological implications. Mol Cell Neurosci 2023; 127:103905. [PMID: 37972804 DOI: 10.1016/j.mcn.2023.103905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Neuron navigators are microtubule plus-end tracking proteins containing basic and serine rich regions which are encoded by neuron navigator genes (NAVs). Neuron navigator proteins are essential for neurite outgrowth, neuronal migration, and overall neurodevelopment along with some other functions as well. The navigator proteins are substantially expressed in the developing brain and have been reported to be differentially expressed in various tissues at different ages. Over the years, the research has found neuron navigators to be implicated in a spectrum of pathological conditions such as developmental anomalies, neurodegenerative disorders, neuropathic pain, anxiety, cancers, and certain inflammatory conditions. The existing knowledge about neuron navigators remains sparse owing to their differential functions, undiscovered modulators, and unknown molecular mechanisms. Investigating the possible role of neuron navigators in various physiological processes and pathological conditions pose as a novel field that requires extensive research and might provide novel mechanistic insights and understanding of these aspects.
Collapse
Affiliation(s)
- Parth Sandeep
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Kanishk Luhach
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Harsha Kharkwal
- Amity Natural and Herbal Product Research, Amity Institute of Phytochemistry and Phytomedicine, Amity University, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India.
| |
Collapse
|
7
|
Bagley JR, Tan Y, Zhu W, Cheng Z, Takeda S, Fang Z, Arslan A, Wang M, Guan Y, Jiang L, Jian R, Gu F, Parada I, Prince D, Jentsch JD, Peltz G. Neuron Navigator 1 (Nav1) regulates the response to cocaine in mice. Commun Biol 2023; 6:1053. [PMID: 37853211 PMCID: PMC10584906 DOI: 10.1038/s42003-023-05430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Genetic variation accounts for much of the risk for developing a substance use disorder, but the underlying genetic factors and their genetic effector mechanisms are mostly unknown. Inbred mouse strains exhibit substantial and heritable differences in the extent of voluntary cocaine self-administration. Computational genetic analysis of cocaine self-administration data obtained from twenty-one inbred strains identified Nav1, a member of the neuron navigator family that regulates dendrite formation and axonal guidance, as a candidate gene. To test this genetic hypothesis, we generated and characterized Nav1 knockout mice. Consistent with the genetic prediction, Nav1 knockout mice exhibited increased voluntary cocaine intake and had increased motivation for cocaine consumption. Immunohistochemistry, electrophysiology, and transcriptomic studies were performed as a starting point for investigating the mechanism for the Nav1 knockout effect. Nav1 knockout mice had a reduced inhibitory synapse density in their cortex, increased excitatory synaptic transmission in their cortex and hippocampus, and increased excitatory neurons in a deep cortical layer. Collectively, our results indicate that Nav1 regulates the response to cocaine, and we identified Nav1 knockout induced changes in the excitatory and inhibitory synaptic balance in the cortex and hippocampus that could contribute to this effect.
Collapse
Affiliation(s)
- Jared R Bagley
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Yalun Tan
- Department of Anesthesiology, Pain and Perioperative Medicine Stanford University Medical School, Stanford, CA, USA
| | - Wan Zhu
- Department of Anesthesiology, Pain and Perioperative Medicine Stanford University Medical School, Stanford, CA, USA
| | - Zhuanfen Cheng
- Department of Anesthesiology, Pain and Perioperative Medicine Stanford University Medical School, Stanford, CA, USA
| | - Saori Takeda
- Department of Anesthesiology, Pain and Perioperative Medicine Stanford University Medical School, Stanford, CA, USA
| | - Zhouqing Fang
- Department of Anesthesiology, Pain and Perioperative Medicine Stanford University Medical School, Stanford, CA, USA
| | - Ahmed Arslan
- Department of Anesthesiology, Pain and Perioperative Medicine Stanford University Medical School, Stanford, CA, USA
| | - Meiyue Wang
- Department of Anesthesiology, Pain and Perioperative Medicine Stanford University Medical School, Stanford, CA, USA
| | - Yuan Guan
- Department of Anesthesiology, Pain and Perioperative Medicine Stanford University Medical School, Stanford, CA, USA
| | - Lihua Jiang
- Department of Genetics, Stanford University Medical School, Stanford, CA, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University Medical School, Stanford, CA, USA
| | - Feng Gu
- Department of Neurology, Stanford University Medical School, Stanford, CA, USA
- Department of Biological Sciences, University of North Texas, Denton, USA
| | - Isabel Parada
- Department of Neurology, Stanford University Medical School, Stanford, CA, USA
| | - David Prince
- Department of Neurology, Stanford University Medical School, Stanford, CA, USA
| | - J David Jentsch
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Gary Peltz
- Department of Anesthesiology, Pain and Perioperative Medicine Stanford University Medical School, Stanford, CA, USA.
| |
Collapse
|
8
|
Atkins M, Nicol X, Fassier C. Microtubule remodelling as a driving force of axon guidance and pruning. Semin Cell Dev Biol 2023; 140:35-53. [PMID: 35710759 DOI: 10.1016/j.semcdb.2022.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/26/2022] [Accepted: 05/31/2022] [Indexed: 01/28/2023]
Abstract
The establishment of neuronal connectivity relies on the microtubule (MT) cytoskeleton, which provides mechanical support, roads for axonal transport and mediates signalling events. Fine-tuned spatiotemporal regulation of MT functions by tubulin post-translational modifications and MT-associated proteins is critical for the coarse wiring and subsequent refinement of neuronal connectivity. The defective regulation of these processes causes a wide range of neurodevelopmental disorders associated with connectivity defects. This review focuses on recent studies unravelling how MT composition, post-translational modifications and associated proteins influence MT functions in axon guidance and/or pruning to build functional neuronal circuits. We here summarise experimental evidence supporting the key role of this network as a driving force for growth cone steering and branch-specific axon elimination. We further provide a global overview of the MT-interactors that tune developing axon behaviours, with a special emphasis on their emerging versatility in the regulation of MT dynamics/structure. Recent studies establishing the key and highly selective role of the tubulin code in the regulation of MT functions in axon pathfinding are also reported. Finally, our review highlights the emerging molecular links between these MT regulation processes and guidance signals that wire the nervous system.
Collapse
Affiliation(s)
- Melody Atkins
- INSERM, UMR-S 1270, Institut du Fer à Moulin, Sorbonne Université, F-75005 Paris, France
| | - Xavier Nicol
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012 Paris, France
| | - Coralie Fassier
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012 Paris, France.
| |
Collapse
|
9
|
Powers RM, Hevner RF, Halpain S. The Neuron Navigators: Structure, function, and evolutionary history. Front Mol Neurosci 2023; 15:1099554. [PMID: 36710926 PMCID: PMC9877351 DOI: 10.3389/fnmol.2022.1099554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Neuron navigators (Navigators) are cytoskeletal-associated proteins important for neuron migration, neurite growth, and axon guidance, but they also function more widely in other tissues. Recent studies have revealed novel cellular functions of Navigators such as macropinocytosis, and have implicated Navigators in human disorders of axon growth. Navigators are present in most or all bilaterian animals: vertebrates have three Navigators (NAV1-3), Drosophila has one (Sickie), and Caenorhabditis elegans has one (Unc-53). Structurally, Navigators have conserved N- and C-terminal regions each containing specific domains. The N-terminal region contains a calponin homology (CH) domain and one or more SxIP motifs, thought to interact with the actin cytoskeleton and mediate localization to microtubule plus-end binding proteins, respectively. The C-terminal region contains two coiled-coil domains, followed by a AAA+ family nucleoside triphosphatase domain of unknown activity. The Navigators appear to have evolved by fusion of N- and C-terminal region homologs present in simpler organisms. Overall, Navigators participate in the cytoskeletal response to extracellular cues via microtubules and actin filaments, in conjunction with membrane trafficking. We propose that uptake of fluid-phase cues and nutrients and/or downregulation of cell surface receptors could represent general mechanisms that explain Navigator functions. Future studies developing new models, such as conditional knockout mice or human cerebral organoids may reveal new insights into Navigator function. Importantly, further biochemical studies are needed to define the activities of the Navigator AAA+ domain, and to study potential interactions among different Navigators and their binding partners.
Collapse
Affiliation(s)
- Regina M. Powers
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States,Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Robert F. Hevner
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States,Department of Pathology, UC San Diego School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Shelley Halpain
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States,Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States,*Correspondence: Shelley Halpain, ✉
| |
Collapse
|
10
|
Terrazas-Salgado L, Yáñez-Rivera B, Llera-Herrera R, García-Gasca A, Alvarado-Cruz I, Betancourt-Lozano M. Transcriptomic signaling in zebrafish ( Danio rerio) embryos exposed to environmental concentrations of glyphosate. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:775-785. [PMID: 36048159 DOI: 10.1080/03601234.2022.2115780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glyphosate [N-(phosphonomethyl)glycine] is one of the most popular herbicides worldwide. Globally, the use of glyphosate is increasing, and its residues have been found in drinking water and food products. The data regarding the possible toxic effects of this herbicide are controversial. Therefore, the aim of this study was to evaluate the effects of glyphosate at environmental concentrations in zebrafish (Danio rerio) embryos. Embryos were exposed to 0, 1, 100, and 1,000 µg/L glyphosate for 96 h, and mortality, heart rate, and hatching rate were evaluated. After the experiment, RNA was extracted from the embryos for transcriptional analysis. No mortality was recorded, and exposure to 100 µg/L and 1,000 µg/L of glyphosate resulted in lower heart rates at 48 h. In addition, RNA-seq analysis revealed that glyphosate exposure induced subtle changes in gene transcription profiles. We found 30 differentially expressed genes; however, the highest glyphosate concentration (1,000 µg/L) induced the greatest number of differentially expressed genes involved in oocyte maturation, metabolic processes, histone deacetylation, and nervous system development.
Collapse
Affiliation(s)
- Luis Terrazas-Salgado
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos S/N, Mazatlán, Sinaloa, México
| | - Beatriz Yáñez-Rivera
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos S/N, Mazatlán, Sinaloa, México
- Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Raúl Llera-Herrera
- Instituto de Ciencias del Mar y Limnología - Unidad Académica Mazatlán, Universidad Nacional Autónoma de México, Mazatlán, Sinaloa, México
| | - Alejandra García-Gasca
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos S/N, Mazatlán, Sinaloa, México
| | - Isabel Alvarado-Cruz
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Miguel Betancourt-Lozano
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos S/N, Mazatlán, Sinaloa, México
| |
Collapse
|
11
|
Dansonka-Mieszkowska A, Szafron LA, Kulesza M, Stachurska A, Leszczynski P, Tomczyk-Szatkowska A, Sobiczewski P, Parada J, Kulinczak M, Moes-Sosnowska J, Pienkowska-Grela B, Kupryjanczyk J, Chechlinska M, Szafron LM. PROM1, CXCL8, RUNX1, NAV1 and TP73 genes as independent markers predictive of prognosis or response to treatment in two cohorts of high-grade serous ovarian cancer patients. PLoS One 2022; 17:e0271539. [PMID: 35867729 PMCID: PMC9307210 DOI: 10.1371/journal.pone.0271539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/02/2022] [Indexed: 11/18/2022] Open
Abstract
Considering the vast biological diversity and high mortality rate in high-grade ovarian cancers, identification of novel biomarkers, enabling precise diagnosis and effective, less aggravating treatment, is of paramount importance. Based on scientific literature data, we selected 80 cancer-related genes and evaluated their mRNA expression in 70 high-grade serous ovarian cancer (HGSOC) samples by Real-Time qPCR. The results were validated in an independent Northern American cohort of 85 HGSOC patients with publicly available NGS RNA-seq data. Detailed statistical analyses of our cohort with multivariate Cox and logistic regression models considering clinico-pathological data and different TP53 mutation statuses, revealed an altered expression of 49 genes to affect the prognosis and/or treatment response. Next, these genes were investigated in the validation cohort, to confirm the clinical significance of their expression alterations, and to identify genetic variants with an expected high or moderate impact on their products. The expression changes of five genes, PROM1, CXCL8, RUNX1, NAV1, TP73, were found to predict prognosis or response to treatment in both cohorts, depending on the TP53 mutation status. In addition, we revealed novel and confirmed known SNPs in these genes, and showed that SNPs in the PROM1 gene correlated with its elevated expression.
Collapse
Affiliation(s)
- Agnieszka Dansonka-Mieszkowska
- Laboratory of Genetic and Molecular Cancer Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Laura Aleksandra Szafron
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Kulesza
- Laboratory of Genetic and Molecular Cancer Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Stachurska
- Laboratory of Genetic and Molecular Cancer Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Pawel Leszczynski
- Laboratory of Genetic and Molecular Cancer Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Agnieszka Tomczyk-Szatkowska
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Piotr Sobiczewski
- Department of Gynecological Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Joanna Parada
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Mariusz Kulinczak
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Joanna Moes-Sosnowska
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Barbara Pienkowska-Grela
- Cytogenetics Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jolanta Kupryjanczyk
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Chechlinska
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Lukasz Michal Szafron
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- * E-mail:
| |
Collapse
|
12
|
Powers RM, Daza R, Koehler AE, Courchet J, Calabrese B, Hevner RF, Halpain S. Growth cone macropinocytosis of neurotrophin receptor and neuritogenesis are regulated by neuron navigator 1. Mol Biol Cell 2022; 33:ar64. [PMID: 35352947 PMCID: PMC9561856 DOI: 10.1091/mbc.e21-12-0623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neuron navigator 1 (Nav1) is a cytoskeleton-associated protein expressed during brain development that is necessary for proper neuritogenesis, but the underlying mechanisms are poorly understood. Here we show that Nav1 is present in elongating axon tracts during mouse brain embryogenesis. We found that depletion of Nav1 in cultured neurons disrupts growth cone morphology and neurotrophin-stimulated neuritogenesis. In addition to regulating both F-actin and microtubule properties, Nav1 promotes actin-rich membrane ruffles in the growth cone and promotes macropinocytosis at those membrane ruffles, including internalization of the TrkB receptor for the neurotrophin brain-derived neurotropic factor (BDNF). Growth cone macropinocytosis is important for downstream signaling, neurite targeting, and membrane recycling, implicating Nav1 in one or more of these processes. Depletion of Nav1 also induces transient membrane blebbing via disruption of signaling in the Rho GTPase signaling pathway, supporting the novel role of Nav1 in dynamic actin-based membrane regulation at the cell periphery. These data demonstrate that Nav1 works at the interface of microtubules, actin, and plasma membrane to organize the cell periphery and promote uptake of growth and guidance cues to facilitate neural morphogenesis during development.
Collapse
Affiliation(s)
- Regina M. Powers
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Ray Daza
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037,Department of Pathology, University of California, San Diego, La Jolla, CA 92161
| | - Alanna E. Koehler
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037,Department of Pathology, University of California, San Diego, La Jolla, CA 92161
| | - Julien Courchet
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 69008 Lyon Cedex, France
| | - Barbara Calabrese
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Robert F. Hevner
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037,Department of Pathology, University of California, San Diego, La Jolla, CA 92161
| | - Shelley Halpain
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037,*Address correspondence to: Shelley Halpain ()
| |
Collapse
|
13
|
Sánchez-Huertas C, Herrera E. With the Permission of Microtubules: An Updated Overview on Microtubule Function During Axon Pathfinding. Front Mol Neurosci 2021; 14:759404. [PMID: 34924953 PMCID: PMC8675249 DOI: 10.3389/fnmol.2021.759404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/01/2021] [Indexed: 01/27/2023] Open
Abstract
During the establishment of neural circuitry axons often need to cover long distances to reach remote targets. The stereotyped navigation of these axons defines the connectivity between brain regions and cellular subtypes. This chemotrophic guidance process mostly relies on the spatio-temporal expression patterns of extracellular proteins and the selective expression of their receptors in projection neurons. Axon guidance is stimulated by guidance proteins and implemented by neuronal traction forces at the growth cones, which engage local cytoskeleton regulators and cell adhesion proteins. Different layers of guidance signaling regulation, such as the cleavage and processing of receptors, the expression of co-receptors and a wide variety of intracellular cascades downstream of receptors activation, have been progressively unveiled. Also, in the last decades, the regulation of microtubule (MT) assembly, stability and interactions with the submembranous actin network in the growth cone have emerged as crucial effector mechanisms in axon pathfinding. In this review, we will delve into the intracellular signaling cascades downstream of guidance receptors that converge on the MT cytoskeleton of the growing axon. In particular, we will focus on the microtubule-associated proteins (MAPs) network responsible of MT dynamics in the axon and growth cone. Complementarily, we will discuss new evidences that connect defects in MT scaffold proteins, MAPs or MT-based motors and axon misrouting during brain development.
Collapse
Affiliation(s)
- Carlos Sánchez-Huertas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | | |
Collapse
|
14
|
Sánchez-Huertas C, Bonhomme M, Falco A, Fagotto-Kaufmann C, van Haren J, Jeanneteau F, Galjart N, Debant A, Boudeau J. The +TIP Navigator-1 is an actin-microtubule crosslinker that regulates axonal growth cone motility. J Cell Biol 2021; 219:151835. [PMID: 32497170 PMCID: PMC7480110 DOI: 10.1083/jcb.201905199] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 04/03/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
Microtubule (MT) plus-end tracking proteins (+TIPs) are central players in the coordination between the MT and actin cytoskeletons in growth cones (GCs) during axon guidance. The +TIP Navigator-1 (NAV1) is expressed in the developing nervous system, yet its neuronal functions remain poorly elucidated. Here, we report that NAV1 controls the dynamics and motility of the axonal GCs of cortical neurons in an EB1-dependent manner and is required for axon turning toward a gradient of netrin-1. NAV1 accumulates in F-actin-rich domains of GCs and binds actin filaments in vitro. NAV1 can also bind MTs independently of EB1 in vitro and crosslinks nonpolymerizing MT plus ends to actin filaments in axonal GCs, preventing MT depolymerization in F-actin-rich areas. Together, our findings pinpoint NAV1 as a key player in the actin-MT crosstalk that promotes MT persistence at the GC periphery and regulates GC steering. Additionally, we present data assigning to NAV1 an important role in the radial migration of cortical projection neurons in vivo.
Collapse
Affiliation(s)
- Carlos Sánchez-Huertas
- Centre de Recherche en Biologie Cellulaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique, Montpellier, France
| | - Marion Bonhomme
- Centre de Recherche en Biologie Cellulaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique, Montpellier, France
| | - Amandine Falco
- Centre de Recherche en Biologie Cellulaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique, Montpellier, France
| | - Christine Fagotto-Kaufmann
- Centre de Recherche en Biologie Cellulaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique, Montpellier, France
| | - Jeffrey van Haren
- Department of Cell Biology and Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Freddy Jeanneteau
- Institut de Génomique Fonctionnelle, University of Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Niels Galjart
- Department of Cell Biology and Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Anne Debant
- Centre de Recherche en Biologie Cellulaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique, Montpellier, France
| | - Jérôme Boudeau
- Centre de Recherche en Biologie Cellulaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique, Montpellier, France
| |
Collapse
|
15
|
Prepubertal exposure to high dose of cadmium induces hypothalamic injury through transcriptome profiling alteration and neuronal degeneration in female rats. Chem Biol Interact 2021; 337:109379. [PMID: 33453195 DOI: 10.1016/j.cbi.2021.109379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/23/2020] [Accepted: 01/10/2021] [Indexed: 11/20/2022]
Abstract
Cadmium (Cd) is a toxic metal, which seems to be crucial during the prepubertal period. Cd can destroy the structural integrity of the blood-brain barrier (BBB) and enters into the brain. Although the brain is susceptible to neurotoxicity induced by Cd, the effects of Cd on the brain, particularly hypothalamic transcriptome, are still relatively poorly understood. Therefore, we investigated the molecular effects of Cd exposure on the hypothalamus by profiling the transcriptomic response of the hypothalamus to high dose of Cd (25 mg/kg bw/day cadmium chloride (CdCl2)) during the prepubertal period in Sprague-Dawley female rats. After sequencing and annotation, differential expression analysis revealed 1656 genes that were differentially expressed that 108 of them were classified into 37 transcription factor (TF) families. According to gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, these differentially expressed genes (DEGs) were involved in different biological processes and neurological disorders including Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD), prolactin signaling pathway, PI3K/Akt signaling, and dopaminergic synapse. Five transcripts were selected for further analyses with Real-time quantitative PCR (RT-qPCR). The RT-qPCR results were mostly consistent with those from the high throughput RNA sequencing (RNA-seq). Cresyl violet staining clearly showed an increased neuronal degeneration in the dorsomedial hypothalamus (DMH) and arcuate (Arc) nuclei of the CdCl2 group. Overall, this study demonstrates that prepubertal exposure to high doses of Cd induces hypothalamic injury through transcriptome profiling alteration in female rats, which reveals the new mechanisms of pathogenesis of Cd in the hypothalamus.
Collapse
|
16
|
Alberca CD, Papale LA, Madrid A, Gianatiempo O, Cánepa ET, Alisch RS, Chertoff M. Perinatal protein malnutrition results in genome-wide disruptions of 5-hydroxymethylcytosine at regions that can be restored to control levels by an enriched environment. Epigenetics 2020; 16:1085-1101. [PMID: 33172347 DOI: 10.1080/15592294.2020.1841871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Maternal malnutrition remains one of the major adversities affecting brain development and long-term mental health outcomes, increasing the risk to develop anxiety and depressive disorders. We have previously shown that malnutrition-induced anxiety-like behaviours can be rescued by a social and sensory stimulation (enriched environment) in male mice. Here, we expand these findings to adult female mice and profiled genome-wide ventral hippocampal 5hmC levels related to malnutrition-induced anxiety-like behaviours and their rescue by an enriched environment. This approach revealed 508 differentially hydroxymethylated genes associated with protein malnutrition and that several genes (N = 34) exhibited a restored 5hmC abundance to control levels following exposure to an enriched environment, including genes involved in neuronal functions like dendrite outgrowth, axon guidance, and maintenance of neuronal circuits (e.g. Fltr3, Itsn1, Lman1, Lsamp, Nav, and Ror1) and epigenetic mechanisms (e.g. Hdac9 and Dicer1). Sequence motif predictions indicated that 5hmC may be modulating the binding of transcription factors for several of these transcripts, suggesting a regulatory role for 5hmC in response to perinatal malnutrition and exposure to an enriched environment. Together, these findings establish a role for 5hmC in early-life malnutrition and reveal genes linked to malnutrition-induced anxious behaviours that are mitigated by an enriched environment.
Collapse
Affiliation(s)
- Carolina D Alberca
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Neuroepigenetica, Buenos Aires, Argentina
| | - Ligia A Papale
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Andy Madrid
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Octavio Gianatiempo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Neuroepigenetica, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - CONICET (IQUIBICEN), Buenos Aires, Argentina
| | - Eduardo T Cánepa
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Neuroepigenetica, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - CONICET (IQUIBICEN), Buenos Aires, Argentina
| | - Reid S Alisch
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Mariela Chertoff
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Neuroepigenetica, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - CONICET (IQUIBICEN), Buenos Aires, Argentina
| |
Collapse
|
17
|
Radcliffe RA, Dowell R, Odell AT, Richmond PA, Bennett B, Larson C, Kechris K, Saba LM, Rudra P, Wen S. Systems genetics analysis of the LXS recombinant inbred mouse strains:Genetic and molecular insights into acute ethanol tolerance. PLoS One 2020; 15:e0240253. [PMID: 33095786 PMCID: PMC7584226 DOI: 10.1371/journal.pone.0240253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022] Open
Abstract
We have been using the Inbred Long- and Short-Sleep mouse strains (ILS, ISS) and a recombinant inbred panel derived from them, the LXS, to investigate the genetic underpinnings of acute ethanol tolerance which is considered to be a risk factor for alcohol use disorders (AUDs). Here, we have used RNA-seq to examine the transcriptome of whole brain in 40 of the LXS strains 8 hours after a saline or ethanol "pretreatment" as in previous behavioral studies. Approximately 1/3 of the 14,184 expressed genes were significantly heritable and many were unique to the pretreatment. Several thousand cis- and trans-eQTLs were mapped; a portion of these also were unique to pretreatment. Ethanol pretreatment caused differential expression (DE) of 1,230 genes. Gene Ontology (GO) enrichment analysis suggested involvement in numerous biological processes including astrocyte differentiation, histone acetylation, mRNA splicing, and neuron projection development. Genetic correlation analysis identified hundreds of genes that were correlated to the behaviors. GO analysis indicated that these genes are involved in gene expression, chromosome organization, and protein transport, among others. The expression profiles of the DE genes and genes correlated to AFT in the ethanol pretreatment group (AFT-Et) were found to be similar to profiles of HDAC inhibitors. Hdac1, a cis-regulated gene that is located at the peak of a previously mapped QTL for AFT-Et, was correlated to 437 genes, most of which were also correlated to AFT-Et. GO analysis of these genes identified several enriched biological process terms including neuron-neuron synaptic transmission and potassium transport. In summary, the results suggest widespread genetic effects on gene expression, including effects that are pretreatment-specific. A number of candidate genes and biological functions were identified that could be mediating the behavioral responses. The most prominent of these was Hdac1 which may be regulating genes associated with glutamatergic signaling and potassium conductance.
Collapse
Affiliation(s)
- Richard A. Radcliffe
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder CO, United States of America
| | - Robin Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States of America
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States of America
| | - Aaron T. Odell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Phillip A. Richmond
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Beth Bennett
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Colin Larson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Laura M. Saba
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Pratyaydipta Rudra
- Department of Statistics, Oklahoma State University, Stillwater, OK, United States of America
| | - Shi Wen
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| |
Collapse
|
18
|
Luo W, Wang J, Yu X, Zhou Y, Tong J. Comparative transcriptome analyses and identification of candidate genes involved in vertebral abnormality of bighead carp Hypophthalmichthys nobilis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100752. [PMID: 33126027 DOI: 10.1016/j.cbd.2020.100752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
Abstract
Body deformity occurs both in wild and farmed fishes, which is one of the most challenging problems for aquaculture industry. In most cases, such body deformities are linked to skeletal deformities. Currently, very limited information is available on skeletal deformities of farmed fish species which may be caused by genetic factor. In this study, we performed muscle and vertebra transcriptome analyses in body deformity and normality of bighead carp Hypophthalmichthys nobilis (from one meiotic gynogenesis family) using RNA-Seq. A total of 43,923 and 44,416 unigenes were predicted in muscles and vertebrae, respectively. Based on these data, we further explored the gene expression profiles in gynogenetic normal and abnormal bighead carp. No differentially expressed gene (DEG) was found in transcriptome data of muscles. Totally, 20 key DEGs were identified in transcriptome data of vertebrae, such as low density lipoprotein-related protein 2 (lrp2), bone morphogenetic protein 2B (bmp2b) and collagen alpha-1(IV) (col4a1). 12 potential pathways were also identified in vertebra transcriptome data, which were mainly involved in development, growth, cytoskeleton and energy metabolism, such as MAPK signaling pathway, regulation of actin cytoskeleton and TGF-beta signaling pathway. Results of this study will be informative for the understanding of genetic mechanisms for body shape formation and also provide potential candidate genes for selection program involved in body shape and skeletal development in H. nobilis.
Collapse
Affiliation(s)
- Weiwei Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, The Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junru Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, The Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, The Chinese Academy of Sciences, Wuhan 430072, China.
| | - Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, The Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, The Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
19
|
Heffner K, Hizal DB, Majewska NI, Kumar S, Dhara VG, Zhu J, Bowen M, Hatton D, Yerganian G, Yerganian A, O'Meally R, Cole R, Betenbaugh M. Expanded Chinese hamster organ and cell line proteomics profiling reveals tissue-specific functionalities. Sci Rep 2020; 10:15841. [PMID: 32985598 PMCID: PMC7522264 DOI: 10.1038/s41598-020-72959-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Chinese hamster ovary (CHO) cells are the predominant production vehicle for biotherapeutics. Quantitative proteomics data were obtained from two CHO cell lines (CHO-S and CHO DG44) and compared with seven Chinese hamster (Cricetulus griseus) tissues (brain, heart, kidney, liver, lung, ovary and spleen) by tandem mass tag (TMT) labeling followed by mass spectrometry, providing a comprehensive hamster tissue and cell line proteomics atlas. Of the 8470 unique proteins identified, high similarity was observed between CHO-S and CHO DG44 and included increases in proteins involved in DNA replication, cell cycle, RNA processing, and chromosome processing. Alternatively, gene ontology and pathway analysis in tissues indicated increased protein intensities related to important tissue functionalities. Proteins enriched in the brain included those involved in acidic amino acid metabolism, Golgi apparatus, and ion and phospholipid transport. The lung showed enrichment in proteins involved in BCAA catabolism, ROS metabolism, vesicle trafficking, and lipid synthesis while the ovary exhibited enrichments in extracellular matrix and adhesion proteins. The heart proteome included vasoconstriction, complement activation, and lipoprotein metabolism enrichments. These detailed comparisons of CHO cell lines and hamster tissues will enhance understanding of the relationship between proteins and tissue function and pinpoint potential pathways of biotechnological relevance for future cell engineering.
Collapse
Affiliation(s)
- Kelley Heffner
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.,AstraZeneca, Cell Culture and Fermentation Sciences, Gaithersburg, MD, USA
| | - Deniz Baycin Hizal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Natalia I Majewska
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.,AstraZeneca, Cell Culture and Fermentation Sciences, Gaithersburg, MD, USA
| | - Swetha Kumar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Venkata Gayatri Dhara
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jie Zhu
- AstraZeneca, Cell Culture and Fermentation Sciences, Gaithersburg, MD, USA
| | - Michael Bowen
- Allogene Therapeutics, Product and Process Development, South San Francisco, CA, USA
| | - Diane Hatton
- AstraZeneca, Cell Culture and Fermentation Sciences, Gaithersburg, MD, USA
| | | | | | - Robert O'Meally
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Robert Cole
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
20
|
Navarro JF, Croteau DL, Jurek A, Andrusivova Z, Yang B, Wang Y, Ogedegbe B, Riaz T, Støen M, Desler C, Rasmussen LJ, Tønjum T, Galas MC, Lundeberg J, Bohr VA. Spatial Transcriptomics Reveals Genes Associated with Dysregulated Mitochondrial Functions and Stress Signaling in Alzheimer Disease. iScience 2020; 23:101556. [PMID: 33083725 PMCID: PMC7522123 DOI: 10.1016/j.isci.2020.101556] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer disease (AD) is a devastating neurological disease associated with progressive loss of mental skills and cognitive and physical functions whose etiology is not completely understood. Here, our goal was to simultaneously uncover novel and known molecular targets in the structured layers of the hippocampus and olfactory bulbs that may contribute to early hippocampal synaptic deficits and olfactory dysfunction in AD mice. Spatially resolved transcriptomics was used to identify high-confidence genes that were differentially regulated in AD mice relative to controls. A diverse set of genes that modulate stress responses and transcription were predominant in both hippocampi and olfactory bulbs. Notably, we identify Bok, implicated in mitochondrial physiology and cell death, as a spatially downregulated gene in the hippocampus of mouse and human AD brains. In summary, we provide a rich resource of spatially differentially expressed genes, which may contribute to understanding AD pathology. Spatial transcriptomics identifies differentially expressed genes with spatial patterns Early application of spatial transcriptomics to olfactory bulbs from AD models Bok gene is spatially differentially expressed in AD mouse and patient brains Paip1 and Homer1 genes are regulated in a PolB-dependent manner
Collapse
Affiliation(s)
- José Fernández Navarro
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, 17165 Stockholm, Sweden
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224, USA
| | - Aleksandra Jurek
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, 17165 Stockholm, Sweden
| | - Zaneta Andrusivova
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, 17165 Stockholm, Sweden
| | - Beimeng Yang
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224, USA
| | - Yue Wang
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224, USA
| | - Benjamin Ogedegbe
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224, USA
| | - Tahira Riaz
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Mari Støen
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Claus Desler
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Tone Tønjum
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Marie-Christine Galas
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, 59000 Lille, France
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, 17165 Stockholm, Sweden
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224, USA.,Unit for Genome Dynamics, Department of Microbiology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| |
Collapse
|
21
|
Clarkson-Townsend DA, Everson TM, Deyssenroth MA, Burt AA, Hermetz KE, Hao K, Chen J, Marsit CJ. Maternal circadian disruption is associated with variation in placental DNA methylation. PLoS One 2019; 14:e0215745. [PMID: 31026301 PMCID: PMC6485638 DOI: 10.1371/journal.pone.0215745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Circadian disruption is a common environmental and occupational exposure with public health consequences, but not much is known about whether circadian disruption affects in utero development. We investigated whether maternal circadian disruption, using night shift work as a proxy, is associated with variations in DNA methylation patterns of placental tissue in an epigenome-wide association study (EWAS) of night shift work. Here, we compared cytosine-guanosine dinucleotide (CpG) specific methylation genome-wide of placental tissue (measured with the Illumina 450K array) from participants (n = 237) in the Rhode Island Child Health Study (RICHS) who did (n = 53) and did not (n = 184) report working the night shift, using robust linear modeling and adjusting for maternal age, pre-pregnancy smoking, infant sex, maternal adversity, and putative cell mixture. Statistical analyses were adjusted for multiple comparisons and results presented with Bonferroni or Benjamini and Hochberg (BH) adjustment for false discovery rate. Night shift work was associated with differential methylation in placental tissue, including CpG sites in the genes NAV1, SMPD1, TAPBP, CLEC16A, DIP2C, FAM172A, and PLEKHG6 (Bonferroni-adjusted p<0.05). CpG sites within NAV1, MXRA8, GABRG1, PRDM16, WNT5A, and FOXG1 exhibited the most hypomethylation, while CpG sites within TDO2, ADAMTSL3, DLX2, and SERPINA1 exhibited the most hypermethylation (BH q<0.10). Functional analysis indicated GO-terms associated with cell-cell adhesion and enriched GWAS results for psoriasis. Night shift work was associated with differential methylation of the placenta, which may have implications for fetal health and development. This is the first study to examine the epigenetic impacts of night shift exposure, as a proxy for circadian disruption, on placental methylation in humans, and, while results should be interpreted with caution, suggests circadian disruption may have epigenetic impacts.
Collapse
Affiliation(s)
- Danielle A. Clarkson-Townsend
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Todd M. Everson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Maya A. Deyssenroth
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Amber A. Burt
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Karen E. Hermetz
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Carmen J. Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
22
|
Kumari A, Panda D. Regulation of microtubule stability by centrosomal proteins. IUBMB Life 2018; 70:602-611. [DOI: 10.1002/iub.1865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Anuradha Kumari
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai India
| | - Dulal Panda
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai India
| |
Collapse
|
23
|
Yu H, You X, Li J, Zhang X, Zhang S, Jiang S, Lin X, Lin HR, Meng Z, Shi Q. A genome-wide association study on growth traits in orange-spotted grouper (Epinephelus coioides) with RAD-seq genotyping. SCIENCE CHINA-LIFE SCIENCES 2018. [DOI: 10.1007/s11427-017-9161-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Lin D, Liang Y, Jing X, Chen Y, Lei M, Zeng Z, Zhou T, Wu X, Peng S, Zheng D, Huang K, Yang L, Xiao S, Liu J, Tao E. Microarray analysis of an synthetic α-synuclein induced cellular model reveals the expression profile of long non-coding RNA in Parkinson's disease. Brain Res 2017; 1678:384-396. [PMID: 29137975 DOI: 10.1016/j.brainres.2017.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 01/10/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a new research focus that are reported to influence the pathogenetic process of neurodegenerative disorders. To uncover new disease-associated genes and their relevant mechanisms, we carried out a gene microarray analysis based on a Parkinson's disease (PD) in vitro model induced by α-synuclein oligomers. This cellular model induced by 25 μmol/L α-synuclein oligomers has been confirmed to show the stable, transmissible neurotoxicity of α-synuclein, a typical PD pathological marker. And several differentially expressed lncRNAs and mRNAs were identified in this model, such as G046036, G030771, AC009365.4, RPS14P3, CTB-11I22.1, and G007549. Subsequent ceRNA analysis determined the potential relationships between these lncRNAs and their associated mRNAs and microRNAs. The results of the present study widen our horizon of PD susceptibility genes and provide new pathways towards efficient diagnostic biomarkers and therapeutic targets for PD.
Collapse
Affiliation(s)
- D Lin
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Y Liang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - X Jing
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Y Chen
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - M Lei
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Z Zeng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - T Zhou
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - X Wu
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - S Peng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - D Zheng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - K Huang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - L Yang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - S Xiao
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - J Liu
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - E Tao
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China.
| |
Collapse
|
25
|
Lu F, Shao G, Wang Y, Guan S, Burlingame AL, Liu X, Liang X, Knox R, Ferriero DM, Jiang X. Hypoxia-ischemia modifies postsynaptic GluN2B-containing NMDA receptor complexes in the neonatal mouse brain. Exp Neurol 2017; 299:65-74. [PMID: 28993251 DOI: 10.1016/j.expneurol.2017.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/09/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023]
Abstract
The N-methyl-d-aspartate-type glutamate receptor (NMDAR)-associated multiprotein complexes are indispensable for synaptic plasticity and cognitive functions. While purification and proteomic analyses of these signaling complexes have been performed in adult rodent and human brain, much less is known about the protein composition of NMDAR complexes in the developing brain and their modifications by neonatal hypoxic-ischemic (HI) brain injury. In this study, the postsynaptic density proteins were prepared from postnatal day 9 naïve, sham-operated and HI-injured mouse cortex. The GluN2B-containing NMDAR complexes were purified by immunoprecipitation with a mouse GluN2B antibody and subjected to mass spectrometry analysis for determination of the GluN2B binding partners. A total of 71 proteins of different functional categories were identified from the naïve animals as native GluN2B-interacting partners in the developing mouse brain. Neonatal HI reshaped the postsynaptic GluN2B interactome by recruiting new proteins, including multiple kinases, into the complexes; and modifying the existing associations within 1h of reperfusion. The early responses of postsynaptic NMDAR complexes and their related signaling networks may contribute to molecular processes leading to cell survival or death, brain damage and/or neurological disorders in term infants with neonatal encephalopathy.
Collapse
Affiliation(s)
- Fuxin Lu
- Department of Pediatrics, University of California San Francisco, CA, USA
| | - Guo Shao
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | - Yongqiang Wang
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Shenheng Guan
- Department of Pharmaceutical Chemistry, University of California San Francisco, CA, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, CA, USA
| | - Xuemei Liu
- Central Laboratory, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Liang
- Central Laboratory, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Renatta Knox
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Donna M Ferriero
- Department of Pediatrics, University of California San Francisco, CA, USA; Department of Neurology, University of California San Francisco, CA, USA
| | - Xiangning Jiang
- Department of Pediatrics, University of California San Francisco, CA, USA.
| |
Collapse
|
26
|
Nagaraja S, Vitanza NA, Woo PJ, Taylor KR, Liu F, Zhang L, Li M, Meng W, Ponnuswami A, Sun W, Ma J, Hulleman E, Swigut T, Wysocka J, Tang Y, Monje M. Transcriptional Dependencies in Diffuse Intrinsic Pontine Glioma. Cancer Cell 2017; 31:635-652.e6. [PMID: 28434841 PMCID: PMC5462626 DOI: 10.1016/j.ccell.2017.03.011] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/27/2016] [Accepted: 03/22/2017] [Indexed: 12/12/2022]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a fatal pediatric cancer with limited therapeutic options. The majority of cases of DIPG exhibit a mutation in histone-3 (H3K27M) that results in oncogenic transcriptional aberrancies. We show here that DIPG is vulnerable to transcriptional disruption using bromodomain inhibition or CDK7 blockade. Targeting oncogenic transcription through either of these methods synergizes with HDAC inhibition, and DIPG cells resistant to HDAC inhibitor therapy retain sensitivity to CDK7 blockade. Identification of super-enhancers in DIPG provides insights toward the cell of origin, highlighting oligodendroglial lineage genes, and reveals unexpected mechanisms mediating tumor viability and invasion, including potassium channel function and EPH receptor signaling. The findings presented demonstrate transcriptional vulnerabilities and elucidate previously unknown mechanisms of DIPG pathobiology.
Collapse
Affiliation(s)
- Surya Nagaraja
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA
| | | | - Pamelyn J Woo
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA
| | - Kathryn R Taylor
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA
| | - Fang Liu
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, P.R. China
| | - Lei Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, P.R. China
| | - Meng Li
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, P.R. China
| | - Wei Meng
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Anitha Ponnuswami
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA
| | - Wenchao Sun
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA
| | - Jie Ma
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Esther Hulleman
- Department of Pediatric Oncology, VU University Medical Center, 1081 HV Amsterdam, the Netherlands
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University, Palo Alto, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, California 94305, USA; Department of Developmental Biology, Stanford University, Palo Alto, California 94305, USA; Howard Hughes Medical Institute, Stanford School of Medicine, Stanford University, Palo Alto, California 94305, USA
| | - Yujie Tang
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA; Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, P.R. China; Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China.
| | - Michelle Monje
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, California 94305, USA.
| |
Collapse
|
27
|
Papadopoulos T, Casemayou A, Neau E, Breuil B, Caubet C, Calise D, Thornhill BA, Bachvarova M, Belliere J, Chevalier RL, Moulos P, Bachvarov D, Buffin-Meyer B, Decramer S, Auriol FC, Bascands JL, Schanstra JP, Klein J. Systems biology combining human- and animal-data miRNA and mRNA data identifies new targets in ureteropelvic junction obstruction. BMC SYSTEMS BIOLOGY 2017; 11:31. [PMID: 28249581 PMCID: PMC5333413 DOI: 10.1186/s12918-017-0411-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/22/2017] [Indexed: 12/13/2022]
Abstract
Background Although renal fibrosis and inflammation have shown to be involved in the pathophysiology of obstructive nephropathies, molecular mechanisms underlying evolution of these processes remain undetermined. In an attempt towards improved understanding of obstructive nephropathy and improved translatability of the results to clinical practice we have developed a systems biology approach combining omics data of both human and mouse obstructive nephropathy. Results We have studied in parallel the urinary miRNome of infants with ureteropelvic junction obstruction and the kidney tissue miRNome and transcriptome of the corresponding neonatal partial unilateral ureteral obstruction (UUO) mouse model. Several hundreds of miRNAs and mRNAs displayed changed abundance during disease. Combination of miRNAs in both species and associated mRNAs let to the prioritization of five miRNAs and 35 mRNAs associated to disease. In vitro and in vivo validation identified consistent dysregulation of let-7a-5p and miR-29-3p and new potential targets, E3 ubiquitin-protein ligase (DTX4) and neuron navigator 1 (NAV1), potentially involved in fibrotic processes, in obstructive nephropathy in both human and mice that would not be identified otherwise. Conclusions Our study is the first to correlate a mouse model of neonatal partial UUO with human UPJ obstruction in a comprehensive systems biology analysis. Our data revealed let-7a and miR-29b as molecules potentially involved in the development of fibrosis in UPJ obstruction via the control of DTX4 in both man and mice that would not be identified otherwise. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0411-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Theofilos Papadopoulos
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Metabolic and Cardiovascular Diseases-I2MC, 1 avenue Jean Poulhès, B.P. 84225, 31432, Toulouse Cedex 4, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Audrey Casemayou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Metabolic and Cardiovascular Diseases-I2MC, 1 avenue Jean Poulhès, B.P. 84225, 31432, Toulouse Cedex 4, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Eric Neau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Metabolic and Cardiovascular Diseases-I2MC, 1 avenue Jean Poulhès, B.P. 84225, 31432, Toulouse Cedex 4, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Benjamin Breuil
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Metabolic and Cardiovascular Diseases-I2MC, 1 avenue Jean Poulhès, B.P. 84225, 31432, Toulouse Cedex 4, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Cécile Caubet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Metabolic and Cardiovascular Diseases-I2MC, 1 avenue Jean Poulhès, B.P. 84225, 31432, Toulouse Cedex 4, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Denis Calise
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Barbara A Thornhill
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA.,Department of Molecular Medicine, Université Laval, Québec, Canada
| | - Magdalena Bachvarova
- Department of Molecular Medicine, Université Laval, Québec, Canada.,Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec, Canada
| | - Julie Belliere
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Metabolic and Cardiovascular Diseases-I2MC, 1 avenue Jean Poulhès, B.P. 84225, 31432, Toulouse Cedex 4, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Robert L Chevalier
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA.,Department of Molecular Medicine, Université Laval, Québec, Canada
| | - Panagiotis Moulos
- HybridStat Predictive Analytics, Aiolou 19, 10551, Athens, Greece.,Institute of Molecular Biology and Genetics, Biomedical Sciences Research Center 'Alexander Fleming', Fleming 34, 16672, Vari, Greece
| | - Dimcho Bachvarov
- Department of Molecular Medicine, Université Laval, Québec, Canada.,Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec, Canada
| | - Benedicte Buffin-Meyer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Metabolic and Cardiovascular Diseases-I2MC, 1 avenue Jean Poulhès, B.P. 84225, 31432, Toulouse Cedex 4, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Stéphane Decramer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Metabolic and Cardiovascular Diseases-I2MC, 1 avenue Jean Poulhès, B.P. 84225, 31432, Toulouse Cedex 4, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,Service de Néphrologie-Médecine Interne-Hypertension Pédiatrique, CHU Toulouse, Hôpital des Enfants, 31059, Toulouse, France.,Centre De Référence des Maladies Rénales Rares du Sud Ouest (SORARE), 31059, Toulouse, France
| | - Françoise Conte Auriol
- Unité de recherche clinique pédiatrique, Module plurithémathique pédiatrique du Centre d'Investigation Clinique Toulouse 1436 Hôpital des enfants 330 avenue de grande bretagne, 31059, Toulouse, France
| | - Jean-Loup Bascands
- DéTROI-Inserm U1188-Université de La Réunion, Diabète athérothrombose Thérapies Réunion Océan Indien, CYROI, 2, rue Maxime Rivière, 97490, Sainte Clotilde, La Réunion, France
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Metabolic and Cardiovascular Diseases-I2MC, 1 avenue Jean Poulhès, B.P. 84225, 31432, Toulouse Cedex 4, France. .,Université Toulouse III Paul-Sabatier, Toulouse, France.
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Metabolic and Cardiovascular Diseases-I2MC, 1 avenue Jean Poulhès, B.P. 84225, 31432, Toulouse Cedex 4, France. .,Université Toulouse III Paul-Sabatier, Toulouse, France.
| |
Collapse
|
28
|
Voelzmann A, Hahn I, Pearce SP, Sánchez-Soriano N, Prokop A. A conceptual view at microtubule plus end dynamics in neuronal axons. Brain Res Bull 2016; 126:226-237. [PMID: 27530065 PMCID: PMC5090033 DOI: 10.1016/j.brainresbull.2016.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 12/02/2022]
Abstract
Axons are the cable-like protrusions of neurons which wire up the nervous system. Polar bundles of microtubules (MTs) constitute their structural backbones and are highways for life-sustaining transport between proximal cell bodies and distal synapses. Any morphogenetic changes of axons during development, plastic rearrangement, regeneration or degeneration depend on dynamic changes of these MT bundles. A key mechanism for implementing such changes is the coordinated polymerisation and depolymerisation at the plus ends of MTs within these bundles. To gain an understanding of how such regulation can be achieved at the cellular level, we provide here an integrated overview of the extensive knowledge we have about the molecular mechanisms regulating MT de/polymerisation. We first summarise insights gained from work in vitro, then describe the machinery which supplies the essential tubulin building blocks, the protein complexes associating with MT plus ends, and MT shaft-based mechanisms that influence plus end dynamics. We briefly summarise the contribution of MT plus end dynamics to important cellular functions in axons, and conclude by discussing the challenges and potential strategies of integrating the existing molecular knowledge into conceptual understanding at the level of axons.
Collapse
Affiliation(s)
- André Voelzmann
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Ines Hahn
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Simon P Pearce
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; The University of Manchester, School of Mathematics, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
| | - Natalia Sánchez-Soriano
- University of Liverpool, Institute of Translational Medicine, Department of Cellular and Molecular Physiology, Crown Street, Liverpool, L69 3BX, UK
| | - Andreas Prokop
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
29
|
van de Willige D, Hoogenraad CC, Akhmanova A. Microtubule plus-end tracking proteins in neuronal development. Cell Mol Life Sci 2016; 73:2053-77. [PMID: 26969328 PMCID: PMC4834103 DOI: 10.1007/s00018-016-2168-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/04/2016] [Accepted: 02/22/2016] [Indexed: 11/28/2022]
Abstract
Regulation of the microtubule cytoskeleton is of pivotal importance for neuronal development and function. One such regulatory mechanism centers on microtubule plus-end tracking proteins (+TIPs): structurally and functionally diverse regulatory factors, which can form complex macromolecular assemblies at the growing microtubule plus-ends. +TIPs modulate important properties of microtubules including their dynamics and their ability to control cell polarity, membrane transport and signaling. Several neurodevelopmental and neurodegenerative diseases are associated with mutations in +TIPs or with misregulation of these proteins. In this review, we focus on the role and regulation of +TIPs in neuronal development and associated disorders.
Collapse
Affiliation(s)
- Dieudonnée van de Willige
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Anna Akhmanova
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
30
|
Bofill-De Ros X, Santos M, Vila-Casadesús M, Villanueva E, Andreu N, Dierssen M, Fillat C. Genome-wide miR-155 and miR-802 target gene identification in the hippocampus of Ts65Dn Down syndrome mouse model by miRNA sponges. BMC Genomics 2015; 16:907. [PMID: 26546125 PMCID: PMC4636806 DOI: 10.1186/s12864-015-2160-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/27/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Down syndrome (DS) or trisomy 21 is the result of a genetic dosage imbalance that translates in a broad clinical spectrum. A major challenge in the study of DS is the identification of functional genetic elements with wide impact on phenotypic alterations. Recently, miRNAs have been recognized as major contributors to several disease conditions by acting as post-transcriptional regulators of a plethora of genes. Five chromosome 21 (HSA21) miRNAs have been found overexpressed in DS individuals and could function as key elements in the pathophysiology. Interestingly, in the trisomic Ts65Dn DS mouse model two of these miRNAs (miR-155 and miR-802) are also triplicated and overexpressed in brain. RESULTS In the current work, we interrogated the impact of miR-155 and miR-802 upregulation on the transcriptome of Ts65Dn brains. We developed a lentiviral miRNA-sponge strategy (Lv-miR155-802T) to identify in vivo relevant miR-155 and miR-802 target mRNAs. Hippocampal injections of lentiviral sponges in Ts65Dn mice normalized the expression of miR-155 and miR-802 and rescued the levels of their targets methyl-CpG-binding protein 2 gene (Mecp2), SH2 (Src homology 2)-containing inositol phosphatase-1 (Ship1) and Forkhead box protein M1 (FoxM1). Transcriptomic data of Lv-miR155-802T miRNA-sponge treated hippocampi correlated with candidate targets highlighting miRNA dosage-sensitive genes. Significant associations were found in a subset of genes (Rufy2, Nova1, Nav1, Thoc1 and Sumo3) that could be experimentally validated. CONCLUSIONS The lentiviral miRNA-sponge strategy demonstrated the genome-wide regulatory effects of miR-155 and miR-802. Furthermore, the analysis combining predicted candidates and experimental transcriptomic data proved to retrieve genes with potential significance in DS-hippocampal phenotype bridging with DS other neurological-associated diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Xavier Bofill-De Ros
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Mónica Santos
- Bioinformatics Platform, CIBERehd, Barcelona, Spain.,Present address: Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany
| | - Maria Vila-Casadesús
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036, Barcelona, Spain.,Bioinformatics Platform, CIBERehd, Barcelona, Spain
| | - Eneko Villanueva
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036, Barcelona, Spain
| | - Nuria Andreu
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Bioinformatics Platform, CIBERehd, Barcelona, Spain
| | - Mara Dierssen
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Cellular and Systems Neurobiology, Systems Biology Programme, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, Barcelona, Spain
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.
| |
Collapse
|
31
|
Bearce EA, Erdogan B, Lowery LA. TIPsy tour guides: how microtubule plus-end tracking proteins (+TIPs) facilitate axon guidance. Front Cell Neurosci 2015; 9:241. [PMID: 26175669 PMCID: PMC4485311 DOI: 10.3389/fncel.2015.00241] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/15/2015] [Indexed: 01/01/2023] Open
Abstract
The growth cone is a dynamic cytoskeletal vehicle, which drives the end of a developing axon. It serves to interpret and navigate through the complex landscape and guidance cues of the early nervous system. The growth cone’s distinctive cytoskeletal organization offers a fascinating platform to study how extracellular cues can be translated into mechanical outgrowth and turning behaviors. While many studies of cell motility highlight the importance of actin networks in signaling, adhesion, and propulsion, both seminal and emerging works in the field have highlighted a unique and necessary role for microtubules (MTs) in growth cone navigation. Here, we focus on the role of singular pioneer MTs, which extend into the growth cone periphery and are regulated by a diverse family of microtubule plus-end tracking proteins (+TIPs). These +TIPs accumulate at the dynamic ends of MTs, where they are well-positioned to encounter and respond to key signaling events downstream of guidance receptors, catalyzing immediate changes in microtubule stability and actin cross-talk, that facilitate both axonal outgrowth and turning events.
Collapse
Affiliation(s)
| | - Burcu Erdogan
- Department of Biology, Boston College Chestnut Hill, MA, USA
| | | |
Collapse
|
32
|
Proteome-wide characterization of signalling interactions in the hippocampal CA4/DG subfield of patients with Alzheimer's disease. Sci Rep 2015; 5:11138. [PMID: 26059363 PMCID: PMC4462342 DOI: 10.1038/srep11138] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/27/2015] [Indexed: 12/02/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia; however, mechanisms and biomarkers remain unclear. Here, we examined hippocampal CA4 and dentate gyrus subfields, which are less studied in the context of AD pathology, in post-mortem AD and control tissue to identify possible biomarkers. We performed mass spectrometry-based proteomic analysis combined with label-free quantification for identification of differentially expressed proteins. We identified 4,328 proteins, of which 113 showed more than 2-fold higher or lower expression in AD hippocampi than in control tissues. Five proteins were identified as putative AD biomarkers (MDH2, PCLO, TRRAP, YWHAZ, and MUC19 isoform 5) and were cross-validated by immunoblotting, selected reaction monitoring, and MALDI imaging. We also used a bioinformatics approach to examine upstream signalling interactions of the 113 regulated proteins. Five upstream signalling (IGF1, BDNF, ZAP70, MYC, and cyclosporin A) factors showed novel interactions in AD hippocampi. Taken together, these results demonstrate a novel platform that may provide new strategies for the early detection of AD and thus its diagnosis.
Collapse
|
33
|
Cohen-Dvashi H, Ben-Chetrit N, Russell R, Carvalho S, Lauriola M, Nisani S, Mancini M, Nataraj N, Kedmi M, Roth L, Köstler W, Zeisel A, Yitzhaky A, Zylberg J, Tarcic G, Eilam R, Wigelman Y, Will R, Lavi S, Porat Z, Wiemann S, Ricardo S, Schmitt F, Caldas C, Yarden Y. Navigator-3, a modulator of cell migration, may act as a suppressor of breast cancer progression. EMBO Mol Med 2015; 7:299-314. [PMID: 25678558 PMCID: PMC4364947 DOI: 10.15252/emmm.201404134] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 01/11/2015] [Accepted: 01/13/2015] [Indexed: 12/16/2022] Open
Abstract
Dissemination of primary tumor cells depends on migratory and invasive attributes. Here, we identify Navigator-3 (NAV3), a gene frequently mutated or deleted in human tumors, as a regulator of epithelial migration and invasion. Following induction by growth factors, NAV3 localizes to the plus ends of microtubules and enhances their polarized growth. Accordingly, NAV3 depletion trimmed microtubule growth, prolonged growth factor signaling, prevented apoptosis and enhanced random cell migration. Mathematical modeling suggested that NAV3-depleted cells acquire an advantage in terms of the way they explore their environment. In animal models, silencing NAV3 increased metastasis, whereas ectopic expression of the wild-type form, unlike expression of two, relatively unstable oncogenic mutants from human tumors, inhibited metastasis. Congruently, analyses of > 2,500 breast and lung cancer patients associated low NAV3 with shorter survival. We propose that NAV3 inhibits breast cancer progression by regulating microtubule dynamics, biasing directionally persistent rather than random migration, and inhibiting locomotion of initiated cells.
Collapse
Affiliation(s)
- Hadas Cohen-Dvashi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Nir Ben-Chetrit
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Roslin Russell
- Cancer Research UK Cambridge Research Institute Li Ka Shing Centre, Cambridge, UK
| | - Silvia Carvalho
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Mattia Lauriola
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Sophia Nisani
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Maicol Mancini
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Nishanth Nataraj
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Merav Kedmi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Lee Roth
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Wolfgang Köstler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Amit Zeisel
- Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Assif Yitzhaky
- Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Jacques Zylberg
- Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Gabi Tarcic
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Raya Eilam
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Wigelman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Rainer Will
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Sara Lavi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Sara Ricardo
- IPATIMUP - Institute of Molecular Pathology and Immunology, Medical Faculty of the University of Porto, Porto, Portugal
| | - Fernando Schmitt
- IPATIMUP - Institute of Molecular Pathology and Immunology, Medical Faculty of the University of Porto, Porto, Portugal
| | - Carlos Caldas
- Cancer Research UK Cambridge Research Institute Li Ka Shing Centre, Cambridge, UK
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
34
|
Abe T, Yamazaki D, Murakami S, Hiroi M, Nitta Y, Maeyama Y, Tabata T. The NAV2 homolog Sickie regulates F-actin-mediated axonal growth in Drosophila mushroom body neurons via the non-canonical Rac-Cofilin pathway. Development 2014; 141:4716-28. [DOI: 10.1242/dev.113308] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Rac-Cofilin pathway is essential for cytoskeletal remodeling to control axonal development. Rac signals through the canonical Rac-Pak-LIMK pathway to suppress Cofilin-dependent axonal growth and through a Pak-independent non-canonical pathway to promote outgrowth. Whether this non-canonical pathway converges to promote Cofilin-dependent F-actin reorganization in axonal growth remains elusive. We demonstrate that Sickie, a homolog of the human microtubule-associated protein neuron navigator 2, cell-autonomously regulates axonal growth of Drosophila mushroom body (MB) neurons via the non-canonical pathway. Sickie was prominently expressed in the newborn F-actin-rich axons of MB neurons. A sickie mutant exhibited axonal growth defects, and its phenotypes were rescued by exogenous expression of Sickie. We observed phenotypic similarities and genetic interactions among sickie and Rac-Cofilin signaling components. Using the MARCM technique, distinct F-actin and phospho-Cofilin patterns were detected in developing axons mutant for sickie and Rac-Cofilin signaling regulators. The upregulation of Cofilin function alleviated the axonal defect of the sickie mutant. Epistasis analyses revealed that Sickie suppresses the LIMK overexpression phenotype and is required for Pak-independent Rac1 and Slingshot phosphatase to counteract LIMK. We propose that Sickie regulates F-actin-mediated axonal growth via the non-canonical Rac-Cofilin pathway in a Slingshot-dependent manner.
Collapse
Affiliation(s)
- Takashi Abe
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Daisuke Yamazaki
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Satoshi Murakami
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Makoto Hiroi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Yohei Nitta
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Yuko Maeyama
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Tetsuya Tabata
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
35
|
Ferreira JG, Pereira AL, Maiato H. Microtubule plus-end tracking proteins and their roles in cell division. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:59-140. [PMID: 24529722 DOI: 10.1016/b978-0-12-800255-1.00002-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microtubules are cellular components that are required for a variety of essential processes such as cell motility, mitosis, and intracellular transport. This is possible because of the inherent dynamic properties of microtubules. Many of these properties are tightly regulated by a number of microtubule plus-end-binding proteins or +TIPs. These proteins recognize the distal end of microtubules and are thus in the right context to control microtubule dynamics. In this review, we address how microtubule dynamics are regulated by different +TIP families, focusing on how functionally diverse +TIPs spatially and temporally regulate microtubule dynamics during animal cell division.
Collapse
Affiliation(s)
- Jorge G Ferreira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal
| | - Ana L Pereira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal.
| |
Collapse
|
36
|
Dynamic Microtubules Catalyze Formation of Navigator-TRIO Complexes to Regulate Neurite Extension. Curr Biol 2014; 24:1778-85. [DOI: 10.1016/j.cub.2014.06.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 05/07/2014] [Accepted: 06/13/2014] [Indexed: 01/22/2023]
|
37
|
Pérez-Brangulí F, Mishra HK, Prots I, Havlicek S, Kohl Z, Saul D, Rummel C, Dorca-Arevalo J, Regensburger M, Graef D, Sock E, Blasi J, Groemer TW, Schlötzer-Schrehardt U, Winkler J, Winner B. Dysfunction of spatacsin leads to axonal pathology in SPG11-linked hereditary spastic paraplegia. Hum Mol Genet 2014; 23:4859-74. [PMID: 24794856 PMCID: PMC4140466 DOI: 10.1093/hmg/ddu200] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hereditary spastic paraplegias are a group of inherited motor neuron diseases characterized by progressive paraparesis and spasticity. Mutations in the spastic paraplegia gene SPG11, encoding spatacsin, cause an autosomal-recessive disease trait; however, the precise knowledge about the role of spatacsin in neurons is very limited. We for the first time analyzed the expression and function of spatacsin in human forebrain neurons derived from human pluripotent stem cells including lines from two SPG11 patients and two controls. SPG11 patients'-derived neurons exhibited downregulation of specific axonal-related genes, decreased neurite complexity and accumulation of membranous bodies within axonal processes. Altogether, these data point towards axonal pathologies in human neurons with SPG11 mutations. To further corroborate spatacsin function, we investigated human pluripotent stem cell-derived neurons and mouse cortical neurons. In these cells, spatacsin was located in axons and dendrites. It colocalized with cytoskeletal and synaptic vesicle (SV) markers and was present in synaptosomes. Knockdown of spatacsin in mouse cortical neurons evidenced that the loss of function of spatacsin leads to axonal instability by downregulation of acetylated tubulin. Finally, time-lapse assays performed in SPG11 patients'-derived neurons and spatacsin-silenced mouse neurons highlighted a reduction in the anterograde vesicle trafficking indicative of impaired axonal transport. By employing SPG11 patient-derived forebrain neurons and mouse cortical neurons, this study provides the first evidence that SPG11 is implicated in axonal maintenance and cargo trafficking. Understanding the cellular functions of spatacsin will allow deciphering mechanisms of motor cortex dysfunction in autosomal-recessive hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Francesc Pérez-Brangulí
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| | - Himanshu K Mishra
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| | - Iryna Prots
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| | - Steven Havlicek
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| | | | - Domenica Saul
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| | - Christine Rummel
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| | - Jonatan Dorca-Arevalo
- Department of Pathology and Experimental Therapeutics, Universitat de Barcelona (UB)-Campus Bellvitge, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Martin Regensburger
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| | - Daniela Graef
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| | - Elisabeth Sock
- Institute of Biochemistry Emil-Fischer Zentrum, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Fahrstrasse 17, Erlangen 91054, Germany
| | - Juan Blasi
- Department of Pathology and Experimental Therapeutics, Universitat de Barcelona (UB)-Campus Bellvitge, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Schwabachanlage 6, Erlangen 91054, Germany
| | | | - Beate Winner
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| |
Collapse
|
38
|
14-3-3ε and NAV2 interact to regulate neurite outgrowth and axon elongation. Arch Biochem Biophys 2013; 540:94-100. [PMID: 24161943 DOI: 10.1016/j.abb.2013.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/30/2013] [Accepted: 10/15/2013] [Indexed: 02/02/2023]
Abstract
Neuron navigator 2 (NAV2) is required for all-trans retinoic acid (atRA) to induce neurite outgrowth in human neuroblastoma cells. Further, ectopic overexpression of full-length human NAV2 rescues an axonal elongation defect in the Caenorhabditis elegans unc-53 (NAV2 ortholog) mutant. Using a region of NAV2 that independently associates with the cytoskeleton as bait in a yeast-two-hybrid screen, 14-3-3ε was identified as a novel NAV2 interacting partner. Amino acids 761-960 of NAV2 are sufficient to confer a positive interaction with 14-3-3ε as evidenced by a two-hybrid screen and co-immunoprecipitation assay. Knockdown of 14-3-3ε leads to a decrease in atRA-mediated neurite outgrowth, similar to the elongation defects observed when NAV2 is depleted or mutated. Likewise, posterior lateral microtubule (PLM) defects in C. elegans fed unc-53 RNAi are similar to those fed ftt-2 (14-3-3 homolog) RNAi. The discovery of an interaction between NAV2 and 14-3-3ε could provide insight into the mechanism by which NAV2 participates in promoting cell migration and neuronal elongation.
Collapse
|
39
|
Pax6 interactions with chromatin and identification of its novel direct target genes in lens and forebrain. PLoS One 2013; 8:e54507. [PMID: 23342162 PMCID: PMC3544819 DOI: 10.1371/journal.pone.0054507] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 12/12/2012] [Indexed: 01/22/2023] Open
Abstract
Pax6 encodes a specific DNA-binding transcription factor that regulates the development of multiple organs, including the eye, brain and pancreas. Previous studies have shown that Pax6 regulates the entire process of ocular lens development. In the developing forebrain, Pax6 is expressed in ventricular zone precursor cells and in specific populations of neurons; absence of Pax6 results in disrupted cell proliferation and cell fate specification in telencephalon. In the pancreas, Pax6 is essential for the differentiation of α-, β- and δ-islet cells. To elucidate molecular roles of Pax6, chromatin immunoprecipitation experiments combined with high-density oligonucleotide array hybridizations (ChIP-chip) were performed using three distinct sources of chromatin (lens, forebrain and β-cells). ChIP-chip studies, performed as biological triplicates, identified a total of 5,260 promoters occupied by Pax6. 1,001 (133) of these promoter regions were shared between at least two (three) distinct chromatin sources, respectively. In lens chromatin, 2,335 promoters were bound by Pax6. RNA expression profiling from Pax6+/− lenses combined with in vivo Pax6-binding data yielded 76 putative Pax6-direct targets, including the Gaa, Isl1, Kif1b, Mtmr2, Pcsk1n, and Snca genes. RNA and ChIP data were validated for all these genes. In lens cells, reporter assays established Kib1b and Snca as Pax6 activated and repressed genes, respectively. In situ hybridization revealed reduced expression of these genes in E14 cerebral cortex. Moreover, we examined differentially expressed transcripts between E9.5 wild type and Pax6−/− lens placodes that suggested Efnb2, Fat4, Has2, Nav1, and Trpm3 as novel Pax6-direct targets. Collectively, the present studies, through the identification of Pax6-direct target genes, provide novel insights into the molecular mechanisms of Pax6 gene control during mouse embryonic development. In addition, the present data demonstrate that Pax6 interacts preferentially with promoter regions in a tissue-specific fashion. Nevertheless, nearly 20% of the regions identified are accessible to Pax6 in multiple tissues.
Collapse
|
40
|
Characterization of the novel protein P9TLDR (temporal lobe down-regulated) with a brain-site-specific gene expression modality in Alzheimer's disease brain. FEBS Lett 2012; 586:4357-61. [PMID: 23159938 DOI: 10.1016/j.febslet.2012.10.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/05/2012] [Accepted: 10/29/2012] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disorder characterized by irreversible loss of higher cognitive functions. The disease is characterized by the presence of amyloid plaques and neurofibrillary tangles (NFT). In the current study we isolated from an intra-cerebral brain-site-specific (AD temporal lobe vs. AD occipital lobe) polymerase chain reaction (PCR)-select cDNA suppression subtractive hybridization (PCR-cDNA-SSH) expression analysis the novel gene P9TLDR, potentially a microtubule-associated protein involved in neuronal migration, with an altered expression pattern: down-regulated in the temporal lobe cortex of early stage AD brains. In an in vitro AD-related cell model, amyloid-β peptide (Aβ)-treated neurons, reduced P9TLDR expression correlated with increased tau protein phosphorylation. In conclusion, interference with the P9TLDR signalling pathways might be a therapeutic strategy for the treatment of AD.
Collapse
|
41
|
Katidou M, Tavernarakis N, Karagogeos D. The contactin RIG-6 mediates neuronal and non-neuronal cell migration in Caenorhabditis elegans. Dev Biol 2012; 373:184-95. [PMID: 23123963 DOI: 10.1016/j.ydbio.2012.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 10/22/2012] [Accepted: 10/25/2012] [Indexed: 12/20/2022]
Abstract
Cell adhesion molecules of the Immunoglobulin Superfamily (IgCAMs) are key factors in nervous system formation. The contactin subgroup of IgCAMs consists of GPI-anchored glycoproteins implicated in axon outgrowth, guidance, fasciculation and neuronal differentiation. The mechanism by which contactins facilitate neuronal development is not understood. To gain insight into the function of contactins, we characterized RIG-6, the sole contactin of Caenorhabditis elegans. We show that the contactin RIG-6 is involved in excretory cell (EC) tubular elongation. We also show that RIG-6 mediates axon outgrowth and guidance along both the anterior-posterior and dorso-ventral axis, during C. elegans development. We find that optimal RIG-6 expression is critical for accurate mechanosensory neuron axon elongation and ventral nerve cord architecture. In addition, our data suggest that the cytoplasmic UNC-53/NAV2 proteins may contribute to relay signaling via contactins.
Collapse
Affiliation(s)
- Markella Katidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | | | | |
Collapse
|
42
|
Carlsson E, Krohn K, Ovaska K, Lindberg P, Häyry V, Maliniemi P, Lintulahti A, Korja M, Kivisaari R, Hussein S, Sarna S, Niiranen K, Hautaniemi S, Haapasalo H, Ranki A. Neuron navigator 3 alterations in nervous system tumors associate with tumor malignancy grade and prognosis. Genes Chromosomes Cancer 2012; 52:191-201. [DOI: 10.1002/gcc.22019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/18/2012] [Indexed: 01/03/2023] Open
Affiliation(s)
- Emilia Carlsson
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Central Hospital, HUS FI‐00029, Finland
| | - Kai Krohn
- Department of Pathology, Centre for Laboratory Medicine, Tampere FI‐33521, Finland
- CliniXion Oy, Tampere FI‐33520, Finland
| | - Kristian Ovaska
- Computational Systems Biology Laboratory, Institute of Biomedicine and Genome‐Scale Biology Research Program, University of Helsinki, Finland
| | | | - Valtteri Häyry
- Department of Biochemistry and Developmental Biology, Institute of Biomedicine, University of Helsinki, Helsinki FI‐00014, Finland
| | - Pilvi Maliniemi
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Central Hospital, HUS FI‐00029, Finland
| | - Anu Lintulahti
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Central Hospital, HUS FI‐00029, Finland
| | - Miikka Korja
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki FI‐00029, Finland
- Department of Medical Biochemistry and Genetics, University of Turku, Turku FI‐20520, Finland
| | - Riku Kivisaari
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki FI‐00029, Finland
| | - Samer Hussein
- Department of Biochemistry and Developmental Biology, Institute of Biomedicine, University of Helsinki, Helsinki FI‐00014, Finland
| | - Seppo Sarna
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki FI‐00014, Finland
| | - Kirsi Niiranen
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Central Hospital, HUS FI‐00029, Finland
| | - Sampsa Hautaniemi
- Computational Systems Biology Laboratory, Institute of Biomedicine and Genome‐Scale Biology Research Program, University of Helsinki, Finland
| | - Hannu Haapasalo
- Department of Pathology, Centre for Laboratory Medicine, Tampere FI‐33521, Finland
| | - Annamari Ranki
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Central Hospital, HUS FI‐00029, Finland
| |
Collapse
|
43
|
Gruber HE, Hoelscher GL, Ingram JA, Hanley EN. Genome-wide analysis of pain-, nerve- and neurotrophin -related gene expression in the degenerating human annulus. Mol Pain 2012; 8:63. [PMID: 22963171 PMCID: PMC3495673 DOI: 10.1186/1744-8069-8-63] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/18/2012] [Indexed: 01/22/2023] Open
Abstract
Background In spite of its high clinical relevance, the relationship between disc degeneration and low back pain is still not well understood. Recent studies have shown that genome-wide gene expression studies utilizing ontology searches provide an efficient and valuable methodology for identification of clinically relevant genes. Here we use this approach in analysis of pain-, nerve-, and neurotrophin-related gene expression patterns in specimens of human disc tissue. Control, non-herniated clinical, and herniated clinical specimens of human annulus tissue were studied following Institutional Review Board approval. Results Analyses were performed on more generated (Thompson grade IV and V) discs vs. less degenerated discs (grades I-III), on surgically operated discs vs. control discs, and on herniated vs. control discs. Analyses of more degenerated vs. less degenerated discs identified significant upregulation of well-recognized pain-related genes (bradykinin receptor B1, calcitonin gene-related peptide and catechol-0-methyltransferase). Nerve growth factor was significantly upregulated in surgical vs. control and in herniated vs. control discs. All three analyses also found significant changes in numerous proinflammatory cytokine- and chemokine-related genes. Nerve, neurotrophin and pain-ontology searches identified many matrix, signaling and functional genes which have known importance in the disc. Immunohistochemistry was utilized to confirm the presence of calcitonin gene-related peptide, catechol-0-methyltransferase and bradykinin receptor B1 at the protein level in the human annulus. Conclusions Findings point to the utility of microarray analyses in identification of pain-, neurotrophin and nerve-related genes in the disc, and point to the importance of future work exploring functional interactions between nerve and disc cells in vitro and in vivo. Nerve, pain and neurotrophin ontology searches identified numerous changes in proinflammatory cytokines and chemokines which also have significant relevance to disc biology. Since the degenerating human disc is primarily an avascular tissue site into which disc cells have contributed high levels of proinflammatory cytokines, these substances are not cleared from the tissue and remain there over time. We hypothesize that as nerves grow into the human annulus, they encounter a proinflammatory cytokine-rich milieu which may sensitize nociceptors and exacerbate pain production.
Collapse
Affiliation(s)
- Helen E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, NC 28232, USA.
| | | | | | | |
Collapse
|
44
|
Kumar P, Wittmann T. +TIPs: SxIPping along microtubule ends. Trends Cell Biol 2012; 22:418-28. [PMID: 22748381 DOI: 10.1016/j.tcb.2012.05.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/24/2012] [Accepted: 05/25/2012] [Indexed: 01/08/2023]
Abstract
+TIPs are a heterogeneous class of proteins that specifically bind to growing microtubule ends. Because dynamic microtubules are essential for many intracellular processes, +TIPs play important roles in regulating microtubule dynamics and microtubule interactions with other intracellular structures. End-binding proteins (EBs) recognize a structural cap at growing microtubule ends, and have emerged as central adaptors that mediate microtubule plus-end tracking of potentially all other +TIPs. The majority of these +TIPs bind to EBs through a short hydrophobic (S/T)x(I/L)P sequence motif (SxIP) and surrounding electrostatic interactions. These recent discoveries have resulted in a rapid expansion of the number of possible +TIPs. In this review, we outline our current understanding of the molecular mechanism of plus-end tracking and provide an overview of SxIP-recruited +TIPs.
Collapse
Affiliation(s)
- Praveen Kumar
- Department of Cell and Tissue Biology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | | |
Collapse
|
45
|
Buey RM, Sen I, Kortt O, Mohan R, Gfeller D, Veprintsev D, Kretzschmar I, Scheuermann J, Neri D, Zoete V, Michielin O, de Pereda JM, Akhmanova A, Volkmer R, Steinmetz MO. Sequence determinants of a microtubule tip localization signal (MtLS). J Biol Chem 2012; 287:28227-42. [PMID: 22696216 DOI: 10.1074/jbc.m112.373928] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microtubule plus-end-tracking proteins (+TIPs) specifically localize to the growing plus-ends of microtubules to regulate microtubule dynamics and functions. A large group of +TIPs contain a short linear motif, SXIP, which is essential for them to bind to end-binding proteins (EBs) and target microtubule ends. The SXIP sequence site thus acts as a widespread microtubule tip localization signal (MtLS). Here we have analyzed the sequence-function relationship of a canonical MtLS. Using synthetic peptide arrays on membrane supports, we identified the residue preferences at each amino acid position of the SXIP motif and its surrounding sequence with respect to EB binding. We further developed an assay based on fluorescence polarization to assess the mechanism of the EB-SXIP interaction and to correlate EB binding and microtubule tip tracking of MtLS sequences from different +TIPs. Finally, we investigated the role of phosphorylation in regulating the EB-SXIP interaction. Together, our results define the sequence determinants of a canonical MtLS and provide the experimental data for bioinformatics approaches to carry out genome-wide predictions of novel +TIPs in multiple organisms.
Collapse
Affiliation(s)
- Rubén M Buey
- Laboratory of Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Oskvig DB, Elkahloun AG, Johnson KR, Phillips TM, Herkenham M. Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response. Brain Behav Immun 2012; 26:623-34. [PMID: 22310921 PMCID: PMC3285385 DOI: 10.1016/j.bbi.2012.01.015] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/12/2012] [Accepted: 01/20/2012] [Indexed: 01/07/2023] Open
Abstract
Maternal immune activation (MIA) is a risk factor for the development of schizophrenia and autism. Infections during pregnancy activate the mother's immune system and alter the fetal environment, with consequential effects on CNS function and behavior in the offspring, but the cellular and molecular links between infection-induced altered fetal development and risk for neuropsychiatric disorders are unknown. We investigated the immunological, molecular, and behavioral effects of MIA in the offspring of pregnant Sprague-Dawley rats given an intraperitoneal (0.25 mg/kg) injection of lipopolysaccharide (LPS) on gestational day 15. LPS significantly elevated pro-inflammatory cytokine levels in maternal serum, amniotic fluid, and fetal brain at 4 h, and levels decreased but remained elevated at 24 h. Offspring born to LPS-treated dams exhibited reduced social preference and exploration behaviors as juveniles and young adults. Whole genome microarray analysis of the fetal brain at 4 h post maternal LPS was performed to elucidate the possible molecular mechanisms by which MIA affects the fetal brain. We observed dysregulation of 3285 genes in restricted functional categories, with increased mRNA expression of cellular stress and cell death genes and reduced expression of developmentally-regulated and brain-specific genes, specifically those that regulate neuronal migration of GABAergic interneurons, including the Distal-less (Dlx) family of transcription factors required for tangential migration from progenitor pools within the ganglionic eminences into the cerebral cortex. Our results provide a novel mechanism by which MIA induces the widespread down-regulation of critical neurodevelopmental genes, including those previously associated with autism.
Collapse
Affiliation(s)
- Devon B. Oskvig
- Section on Functional Neuroanatomy, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Abdel G. Elkahloun
- Division of Intramural Research Programs Microarray Core Facility, NIH, Bethesda, MD, 20892 USA
| | - Kory R. Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892 USA
| | - Terry M. Phillips
- Ultramicro Immunodiagnostics Section, Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD, 20892, USA
| | - Miles Herkenham
- Section on Functional Neuroanatomy, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA,Corresponding Author: Address: Bldg. 35, Rm. 1C913, Bethesda, MD 20892-3724, USA. (M. Herkenham)
| |
Collapse
|
47
|
Olson HE, Shen Y, Poduri A, Gorman MP, Dies KA, Robbins M, Hundley R, Wu B, Sahin M. Micro-duplications of 1q32.1 associated with neurodevelopmental delay. Eur J Med Genet 2012; 55:145-50. [PMID: 22266072 DOI: 10.1016/j.ejmg.2011.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/26/2011] [Indexed: 11/30/2022]
Abstract
Distal partial trisomies involving the region 1q32 have been associated with dysmorphic features and developmental delay [1-11]. To further define the critical region for developmental delay and to investigate the genotype-phenotype association of 1q trisomy syndrome, we report two patients with much smaller (3 Mb and 3.5 Mb in size) trisomic regions on 1q32.1. The two micro-duplications largely overlap and both patients exhibited cognitive and motor delays. Case 1 is a 5-year-old boy with global developmental delay, behavioral problems, pervasive developmental disorder not otherwise specified (PDD-NOS), staring spells, headaches, and paresthesias. Case 2 is a 14-year-old girl with seizures, cognitive and motor difficulties, and minor dysmorphic features. These two cases suggest that 1q32.1 region on distal arm of 1q and genes involved are critical to cognitive and motor development in a gene dosage sensitive manner and that other neurological features are variable within this syndrome.
Collapse
Affiliation(s)
- H E Olson
- Department of Neurology, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Marcus-Gueret N, Schmidt KL, Stringham EG. Distinct cell guidance pathways controlled by the Rac and Rho GEF domains of UNC-73/TRIO in Caenorhabditis elegans. Genetics 2012; 190:129-42. [PMID: 21996675 PMCID: PMC3249371 DOI: 10.1534/genetics.111.134429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 09/27/2011] [Indexed: 11/18/2022] Open
Abstract
The cytoskeleton regulator UNC-53/NAV2 is required for both the anterior and posterior outgrowth of several neurons as well as that of the excretory cell while the kinesin-like motor VAB-8 is essential for most posteriorly directed migrations in Caenorhabditis elegans. Null mutations in either unc-53 or vab-8 result in reduced posterior excretory canal outgrowth, while double null mutants display an enhanced canal extension defect, suggesting the genes act in separate pathways to control this posteriorly directed outgrowth. Genetic analysis of putative interactors of UNC-53 or VAB-8, and cell-specific rescue experiments suggest that VAB-8, SAX-3/ROBO, SLT-1/Slit, and EVA-1 are functioning together in the outgrowth of the excretory canals, while UNC-53 appears to function in a parallel pathway with UNC-71/ADAM. The known VAB-8 interactor, the Rac/Rho GEF UNC-73/TRIO operates in both pathways, as isoform specific alleles exhibit enhancement of the phenotype in double-mutant combination with either unc-53 or vab-8. On the basis of these results, we propose a bipartite model for UNC-73/TRIO activity in excretory canal extension: a cell autonomous function that is mediated by the Rho-specific GEF domain of the UNC-73E isoform in conjunction with UNC-53 and UNC-71 and a cell nonautonomous function that is mediated by the Rac-specific GEF domain of the UNC-73B isoform, through partnering with VAB-8 and the receptors SAX-3 and EVA-1.
Collapse
Affiliation(s)
- Nancy Marcus-Gueret
- Department of Biology, Trinity Western University, Langley, BC V2Y 1Y1, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Kristopher L. Schmidt
- Department of Biology, Trinity Western University, Langley, BC V2Y 1Y1, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Eve G. Stringham
- Department of Biology, Trinity Western University, Langley, BC V2Y 1Y1, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
49
|
Maliniemi P, Carlsson E, Kaukola A, Ovaska K, Niiranen K, Saksela O, Jeskanen L, Hautaniemi S, Ranki A. NAV3 copy number changes and target genes in basal and squamous cell cancers. Exp Dermatol 2011; 20:926-31. [DOI: 10.1111/j.1600-0625.2011.01358.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Messenger RNA and microRNA profiling during early mouse EB formation. Gene Expr Patterns 2011; 11:334-44. [PMID: 21440681 DOI: 10.1016/j.gep.2011.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 02/21/2011] [Accepted: 03/14/2011] [Indexed: 11/22/2022]
Abstract
Embryonic stem (ES) cells can be induced to differentiate into embryoid bodies (EBs) in a synchronised manner when plated at a fixed density in hanging drops. This differentiation procedure mimics post-implantation development in mouse embryos and also serves as the starting point of protocols used in differentiation of stem cells into various lineages. Currently, little is known about the potential influence of microRNAs (miRNAs) on mRNA expression patterns during EB formation. We have measured mRNA and miRNA expression in developing EBs plated in hanging drops until day 3, when discrete structural changes occur involving their differentiation into three germ layers. We observe significant alterations in mRNA and miRNA expression profiles during this early developmental time frame, in particular of genes involved in germ layer formation, stem cell pluripotency and nervous system development. Computational target prediction using Pictar, TargetScan and miRBase Targets reveals an enrichment of binding sites corresponding to differentially and highly expressed miRNAs in stem cell pluripotency genes and a neuroectodermal marker, Nes. We also find that members of let-7 family are significantly down-regulated at day 3 and the corresponding up-regulated genes are enriched in let-7 seed sequences. These results depict how miRNA expression changes may affect the expression of mRNAs involved in EB formation on a genome-wide scale. Understanding the regulatory effects of miRNAs during EB formation may enable more efficient derivation of different cell types in culture.
Collapse
|