1
|
Bokulić E, Medenica T, Bobić-Rasonja M, Milković-Periša M, Jovanov-Milošević N, Judaš M, Sedmak G. The expression of transcription factors in the human fetal subthalamic nucleus suggests its origin from the first hypothalamic prosomere. Brain Struct Funct 2025; 230:33. [PMID: 39831906 DOI: 10.1007/s00429-025-02893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
In this study, we analyzed the spatio-temporal pattern of expression of specific transcription factors (PITX2, FOXA1, BARHL1, FOXP1, FOXP2) in the human fetal subthalamic nucleus and its neighboring structures from 11 postconceptional weeks (PCW) to 3 postnatal months. We found that all analyzed transcription factors are expressed already during the early fetal period (at 11 PCW). Both FOXP1- and FOXP2-immunoreactive cells were found in the subthalamic nucleus as well as in the striatum, thalamus, reticular nucleus, but not in the zona incerta. FOXP2-ir cells were also found in the lateral hypothalamic-supramamillary area (LHA-SMA) and internal pallidal segment.On the other hand, PITX2, FOXA1 and BARHL1 were expressed exclusively in the subthalamic nucleus and LHA-SMA, from 11 PCW until the birth, the only exception being gradual loss of BARHL1 expression in the LHA-SMA during the late fetal period.Our findings present the first evidence in the human fetal brain that neurons of the subthalamic nucleus do not originate in the diencephalon, as was proposed by classical histological studies, but instead share a common hypothalamic (hp1 prosomere) origin with neurons of the LHA-SMA group, as proposed by the prosomeric model of brain development.
Collapse
Affiliation(s)
- Ema Bokulić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical, and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Tila Medenica
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical, and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mihaela Bobić-Rasonja
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical, and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marija Milković-Periša
- Department of Pathology and Cytology, School of Medicine, University of Zagreb, University Hospital Center Zagreb, Zagreb, Croatia
| | - Nataša Jovanov-Milošević
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical, and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Miloš Judaš
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical, and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
- Scientific Centre of Excellence for Basic, Clinical, and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
2
|
Manning E, Chinnaiya K, Furley C, Kim DW, Blackshaw S, Placzek M, Place E. Resolving forebrain developmental organisation by analysis of differential growth patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632351. [PMID: 39829908 PMCID: PMC11741420 DOI: 10.1101/2025.01.10.632351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The forebrain is the most complex region of the vertebrate CNS, and its developmental organisation is controversial. We fate-mapped the embryonic chick forebrain using lipophilic dyes and Cre-recombination lineage tracing, and built a 4D model of brain growth. We reveal modular patterns of anisotropic growth, ascribed to progenitor regions through multiplex HCR. Morphogenesis is dominated by directional growth towards the eye, more isometric expansion of the prethalamus and dorsal telencephalon, and anterior movement of ventral cells into the hypothalamus. Fate conversion experiments in chick and comparative gene expression analysis in chick and mouse support placement of the hypothalamus ventral to structures extending from the telencephalon up to and including the zona limitans intrathalamica (ZLI), with the dorsoventral axis becoming distorted at the base of the ZLI. Our findings challenge the widely accepted prosomere model of forebrain organisation, and we propose an alternative 'tripartite hypothalamus' model.
Collapse
|
3
|
Ricci A, Rubino E, Serra GP, Wallén-Mackenzie Å. Concerning neuromodulation as treatment of neurological and neuropsychiatric disorder: Insights gained from selective targeting of the subthalamic nucleus, para-subthalamic nucleus and zona incerta in rodents. Neuropharmacology 2024; 256:110003. [PMID: 38789078 DOI: 10.1016/j.neuropharm.2024.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Neuromodulation such as deep brain stimulation (DBS) is advancing as a clinical intervention in several neurological and neuropsychiatric disorders, including Parkinson's disease, dystonia, tremor, and obsessive-compulsive disorder (OCD) for which DBS is already applied to alleviate severely afflicted individuals of symptoms. Tourette syndrome and drug addiction are two additional disorders for which DBS is in trial or proposed as treatment. However, some major remaining obstacles prevent this intervention from reaching its full therapeutic potential. Side-effects have been reported, and not all DBS-treated individuals are relieved of their symptoms. One major target area for DBS electrodes is the subthalamic nucleus (STN) which plays important roles in motor, affective and associative functions, with impact on for example movement, motivation, impulsivity, compulsivity, as well as both reward and aversion. The multifunctionality of the STN is complex. Decoding the anatomical-functional organization of the STN could enhance strategic targeting in human patients. The STN is located in close proximity to zona incerta (ZI) and the para-subthalamic nucleus (pSTN). Together, the STN, pSTN and ZI form a highly heterogeneous and clinically important brain area. Rodent-based experimental studies, including opto- and chemogenetics as well as viral-genetic tract tracings, provide unique insight into complex neuronal circuitries and their impact on behavior with high spatial and temporal precision. This research field has advanced tremendously over the past few years. Here, we provide an inclusive review of current literature in the pre-clinical research fields centered around STN, pSTN and ZI in laboratory mice and rats; the three highly heterogeneous and enigmatic structures brought together in the context of relevance for treatment strategies. Specific emphasis is placed on methods of manipulation and behavioral impact.
Collapse
Affiliation(s)
- Alessia Ricci
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Eleonora Rubino
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Gian Pietro Serra
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Åsa Wallén-Mackenzie
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
4
|
Prasad AA, Wallén-Mackenzie Å. Architecture of the subthalamic nucleus. Commun Biol 2024; 7:78. [PMID: 38200143 PMCID: PMC10782020 DOI: 10.1038/s42003-023-05691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
The subthalamic nucleus (STN) is a major neuromodulation target for the alleviation of neurological and neuropsychiatric symptoms using deep brain stimulation (DBS). STN-DBS is today applied as treatment in Parkinson´s disease, dystonia, essential tremor, and obsessive-compulsive disorder (OCD). STN-DBS also shows promise as a treatment for refractory Tourette syndrome. However, the internal organization of the STN has remained elusive and challenges researchers and clinicians: How can this small brain structure engage in the multitude of functions that renders it a key hub for therapeutic intervention of a variety of brain disorders ranging from motor to affective to cognitive? Based on recent gene expression studies of the STN, a comprehensive view of the anatomical and cellular organization, including revelations of spatio-molecular heterogeneity, is now possible to outline. In this review, we focus attention to the neurobiological architecture of the STN with specific emphasis on molecular patterns discovered within this complex brain area. Studies from human, non-human primate, and rodent brains now reveal anatomically defined distribution of specific molecular markers. Together their spatial patterns indicate a heterogeneous molecular architecture within the STN. Considering the translational capacity of targeting the STN in severe brain disorders, the addition of molecular profiling of the STN will allow for advancement in precision of clinical STN-based interventions.
Collapse
Affiliation(s)
- Asheeta A Prasad
- University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia.
| | | |
Collapse
|
5
|
Serra GP, Guillaumin A, Vlcek B, Delgado-Zabalza L, Ricci A, Rubino E, Dumas S, Baufreton J, Georges F, Wallén-Mackenzie Å. A role for the subthalamic nucleus in aversive learning. Cell Rep 2023; 42:113328. [PMID: 37925641 DOI: 10.1016/j.celrep.2023.113328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/28/2023] [Accepted: 10/08/2023] [Indexed: 11/07/2023] Open
Abstract
The subthalamic nucleus (STN) is critical for behavioral control; its dysregulation consequently correlated with neurological and neuropsychiatric disorders, including Parkinson's disease. Deep brain stimulation (DBS) targeting the STN successfully alleviates parkinsonian motor symptoms. However, low mood and depression are affective side effects. STN is adjoined with para-STN, associated with appetitive and aversive behavior. DBS aimed at STN might unintentionally modulate para-STN, causing aversion. Alternatively, the STN mediates aversion. To investigate causality between STN and aversion, affective behavior is addressed using optogenetics in mice. Selective promoters allow dissociation of STN (e.g., Pitx2) vs. para-STN (Tac1). Acute photostimulation results in aversion via both STN and para-STN. However, only STN stimulation-paired cues cause conditioned avoidance and only STN stimulation interrupts on-going sugar self-administration. Electrophysiological recordings identify post-synaptic responses in pallidal neurons, and selective photostimulation of STN terminals in the ventral pallidum replicates STN-induced aversion. Identifying STN as a source of aversive learning contributes neurobiological underpinnings to emotional affect.
Collapse
Affiliation(s)
- Gian Pietro Serra
- Uppsala University, Department of Organism Biology, 752 36 Uppsala, Sweden
| | - Adriane Guillaumin
- Uppsala University, Department of Organism Biology, 752 36 Uppsala, Sweden; University of Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | - Bianca Vlcek
- Uppsala University, Department of Organism Biology, 752 36 Uppsala, Sweden
| | | | - Alessia Ricci
- Uppsala University, Department of Organism Biology, 752 36 Uppsala, Sweden
| | - Eleonora Rubino
- Uppsala University, Department of Organism Biology, 752 36 Uppsala, Sweden
| | | | - Jérôme Baufreton
- University of Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | - François Georges
- University of Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | | |
Collapse
|
6
|
López-González L, Martínez-de-la-Torre M, Puelles L. Populational heterogeneity and partial migratory origin of the ventromedial hypothalamic nucleus: genoarchitectonic analysis in the mouse. Brain Struct Funct 2023; 228:537-576. [PMID: 36598560 PMCID: PMC9944059 DOI: 10.1007/s00429-022-02601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/27/2022] [Indexed: 01/05/2023]
Abstract
The ventromedial hypothalamic nucleus (VMH) is one of the most distinctive hypothalamic tuberal structures, subject of numerous classic and modern functional studies. Commonly, the adult VMH has been divided in several portions, attending to differences in cell aggregation, cell type, connectivity, and function. Consensus VMH partitions in the literature comprise the dorsomedial (VMHdm), and ventrolateral (VMHvl) subnuclei, which are separated by an intermediate or central (VMHc) population (topographic names based on the columnar axis). However, some recent transcriptome analyses have identified a higher number of different cell types in the VMH, suggesting additional subdivisions, as well as the possibility of separate origins. We offer a topologic and genoarchitectonic developmental study of the mouse VMH complex using the prosomeric axis as a reference. We analyzed genes labeling specific VMH subpopulations, with particular focus upon the Nkx2.2 transcription factor, a marker of the alar-basal boundary territory of the prosencephalon, from where some cells seem to migrate dorsoventrally into VMH. We also identified separate neuroepithelial origins of a Nr2f1-positive subpopulation, and a new Six3-positive component, as well as subtle differences in origin of Nr5a1 positive versus Nkx2.2-positive cell populations entering dorsoventrally the VMH. Several of these migrating cell types are born in the dorsal tuberal domain and translocate ventralwards to reach the intermediate tuberal domain, where the adult VMH mass is located in the adult. This work provides a more detailed area map on the intrinsic organization of the postmigratory VMH complex, helpful for deeper functional studies of this basal hypothalamic entity.
Collapse
Affiliation(s)
- Lara López-González
- grid.10586.3a0000 0001 2287 8496University of Murcia, IMIB-Arrixaca Institute of Biomedical Research, El Palmar, 30120 Murcia, Spain
| | - Margaret Martínez-de-la-Torre
- grid.10586.3a0000 0001 2287 8496University of Murcia, IMIB-Arrixaca Institute of Biomedical Research, El Palmar, 30120 Murcia, Spain
| | - Luis Puelles
- University of Murcia, IMIB-Arrixaca Institute of Biomedical Research, El Palmar, 30120, Murcia, Spain.
| |
Collapse
|
7
|
Diaz C, de la Torre MM, Rubenstein JLR, Puelles L. Dorsoventral Arrangement of Lateral Hypothalamus Populations in the Mouse Hypothalamus: a Prosomeric Genoarchitectonic Analysis. Mol Neurobiol 2023; 60:687-731. [PMID: 36357614 PMCID: PMC9849321 DOI: 10.1007/s12035-022-03043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022]
Abstract
The lateral hypothalamus (LH) has a heterogeneous cytoarchitectonic organization that has not been elucidated in detail. In this work, we analyzed within the framework of the prosomeric model the differential expression pattern of 59 molecular markers along the ventrodorsal dimension of the medial forebrain bundle in the mouse, considering basal and alar plate subregions of the LH. We found five basal (LH1-LH5) and four alar (LH6-LH9) molecularly distinct sectors of the LH with neuronal cell groups that correlate in topography with previously postulated alar and basal hypothalamic progenitor domains. Most peptidergic populations were restricted to one of these LH sectors though some may have dispersed into a neighboring sector. For instance, histaminergic Hdc-positive neurons were mostly contained within the basal LH3, Nts (neurotensin)- and Tac2 (tachykinin 2)-expressing cells lie strictly within LH4, Hcrt (hypocretin/orexin)-positive and Pmch (pro-melanin-concentrating hormone)-positive neurons appeared within separate LH5 subdivisions, Pnoc (prepronociceptin)-expressing cells were mainly restricted to LH6, and Sst (somatostatin)-positive cells were identified within the LH7 sector. The alar LH9 sector, a component of the Foxg1-positive telencephalo-opto-hypothalamic border region, selectively contained Satb2-expressing cells. Published studies of rodent LH subdivisions have not described the observed pattern. Our genoarchitectonic map should aid in systematic approaches to elucidate LH connectivity and function.
Collapse
Affiliation(s)
- Carmen Diaz
- Department of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, 02006 Albacete, Spain
| | - Margaret Martinez de la Torre
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, 30100 Murcia, Spain
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Medical School, San Francisco, California USA
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
8
|
Transcriptional Profile of the Developing Subthalamic Nucleus. eNeuro 2022; 9:9/5/ENEURO.0193-22.2022. [PMID: 36257692 PMCID: PMC9581575 DOI: 10.1523/eneuro.0193-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022] Open
Abstract
The subthalamic nucleus (STN) is a small, excitatory nucleus that regulates the output of basal ganglia motor circuits. The functions of the STN and its role in the pathophysiology of Parkinson's disease are now well established. However, some basic characteristics like the developmental origin and molecular phenotype of neuronal subpopulations are still being debated. The classical model of forebrain development attributed the origin of STN within the diencephalon. Recent studies of gene expression patterns exposed shortcomings of the classical model. To accommodate these findings, the prosomeric model was developed. In this concept, STN develops within the hypothalamic primordium, which is no longer a part of the diencephalic primordium. This concept is further supported by the expression patterns of many transcription factors. It is interesting to note that many transcription factors involved in the development of the STN are also involved in the pathogenesis of neurodevelopmental disorders. Thus, the study of neurodevelopmental disorders could provide us with valuable information on the roles of these transcription factors in the development and maintenance of STN phenotype. In this review, we summarize historical theories about the developmental origin of the STN and interpret the gene expression data within the prosomeric conceptual framework. Finally, we discuss the importance of neurodevelopmental disorders for the development of the STN and its potential role in the pathophysiology of neurodevelopmental disorders.
Collapse
|
9
|
López-González L, Alonso A, García-Calero E, de Puelles E, Puelles L. Tangential Intrahypothalamic Migration of the Mouse Ventral Premamillary Nucleus and Fgf8 Signaling. Front Cell Dev Biol 2021; 9:676121. [PMID: 34095148 PMCID: PMC8170039 DOI: 10.3389/fcell.2021.676121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/15/2021] [Indexed: 02/02/2023] Open
Abstract
The tuberal hypothalamic ventral premamillary nucleus (VPM) described in mammals links olfactory and metabolic cues with mating behavior and is involved in the onset of puberty. We offer here descriptive and experimental evidence on a migratory phase in the development of this structure in mice at E12.5–E13.5. Its cells originate at the retromamillary area (RM) and then migrate tangentially rostralward, eschewing the mamillary body, and crossing the molecularly distinct perimamillary band, until they reach a definitive relatively superficial ventral tuberal location. Corroborating recent transcriptomic studies reporting a variety of adult glutamatergic cell types in the VPM, and different projections in the adult, we found that part of this population heterogeneity emerges already early in development, during tangential migration, in the form of differential gene expression properties of at least 2–3 mixed populations possibly derived from subtly different parts of the RM. These partly distribute differentially in the core and shell parts of the final VPM. Since there is a neighboring acroterminal source of Fgf8, and Fgfr2 is expressed at the early RM, we evaluated a possible influence of Fgf8 signal on VPM development using hypomorphic Fgf8neo/null embryos. These results suggested a trophic role of Fgf8 on RM and all cells migrating tangentially out of this area (VPM and the subthalamic nucleus), leading in hypomorphs to reduced cellularity after E15.5 without alteration of the migrations proper.
Collapse
Affiliation(s)
- Lara López-González
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Antonia Alonso
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Elena García-Calero
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Eduardo de Puelles
- Instituto de Neurociencias de Alicante, CSIC, Universidad Miguel Hernández, Alicante, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
10
|
Guillaumin A, Serra GP, Georges F, Wallén-Mackenzie Å. Experimental investigation into the role of the subthalamic nucleus (STN) in motor control using optogenetics in mice. Brain Res 2021; 1755:147226. [PMID: 33358727 DOI: 10.1016/j.brainres.2020.147226] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
The subthalamic nucleus (STN) is critical for the execution of intended movements. Loss of its normal function is strongly associated with several movement disorders, including Parkinson's disease for which the STN is an important target area in deep brain stimulation (DBS) therapy. Classical basal ganglia models postulate that two parallel pathways, the direct and indirect pathways, exert opposing control over movement, with the STN acting within the indirect pathway. The STN is regulated by both inhibitory and excitatory input, and is itself excitatory. While most functional knowledge of this clinically relevant brain structure has been gained from pathological conditions and models, primarily parkinsonian, experimental evidence for its role in normal motor control has remained more sparse. The objective here was to tease out the selective impact of the STN on several motor parameters required to achieve intended movement, including locomotion, balance and motor coordination. Optogenetic excitation and inhibition using both bilateral and unilateral stimulations of the STN were implemented in freely-moving mice. The results demonstrate that selective optogenetic inhibition of the STN enhances locomotion while its excitation reduces locomotion. These findings lend experimental support to basal ganglia models of the STN in terms of locomotion. In addition, optogenetic excitation in freely-exploring mice induced self-grooming, disturbed gait and a jumping/escaping behavior, while causing reduced motor coordination in advanced motor tasks, independent of grooming and jumping. This study contributes experimentally validated evidence for a regulatory role of the STN in several aspects of motor control.
Collapse
Affiliation(s)
- Adriane Guillaumin
- Department of Organism Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Gian Pietro Serra
- Department of Organism Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - François Georges
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | | |
Collapse
|
11
|
Murcia-Ramón R, Company V, Juárez-Leal I, Andreu-Cervera A, Almagro-García F, Martínez S, Echevarría D, Puelles E. Neuronal tangential migration from Nkx2.1-positive hypothalamus. Brain Struct Funct 2020; 225:2857-2869. [PMID: 33145610 PMCID: PMC7674375 DOI: 10.1007/s00429-020-02163-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022]
Abstract
During the development of the central nervous system, the immature neurons suffer different migration processes. It is well known that Nkx2.1-positive ventricular layer give rise to critical tangential migrations into different regions of the developing forebrain. Our aim was to study this phenomenon in the hypothalamic region. With this purpose, we used a transgenic mouse line that expresses the tdTomato reporter driven by the promotor of Nkx2.1. Analysing the Nkx2.1-positive derivatives at E18.5, we found neural contributions to the prethalamic region, mainly in the zona incerta and in the mes-diencephalic tegmental region. We studied the developing hypothalamus along the embryonic period. From E10.5 we detected that the Nkx2.1 expression domain was narrower than the reporter distribution. Therefore, the Nkx2.1 expression fades in a great number of the early-born neurons from the Nkx2.1-positive territory. At the most caudal positive part, we detected a thin stream of positive neurons migrating caudally into the mes-diencephalic tegmental region using time-lapse experiments on open neural tube explants. Late in development, we found a second migratory stream into the prethalamic territory. All these tangentially migrated neurons developed a gabaergic phenotype. In summary, we have described the contribution of interneurons from the Nkx2.1-positive hypothalamic territory into two different rostrocaudal territories: the mes-diencephalic reticular formation through a caudal tangential migration and the prethalamic zona incerta complex through a dorsocaudal tangential migration.
Collapse
Affiliation(s)
- Raquel Murcia-Ramón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Verónica Company
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Iris Juárez-Leal
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Abraham Andreu-Cervera
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Francisca Almagro-García
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Salvador Martínez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Diego Echevarría
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Eduardo Puelles
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain.
| |
Collapse
|
12
|
Nishioka T, Hamaguchi K, Yawata S, Hikida T, Watanabe D. Chemogenetic Suppression of the Subthalamic Nucleus Induces Attentional Deficits and Impulsive Action in a Five-Choice Serial Reaction Time Task in Mice. Front Syst Neurosci 2020; 14:38. [PMID: 32714157 PMCID: PMC7344274 DOI: 10.3389/fnsys.2020.00038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022] Open
Abstract
The subthalamic nucleus (STN), a key component of the basal ganglia circuitry, receives inputs from broad cerebral cortical areas and relays cortical activity to subcortical structures. Recent human and animal studies have suggested that executive function, which is assumed to consist of a set of different cognitive processes for controlling behavior, depends on precise information processing between the cerebral cortex and subcortical structures, leading to the idea that the STN contains neurons that transmit the information required for cognitive processing through their activity, and is involved in such cognitive control directly and dynamically. On the other hand, the STN activity also affects intracellular signal transduction and gene expression profiles influencing plasticity in other basal ganglia components. The STN may also indirectly contribute to information processing for cognitive control in other brain areas by regulating slower signaling mechanisms. However, the precise correspondence and causal relationship between the STN activity and cognitive processes are not fully understood. To address how the STN activity is involved in cognitive processes for controlling behavior, we applied Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-based chemogenetic manipulation of neural activity to behavioral analysis using a touchscreen operant platform. We subjected mice selectively expressing DREADD receptors in the STN neurons to a five-choice serial reaction time task, which has been developed to quantitatively measure executive function. Chemogenetic suppression of the STN activity reversibly impaired attention, especially required under highly demanding conditions, and increased impulsivity but not compulsivity. These findings, taken together with the results of previous lesion studies, suggest that the STN activity, directly and indirectly, participates in cognitive processing for controlling behavior, and dynamically regulates specific types of subprocesses in cognitive control probably through fast synaptic transmission.
Collapse
Affiliation(s)
- Tadaaki Nishioka
- Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosuke Hamaguchi
- Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Yawata
- Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Japan
| | - Dai Watanabe
- Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Spatio-molecular domains identified in the mouse subthalamic nucleus and neighboring glutamatergic and GABAergic brain structures. Commun Biol 2020; 3:338. [PMID: 32620779 PMCID: PMC7334224 DOI: 10.1038/s42003-020-1028-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 05/20/2020] [Indexed: 01/07/2023] Open
Abstract
The subthalamic nucleus (STN) is crucial for normal motor, limbic and associative function. STN dysregulation is correlated with several brain disorders, including Parkinsonʼs disease and obsessive compulsive disorder (OCD), for which high-frequency stimulation of the STN is increasing as therapy. However, clinical progress is hampered by poor knowledge of the anatomical–functional organization of the STN. Today, experimental mouse genetics provides outstanding capacity for functional decoding, provided selective promoters are available. Here, we implemented single-nuclei RNA sequencing (snRNASeq) of the mouse STN followed through with histological analysis of 16 candidate genes of interest. Our results demonstrate that the mouse STN is composed of at least four spatio-molecularly defined domains, each distinguished by defined sets of promoter activities. Further, molecular profiles dissociate the STN from the adjoining para-STN (PSTN) and neighboring structures of the hypothalamus, mammillary nuclei and zona incerta. Enhanced knowledge of STN´s internal organization should prove useful towards genetics-based functional decoding of this clinically relevant brain structure. Wallén-Mackenzie et al. investigate anatomical–functional organization of the subthalamic nucleus in mice, using single-nuclei RNA sequencing followed by histological analysis. They identify four domains distinguished by defined sets of promoter activities, providing a valuable resource for functional decoding of the subthalamic nucleus.
Collapse
|
14
|
A basal ganglia-like cortical-amygdalar-hypothalamic network mediates feeding behavior. Proc Natl Acad Sci U S A 2020; 117:15967-15976. [PMID: 32571909 DOI: 10.1073/pnas.2004914117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The insular cortex (INS) is extensively connected to the central nucleus of the amygdala (CEA), and both regions send convergent projections into the caudal lateral hypothalamus (LHA) encompassing the parasubthalamic nucleus (PSTN). However, the organization of the network between these structures has not been clearly delineated in the literature, although there has been an upsurge in functional studies related to these structures, especially with regard to the cognitive and psychopathological control of feeding. We conducted tract-tracing experiments from the INS and observed a pathway to the PSTN region that runs parallel to the canonical hyperdirect pathway from the isocortex to the subthalamic nucleus (STN) adjacent to the PSTN. In addition, an indirect pathway with a relay in the central amygdala was also observed that is similar in its structure to the classic indirect pathway of the basal ganglia that also targets the STN. C-Fos experiments showed that the PSTN complex reacts to neophobia and sickness induced by lipopolysaccharide or cisplatin. Chemogenetic (designer receptors exclusively activated by designer drugs [DREADD]) inhibition of tachykininergic neurons (Tac1) in the PSTN revealed that this nucleus gates a stop "no-eat" signal to refrain from feeding when the animal is subjected to sickness or exposed to a previously unknown source of food. Therefore, our anatomical findings in rats and mice indicate that the INS-PSTN network is organized in a similar manner as the hyperdirect and indirect basal ganglia circuitry. Functionally, the PSTN is involved in gating feeding behavior, which is conceptually homologous to the motor no-go response of the adjacent STN.
Collapse
|
15
|
Viereckel T, Konradsson-Geuken Å, Wallén-Mackenzie Å. Validated multi-step approach for in vivo recording and analysis of optogenetically evoked glutamate in the mouse globus pallidus. J Neurochem 2018; 145:125-138. [PMID: 29292502 DOI: 10.1111/jnc.14288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/01/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022]
Abstract
Precise quantification of extracellular glutamate concentrations upon neuronal activation is crucial for the understanding of brain function and neurological disorders. While optogenetics is an outstanding method for the correlation between distinct neurons and their role in circuitry and behavior, the electrochemically inactive nature of glutamate has proven challenging for recording upon optogenetic stimulations. This difficulty is due to the necessity for using enzyme-coated microelectrodes and the risk for light-induced artifacts. In this study, we establish a method for the combination of in vivo optogenetic stimulation with selective measurement of glutamate concentrations using enzyme-coated multielectrode arrays and amperometry. The glutamatergic subthalamic nucleus (STN), which is the main electrode target site in deep brain stimulation treatment of advanced Parkinson's disease, has recently proven opotogenetically targetable in Pitx2-Cre-transgenic mice and was here used as model system. Upon stereotactic injection of viral Channelrhodopsin2-eYFP constructs into the STN, amperometric recordings were performed at a range of optogenetic stimulation frequencies in the globus pallidus, the main STN target area, in anesthetized mice. Accurate quantification was enabled through a multi-step analysis approach based on self-referencing microelectrodes and repetition of the experimental protocol at two holding potentials, which allowed for the identification, isolation and removal of photoelectric and photoelectrochemical artifacts. This study advances the field of in vivo glutamate detection with combined optogenetics and amperometric recordings by providing a validated analysis framework for application in a wide variety of glutamate-based approaches in neuroscience.
Collapse
Affiliation(s)
- Thomas Viereckel
- Department of Organismal Biology/Comparative Physiology, Uppsala University, Uppsala, Sweden.,Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Åsa Konradsson-Geuken
- Department of Organismal Biology/Comparative Physiology, Uppsala University, Uppsala, Sweden
| | - Åsa Wallén-Mackenzie
- Department of Organismal Biology/Comparative Physiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Nouri N, Awatramani R. A novel floor plate boundary defined by adjacent En1 and Dbx1 microdomains distinguishes midbrain dopamine and hypothalamic neurons. Development 2017; 144:916-927. [PMID: 28174244 DOI: 10.1242/dev.144949] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/18/2017] [Indexed: 12/13/2022]
Abstract
The mesodiencephalic floor plate (mdFP) is the source of diverse neuron types. Yet, how this structure is compartmentalized has not been clearly elucidated. Here, we identify a novel boundary subdividing the mdFP into two microdomains, defined by engrailed 1 (En1) and developing brain homeobox 1 (Dbx1). Utilizing simultaneous dual and intersectional fate mapping, we demonstrate that this boundary is precisely formed with minimal overlap between En1 and Dbx1 microdomains, unlike many other boundaries. We show that the En1 microdomain gives rise to dopaminergic (DA) neurons, whereas the Dbx1 microdomain gives rise to subthalamic (STN), premammillary (PM) and posterior hypothalamic (PH) populations. To determine whether En1 is sufficient to induce DA neuron production beyond its normal limit, we generated a mouse strain that expresses En1 in the Dbx1 microdomain. In mutants, we observed ectopic production of DA neurons derived from the Dbx1 microdomain, at the expense of STN and PM populations. Our findings provide new insights into subdivisions in the mdFP, and will impact current strategies for the conversion of stem cells into DA neurons.
Collapse
Affiliation(s)
- Navid Nouri
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rajeshwar Awatramani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
17
|
Foxa1 is essential for development and functional integrity of the subthalamic nucleus. Sci Rep 2016; 6:38611. [PMID: 27934886 PMCID: PMC5146925 DOI: 10.1038/srep38611] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 11/10/2016] [Indexed: 01/15/2023] Open
Abstract
Inactivation of transcription factor Foxa1 in mice results in neonatal mortality of unknown cause. Here, we report that ablation of Foxa1 causes impaired development and loss of the subthalamic nucleus (STN). Functional deficits in the STN have been implicated in the etiology of Huntington's and Parkinson's disease. We show that neuronal ablation by Synapsin1-Cre-mediated Foxa1 deletion is sufficient to induce hyperlocomotion in mice. Transcriptome profiling of STN neurons in conditional Foxa1 knockout mice revealed changes in gene expression reminiscent of those in neurodegenerative diseases. We identified Ppargc1a, a transcriptional co-activator that is implicated in neurodegeneration, as a Foxa1 target. These findings were substantiated by the observation of Foxa1-dependent demise of STN neurons in conditional models of Foxa1 mutant mice. Finally, we show that the spontaneous firing activity of Foxa1-deficient STN neurons is profoundly impaired. Our data reveal so far elusive roles of Foxa1 in the development and maintenance of STN function.
Collapse
|
18
|
Schweizer N, Viereckel T, Smith-Anttila CJ, Nordenankar K, Arvidsson E, Mahmoudi S, Zampera A, Wärner Jonsson H, Bergquist J, Lévesque D, Konradsson-Geuken Å, Andersson M, Dumas S, Wallén-Mackenzie Å. Reduced Vglut2/Slc17a6 Gene Expression Levels throughout the Mouse Subthalamic Nucleus Cause Cell Loss and Structural Disorganization Followed by Increased Motor Activity and Decreased Sugar Consumption. eNeuro 2016; 3:ENEURO.0264-16.2016. [PMID: 27699212 PMCID: PMC5041164 DOI: 10.1523/eneuro.0264-16.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 12/24/2022] Open
Abstract
The subthalamic nucleus (STN) plays a central role in motor, cognitive, and affective behavior. Deep brain stimulation (DBS) of the STN is the most common surgical intervention for advanced Parkinson's disease (PD), and STN has lately gained attention as target for DBS in neuropsychiatric disorders, including obsessive compulsive disorder, eating disorders, and addiction. Animal studies using STN-DBS, lesioning, or inactivation of STN neurons have been used extensively alongside clinical studies to unravel the structural organization, circuitry, and function of the STN. Recent studies in rodent STN models have exposed different roles for STN neurons in reward-related functions. We have previously shown that the majority of STN neurons express the vesicular glutamate transporter 2 gene (Vglut2/Slc17a6) and that reduction of Vglut2 mRNA levels within the STN of mice [conditional knockout (cKO)] causes reduced postsynaptic activity and behavioral hyperlocomotion. The cKO mice showed less interest in fatty rewards, which motivated analysis of reward-response. The current results demonstrate decreased sugar consumption and strong rearing behavior, whereas biochemical analyses show altered dopaminergic and peptidergic activity in the striatum. The behavioral alterations were in fact correlated with opposite effects in the dorsal versus the ventral striatum. Significant cell loss and disorganization of the STN structure was identified, which likely accounts for the observed alterations. Rare genetic variants of the human VGLUT2 gene exist, and this study shows that reduced Vglut2/Slc17a6 gene expression levels exclusively within the STN of mice is sufficient to cause strong modifications in both the STN and the mesostriatal dopamine system.
Collapse
Affiliation(s)
- Nadine Schweizer
- Department of Organismal Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Thomas Viereckel
- Department of Organismal Biology, Uppsala University, SE-752 36 Uppsala, Sweden
- Department of Neuroscience, Uppsala University, SE-751 24 Uppsala, Sweden
| | | | - Karin Nordenankar
- Department of Neuroscience, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Emma Arvidsson
- Department of Organismal Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Souha Mahmoudi
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | | | - Hanna Wärner Jonsson
- Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry, BMC - Analytical Chemistry and Neurochemistry, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Daniel Lévesque
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | | | - Malin Andersson
- Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
19
|
Wu D, Zhu X, Jimenez-Cowell K, Mold AJ, Sollecito CC, Lombana N, Jiao M, Wei Q. Identification of the GTPase-activating protein DEP domain containing 1B (DEPDC1B) as a transcriptional target of Pitx2. Exp Cell Res 2015; 333:80-92. [PMID: 25704760 PMCID: PMC4387072 DOI: 10.1016/j.yexcr.2015.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/17/2015] [Accepted: 02/10/2015] [Indexed: 10/25/2022]
Abstract
Pitx2 is a bicoid-related homeobox transcription factor implicated in regulating left-right patterning and organogenesis. However, only a limited number of Pitx2 downstream target genes have been identified and characterized. Here we demonstrate that Pitx2 is a transcriptional repressor of DEP domain containing 1B (DEPDC1B). The first intron of the human and mouse DEP domain containing 1B genes contains multiple consensus DNA-binding sites for Pitx2. Chromatin immunoprecipitation assays revealed that Pitx2, along with histone deacetylase 1, was recruited to the first intron of Depdc1b. In contrast, RNAi-mediated depletion of Pitx2 not only enhanced the acetylation of histone H4 in the first intron of Depdc1b, but also increased the protein level of Depdc1b. Luciferase reporter assays also showed that Pitx2 could repress the transcriptional activity mediated by the first intron of human DEPDC1B. The GAP domain of DEPDC1B interacted with nucleotide-bound forms of RAC1 in vitro. In addition, exogenous expression of DEPDC1B suppressed RAC1 activation and interfered with actin polymerization induced by the guanine nucleotide exchange factor TRIO. Moreover, DEPDC1B interacted with various signaling molecules such as U2af2, Erh, and Salm. We propose that Pitx2-mediated repression of Depdc1b expression contributes to the regulation of multiple molecular pathways, such as Rho GTPase signaling.
Collapse
Affiliation(s)
- Di Wu
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | - Xiaoxi Zhu
- Experimental and Clinical Research Center (ECRC), a Cooperation between Max Delbrück Center and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany
| | - Kevin Jimenez-Cowell
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | - Alexander J Mold
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | | | - Nicholas Lombana
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | - Meng Jiao
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | - Qize Wei
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States.
| |
Collapse
|
20
|
Waite MR, Martin DM. Axial level-specific regulation of neuronal development: lessons from PITX2. J Neurosci Res 2015; 93:195-8. [PMID: 25124216 DOI: 10.1002/jnr.23471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/09/2014] [Accepted: 07/16/2014] [Indexed: 12/19/2022]
Abstract
Transcriptional regulation of gene expression is vital for proper control of proliferation, migration, differentiation, and survival of developing neurons. Pitx2 encodes a homeodomain transcription factor that is highly expressed in the developing and adult mammalian brain. In humans, mutations in PITX2 result in Rieger syndrome, characterized by defects in the development of the eyes, umbilicus, and teeth and variable abnormalities in the brain, including hydrocephalus and cerebellar hypoplasia. Alternative splicing of Pitx2 in the mouse results in three isoforms, Pitx2a, Pitx2b, and Pitx2c, each of which is expressed symmetrically along the left-right axis of the brain throughout development. Here, we review recent evidence for axial and brain region-specific requirements for Pitx2 during neuronal migration and differentiation, highlighting known isoform contributions.
Collapse
Affiliation(s)
- Mindy R Waite
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
21
|
Díaz C, Morales-Delgado N, Puelles L. Ontogenesis of peptidergic neurons within the genoarchitectonic map of the mouse hypothalamus. Front Neuroanat 2015; 8:162. [PMID: 25628541 PMCID: PMC4290630 DOI: 10.3389/fnana.2014.00162] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/12/2014] [Indexed: 11/13/2022] Open
Abstract
During early development, the hypothalamic primordium undergoes anteroposterior and dorsoventral regionalization into diverse progenitor domains, each characterized by a differential gene expression code. The types of neurons produced selectively in each of these distinct progenitor domains are still poorly understood. Recent analysis of the ontogeny of peptidergic neuronal populations expressing Sst, Ghrh, Crh and Trh mRNAs in the mouse hypothalamus showed that these cell types originate from particular dorsoventral domains, characterized by specific combinations of gene markers. Such analysis implies that the differentiation of diverse peptidergic cell populations depends on the molecular environment where they are born. Moreover, a number of these peptidergic neurons were observed to migrate radially and/or tangentially, invading different adult locations, often intermingled with other cell types. This suggests that a developmental approach is absolutely necessary for the understanding of their adult distribution. In this essay, we examine comparatively the ontogenetic hypothalamic topography of twelve additional peptidergic populations documented in the Allen Developmental Mouse Brain Atlas, and discuss shared vs. variant aspects in their apparent origins, migrations and final distribution, in the context of the respective genoarchitectonic backgrounds. This analysis should aid ulterior attempts to explain causally the development of neuronal diversity in the hypothalamus, and contribute to our understanding of its topographic complexity in the adult.
Collapse
Affiliation(s)
- Carmen Díaz
- Department of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha Albacete, Spain
| | - Nicanor Morales-Delgado
- Department of Human Anatomy and Psychobiology, University of Murcia, School of Medicine and IMIB (Instituto Murciano de Investigación Biosanitaria) Murcia, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, University of Murcia, School of Medicine and IMIB (Instituto Murciano de Investigación Biosanitaria) Murcia, Spain
| |
Collapse
|
22
|
Domínguez L, González A, Moreno N. Characterization of the hypothalamus of Xenopus laevis during development. II. The basal regions. J Comp Neurol 2014; 522:1102-31. [PMID: 24122702 DOI: 10.1002/cne.23471] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/25/2013] [Accepted: 09/13/2013] [Indexed: 01/10/2023]
Abstract
The expression patterns of conserved developmental regulatory transcription factors and neuronal markers were analyzed in the basal hypothalamus of Xenopus laevis throughout development by means of combined immunohistochemical and in situ hybridization techniques. The connectivity of the main subdivisions was investigated by in vitro tracing techniques with dextran amines. The basal hypothalamic region is topologically rostral to the basal diencephalon and is composed of the tuberal (rostral) and mammillary (caudal) subdivisions, according to the prosomeric model. It is dorsally bounded by the optic chiasm and the alar hypothalamus, and caudally by the diencephalic prosomere p3. The tuberal hypothalamus is defined by the expression of Nkx2.1, xShh, and Isl1, and rostral and caudal portions can be distinguished by the distinct expression of Otp rostrally and Nkx2.2 caudally. In the mammillary region the xShh/Nkx2.1 combination defined the rostral mammillary area, expressing Nkx2.1, and the caudal retromammillary area, expressing xShh. The expression of xLhx1, xDll4, and Otp in the mammillary area and Isl1 in the tuberal region highlights the boundary between the two basal hypothalamic territories. Both regions are strongly connected with subpallial regions, especially those conveying olfactory/vomeronasal information, and also possess abundant intrahypothalamic connections. They show reciprocal connections with the diencephalon (mainly the thalamus), project to the midbrain tectum, and are bidirectionally related to the rhombencephalon. These results illustrate that the basal hypothalamus of anurans shares many features of specification, regionalization, and hodology with amniotes, reinforcing the idea of a basic bauplan in the organization of this prosencephalic region in all tetrapods.
Collapse
Affiliation(s)
- Laura Domínguez
- Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain
| | | | | |
Collapse
|
23
|
Moreno N, Joven A, Morona R, Bandín S, López JM, González A. Conserved localization of Pax6 and Pax7 transcripts in the brain of representatives of sarcopterygian vertebrates during development supports homologous brain regionalization. Front Neuroanat 2014; 8:75. [PMID: 25147506 PMCID: PMC4123791 DOI: 10.3389/fnana.2014.00075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/21/2014] [Indexed: 11/20/2022] Open
Abstract
Many of the genes involved in brain patterning during development are highly conserved in vertebrates and similarities in their expression patterns help to recognize homologous cell types or brain regions. Among these genes, Pax6 and Pax7 are expressed in regionally restricted patterns in the brain and are essential for its development. In the present immunohistochemical study we analyzed the distribution of Pax6 and Pax7 cells in the brain of six representative species of tetrapods and lungfishes, the closest living relatives of tetrapods, at several developmental stages. The distribution patterns of these transcription factors were largely comparable across species. In all species only Pax6 was expressed in the telencephalon, including the olfactory bulbs, septum, striatum, and amygdaloid complex. In the diencephalon, Pax6 and Pax7 were distinct in the alar and basal parts, mainly in prosomeres 1 and 3. Pax7 specifically labeled cells in the optic tectum (superior colliculus) and Pax6, but not Pax7, cells were found in the tegmentum. Pax6 was found in most granule cells of the cerebellum and Pax7 labeling was detected in cells of the ventricular zone of the rostral alar plate and in migrated cells in the basal plate, including the griseum centrale and the interpeduncular nucleus. Caudally, Pax6 cells formed a column, whereas the ventricular zone of the alar plate expressed Pax7. Since the observed Pax6 and Pax7 expression patterns are largely conserved they can be used to identify subdivisions in the brain across vertebrates that are not clearly discernible with classical techniques.
Collapse
Affiliation(s)
- Nerea Moreno
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| | - Alberto Joven
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| | - Sandra Bandín
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| |
Collapse
|
24
|
Morales-Delgado N, Castro-Robles B, Ferrán JL, Martinez-de-la-Torre M, Puelles L, Díaz C. Regionalized differentiation of CRH, TRH, and GHRH peptidergic neurons in the mouse hypothalamus. Brain Struct Funct 2013; 219:1083-111. [PMID: 24337236 PMCID: PMC4013449 DOI: 10.1007/s00429-013-0554-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/11/2013] [Indexed: 01/25/2023]
Abstract
According to the updated prosomeric model, the hypothalamus is subdivided rostrocaudally into terminal and peduncular parts, and dorsoventrally into alar, basal, and floor longitudinal zones. In this context, we examined the ontogeny of peptidergic cell populations expressing Crh, Trh, and Ghrh mRNAs in the mouse hypothalamus, comparing their distribution relative to the major progenitor domains characterized by molecular markers such as Otp, Sim1, Dlx5, Arx, Gsh1, and Nkx2.1. All three neuronal types originate mainly in the peduncular paraventricular domain and less importantly at the terminal paraventricular domain; both are characteristic alar Otp/Sim1-positive areas. Trh and Ghrh cells appeared specifically at the ventral subdomain of the cited areas after E10.5. Additional Ghrh cells emerged separately at the tuberal arcuate area, characterized by Nkx2.1 expression. Crh-positive cells emerged instead in the central part of the peduncular paraventricular domain at E13.5 and remained there. In contrast, as development progresses (E13.5-E18.5) many alar Ghrh and Trh cells translocate into the alar subparaventricular area, and often also into underlying basal neighborhoods expressing Nkx2.1 and/or Dlx5, such as the tuberal and retrotuberal areas, becoming partly or totally depleted at the original birth sites. Our data correlate a topologic map of molecularly defined hypothalamic progenitor areas with three types of specific neurons, each with restricted spatial origins and differential migratory behavior during prenatal hypothalamic development. The study may be useful for detailed causal analysis of the respective differential specification mechanisms. The postulated migrations also contribute to our understanding of adult hypothalamic complexity.
Collapse
Affiliation(s)
- Nicanor Morales-Delgado
- Department of Medical Sciences, School of Medicine, Regional Centre for Biomedical Research and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, Calle Almansa, 14, 02006, Albacete, Spain
| | | | | | | | | | | |
Collapse
|
25
|
Waite MR, Skidmore JM, Micucci JA, Shiratori H, Hamada H, Martin JF, Martin DM. Pleiotropic and isoform-specific functions for Pitx2 in superior colliculus and hypothalamic neuronal development. Mol Cell Neurosci 2013; 52:128-39. [PMID: 23147109 PMCID: PMC3540135 DOI: 10.1016/j.mcn.2012.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 10/01/2012] [Accepted: 11/02/2012] [Indexed: 02/01/2023] Open
Abstract
Transcriptional regulation of gene expression during development is critical for proper neuronal differentiation and migration. Alternative splicing and differential isoform expression have been demonstrated for most mammalian genes, but their specific contributions to gene function are not well understood. In mice, the transcription factor gene Pitx2 is expressed as three different isoforms (PITX2A, PITX2B, and PITX2C) which have unique amino termini and common DNA binding homeodomains and carboxyl termini. The specific roles of these isoforms in neuronal development are not known. Here we report the onset of Pitx2ab and Pitx2c isoform-specific expression by E9.5 in the developing mouse brain. Using isoform-specific Pitx2 deletion mouse strains, we show that collicular neuron migration requires PITX2AB and that collicular GABAergic differentiation and targeting of hypothalamic projections require unique Pitx2 isoform dosage. These results provide insights into Pitx2 dosage and isoform-specific requirements underlying midbrain and hypothalamic development.
Collapse
Affiliation(s)
- Mindy R Waite
- Cellular and Molecular Biology Graduate Program, 2966 Taubman Medical Library, University of Michigan, Ann Arbor, MI 48109-0619, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Fung FKC, Chan DW, Liu VWS, Leung THY, Cheung ANY, Ngan HYS. Increased expression of PITX2 transcription factor contributes to ovarian cancer progression. PLoS One 2012; 7:e37076. [PMID: 22615897 PMCID: PMC3352869 DOI: 10.1371/journal.pone.0037076] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 04/13/2012] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Paired-like homeodomain 2 (PITX2) is a bicoid homeodomain transcription factor which plays an essential role in maintaining embryonic left-right asymmetry during vertebrate embryogenesis. However, emerging evidence suggests that the aberrant upregulation of PITX2 may be associated with tumor progression, yet the functional role that PITX2 plays in tumorigenesis remains unknown. PRINCIPAL FINDINGS Using real-time quantitative RT-PCR (Q-PCR), Western blot and immunohistochemical (IHC) analyses, we demonstrated that PITX2 was frequently overexpressed in ovarian cancer samples and cell lines. Clinicopathological correlation showed that the upregulated PITX2 was significantly associated with high-grade (P = 0.023) and clear cell subtype (P = 0.011) using Q-PCR and high-grade (P<0.001) ovarian cancer by IHC analysis. Functionally, enforced expression of PITX2 could promote ovarian cancer cell proliferation, anchorage-independent growth ability, migration/invasion and tumor growth in xenograft model mice. Moreover, enforced expression of PITX2 elevated the cell cycle regulatory proteins such as Cyclin-D1 and C-myc. Conversely, RNAi mediated knockdown of PITX2 in PITX2-high expressing ovarian cancer cells had the opposite effect. CONCLUSION Our findings suggest that the increased expression PITX2 is involved in ovarian cancer progression through promoting cell growth and cell migration/invasion. Thus, targeting PITX2 may serve as a potential therapeutic modality in the management of high-grade ovarian tumor.
Collapse
Affiliation(s)
- Frederic K. C. Fung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - David W. Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Vincent W. S. Liu
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Thomas H. Y. Leung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Annie N. Y. Cheung
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Hextan Y. S. Ngan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| |
Collapse
|
27
|
Skidmore JM, Waite MR, Alvarez-Bolado G, Puelles L, Martin DM. A novel TaulacZ allele reveals a requirement for Pitx2 in formation of the mammillothalamic tract. Genesis 2012; 50:67-73. [DOI: 10.1002/dvg.20793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/04/2011] [Accepted: 08/19/2011] [Indexed: 12/25/2022]
|
28
|
Waite MR, Skaggs K, Kaviany P, Skidmore JM, Causeret F, Martin JF, Martin DM. Distinct populations of GABAergic neurons in mouse rhombomere 1 express but do not require the homeodomain transcription factor PITX2. Mol Cell Neurosci 2012; 49:32-43. [PMID: 21925604 PMCID: PMC3244529 DOI: 10.1016/j.mcn.2011.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 08/04/2011] [Accepted: 08/30/2011] [Indexed: 11/20/2022] Open
Abstract
Hindbrain rhombomere 1 (r1) is located caudal to the isthmus, a critical organizer region, and rostral to rhombomere 2 in the developing mouse brain. Dorsal r1 gives rise to the cerebellum, locus coeruleus, and several brainstem nuclei, whereas cells from ventral r1 contribute to the trochlear and trigeminal nuclei as well as serotonergic and GABAergic neurons of the dorsal raphe. Recent studies have identified several molecular events controlling dorsal r1 development. In contrast, very little is known about ventral r1 gene expression and the genetic mechanisms regulating its formation. Neurons with distinct neurotransmitter phenotypes have been identified in ventral r1 including GABAergic, serotonergic, and cholinergic neurons. Here we show that PITX2 marks a distinct population of GABAergic neurons in mouse embryonic ventral r1. This population appears to retain its GABAergic identity even in the absence of PITX2. We provide a comprehensive map of markers that places these PITX2-positive GABAergic neurons in a region of r1 that intersects and is potentially in communication with the dorsal raphe.
Collapse
Affiliation(s)
- Mindy R Waite
- Program in Cell and Molecular Biology, 2966 Taubman Medical Library, University of Michigan, Ann Arbor, MI 48109-0619, USA.
| | - Kaia Skaggs
- Department of Neurology, 3520A MSRB I, University of Michigan, Ann Arbor, MI, 48019-5652, USA.
| | - Parisa Kaviany
- Department of Pediatrics, 3520A MSRB I, University of Michigan, Ann Arbor, MI, 48019-5652, USA.
| | - Jennifer M Skidmore
- Department of Pediatrics, 3520A MSRB I, University of Michigan, Ann Arbor, MI, 48019-5652, USA.
| | - Frédéric Causeret
- Institut Jacques Monod, Université Paris Diderot, CNRS UMR 7592, Sorbonne Paris Cité, Paris, France.
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Cardiomyocyte Renewal Lab Texas Heart Institute, Houston Texas, 77030, USA.
| | - Donna M Martin
- Program in Cell and Molecular Biology, 2966 Taubman Medical Library, University of Michigan, Ann Arbor, MI 48109-0619, USA; Department of Pediatrics, 3520A MSRB I, University of Michigan, Ann Arbor, MI, 48019-5652, USA; Department of Human Genetics, 3520A MSRB I, University of Michigan, Ann Arbor, MI, 48019-5652, USA.
| |
Collapse
|
29
|
Girard F, Meszar Z, Marti C, Davis FP, Celio M. Gene expression analysis in the parvalbumin-immunoreactive PV1 nucleus of the mouse lateral hypothalamus. Eur J Neurosci 2011; 34:1934-43. [DOI: 10.1111/j.1460-9568.2011.07918.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Waite MR, Skidmore JM, Billi AC, Martin JF, Martin DM. GABAergic and glutamatergic identities of developing midbrain Pitx2 neurons. Dev Dyn 2011; 240:333-46. [PMID: 21246650 PMCID: PMC3079949 DOI: 10.1002/dvdy.22532] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2010] [Indexed: 12/18/2022] Open
Abstract
Pitx2, a paired-like homeodomain transcription factor, is expressed in post-mitotic neurons within highly restricted domains of the embryonic mouse brain. Previous reports identified critical roles for PITX2 in histogenesis of the hypothalamus and midbrain, but the cellular identities of PITX2-positive neurons in these regions were not fully explored. This study characterizes Pitx2 expression with respect to midbrain transcription factor and neurotransmitter phenotypes in mid-to-late mouse gestation. In the dorsal midbrain, we identified Pitx2-positive neurons in the stratum griseum intermedium (SGI) as GABAergic and observed a requirement for PITX2 in GABAergic differentiation. We also identified two Pitx2-positive neuronal populations in the ventral midbrain, the red nucleus, and a ventromedial population, both of which contain glutamatergic precursors. Our data suggest that PITX2 is present in regionally restricted subpopulations of midbrain neurons and may have unique functions that promote GABAergic and glutamatergic differentiation.
Collapse
Affiliation(s)
- MR Waite
- Cellular & Molecular Biology Program, The University of Michigan, Ann Arbor, MI 48109
| | - JM Skidmore
- Department of Pediatrics, The University of Michigan, Ann Arbor, MI 48109
| | - AC Billi
- Department of Human Genetics, The University of Michigan, Ann Arbor, MI 48109
| | - JF Martin
- Institute of Biosciences and Technology, Texas A&M System Health Science Center, Houston, TX 77030
| | - DM Martin
- Department of Pediatrics, The University of Michigan, Ann Arbor, MI 48109
- Department of Human Genetics, The University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
31
|
Avdonin PP, Grigoryan EN, Markitantova YV. Transcriptional factor Pitx2: Localization during triton retina regeneration. BIOL BULL+ 2010. [DOI: 10.1134/s1062359010030039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Abstract
The hypothalamus is a region of the diencephalon with particularly complex patterning. Sonic hedgehog (Shh), encoding a protein with key developmental roles, shows a peculiar and dynamic diencephalic expression pattern. Here, we use transgenic strategies and in vitro experiments to test the hypothesis that Shh expressed in the diencephalic neuroepithelium (neural Shh) coordinates tissue growth and patterning in the hypothalamus. Our results show that neural Shh coordinates anteroposterior and dorsoventral patterning in the hypothalamus and in the diencephalon-telencephalon junction. Neural Shh also coordinates mediolateral hypothalamic patterning, since it is necessary for the lateral hypothalamus to attain proper size and is required for the specification of hypocretin/orexin cells. Finally, neural Shh is necessary to maintain expression of differentiation markers including survival factor Foxb1.
Collapse
|