1
|
Morin A, Chu CP, Pavlidis P. Identifying reproducible transcription regulator coexpression patterns with single cell transcriptomics. PLoS Comput Biol 2025; 21:e1012962. [PMID: 40257984 PMCID: PMC12011263 DOI: 10.1371/journal.pcbi.1012962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/13/2025] [Indexed: 04/23/2025] Open
Abstract
The proliferation of single cell transcriptomics has potentiated our ability to unveil patterns that reflect dynamic cellular processes such as the regulation of gene transcription. In this study, we leverage a broad collection of single cell RNA-seq data to identify the gene partners whose expression is most coordinated with each human and mouse transcription regulator (TR). We assembled 120 human and 103 mouse scRNA-seq datasets from the literature (>28 million cells), constructing a single cell coexpression network for each. We aimed to understand the consistency of TR coexpression profiles across a broad sampling of biological contexts, rather than examine the preservation of context-specific signals. Our workflow therefore explicitly prioritizes the patterns that are most reproducible across cell types. Towards this goal, we characterize the similarity of each TR's coexpression within and across species. We create single cell coexpression rankings for each TR, demonstrating that this aggregated information recovers literature curated targets on par with ChIP-seq data. We then combine the coexpression and ChIP-seq information to identify candidate regulatory interactions supported across methods and species. Finally, we highlight interactions for the important neural TR ASCL1 to demonstrate how our compiled information can be adopted for community use.
Collapse
Affiliation(s)
- Alexander Morin
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ching Pan Chu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul Pavlidis
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Morin A, Chu CP, Pavlidis P. Identifying Reproducible Transcription Regulator Coexpression Patterns with Single Cell Transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.15.580581. [PMID: 38559016 PMCID: PMC10979919 DOI: 10.1101/2024.02.15.580581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The proliferation of single cell transcriptomics has potentiated our ability to unveil patterns that reflect dynamic cellular processes such as the regulation of gene transcription. In this study, we leverage a broad collection of single cell RNA-seq data to identify the gene partners whose expression is most coordinated with each human and mouse transcription regulator (TR). We assembled 120 human and 103 mouse scRNA-seq datasets from the literature (>28 million cells), constructing a single cell coexpression network for each. We aimed to understand the consistency of TR coexpression profiles across a broad sampling of biological contexts, rather than examine the preservation of context-specific signals. Our workflow therefore explicitly prioritizes the patterns that are most reproducible across cell types. Towards this goal, we characterize the similarity of each TR's coexpression within and across species. We create single cell coexpression rankings for each TR, demonstrating that this aggregated information recovers literature curated targets on par with ChIP-seq data. We then combine the coexpression and ChIP-seq information to identify candidate regulatory interactions supported across methods and species. Finally, we highlight interactions for the important neural TR ASCL1 to demonstrate how our compiled information can be adopted for community use.
Collapse
Affiliation(s)
- Alexander Morin
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| | - C. Pan Chu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| | - Paul Pavlidis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Zhao X, Yang Y, Xie Q, Qiu J, Sun X. Identification of Biomarkers and Mechanisms Associated with Apoptosis in Recurrent Pregnancy Loss. Biochem Genet 2024:10.1007/s10528-024-10932-0. [PMID: 39400681 DOI: 10.1007/s10528-024-10932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024]
Abstract
In this study, we employed bioinformatics techniques to identify genes associated with apoptosis in recurrent pregnancy loss (RPL). We retrieved the RPL expression profile datasets GSE165004 and GSE73025 from the Gene Expression Omnibus (GEO) database. We also obtained data from the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway of Apoptosis (hsa04210) to identify apoptosis-related genes. In addition, we performed Friends analysis to explore the interactions between differential apoptosis genes and other genes in the functional pathway. We identified six differentially expressed genes related to apoptosis, including CTSZ, BCL2, PIK3CD, KRAS, GADD45G, and CASP8, with GADD45G as the most gene. Functional fertility analysis revealed that differentially expressed genes primarily regulated protein stability, cell number homeostasis, myeloid cell homeostasis, hematopoietic progenitor cell differentiation, lytic vacuole and lysosome functions, vacuolar and lysosomal membranes, transmembrane transporter binding, protein domain-specific binding, G-protein beta-subunit binding, phospholipid binding, and were involved in pathways such as Rap1 signaling, regulation of actin cytoskeleton, and NOD-like receptor signaling. KRAS exhibited the highest mutation rate in RPL-related cancer CESC. There was also a positive correlation between differentially expressed genes and B cell memory, CD4 memory resting T cells, follicular helper T cells, naïve B cells, and resting dendritic cells. We identified six differentially expressed genes related to apoptosis in RPL, with GADD45G as the most important. NOD-like receptor signaling pathway and regulation of actin cytoskeleton could be therapeutic targets for RPL.
Collapse
Affiliation(s)
- Xiaofeng Zhao
- Obstetrics Department, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Yunhong Yang
- Acupuncture and moxibustion Department, Shanghai University of Traditional Chinese Medicine, Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Qiuyue Xie
- Obstetrics Department, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiahan Qiu
- Gynaecology Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaofeng Sun
- Obstetrics Department, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Shang Z, Yang L, Wang Z, Tian Y, Gao Y, Su Z, Guo R, Li W, Liu G, Li X, Yang Z, Li Z, Zhang Z. The transcription factor Zfp503 promotes the D1 MSN identity and represses the D2 MSN identity. Front Cell Dev Biol 2022; 10:948331. [PMID: 36081908 PMCID: PMC9445169 DOI: 10.3389/fcell.2022.948331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
The striatum is primarily composed of two types of medium spiny neurons (MSNs) expressing either D1- or D2-type dopamine receptors. However, the fate determination of these two types of neurons is not fully understood. Here, we found that D1 MSNs undergo fate switching to D2 MSNs in the absence of Zfp503. Furthermore, scRNA-seq revealed that the transcription factor Zfp503 affects the differentiation of these progenitor cells in the lateral ganglionic eminence (LGE). More importantly, we found that the transcription factors Sp8/9, which are required for the differentiation of D2 MSNs, are repressed by Zfp503. Finally, sustained Zfp503 expression in LGE progenitor cells promoted the D1 MSN identity and repressed the D2 MSN identity. Overall, our findings indicated that Zfp503 promotes the D1 MSN identity and represses the D2 MSN identity by regulating Sp8/9 expression during striatal MSN development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhenmeiyu Li
- *Correspondence: Zhenmeiyu Li, ; Zhuangzhi Zhang,
| | | |
Collapse
|
5
|
Sultan FA, Sawaya BE. Gadd45 in Neuronal Development, Function, and Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:117-148. [PMID: 35505167 DOI: 10.1007/978-3-030-94804-7_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The growth arrest and DNA damage-inducible (Gadd) 45 proteins have been associated with numerous cellular mechanisms including cell cycle control, DNA damage sensation and repair, genotoxic stress, neoplasia, and molecular epigenetics. The genes were originally identified in in vitro screens of irradiation- and interleukin-induced transcription and have since been implicated in a host of normal and aberrant central nervous system processes. These include early and postnatal development, injury, cancer, memory, aging, and neurodegenerative and psychiatric disease states. The proteins act through a variety of molecular signaling cascades including the MAPK cascade, cell cycle control mechanisms, histone regulation, and epigenetic DNA demethylation. In this review, we provide a comprehensive discussion of the literature implicating each of the three members of the Gadd45 family in these processes.
Collapse
Affiliation(s)
- Faraz A Sultan
- Department of Psychiatry, Rush University, Chicago, IL, USA.
| | - Bassel E Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Departments of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Gadd45g initiates embryonic stem cell differentiation and inhibits breast cell carcinogenesis. Cell Death Discov 2021; 7:271. [PMID: 34601500 PMCID: PMC8487429 DOI: 10.1038/s41420-021-00667-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Many self-renewal-promoting factors of embryonic stem cells (ESCs) have been implicated in carcinogenesis, while little known about the genes that direct ESCs exit from pluripotency and regulate tumor development. Here, we show that the transcripts of Gadd45 family genes, including Gadd45a, Gadd45b, and Gadd45g, are gradually increased upon mouse ESC differentiation. Upregulation of Gadd45 members decreases cell proliferation and induces endodermal and trophectodermal lineages. In contrast, knockdown of Gadd45 genes can delay mouse ESC differentiation. Mechanistic studies reveal that Gadd45g activates MAPK signaling by increasing expression levels of the positive modulators of this pathway, such as Csf1r, Igf2, and Fgfr3. Therefore, inhibition of MAPK signaling with a MEK specific inhibitor is capable of eliminating the differentiation phenotype caused by Gadd45g upregulation. Meanwhile, GADD45G functions as a suppressor in human breast cancers. Enforced expression of GADD45G significantly inhibits tumor formation and breast cancer metastasis in mice through limitation of the propagation and invasion of breast cancer cells. These results not only expand our understanding of the regulatory network of ESCs, but also help people better treatment of cancers by manipulating the prodifferentiation candidates.
Collapse
|
7
|
Krentz NAJ, Lee MYY, Xu EE, Sproul SLJ, Maslova A, Sasaki S, Lynn FC. Single-Cell Transcriptome Profiling of Mouse and hESC-Derived Pancreatic Progenitors. Stem Cell Reports 2019; 11:1551-1564. [PMID: 30540962 PMCID: PMC6294286 DOI: 10.1016/j.stemcr.2018.11.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 01/06/2023] Open
Abstract
Human embryonic stem cells (hESCs) are a potential unlimited source of insulin-producing β cells for diabetes treatment. A greater understanding of how β cells form during embryonic development will improve current hESC differentiation protocols. All pancreatic endocrine cells, including β cells, are derived from Neurog3-expressing endocrine progenitors. This study characterizes the single-cell transcriptomes of 6,905 mouse embryonic day (E) 15.5 and 6,626 E18.5 pancreatic cells isolated from Neurog3-Cre; Rosa26mT/mG embryos, allowing for enrichment of endocrine progenitors (yellow; tdTomato + EGFP) and endocrine cells (green; EGFP). Using a NEUROG3-2A-eGFP CyT49 hESC reporter line (N5-5), 4,462 hESC-derived GFP+ cells were sequenced. Differential expression analysis revealed enrichment of markers that are consistent with progenitor, endocrine, or previously undescribed cell-state populations. This study characterizes the single-cell transcriptomes of mouse and hESC-derived endocrine progenitors and serves as a resource (https://lynnlab.shinyapps.io/embryonic_pancreas) for improving the formation of functional β-like cells from hESCs. Single-cell transcriptome of embryonic mouse pancreas and hESC-derived cells Identification of novel cell types during mouse pancreas development Pseudotime analysis reveals developmental trajectories of endocrine cell lineage hESC-derived endocrine cells resemble immature β cells
Collapse
Affiliation(s)
- Nicole A J Krentz
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada.
| | - Michelle Y Y Lee
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Eric E Xu
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada
| | - Shannon L J Sproul
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada
| | - Alexandra Maslova
- Graduate Program in Bioinformatics, University of British Columbia, 100-570 7(th) Avenue West, Vancouver, BC V5Z 4S6, Canada
| | - Shugo Sasaki
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada.
| |
Collapse
|
8
|
Schüle KM, Leichsenring M, Andreani T, Vastolo V, Mallick M, Musheev MU, Karaulanov E, Niehrs C. GADD45 promotes locus-specific DNA demethylation and 2C cycling in embryonic stem cells. Genes Dev 2019; 33:782-798. [PMID: 31171699 PMCID: PMC6601511 DOI: 10.1101/gad.325696.119] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/02/2019] [Indexed: 12/16/2022]
Abstract
In this study, Schüle et al. report an unexpected role of GADD45 proteins in regulation of the cycling of ESCs in the 2C state. Using methylome analysis of Gadd45 triple-mutant ESCs, they found a role for GADD45 in demethylation of specific TET targets and partial deregulation of ZGA genes at the two-cell stage. Mouse embryonic stem cell (ESC) cultures contain a rare cell population of “2C-like” cells resembling two-cell embryos, the key stage of zygotic genome activation (ZGA). Little is known about positive regulators of the 2C-like state and two-cell stage embryos. Here we show that GADD45 (growth arrest and DNA damage 45) proteins, regulators of TET (TET methylcytosine dioxygenase)-mediated DNA demethylation, promote both states. Methylome analysis of Gadd45a,b,g triple-knockout (TKO) ESCs reveal locus-specific DNA hypermethylation of ∼7000 sites, which are enriched for enhancers and loci undergoing TET–TDG (thymine DNA glycosylase)-mediated demethylation. Gene expression is misregulated in TKOs, notably upon differentiation, and displays signatures of DNMT (DNA methyltransferase) and TET targets. TKOs manifest impaired transition into the 2C-like state and exhibit DNA hypermethylation and down-regulation of 2C-like state-specific genes. Gadd45a,b double-mutant mouse embryos display embryonic sublethality, deregulated ZGA gene expression, and developmental arrest. Our study reveals an unexpected role of GADD45 proteins in embryonic two-cell stage regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christof Niehrs
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany.,German Cancer Research Center (DKFZ), Division of Molecular Embryology, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Gupta S, M-Redmond T, Meng F, Tidball A, Akil H, Watson S, Parent JM, Uhler M. Fibroblast growth factor 2 regulates activity and gene expression of human post-mitotic excitatory neurons. J Neurochem 2017; 145:188-203. [PMID: 29168882 DOI: 10.1111/jnc.14255] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 12/21/2022]
Abstract
Many neuropsychiatric disorders are thought to result from subtle changes in neural circuit formation. We used human embryonic stem cells and induced pluripotent stem cells (hiPSCs) to model mature, post-mitotic excitatory neurons and examine effects of fibroblast growth factor 2 (FGF2). FGF2 gene expression is known to be altered in brain regions of major depressive disorder (MDD) patients and FGF2 has anti-depressive effects in animal models of depression. We generated stable inducible neurons (siNeurons) conditionally expressing human neurogenin-2 (NEUROG2) to generate a homogenous population of post-mitotic excitatory neurons and study the functional as well as the transcriptional effects of FGF2. Upon induction of NEUROG2 with doxycycline, the vast majority of cells are post-mitotic, and the gene expression profile recapitulates that of excitatory neurons within 6 days. Using hES cell lines that inducibly express NEUROG2 as well as GCaMP6f, we were able to characterize spontaneous calcium activity in these neurons and show that calcium transients increase in the presence of FGF2. The FGF2-responsive genes were determined by RNA-Seq. FGF2-regulated genes previously identified in non-neuronal cell types were up-regulated (EGR1, ETV4, SPRY4, and DUSP6) as a result of chronic FGF2 treatment of siNeurons. Novel neuron-specific genes were also identified that may mediate FGF2-dependent increases in synaptic efficacy including NRXN3, SYT2, and GALR1. Since several of these genes have been implicated in MDD previously, these results will provide the basis for more mechanistic studies of the role of FGF2 in MDD.
Collapse
Affiliation(s)
- Shweta Gupta
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Tanya M-Redmond
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Fan Meng
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew Tidball
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Huda Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Stanley Watson
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Jack M Parent
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael Uhler
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
The Intellectual Disability and Schizophrenia Associated Transcription Factor TCF4 Is Regulated by Neuronal Activity and Protein Kinase A. J Neurosci 2017; 37:10516-10527. [PMID: 28951451 DOI: 10.1523/jneurosci.1151-17.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/10/2017] [Accepted: 09/16/2017] [Indexed: 12/23/2022] Open
Abstract
Transcription factor 4 (TCF4 also known as ITF2 or E2-2) is a basic helix-loop-helix (bHLH) protein associated with Pitt-Hopkins syndrome, intellectual disability, and schizophrenia (SCZ). Here, we show that TCF4-dependent transcription in cortical neurons cultured from embryonic rats of both sexes is induced by neuronal activity via soluble adenylyl cyclase and protein kinase A (PKA) signaling. PKA phosphorylates TCF4 directly and a PKA phosphorylation site in TCF4 is necessary for its transcriptional activity in cultured neurons and in the developing brain in vivo We also demonstrate that Gadd45g (growth arrest and DNA damage inducible gamma) is a direct target of neuronal-activity-induced, TCF4-dependent transcriptional regulation and that TCF4 missense variations identified in SCZ patients alter the transcriptional activity of TCF4 in neurons. This study identifies a new role for TCF4 as a neuronal-activity-regulated transcription factor, offering a novel perspective on the association of TCF4 with cognitive disorders.SIGNIFICANCE STATEMENT The importance of the basic helix-loop-helix transcription factor transcription factor 4 (TCF4) in the nervous system is underlined by its association with common and rare cognitive disorders. In the current study, we show that TCF4-controlled transcription in primary cortical neurons is induced by neuronal activity and protein kinase A. Our results support the hypotheses that dysregulation of neuronal-activity-dependent signaling plays a significant part in the etiology of neuropsychiatric and neurodevelopmental disorders.
Collapse
|
11
|
Meng H, Gao Y, Kang YF, Zhao YP, Yang GJ, Wang Y, Cao Y, Gan YH, Xie QF. Molecular Changes Involving MEK3-p38 MAPK Activation in Chronic Masticatory Myalgia. J Dent Res 2016; 95:1169-75. [PMID: 27418173 DOI: 10.1177/0022034516659441] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The exact mechanism underlying chronic masticatory myalgia (CMM), a conspicuous symptom in temporomandibular disorders, remains unclear. This investigation compared gene expression profiles between CMM patients and healthy subjects. Peripheral blood leukocytes were collected in 8 cases and 8 controls and subjected to whole genome microarray analyses. Data were analyzed with Gene Ontology and interactive pathways analyses. According to Gene Ontology analysis, categories such as ion transport, response to stimuli, and metabolic process were upregulated. The pathway analysis suggested overexpression of the mitogen-activated protein kinase (MAPK) pathway in CMM patients and to a higher degree in a pathway network. Overexpression of representative members of the MAPK pathway-including MAPK kinase 3 (MEK3), calcium voltage-gated channel auxiliary subunit gamma 2 (CACNG2), and growth arrest and DNA damage-inducible gamma (GADD45G)-was validated with real-time polymerase chain reaction. The upregulation of MEK3 was negatively correlated with the age of the CMM group. In the next step, the authors focused on MEK3, the gene that exhibited the greatest degree of differential expression, and its downstream target protein p38 MAPK. The results revealed upregulation of MEK3, as well as phosphorylated MEK3 and phosphorylated p38 MAPK, in CMM patients. These results provide a "fingerprint" for mechanistic studies of CMM in the future and highlight the importance of MEK3-p38 MAPK activation in CMM.
Collapse
Affiliation(s)
- H Meng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China Center for Oral Functional Diagnosis, Treatment, and Research, Peking University School and Hospital of Stomatology, Beijing, China Department of Prosthodontics, North China University of Science and Technology School of Stomatology, Hebei, China
| | - Y Gao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China Center for Oral Functional Diagnosis, Treatment, and Research, Peking University School and Hospital of Stomatology, Beijing, China
| | - Y F Kang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China Center for Oral Functional Diagnosis, Treatment, and Research, Peking University School and Hospital of Stomatology, Beijing, China
| | - Y P Zhao
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China
| | - G J Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China Center for Oral Functional Diagnosis, Treatment, and Research, Peking University School and Hospital of Stomatology, Beijing, China
| | - Y Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China Center for Oral Functional Diagnosis, Treatment, and Research, Peking University School and Hospital of Stomatology, Beijing, China
| | - Y Cao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China Center for Oral Functional Diagnosis, Treatment, and Research, Peking University School and Hospital of Stomatology, Beijing, China
| | - Y H Gan
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Q F Xie
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China Center for Oral Functional Diagnosis, Treatment, and Research, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
12
|
Zhao L, Gu H, Chang J, Wu J, Wang D, Chen S, Yang X, Qian B. MicroRNA-383 regulates the apoptosis of tumor cells through targeting Gadd45g. PLoS One 2014; 9:e110472. [PMID: 25415264 PMCID: PMC4240536 DOI: 10.1371/journal.pone.0110472] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 09/09/2014] [Indexed: 11/18/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a class of small non-coding single-stranded RNA molecules that inhibit gene expression at post-transcriptional level. Gadd45g (growth arrest and DNA-damage-inducible 45 gamma) is a stress-response protein, which has been implicated in several biological processes, including DNA repair, the cell cycle and cell differentiation. Results In this work, we found that miR-383 is a negative regulator of Gadd45g. Forced expression of miR-383 decreased the expression of Gadd45g through binding to the 3′ untranslated region (3′-UTR), whereas inhibition of miR-383 increased Gadd45g expression. The presence of miR-383 increased the cellular sensitivity to DNA damage in breast cancer cells, which was rescued by ectopic expression of Gadd45g without the 3′-UTR. miR-383 also regulates the expression of Gadd45g in embryonic stem (ES) cells, but not their apoptosis under genotoxic stress. miR-383 was further showed to negatively regulate ES cell differentiation via targeting Gadd45g, which subsequently modulates the pluripotency-associated genes. Taken together, our study demonstrates that miR-383 is a negative regulator of Gadd45g in both tumor cells and ES cells, however, has distinct function in regulating cell apoptosis. miR-383 may be used as antineoplastic agents in cancer chemotherapy. Conclusion We demonstrate for the first time that miR-383 can specifically regulates the expression of Gadd45g by directly targeting to the 3-UTR region of Gadd45g mRNA, a regulatory process conserved in human tumor cells and mouse embryonic stem cells. These two compotents can be potentially used as antineoplastic agents in cancer chemotherapy.
Collapse
Affiliation(s)
- Lei Zhao
- Institute of Epigenetics and Cancer Research, Medical Science Building C-315, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Haihui Gu
- Department of Transfusion Medicine, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Jianfeng Chang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 150 Jimo Road/1239 Siping Road, Shanghai 200120/200092, China
| | - Junyu Wu
- Institute of Epigenetics and Cancer Research, Medical Science Building C-315, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Daliang Wang
- Institute of Epigenetics and Cancer Research, Medical Science Building C-315, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Su Chen
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 150 Jimo Road/1239 Siping Road, Shanghai 200120/200092, China
| | - Xiaomei Yang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 150 Jimo Road/1239 Siping Road, Shanghai 200120/200092, China
- * E-mail: (XY); (BQ)
| | - Baohua Qian
- Department of Transfusion Medicine, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
- * E-mail: (XY); (BQ)
| |
Collapse
|
13
|
Huang HS, Redmond TM, Kubish GM, Gupta S, Thompson RC, Turner DL, Uhler MD. Transcriptional regulatory events initiated by Ascl1 and Neurog2 during neuronal differentiation of P19 embryonic carcinoma cells. J Mol Neurosci 2014; 55:684-705. [PMID: 25189318 DOI: 10.1007/s12031-014-0408-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/20/2014] [Indexed: 11/25/2022]
Abstract
As members of the proneural basic-helix-loop-helix (bHLH) family of transcription factors, Ascl1 and Neurog2 direct the differentiation of specific populations of neurons at various times and locations within the developing nervous system. In order to characterize the mechanisms employed by these two bHLH factors, we generated stable, doxycycline-inducible lines of P19 embryonic carcinoma cells that express comparable levels of Ascl1 and Neurog2. Upon induction, both Ascl1 and Neurog2 directed morphological and immunocytochemical changes consistent with initiation of neuronal differentiation. Comparison of Ascl1- and Neurog2-regulated genes by microarray analyses showed both shared and distinct transcriptional changes for each bHLH protein. In both Ascl1- and Neurog2-differentiating cells, repression of Oct4 mRNA levels was accompanied by increased Oct4 promoter methylation. However, DNA demethylation was not detected for genes induced by either bHLH protein. Neurog2-induced genes included glutamatergic marker genes while Ascl1-induced genes included GABAergic marker genes. The Neurog2-specific induction of a gene encoding a protein phosphatase inhibitor, Ppp1r14a, was dependent on distinct, canonical E-box sequences within the Ppp1r14a promoter and the nucleotide sequences within these E-boxes were partially responsible for Neurog2-specific regulation. Our results illustrate multiple novel mechanisms by which Ascl1 and Neurog2 regulate gene repression during neuronal differentiation in P19 cells.
Collapse
Affiliation(s)
- Holly S Huang
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 109 Zina Pitcher Pl, Ann Arbor, MI, 48109-2200, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Kawaue T, Sagou K, Kiyonari H, Ota K, Okamoto M, Shinoda T, Kawaguchi A, Miyata T. Neurogenin2-d4Venus and Gadd45g-d4Venus transgenic mice: visualizing mitotic and migratory behaviors of cells committed to the neuronal lineage in the developing mammalian brain. Dev Growth Differ 2014; 56:293-304. [PMID: 24712911 PMCID: PMC4477914 DOI: 10.1111/dgd.12131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 03/08/2014] [Accepted: 03/08/2014] [Indexed: 12/22/2022]
Abstract
To achieve highly sensitive and comprehensive assessment of the morphology and dynamics of cells committed to the neuronal lineage in mammalian brain primordia, we generated two transgenic mouse lines expressing a destabilized (d4) Venus controlled by regulatory elements of the Neurogenin2 (Neurog2) or Gadd45g gene. In mid-embryonic neocortical walls, expression of Neurog2-d4Venus mostly overlapped with that of Neurog2 protein, with a slightly (1 h) delayed onset. Although Neurog2-d4Venus and Gadd45g-d4Venus mice exhibited very similar labeling patterns in the ventricular zone (VZ), in Gadd45g-d4Venus mice cells could be visualized in more basal areas containing fully differentiated neurons, where Neurog2-d4Venus fluorescence was absent. Time-lapse monitoring revealed that most d4Venus+ cells in the VZ had processes extending to the apical surface; many of these cells eventually retracted their apical process and migrated basally to the subventricular zone, where neurons, as well as the intermediate neurogenic progenitors that undergo terminal neuron-producing division, could be live-monitored by d4Venus fluorescence. Some d4Venus+ VZ cells instead underwent nuclear migration to the apical surface, where they divided to generate two d4Venus+ daughter cells, suggesting that the symmetric terminal division that gives rise to neuron pairs at the apical surface can be reliably live-monitored. Similar lineage-committed cells were observed in other developing neural regions including retina, spinal cord, and cerebellum, as well as in regions of the peripheral nervous system such as dorsal root ganglia. These mouse lines will be useful for elucidating the cellular and molecular mechanisms underlying development of the mammalian nervous system.
Collapse
Affiliation(s)
- Takumi Kawaue
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ishida K, Yuge Y, Hanaoka M, Yasukawa M, Minami Y, Ogawa M, Masumoto KH, Shigeyoshi Y, Saito M, Tsuji T. Gadd45gregulates dental epithelial cell proliferation through p38 MAPK-mediatedp21expression. Genes Cells 2013; 18:660-71. [DOI: 10.1111/gtc.12067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/15/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Kentaro Ishida
- Research Institute for Science and Technology; Tokyo University of Science; Chiba; 278-8510; Japan
| | - Yohei Yuge
- Department of Biological Science and Technology; Graduate School of Industrial Science and Technology; Tokyo University of Science; Chiba; 278-8510; Japan
| | - Mai Hanaoka
- Department of Biological Science and Technology; Graduate School of Industrial Science and Technology; Tokyo University of Science; Chiba; 278-8510; Japan
| | - Masato Yasukawa
- Department of Biological Science and Technology; Graduate School of Industrial Science and Technology; Tokyo University of Science; Chiba; 278-8510; Japan
| | - Yoko Minami
- Department of Biological Science and Technology; Graduate School of Industrial Science and Technology; Tokyo University of Science; Chiba; 278-8510; Japan
| | - Miho Ogawa
- Organ Technologies Inc.; Tokyo; 101-0048; Japan
| | - Ko-hei Masumoto
- Department of Anatomy and Neurobiology; Kiniki University Faculty of Medicine; Osaka; 589-8511; Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology; Kiniki University Faculty of Medicine; Osaka; 589-8511; Japan
| | | | | |
Collapse
|
16
|
Sultan FA, Sweatt JD. The Role of the Gadd45 Family in the Nervous System: A Focus on Neurodevelopment, Neuronal Injury, and Cognitive Neuroepigenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 793:81-119. [DOI: 10.1007/978-1-4614-8289-5_6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
O'Driscoll C, Kaufmann WE, Bressler J. Relationship between Mecp2 and NFκb signaling during neural differentiation of P19 cells. Brain Res 2012; 1490:35-42. [PMID: 23123205 DOI: 10.1016/j.brainres.2012.10.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 09/28/2012] [Accepted: 10/21/2012] [Indexed: 01/20/2023]
Abstract
The pluripotent P19 embryo carcinoma cell line was studied to determine a signaling pathway regulating MeCP2 expression. P19 cells were induced to differentiate into neurons by RA and express β-III tubulin at one day after induction and synaptophysin by 7 days. MeCP2 was first observed after β-III tubulin expression was detected and continued to rise over the course of differentiation. Both Mecp2 e1 and e2 mRNA forms progressively increased in differentiating cells. MeCP2 expression was increased by tumor necrosis factor (TNF) in early differentiating cells, which was blocked by NFκB inhibitors. TNF did not increase MeCP2 expression in naïve cells. Moreover, TNF did not increase NFκB reporter gene activity in naïve cells even though increases were observed in early differentiating cells. The protein kinase C activator phorbol 12-myristate 13-acetate (PMA) increased MeCP2 expression in naïve P19 cells, which was also blocked by NFκB inhibitors. Interestingly, PMA increased NFκB reporter gene activity in naïve cells. Finally, PMA, but not TNF, induced IκBα degradation in naïve P19 cells. Taken together, our data indicates that MeCP2 expression is regulated in part by signaling pathways involving NFκB.
Collapse
|
18
|
Abnormal levels of Gadd45alpha in developing neocortex impair neurite outgrowth. PLoS One 2012; 7:e44207. [PMID: 22970179 PMCID: PMC3435417 DOI: 10.1371/journal.pone.0044207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/30/2012] [Indexed: 12/13/2022] Open
Abstract
To better understand the short and long-term effects of stress on the developing cerebral cortex, it is necessary to understand how early stress response genes protect or permanently alter cells. One family of highly conserved, stress response genes is the growth arrest and DNA damage-45 (Gadd45) genes. The expression of these genes is induced by a host of genotoxic, drug, and environmental stressors. Here we examined the impact of altering the expression of Gadd45alpha (Gadd45a), a member of the Gadd45 protein family that is expressed throughout the developing cortices of mice and humans. To manipulate levels of Gadd45a protein in developing mouse cortex, we electroporated cDNA plasmids encoding either Gadd45a or Gadd45a shRNA to either overexpress or knockdown Gadd45a levels in the developing cortices of mice, respectively. The effects of these manipulations were assessed by examining the fates and morphologies of the labeled neurons. Gadd45a overexpression both in vitro and in vivo significantly impaired the morphology of neurons, decreasing neurite complexity, inducing soma hypertrophy and increasing cell death. Knockdown of Gadd45a partially inhibited neuronal migration and reduced neurite complexity, an effect that was reversed in the presence of an shRNA-resistant Gadd45a. Finally, we found that shRNA against MEKK4, a direct target of Gadd45a, also stunted neurite outgrowth. Our findings suggest that the expression of Gadd45a in normal, developing brain is tightly regulated and that treatments or environmental stimuli that alter its expression could produce significant changes in neuronal circuitry development.
Collapse
|
19
|
Lin YT, Ding JY, Li MY, Yeh TS, Wang TW, Yu JY. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway. Exp Cell Res 2012; 318:1877-88. [PMID: 22659622 DOI: 10.1016/j.yexcr.2012.05.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/28/2012] [Accepted: 05/07/2012] [Indexed: 12/21/2022]
Abstract
Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation.
Collapse
Affiliation(s)
- Yi-Ting Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | | | | | |
Collapse
|
20
|
Moskalev AA, Smit-McBride Z, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Tacutu R, Fraifeld VE. Gadd45 proteins: relevance to aging, longevity and age-related pathologies. Ageing Res Rev 2012; 11:51-66. [PMID: 21986581 PMCID: PMC3765067 DOI: 10.1016/j.arr.2011.09.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/25/2011] [Accepted: 09/27/2011] [Indexed: 12/12/2022]
Abstract
The Gadd45 proteins have been intensively studied, in view of their important role in key cellular processes. Indeed, the Gadd45 proteins stand at the crossroad of the cell fates by controlling the balance between cell (DNA) repair, eliminating (apoptosis) or preventing the expansion of potentially dangerous cells (cell cycle arrest, cellular senescence), and maintaining the stem cell pool. However, the biogerontological aspects have not thus far received sufficient attention. Here we analyzed the pathways and modes of action by which Gadd45 members are involved in aging, longevity and age-related diseases. Because of their pleiotropic action, a decreased inducibility of Gadd45 members may have far-reaching consequences including genome instability, accumulation of DNA damage, and disorders in cellular homeostasis - all of which may eventually contribute to the aging process and age-related disorders (promotion of tumorigenesis, immune disorders, insulin resistance and reduced responsiveness to stress). Most recently, the dGadd45 gene has been identified as a longevity regulator in Drosophila. Although further wide-scale research is warranted, it is becoming increasingly clear that Gadd45s are highly relevant to aging, age-related diseases (ARDs) and to the control of life span, suggesting them as potential therapeutic targets in ARDs and pro-longevity interventions.
Collapse
Affiliation(s)
- Alexey A Moskalev
- Group of Molecular Radiobiology and Gerontology, Institute of Biology, Komi Science Center of Russian Academy of Sciences.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kaufmann LT, Niehrs C. Gadd45a and Gadd45g regulate neural development and exit from pluripotency in Xenopus. Mech Dev 2011; 128:401-11. [PMID: 21854844 DOI: 10.1016/j.mod.2011.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/01/2011] [Accepted: 08/03/2011] [Indexed: 01/07/2023]
Abstract
Gadd45 genes encode a small family of multifunctional stress response proteins, mediating cell proliferation, apoptosis, DNA repair and DNA demethylation. Their role during embryonic development is incompletely understood. Here we identified Xenopus Gadd45b, compared Gadd45a, Gadd45b and Gadd45g expression during Xenopus embryogenesis, and characterized their gain and loss of function phenotypes. Gadd45a and Gadd45g act redundantly and double Morpholino knock down leads to pleiotropic phenotypes, including shortened axes, head defects and misgastrulation. In contrast, Gadd45b, which is expressed at very low levels, shows little effect upon knock down or overexpression. Gadd45ag double Morphants show reduced neural cell proliferation and downregulation of pan-neural and neural crest markers. In contrast, Gadd45ag Morphants display increased expression of multipotency marker genes including Xenopus oct4 homologs as well as gastrula markers, while mesodermal markers are downregulated. The results indicate that Gadd45ag are required for early embryonic cells to exit pluripotency and enter differentiation.
Collapse
Affiliation(s)
- Lilian T Kaufmann
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 581, Heidelberg, Germany
| | | |
Collapse
|
22
|
Castro DS, Martynoga B, Parras C, Ramesh V, Pacary E, Johnston C, Drechsel D, Lebel-Potter M, Garcia LG, Hunt C, Dolle D, Bithell A, Ettwiller L, Buckley N, Guillemot F. A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes Dev 2011; 25:930-45. [PMID: 21536733 DOI: 10.1101/gad.627811] [Citation(s) in RCA: 320] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proneural genes such as Ascl1 are known to promote cell cycle exit and neuronal differentiation when expressed in neural progenitor cells. The mechanisms by which proneural genes activate neurogenesis--and, in particular, the genes that they regulate--however, are mostly unknown. We performed a genome-wide characterization of the transcriptional targets of Ascl1 in the embryonic brain and in neural stem cell cultures by location analysis and expression profiling of embryos overexpressing or mutant for Ascl1. The wide range of molecular and cellular functions represented among these targets suggests that Ascl1 directly controls the specification of neural progenitors as well as the later steps of neuronal differentiation and neurite outgrowth. Surprisingly, Ascl1 also regulates the expression of a large number of genes involved in cell cycle progression, including canonical cell cycle regulators and oncogenic transcription factors. Mutational analysis in the embryonic brain and manipulation of Ascl1 activity in neural stem cell cultures revealed that Ascl1 is indeed required for normal proliferation of neural progenitors. This study identified a novel and unexpected activity of the proneural gene Ascl1, and revealed a direct molecular link between the phase of expansion of neural progenitors and the subsequent phases of cell cycle exit and neuronal differentiation.
Collapse
Affiliation(s)
- Diogo S Castro
- Medical Research Council National Institute for Medical Research, Division of Molecular Neurobiology, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Huang HS, Turner DL, Thompson RC, Uhler MD. Ascl1-induced neuronal differentiation of P19 cells requires expression of a specific inhibitor protein of cyclic AMP-dependent protein kinase. J Neurochem 2011; 120:667-83. [PMID: 21623794 DOI: 10.1111/j.1471-4159.2011.07332.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
cAMP-dependent protein kinase (PKA) plays a critical role in nervous system development by modulating sonic hedgehog and bone morphogenetic protein signaling. In the current studies, P19 embryonic carcinoma cells were neuronally differentiated by expression of the proneural basic helix-loop-helix transcription factor Ascl1. After expression of Ascl1, but prior to expression of neuronal markers such as microtubule associated protein 2 and neuronal β-tubulin, P19 cells demonstrated a large, transient increase in both mRNA and protein for the endogenous protein kinase inhibitor (PKI)β. PKIβ-targeted shRNA constructs both reduced the levels of PKIβ expression and blocked the neuronal differentiation of P19 cells. This inhibition of differentiation was rescued by transfection of a shRNA-resistant expression vector for the PKIβ protein, and this rescue required the PKA-specific inhibitory sequence of the PKIβ protein. PKIβ played a very specific role in the Ascl1-mediated differentiation process as other PKI isoforms were unable to rescue the deficit conferred by shRNA-mediated knockdown of PKIβ. Our results define a novel requirement for PKIβ and its inhibition of PKA during neuronal differentiation of P19 cells.
Collapse
Affiliation(s)
- Holly S Huang
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | |
Collapse
|