1
|
Liu Y, Zhu Y, Wang X, Li Y, Yang S, Li H, Dong B, Wang Z, Song Y, Xu J, Xue C. Mechanisms by which Ganglioside GM1, a specific type of glycosphingolipid, ameliorates BMAA-induced neurotoxicity in early-life stage of zebrafish embryos. Food Res Int 2025; 200:115502. [PMID: 39779142 DOI: 10.1016/j.foodres.2024.115502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/24/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
The neurotoxin β-methylamino-L-alanine (BMAA) produced by cyanobacteria is widely present in foods and dietary supplements, posing a significant threat to human health. Ganglioside GM1 (GM1) has demonstrated potential for treating neurodegenerative diseases; however, its ability to prevent BMAA-induced neurotoxicity remains uncertain. In this study, zebrafish embryos were treated with Ganglioside GM1 to investigate its neuroprotective effects against BMAA exposure and the underlying mechanisms. Exposure to BMAA (400 μM) resulted in increased malformation rate and heart rates in zebrafish embryos at 72 h post-fertilization, along with the decreased survival rates. Conversely, GM1 intervention rescued BMAA-induced movement disorders and brain cell apoptosis, and oxidative stress was alleviated. In addition, GM1 inhibited the neurotoxic effects of BMAA in zebrafish embryos, as indicated by the up-regulation of genes related to neuron development (gpx1a, bdnf, ngfb, and islet-1) and the down-regulations of neurodegeneration-related genes (cdk5, gfap, and nptxr). GM1 treatment restored 261 differentially expressed genes (DEGs) identified through RNA sequencing, with the most enriched DEGs related to the mitogen-activated protein kinase (MAPK) signaling pathway (P < 0.05, 47 genes). GM1 modulated MAPK-targeted gene expression at the mRNA level. These findings suggest that GM1 alleviates BMAA-induced neurotoxicity in the early-life stage of zebrafish embryos. The neuroprotective mechanism may involve the MAPK pathway, offering new insights into lipid signaling for the prevention of neurotoxic hazards to biological health.
Collapse
Affiliation(s)
- Yanjun Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yuhe Zhu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xiaoxu Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yiyang Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Shuaiqi Yang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Hongyan Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Bo Dong
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Zhigao Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266235, China
| |
Collapse
|
2
|
Zhuang H, Shang X, Hou W, Ji Z. Identifying cell-type-specific spatially variable genes with ctSVG. RESEARCH SQUARE 2024:rs.3.rs-5655066. [PMID: 39764138 PMCID: PMC11702777 DOI: 10.21203/rs.3.rs-5655066/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Spatially variable genes (SVGs) reveal the molecular and functional heterogeneity of cells across different spatial regions of a tissue. We found that sample-wide SVGs, identified by previous methods across the whole sample, largely overlap with cell-type marker genes derived from single-cell gene expression, leaving the spatial location information largely underutilized. We developed ctSVG, a computational method specifically tailored for Visium HD spatial transcriptomics at single-cell resolution. ctSVG accurately assigns Visium squares to cells and identifies cell-type-specific SVGs. We show that cell-type-specific SVGs identified by ctSVG include many new genes that do not overlap with sample-wide SVGs or cell-type marker genes, and that these genes reveal important biological functions in real spatial datasets.
Collapse
Affiliation(s)
- Haotian Zhuang
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Xinyi Shang
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York City, NY, USA
| | - Wenpin Hou
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York City, NY, USA
| | - Zhicheng Ji
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
3
|
Popp JM, Rhodes K, Jangi R, Li M, Barr K, Tayeb K, Battle A, Gilad Y. Cell type and dynamic state govern genetic regulation of gene expression in heterogeneous differentiating cultures. CELL GENOMICS 2024; 4:100701. [PMID: 39626676 DOI: 10.1016/j.xgen.2024.100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/18/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024]
Abstract
Identifying the molecular effects of human genetic variation across cellular contexts is crucial for understanding the mechanisms underlying disease-associated loci, yet many cell types and developmental stages remain underexplored. Here, we harnessed the potential of heterogeneous differentiating cultures (HDCs), an in vitro system in which pluripotent cells asynchronously differentiate into a broad spectrum of cell types. We generated HDCs for 53 human donors and collected single-cell RNA sequencing data from over 900,000 cells. We identified expression quantitative trait loci in 29 cell types and characterized regulatory dynamics across diverse differentiation trajectories. This revealed novel regulatory variants for genes involved in key developmental and disease-related processes while replicating known effects from primary tissues and dynamic regulatory effects associated with a range of complex traits.
Collapse
Affiliation(s)
- Joshua M Popp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Katherine Rhodes
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Radhika Jangi
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mingyuan Li
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kenneth Barr
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Karl Tayeb
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Yoav Gilad
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
4
|
Hong T, Park J, Min N, Bae SM, An G, Lee H, Song G, Jeong W, Lim W. Propanil impairs organ development in zebrafish by inducing apoptosis and inhibiting mitochondrial respiration. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136364. [PMID: 39486319 DOI: 10.1016/j.jhazmat.2024.136364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Propanil, an anilide herbicide, has frequently been detected in surface waters in Europe and the United States, largely due to its use in paddy cultivation areas. Particularly in specific regions like Sri Lanka, propanil is considered a potential cause of certain diseases and toxicities due to its high environmental runoff; however, there has been little research on its developmental toxicity. In the present study, we confirmed the developmental toxicity of propanil in zebrafish embryos exposed to 0, 2, 5, and 6 mg/L based on the LC50 value. Propanil exposure in embryos induced morphological changes, including decreased body length and eye size, and increased the heart and yolk sac edema. It increased the number of apoptotic cells in the brains and eyes of zebrafish larvae by 214 % and 184 %, respectively. Propanil-treated embryos exhibited altered mitochondrial metabolism, reducing basal respiration by 28 %, maximal respiration by 24 %, and ATP production by 38 %. These alterations induced organ defects in transgenic zebrafish models (cmlc2:DsRed, flk1:EGFP, olig2:DsRed, lfabp:DsRed;elastase:EGFP, and insulin:EGFP). It induced cardiovascular toxicity, as confirmed by the reduced atrial area, cerebrovascular intensity, and intersegmental vessels. Additionally, propanil decreased the fluorescence intensity of neurons, liver, and pancreas. Collectively, this study indicates that propanil causes early developmental toxicity through apoptosis and mitochondrial dysfunction. It presents a new perspective on how mitochondrial dysfunction, previously unreported in toxicity studies of other anilide herbicides, may affect developmental toxicity.
Collapse
Affiliation(s)
- Taeyeon Hong
- Department of Biological Sciences, Institute of Basic Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junho Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Nayoung Min
- Department of Biological Sciences, Institute of Basic Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung-Min Bae
- Department of MetaBioHealth, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Garam An
- Department of Biological Sciences, Institute of Basic Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hojun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Wooyoung Jeong
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung 25601, Republic of Korea; Research Center for Marine Bio-Food and Medicine, Catholic Kwandong University, Gangneung 25601, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Institute of Basic Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
5
|
Bell JM, Turner EM, Biesemeyer C, Vanderbeck MM, Hendricks R, McGraw HF. foxg1a is required for hair cell development and regeneration in the zebrafish lateral line. Biol Open 2024; 13:bio060580. [PMID: 39301848 PMCID: PMC11423914 DOI: 10.1242/bio.060580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Mechanosensory hair cells located in the inner ear mediate the sensations of hearing and balance. If damaged, mammalian inner ear hair cells are unable to regenerate, resulting in permanent sensory deficits. Aquatic vertebrates like zebrafish (Danio rerio) have a specialized class of mechanosensory hair cells found in the lateral line system, allowing them to sense changes in water current. Unlike mammalian inner ear hair cells, lateral line hair cells can robustly regenerate following damage. In mammals, the transcription factor Foxg1 functions to promote normal development of the inner ear. Foxg1a is expressed in lateral line sensory organs in zebrafish larvae, but its function during lateral line development and regeneration has not been investigated. Our study demonstrates that mutation of foxg1a results in slower posterior lateral line primordium migration and delayed neuromast formation. In developing and regenerating neuromasts, we find that loss of Foxg1a function results in reduced hair cell numbers, as well as decreased proliferation of neuromast cells. Foxg1a specifically regulates the development and regeneration of Islet1-labeled hair cells. These data suggest that Foxg1 may be a valuable target for investigation of clinical hair cell regeneration.
Collapse
Affiliation(s)
- Jon M. Bell
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| | - Emily M. Turner
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| | - Cole Biesemeyer
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
- Research Organisms, Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Madison M. Vanderbeck
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| | - Roe Hendricks
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| | - Hillary F. McGraw
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| |
Collapse
|
6
|
Zhu Z, Zou Q, Wang C, Li D, Yang Y, Xiao Y, Jin Y, Yan J, Luo L, Sun Y, Liang X. Isl Identifies the Extraembryonic Mesodermal/Allantois Progenitors and is Required for Placenta Morphogenesis and Vasculature Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400238. [PMID: 38923264 PMCID: PMC11348239 DOI: 10.1002/advs.202400238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/08/2024] [Indexed: 06/28/2024]
Abstract
The placenta links feto-maternal circulation for exchanges of nutrients, gases, and metabolic wastes between the fetus and mother, being essential for pregnancy process and maintenance. The allantois and mesodermal components of amnion, chorion, and yolk sac are derived from extraembryonic mesoderm (Ex-Mes), however, the mechanisms contributing to distinct components of the placenta and regulation the interactions between allantois and epithelium during chorioallantoic fusion and labyrinth formation remains unclear. Isl1 is expressed in progenitors of the Ex-Mes and allantois the Isl1 mut mouse line is analyzed to investigate contribution of Isl1+ Ex-Mes / allantoic progenitors to cells of the allantois and placenta. This study shows that Isl1 identifies the Ex-Mes progenitors for endothelial and vascular smooth muscle cells, and most of the mesenchymal cells of the placenta and umbilical cord. Deletion of Isl1 causes defects in allantois growth, chorioallantoic fusion, and placenta vessel morphogenesis. RNA-seq and CUT&Tag analyses revealed that Isl1 promotes allantoic endothelial, inhibits mesenchymal cell differentiation, and allantoic signals regulated by Isl1 mediating the inductive interactions between the allantois and chorion critical for chorionic epithelium differentiation, villous formation, and labyrinth angiogenesis. This study above reveals that Isl1 plays roles in regulating multiple genetic and epigenetic pathways of vascular morphogenesis, provides the insight into the mechanisms for placental formation, highlighting the necessity of Isl1 for placenta formation/pregnant maintenance.
Collapse
Affiliation(s)
- Zeyue Zhu
- Key Laboratory of Arrhythmia of the Ministry of Education of ChinaEast HospitalTongji University School of MedicineShanghai200120China
| | - Qicheng Zou
- Key Laboratory of Arrhythmia of the Ministry of Education of ChinaEast HospitalTongji University School of MedicineShanghai200120China
| | - Chunxiao Wang
- Key Laboratory of Arrhythmia of the Ministry of Education of ChinaEast HospitalTongji University School of MedicineShanghai200120China
| | - Dixi Li
- Department of Hematology, Tongji HospitalTongji University School of MedicineShanghai200120China
| | - Yan Yang
- Key Laboratory of Arrhythmia of the Ministry of Education of ChinaEast HospitalTongji University School of MedicineShanghai200120China
| | - Ying Xiao
- Key Laboratory of Arrhythmia of the Ministry of Education of ChinaEast HospitalTongji University School of MedicineShanghai200120China
| | - Yao Jin
- Key Laboratory of Arrhythmia of the Ministry of Education of ChinaEast HospitalTongji University School of MedicineShanghai200120China
| | - Jie Yan
- Key Laboratory of Arrhythmia of the Ministry of Education of ChinaEast HospitalTongji University School of MedicineShanghai200120China
| | - Lina Luo
- Key Laboratory of Arrhythmia of the Ministry of Education of ChinaEast HospitalTongji University School of MedicineShanghai200120China
| | - Yunfu Sun
- Shanghai East HospitalTongji University School of Medicine150 Jimo RoadShanghai200120China
| | - Xingqun Liang
- Shanghai East HospitalTongji University School of Medicine150 Jimo RoadShanghai200120China
| |
Collapse
|
7
|
Popp JM, Rhodes K, Jangi R, Li M, Barr K, Tayeb K, Battle A, Gilad Y. Cell-type and dynamic state govern genetic regulation of gene expression in heterogeneous differentiating cultures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592174. [PMID: 38746382 PMCID: PMC11092595 DOI: 10.1101/2024.05.02.592174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Identifying the molecular effects of human genetic variation across cellular contexts is crucial for understanding the mechanisms underlying disease-associated loci, yet many cell-types and developmental stages remain underexplored. Here we harnessed the potential of heterogeneous differentiating cultures ( HDCs ), an in vitro system in which pluripotent cells asynchronously differentiate into a broad spectrum of cell-types. We generated HDCs for 53 human donors and collected single-cell RNA-sequencing data from over 900,000 cells. We identified expression quantitative trait loci in 29 cell-types and characterized regulatory dynamics across diverse differentiation trajectories. This revealed novel regulatory variants for genes involved in key developmental and disease-related processes while replicating known effects from primary tissues, and dynamic regulatory effects associated with a range of complex traits.
Collapse
|
8
|
Swindell WR. Meta-analysis of differential gene expression in lower motor neurons isolated by laser capture microdissection from post-mortem ALS spinal cords. Front Genet 2024; 15:1385114. [PMID: 38689650 PMCID: PMC11059082 DOI: 10.3389/fgene.2024.1385114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction ALS is a fatal neurodegenerative disease for which underlying mechanisms are incompletely understood. The motor neuron is a central player in ALS pathogenesis but different transcriptome signatures have been derived from bulk analysis of post-mortem tissue and iPSC-derived motor neurons (iPSC-MNs). Methods This study performed a meta-analysis of six gene expression studies (microarray and RNA-seq) in which laser capture microdissection (LCM) was used to isolate lower motor neurons from post-mortem spinal cords of ALS and control (CTL) subjects. Differentially expressed genes (DEGs) with consistent ALS versus CTL expression differences across studies were identified. Results The analysis identified 222 ALS-increased DEGs (FDR <0.10, SMD >0.80) and 278 ALS-decreased DEGs (FDR <0.10, SMD < -0.80). ALS-increased DEGs were linked to PI3K-AKT signaling, innate immunity, inflammation, motor neuron differentiation and extracellular matrix. ALS-decreased DEGs were associated with the ubiquitin-proteosome system, microtubules, axon growth, RNA-binding proteins and synaptic membrane. ALS-decreased DEG mRNAs frequently interacted with RNA-binding proteins (e.g., FUS, HuR). The complete set of DEGs (increased and decreased) overlapped significantly with genes near ALS-associated SNP loci (p < 0.01). Transcription factor target motifs with increased proximity to ALS-increased DEGs were identified, most notably DNA elements predicted to interact with forkhead transcription factors (e.g., FOXP1) and motor neuron and pancreas homeobox 1 (MNX1). Some of these DNA elements overlie ALS-associated SNPs within known enhancers and are predicted to have genotype-dependent MNX1 interactions. DEGs were compared to those identified from SOD1-G93A mice and bulk spinal cord segments or iPSC-MNs from ALS patients. There was good correspondence with transcriptome changes from SOD1-G93A mice (r ≤ 0.408) but most DEGs were not differentially expressed in bulk spinal cords or iPSC-MNs and transcriptome-wide effect size correlations were weak (bulk tissue: r ≤ 0.207, iPSC-MN: r ≤ 0.037). Conclusion This study defines a robust transcriptome signature from LCM-based motor neuron studies of post-mortem tissue from ALS and CTL subjects. This signature differs from those obtained from analysis of bulk spinal cord segments and iPSC-MNs. Results provide insight into mechanisms underlying gene dysregulation in ALS and highlight connections between these mechanisms, ALS genetics, and motor neuron biology.
Collapse
Affiliation(s)
- William R. Swindell
- Department of Internal Medicine, Division of Hospital Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
9
|
Bell JM, Biesemeyer C, Turner EM, Vanderbeck MM, McGraw HF. foxg1a is required for hair cell development and regeneration in the zebrafish lateral line. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589268. [PMID: 38659824 PMCID: PMC11042177 DOI: 10.1101/2024.04.12.589268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Mechanosensory hair cells located in the inner ear mediate the sensations of hearing and balance. If damaged, mammalian inner ear hair cells are unable to regenerate, resulting in permanent sensory deficits. Aquatic vertebrates like zebrafish (Danio rerio) have a specialized class of mechanosensory hair cells found in the lateral line system, allowing them to sense changes in water current. Unlike mammalian inner ear hair cells, lateral line hair cells can robustly regenerate following damage. In mammalian models, the transcription factor Foxg1 functions to promote normal development of the inner ear. Foxg1a is expressed in lateral line sensory organs in zebrafish larvae, but its function during lateral line development and regeneration has not been investigated. We find that loss of Foxg1a function results in reduced hair cell development and regeneration, as well as decreased cellular proliferation in the lateral line system. These data suggest that Foxg1 may be a valuable target for investigation of clinical hair cell regeneration. Summary statement Our work demonstrates a role for Foxg1a in developing and regenerating new sensory cells through proliferation.
Collapse
|
10
|
Hutchings C, Nuriel Y, Lazar D, Kohl A, Muir E, Genin O, Cinnamon Y, Benyamini H, Nevo Y, Sela-Donenfeld D. Hindbrain boundaries as niches of neural progenitor and stem cells regulated by the extracellular matrix proteoglycan chondroitin sulphate. Development 2024; 151:dev201934. [PMID: 38251863 PMCID: PMC10911165 DOI: 10.1242/dev.201934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
The interplay between neural progenitors and stem cells (NPSCs), and their extracellular matrix (ECM) is a crucial regulatory mechanism that determines their behavior. Nonetheless, how the ECM dictates the state of NPSCs remains elusive. The hindbrain is valuable to examine this relationship, as cells in the ventricular surface of hindbrain boundaries (HBs), which arise between any two neighboring rhombomeres, express the NPSC marker Sox2, while being surrounded with the membrane-bound ECM molecule chondroitin sulphate proteoglycan (CSPG), in chick and mouse embryos. CSPG expression was used to isolate HB Sox2+ cells for RNA-sequencing, revealing their distinguished molecular properties as typical NPSCs, which express known and newly identified genes relating to stem cells, cancer, the matrisome and cell cycle. In contrast, the CSPG- non-HB cells, displayed clear neural-differentiation transcriptome. To address whether CSPG is significant for hindbrain development, its expression was manipulated in vivo and in vitro. CSPG manipulations shifted the stem versus differentiation state of HB cells, evident by their behavior and altered gene expression. These results provide further understanding of the uniqueness of hindbrain boundaries as repetitive pools of NPSCs in-between the rapidly growing rhombomeres, which rely on their microenvironment to maintain their undifferentiated state during development.
Collapse
Affiliation(s)
- Carmel Hutchings
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Yarden Nuriel
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Daniel Lazar
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ayelet Kohl
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Elizabeth Muir
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1TN, UK
| | - Olga Genin
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeTsiyon 7505101, Israel
| | - Yuval Cinnamon
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeTsiyon 7505101, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
11
|
Knabl P, Schauer A, Pomreinke AP, Zimmermann B, Rogers KW, Čapek D, Müller P, Genikhovich G. Analysis of SMAD1/5 target genes in a sea anemone reveals ZSWIM4-6 as a novel BMP signaling modulator. eLife 2024; 13:e80803. [PMID: 38323609 PMCID: PMC10849676 DOI: 10.7554/elife.80803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/28/2024] [Indexed: 02/08/2024] Open
Abstract
BMP signaling has a conserved function in patterning the dorsal-ventral body axis in Bilateria and the directive axis in anthozoan cnidarians. So far, cnidarian studies have focused on the role of different BMP signaling network components in regulating pSMAD1/5 gradient formation. Much less is known about the target genes downstream of BMP signaling. To address this, we generated a genome-wide list of direct pSMAD1/5 target genes in the anthozoan Nematostella vectensis, several of which were conserved in Drosophila and Xenopus. Our ChIP-seq analysis revealed that many of the regulatory molecules with documented bilaterally symmetric expression in Nematostella are directly controlled by BMP signaling. We identified several so far uncharacterized BMP-dependent transcription factors and signaling molecules, whose bilaterally symmetric expression may be indicative of their involvement in secondary axis patterning. One of these molecules is zswim4-6, which encodes a novel nuclear protein that can modulate the pSMAD1/5 gradient and potentially promote BMP-dependent gene repression.
Collapse
Affiliation(s)
- Paul Knabl
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of ViennaViennaAustria
| | - Alexandra Schauer
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| | | | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| | | | | | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingenGermany
- University of KonstanzKonstanzGermany
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| |
Collapse
|
12
|
Yao Y, Baronio D, Chen YC, Jin C, Panula P. The Roles of Histamine Receptor 1 (hrh1) in Neurotransmitter System Regulation, Behavior, and Neurogenesis in Zebrafish. Mol Neurobiol 2023; 60:6660-6675. [PMID: 37474883 PMCID: PMC10533647 DOI: 10.1007/s12035-023-03447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Histamine receptors mediate important physiological processes and take part in the pathophysiology of different brain disorders. Histamine receptor 1 (HRH1) is involved in the development of neurotransmitter systems, and its role in neurogenesis has been proposed. Altered HRH1 binding and expression have been detected in the brains of patients with schizophrenia, depression, and autism. Our goal was to assess the role of hrh1 in zebrafish development and neurotransmitter system regulation through the characterization of hrh1-/- fish generated by the CRISPR/Cas9 system. Quantitative PCR, in situ hybridization, and immunocytochemistry were used to study neurotransmitter systems and genes essential for brain development. Additionally, we wanted to reveal the role of this histamine receptor in larval and adult fish behavior using several quantitative behavioral methods including locomotion, thigmotaxis, dark flash and startle response, novel tank diving, and shoaling behavior. Hrh1-/- larvae displayed normal behavior in comparison with hrh1+/+ siblings. Interestingly, a transient abnormal expression of important neurodevelopmental markers was evident in these larvae, as well as a reduction in the number of tyrosine hydroxylase 1 (Th1)-positive cells, th1 mRNA, and hypocretin (hcrt)-positive cells. These abnormalities were not detected in adulthood. In summary, we verified that zebrafish lacking hrh1 present deficits in the dopaminergic and hypocretin systems during early development, but those are compensated by the time fish reach adulthood. However, impaired sociability and anxious-like behavior, along with downregulation of choline O-acetyltransferase a and LIM homeodomain transcription factor Islet1, were displayed by adult fish.
Collapse
Affiliation(s)
- Yuxiao Yao
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Diego Baronio
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Yu-Chia Chen
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Congyu Jin
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland.
| |
Collapse
|
13
|
Lee Y, Yeo IS, Kim N, Lee DK, Kim KT, Yoon J, Yi J, Hong YB, Choi BO, Kosodo Y, Kim D, Park J, Song MR. Transcriptional control of motor pool formation and motor circuit connectivity by the LIM-HD protein Isl2. eLife 2023; 12:e84596. [PMID: 37869988 PMCID: PMC10637776 DOI: 10.7554/elife.84596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
The fidelity of motor control requires the precise positional arrangement of motor pools and the establishment of synaptic connections between them. During neural development in the spinal cord, motor nerves project to specific target muscles and receive proprioceptive input from these muscles via the sensorimotor circuit. LIM-homeodomain transcription factors are known to play a crucial role in successively restricting specific motor neuronal fates. However, their exact contribution to limb-based motor pools and locomotor circuits has not been fully understood. To address this, we conducted an investigation into the role of Isl2, a LIM-homeodomain transcription factor, in motor pool organization. We found that deletion of Isl2 led to the dispersion of motor pools, primarily affecting the median motor column (MMC) and lateral motor column (LMC) populations. Additionally, hindlimb motor pools lacked Etv4 expression, and we observed reduced terminal axon branching and disorganized neuromuscular junctions in Isl2-deficient mice. Furthermore, we performed transcriptomic analysis on the spinal cords of Isl2-deficient mice and identified a variety of downregulated genes associated with motor neuron (MN) differentiation, axon development, and synapse organization in hindlimb motor pools. As a consequence of these disruptions, sensorimotor connectivity and hindlimb locomotion were impaired in Isl2-deficient mice. Taken together, our findings highlight the critical role of Isl2 in organizing motor pool position and sensorimotor circuits in hindlimb motor pools. This research provides valuable insights into the molecular mechanisms governing motor control and its potential implications for understanding motor-related disorders in humans.
Collapse
Affiliation(s)
- Yunjeong Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - In Seo Yeo
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Namhee Kim
- Fermentation Regulation Technology Research Group, World Institute of KimchiGwangjuRepublic of Korea
| | - Dong-Keun Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Kyung-Tai Kim
- Jeonbuk Department of Inhalation Research, Korea Institute of ToxicologyJeongeup-siRepublic of Korea
| | - Jiyoung Yoon
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Jawoon Yi
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Young Bin Hong
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of Biochemistry, College of Medicine, Dong-A UniversityBusanRepublic of Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Yoichi Kosodo
- Korea Brain Research InstituteDaeguRepublic of Korea
| | - Daesoo Kim
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Mi-Ryoung Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| |
Collapse
|
14
|
Buchner F, Dokuzluoglu Z, Grass T, Rodriguez-Muela N. Spinal Cord Organoids to Study Motor Neuron Development and Disease. Life (Basel) 2023; 13:1254. [PMID: 37374039 PMCID: PMC10303776 DOI: 10.3390/life13061254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Motor neuron diseases (MNDs) are a heterogeneous group of disorders that affect the cranial and/or spinal motor neurons (spMNs), spinal sensory neurons and the muscular system. Although they have been investigated for decades, we still lack a comprehensive understanding of the underlying molecular mechanisms; and therefore, efficacious therapies are scarce. Model organisms and relatively simple two-dimensional cell culture systems have been instrumental in our current knowledge of neuromuscular disease pathology; however, in the recent years, human 3D in vitro models have transformed the disease-modeling landscape. While cerebral organoids have been pursued the most, interest in spinal cord organoids (SCOs) is now also increasing. Pluripotent stem cell (PSC)-based protocols to generate SpC-like structures, sometimes including the adjacent mesoderm and derived skeletal muscle, are constantly being refined and applied to study early human neuromuscular development and disease. In this review, we outline the evolution of human PSC-derived models for generating spMN and recapitulating SpC development. We also discuss how these models have been applied to exploring the basis of human neurodevelopmental and neurodegenerative diseases. Finally, we provide an overview of the main challenges to overcome in order to generate more physiologically relevant human SpC models and propose some exciting new perspectives.
Collapse
Affiliation(s)
- Felix Buchner
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Zeynep Dokuzluoglu
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Tobias Grass
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Natalia Rodriguez-Muela
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
15
|
Park J, An G, Park H, Hong T, Lim W, Song G. Developmental defects induced by thiabendazole are mediated via apoptosis, oxidative stress and alteration in PI3K/Akt and MAPK pathways in zebrafish. ENVIRONMENT INTERNATIONAL 2023; 176:107973. [PMID: 37196567 DOI: 10.1016/j.envint.2023.107973] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Thiabendazole, a benzimidazole fungicide, is widely used to prevent yield loss in agricultural land by inhibiting plant diseases derived from fungi. As thiabendazole has a stable benzimidazole ring structure, it remains in the environment for an extended period, and its toxic effects on non-target organisms have been reported, indicating the possibility that it could threaten public health. However, little research has been conducted to elucidate the comprehensive mechanisms of its developmental toxicity. Therefore, we used zebrafish, a representative toxicological model that can predict toxicity in aquatic organisms and mammals, to demonstrate the developmental toxicity of thiabendazole. Various morphological malformations were observed, including decreased body length, eye size, and increased heart and yolk sac edema. Apoptosis, reactive oxygen species (ROS) production, and inflammatory response were also triggered by thiabendazole exposure in zebrafish larvae. Furthermore, PI3K/Akt and MAPK signaling pathways important for appropriate organogenesis were significantly changed by thiabendazole. These results led to toxicity in various organs and a reduction in the expression of related genes, including cardiovascular toxicity, neurotoxicity, and hepatic and pancreatic toxicity, which were detected in flk1:eGFP, olig2:dsRED, and L-fabp:dsRed;elastase:GFP transgenic zebrafish models, respectively. Overall, this study partly determined the developmental toxicity of thiabendazole in zebrafish and provided evidence of the environmental hazards of this fungicide.
Collapse
Affiliation(s)
- Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
16
|
Huang KC, Gomes C, Meyer JS. Retinal Ganglion Cells in a Dish: Current Strategies and Recommended Best Practices for Effective In Vitro Modeling of Development and Disease. Handb Exp Pharmacol 2023; 281:83-102. [PMID: 36907969 PMCID: PMC10497719 DOI: 10.1007/164_2023_642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The ability to derive retinal ganglion cells (RGCs) from human pluripotent stem cells (hPSCs) provides an extraordinary opportunity to study the development of RGCs as well as cellular mechanisms underlying their degeneration in optic neuropathies. In the past several years, multiple approaches have been established that allow for the generation of RGCs from hPSCs, with these methods greatly improved in more recent studies to yield mature RGCs that more faithfully recapitulate phenotypes within the eye. Nevertheless, numerous differences still remain between hPSC-RGCs and those found within the human eye, with these differences likely explained at least in part due to the environment in which hPSC-RGCs are grown. With the ultimate goal of generating hPSC-RGCs that most closely resemble those within the retina for proper studies of retinal development, disease modeling, as well as cellular replacement, we review within this manuscript the current effective approaches for the differentiation of hPSC-RGCs, as well as how they have been applied for the investigation of RGC neurodegenerative diseases such as glaucoma. Furthermore, we provide our opinions on the characteristics of RGCs necessary for their use as effective in vitro disease models and importantly, how these current systems should be improved to more accurately reflect disease states. The establishment of characteristics in differentiated hPSC-RGCs that more effectively mimic RGCs within the retina will not only enable their use as effective models of RGC development, but will also create a better disease model for the identification of mechanisms underlying the neurodegeneration of RGCs in disease states such as glaucoma, further facilitating the development of therapeutic approaches to rescue RGCs from degeneration in disease states.
Collapse
Affiliation(s)
- Kang-Chieh Huang
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cátia Gomes
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jason S Meyer
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
17
|
Schaefers C, Rothmiller S, Thiermann H, Rein T, Schmidt A. The Efficiency of Direct Maturation: the Comparison of Two hiPSC Differentiation Approaches into Motor Neurons. Stem Cells Int 2022; 2022:1320950. [PMID: 36530489 PMCID: PMC9757946 DOI: 10.1155/2022/1320950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 02/23/2025] Open
Abstract
Motor neurons (MNs) derived from human-induced pluripotent stem cells (hiPSC) hold great potential for the treatment of various motor neurodegenerative diseases as transplantations with a low-risk of rejection are made possible. There are many hiPSC differentiation protocols that pursue to imitate the multistep process of motor neurogenesis in vivo. However, these often apply viral vectors, feeder cells, or antibiotics to generate hiPSC and MNs, limiting their translational potential. In this study, a virus-, feeder-, and antibiotic-free method was used for reprogramming hiPSC, which were maintained in culture medium produced under clinical good manufacturing practice. Differentiation into MNs was performed with standardized, chemically defined, and antibiotic-free culture media. The identity of hiPSC, neuronal progenitors, and mature MNs was continuously verified by the detection of specific markers at the genetic and protein level via qRT-PCR, flow cytometry, Western Blot, and immunofluorescence. MNX1- and ChAT-positive motoneuronal progenitor cells were formed after neural induction via dual-SMAD inhibition and expansion. For maturation, an approach aiming to directly mature these progenitors was compared to an approach that included an additional differentiation step for further specification. Although both approaches generated mature MNs expressing characteristic postmitotic markers, the direct maturation approach appeared to be more efficient. These results provide new insights into the suitability of two standardized differentiation approaches for generating mature MNs, which might pave the way for future clinical applications.
Collapse
Affiliation(s)
- Catherine Schaefers
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
| | - Theo Rein
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
- Institute of Sport Science, University of the Bundeswehr Munich, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| |
Collapse
|
18
|
Roussel J, Larcher R, Sicard P, Bideaux P, Richard S, Marmigère F, Thireau J. The autism-associated Meis2 gene is necessary for cardiac baroreflex regulation in mice. Sci Rep 2022; 12:20150. [PMID: 36418415 PMCID: PMC9684552 DOI: 10.1038/s41598-022-24616-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Recent understanding of Autism Spectrum Disorder (ASD) showed that peripheral primary mechanosensitive neurons involved in touch sensation and central neurons affected in ASD share transcriptional regulators. Mutant mice for ASD-associated transcription factors exhibit impaired primary tactile perception and restoring those genes specifically in primary sensory neurons rescues some of the anxiety-like behavior and social interaction defects. Interestingly, peripheral mechanosensitive sensory neurons also project to internal organs including the cardiovascular system, and an imbalance of the cardio-vascular sympathovagal regulation is evidenced in ASD and intellectual disability. ASD patients have decreased vagal tone, suggesting dysfunction of sensory neurons involved in cardio-vascular sensing. In light of our previous finding that the ASD-associated Meis2 gene is necessary for normal touch neuron development and function, we investigated here if its inactivation in mouse peripheral sensory neurons also affects cardio-vascular sympathovagal regulation and baroreflex. Combining echocardiography, pharmacological challenge, blood pressure monitoring, and heart rate variability analysis, we found that Meis2 mutant mice exhibited a blunted vagal response independently of any apparent cardiac malformation. These results suggest that defects in primary sensory neurons with mechanosensitive identity could participate in the imbalanced cardio-vascular sympathovagal tone found in ASD patients, reinforcing current hypotheses on the role of primary sensory neurons in the etiology of ASD.
Collapse
Affiliation(s)
- J Roussel
- Université de Montpellier, CNRS, Institut des Biomolécules Max Mousseron, Montpellier, France
- PhyMedExp, Université de Montpellier, INSERM, CNRS, CHRU de Montpellier, Montpellier, France
| | - R Larcher
- PhyMedExp, Université de Montpellier, INSERM, CNRS, CHRU de Montpellier, Montpellier, France
| | - P Sicard
- PhyMedExp, Université de Montpellier, INSERM, CNRS, CHRU de Montpellier, Montpellier, France
- IPAM, Platform for Non-Invasive Imaging in Experimental Models, Montpellier, France
| | - P Bideaux
- PhyMedExp, Université de Montpellier, INSERM, CNRS, CHRU de Montpellier, Montpellier, France
| | - S Richard
- PhyMedExp, Université de Montpellier, INSERM, CNRS, CHRU de Montpellier, Montpellier, France
| | - F Marmigère
- Institute for Neurosciences of Montpellier, Université de Montpellier, Inserm, Montpellier, France.
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, CNRS, Lyon, France.
| | - J Thireau
- PhyMedExp, Université de Montpellier, INSERM, CNRS, CHRU de Montpellier, Montpellier, France.
| |
Collapse
|
19
|
Filova I, Pysanenko K, Tavakoli M, Vochyanova S, Dvorakova M, Bohuslavova R, Smolik O, Fabriciova V, Hrabalova P, Benesova S, Valihrach L, Cerny J, Yamoah EN, Syka J, Fritzsch B, Pavlinkova G. ISL1 is necessary for auditory neuron development and contributes toward tonotopic organization. Proc Natl Acad Sci U S A 2022; 119:e2207433119. [PMID: 36074819 PMCID: PMC9478650 DOI: 10.1073/pnas.2207433119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
A cardinal feature of the auditory pathway is frequency selectivity, represented in a tonotopic map from the cochlea to the cortex. The molecular determinants of the auditory frequency map are unknown. Here, we discovered that the transcription factor ISL1 regulates the molecular and cellular features of auditory neurons, including the formation of the spiral ganglion and peripheral and central processes that shape the tonotopic representation of the auditory map. We selectively knocked out Isl1 in auditory neurons using Neurod1Cre strategies. In the absence of Isl1, spiral ganglion neurons migrate into the central cochlea and beyond, and the cochlear wiring is profoundly reduced and disrupted. The central axons of Isl1 mutants lose their topographic projections and segregation at the cochlear nucleus. Transcriptome analysis of spiral ganglion neurons shows that Isl1 regulates neurogenesis, axonogenesis, migration, neurotransmission-related machinery, and synaptic communication patterns. We show that peripheral disorganization in the cochlea affects the physiological properties of hearing in the midbrain and auditory behavior. Surprisingly, auditory processing features are preserved despite the significant hearing impairment, revealing central auditory pathway resilience and plasticity in Isl1 mutant mice. Mutant mice have a reduced acoustic startle reflex, altered prepulse inhibition, and characteristics of compensatory neural hyperactivity centrally. Our findings show that ISL1 is one of the obligatory factors required to sculpt auditory structural and functional tonotopic maps. Still, upon Isl1 deletion, the ensuing central plasticity of the auditory pathway does not suffice to overcome developmentally induced peripheral dysfunction of the cochlea.
Collapse
Affiliation(s)
- Iva Filova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Kateryna Pysanenko
- Department of Auditory Neuroscience, Institute of Experimental Medicine Czech Academy of Sciences, 14220 Prague, Czechia
| | - Mitra Tavakoli
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Simona Vochyanova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Martina Dvorakova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Ondrej Smolik
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Valeria Fabriciova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Petra Hrabalova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Jiri Cerny
- Laboratory of Light Microscopy, Institute of Molecular Genetics Czech Academy of Sciences, 14220 Prague, Czechia
| | - Ebenezer N. Yamoah
- Department of Physiology, School of Medicine, University of Nevada, Reno, NV 89557
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine Czech Academy of Sciences, 14220 Prague, Czechia
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA 52242-1324
- Department of Otolaryngology, University of Iowa, Iowa City, IA 52242-1324
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| |
Collapse
|
20
|
Motaghed M, Sanooghi D, Bagher Z, Faghihi F, Lotfi A, Shahbazi A, Jogataei MT. In Vitro Assessment of the Gene Expression of EZH-2 and P300 During Motor Neuron Differentiation of Human Umbilical Cord Blood Mesenchymal Stem Cells. Basic Clin Neurosci 2022; 13:709-718. [PMID: 37313026 PMCID: PMC10258600 DOI: 10.32598/bcn.2021.2997.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/10/2021] [Accepted: 04/01/2021] [Indexed: 11/02/2023] Open
Abstract
Introduction Maintenance of neurogenesis depends on the function of some histone-modifying enzymes; including Enhancer of zeste homolog 2 (EZH2) and histone acetyltransferases (P300). The mechanism of epigenetic regulation and gene expression underlying the transition of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) into MNs has not been fully clarified. Methods Two morphogens; sonic hedgehog (Shh: 100 ng/mL) and retinoic acid (RA: 0.01 mM) were involved in the specification of hUCB-MSCs into MNs after MSC characterization using Flow cytometry. Real time-quantitative PCR and immunocytochemistry were performed to find the expression of the genes at the level of mRNA and protein. Results The expression of MN-related markers was confirmed at the level of mRNA and protein by induction of differentiation. The results were confirmed by immunocytochemistry and showed those mean cell percentages of 55.33%±15.885% and 49.67%±13.796% could express Islet-1 and ChAT, respectively. The gene expression level of Islet-1 and ChAT was significantly increased in the first and second week of exposure, respectively. After two weeks, the expression level of P300 and EZH-2 genes increased remarkably. No significant expression of Mnx-1 was detected when compared to the control sample. Conclusion MN-related markers, Islet-1 and ChAT, were detected in differentiated cells of hUCB-MSCs, supporting the potency of cord blood cells in the regeneration of MN-related disorders. Assessing these epigenetic regulatory genes at the protein level can be suggested to confirm their functional epigenetic modifying effects during motor neuron differentiation.
Collapse
Affiliation(s)
- Marjaneh Motaghed
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Sanooghi
- Department of Genetics, School of Biological Sciences, Shahid Beheshti University, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Lotfi
- Damavand Agricultural College, Technical and Vocational University, Tehran, Iran
| | - Ali Shahbazi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
21
|
Yu H, Tang D, Wu H, Li C, Lu Y, He F, Zhang X, Yang Y, Shi W, Hu W, Zeng Z, Dai W, Ou M, Dai Y. Integrated single-cell analyses decode the developmental landscape of the human fetal spine. iScience 2022; 25:104679. [PMID: 35832888 PMCID: PMC9272381 DOI: 10.1016/j.isci.2022.104679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/18/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
The spine has essential roles in supporting body weight, and passaging the neural elements between the body and the brain. In this study, we used integrated single-cell RNA sequencing and single-cell transposase-accessible chromatin sequencing analyses to reveal the cellular heterogeneity, lineage, and transcriptional regulatory network of the developing human spine. We found that EPYC + HAPLN1+ fibroblasts with stem cell characteristics could differentiate into chondrocytes by highly expressing the chondrogenic markers SOX9 and MATN4. Neurons could originate from neuroendocrine cells, and MEIS2 may be an essential transcription factor that promotes spinal neural progenitor cells to selectively differentiate into neurons during early gestation. Furthermore, the interaction of NRP2_SEMA3C and CD74_APP between macrophages and neurons may be essential for spinal cord development. Our integrated map provides a blueprint for understanding human spine development in the early and midgestational stages at single-cell resolution and offers a tool for investigating related diseases. scRNA-seq and scATAC-seq analyses reveal the developmental landscape of the fetal spine Chondrocytes may originate from EPYC + HAPLN1+ fibroblasts with stem cell characteristics Neurons may originate from neuroendocrine cells with regulation by MEIS2
Collapse
Affiliation(s)
- Haiyan Yu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China.,Department of Pharmacy, Shenzhen Pingshan District People's Hospital, Pingshan General Hospital of Southern Medical University, Shenzhen, Guangdong 518118, P.R. China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Hongwei Wu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Chunhong Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Yongping Lu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China.,Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Fang He
- Singleron Biotechnologies, Yaogu Avenue 11, Nanjing, Jiangsu, China
| | - Xiaogang Zhang
- Singleron Biotechnologies, Yaogu Avenue 11, Nanjing, Jiangsu, China
| | - Yane Yang
- Shenzhen Far East Women & Children Hospital, Shenzhen 518000, Guangdong, China
| | - Wei Shi
- Department of Obstetrics and Gynecology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Wenlong Hu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Zhipeng Zeng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, TX 78721, USA
| | - Minglin Ou
- Central Laboratory, The Second Affiliated Hospital of Guilin Medical University, No. 212, Renmin Road, Lingui District, Guilin 541000, China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
22
|
Deng J, Wang Y, Hu M, Lin J, Li Q, Liu C, Xu X. Deleterious Variation in BR Serine/Threonine Kinase 2 Classified a Subtype of Autism. Front Mol Neurosci 2022; 15:904935. [PMID: 35754711 PMCID: PMC9231588 DOI: 10.3389/fnmol.2022.904935] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, deleterious variants in the BR serine/threonine kinase 2 (BRSK2) gene have been reported in patients with autism spectrum disorder (ASD), suggesting that BRSK2 is a new high-confidence ASD risk gene, which presents an opportunity to understand the underlying neuropathological mechanisms of ASD. In this study, we performed clinical and neurobehavioral evaluations of a proband with a de novo non-sense variant in BRSK2 (p.R222X) with other reported BRSK2 mutant patients. To validate BRSK2 as an ASD risk gene, we generated a novel brsk2b-deficient zebrafish line through CRISPR/Cas9 and characterized its morphological and neurobehavioral features as well as performed molecular analysis of neurogenesis-related markers. The proband displayed typical ASD behaviors and language and motor delay, which were similar to other published BRSK2 mutant patients. Morphologically, brsk2b–/– larvae exhibited a higher embryonic mortality and rate of pericardium edema, severe developmental delay, and depigmentation as well as growth retardation in the early developmental stage. Behaviorally, brsk2b–/– zebrafish displayed significantly decreased activity in open field tests and enhanced anxiety levels in light/dark tests and thigmotaxis analysis. Specifically, brsk2b–/– zebrafish showed a prominent reduction of social interaction with peers and disrupted social cohesion among homogeneous groups. Molecularly, the mRNA expression levels of homer1b (a postsynaptic density scaffolding protein), and mbpa, mpz, and plp1b (molecular markers of oligodendrocytes and myelination) were increased in the brain tissues of adult brsk2b–/– zebrafish, while the expression level of isl1a, a marker of motor neurons, was decreased. Taken together, for the first time, we established a novel brsk2b-deficient zebrafish model that showed prominent ASD-like behaviors. In addition, the disturbed mRNA expression levels of neurogenesis-related markers implied that the processes of postsynaptic signaling as well as oligodendrocytes and myelination may be involved. This discovery may suggest a path for further research to identify the underlying neuropathological mechanisms between BRSK2 and ASD.
Collapse
Affiliation(s)
- Jingxin Deng
- Division of Child Health Care, National Children' Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yi Wang
- Division of Child Health Care, National Children' Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Meixin Hu
- Division of Child Health Care, National Children' Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Jia Lin
- Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Translational Medical Center for Development and Disease, National Children's Medical Center, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Qiang Li
- Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Translational Medical Center for Development and Disease, National Children's Medical Center, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Chunxue Liu
- Division of Child Health Care, National Children' Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xiu Xu
- Division of Child Health Care, National Children' Medical Center, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
23
|
Liu Y, Luan Y, Ma K, Zhang Z, Liu Y, Chen XL. ISL1 promotes human glioblastoma-derived stem cells self-renewal by activation of SHH/GLI1 function. Stem Cells Dev 2022; 31:258-268. [DOI: 10.1089/scd.2021.0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yingfei Liu
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an, Shaanxi 710061, China., Xi'an, China
| | - Yan Luan
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an, Shaanxi 710061, China., China
| | - Kaige Ma
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an, Shaanxi 710061, China., China
| | - Zhichao Zhang
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an, Shaanxi 710061, China., China
| | - Yong Liu
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an, Shaanxi 710061, China., China
| | - Xin-lin Chen
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an, Shaanxi 710061, China., Xi'an, Shaanxi, China,
| |
Collapse
|
24
|
Dasen JS. Establishing the Molecular and Functional Diversity of Spinal Motoneurons. ADVANCES IN NEUROBIOLOGY 2022; 28:3-44. [PMID: 36066819 DOI: 10.1007/978-3-031-07167-6_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spinal motoneurons are a remarkably diverse class of neurons responsible for facilitating a broad range of motor behaviors and autonomic functions. Studies of motoneuron differentiation have provided fundamental insights into the developmental mechanisms of neuronal diversification, and have illuminated principles of neural fate specification that operate throughout the central nervous system. Because of their relative anatomical simplicity and accessibility, motoneurons have provided a tractable model system to address multiple facets of neural development, including early patterning, neuronal migration, axon guidance, and synaptic specificity. Beyond their roles in providing direct communication between central circuits and muscle, recent studies have revealed that motoneuron subtype-specific programs also play important roles in determining the central connectivity and function of motor circuits. Cross-species comparative analyses have provided novel insights into how evolutionary changes in subtype specification programs may have contributed to adaptive changes in locomotor behaviors. This chapter focusses on the gene regulatory networks governing spinal motoneuron specification, and how studies of spinal motoneurons have informed our understanding of the basic mechanisms of neuronal specification and spinal circuit assembly.
Collapse
Affiliation(s)
- Jeremy S Dasen
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
25
|
Ren J, Miao D, Li Y, Gao R. Spotlight on Isl1: A Key Player in Cardiovascular Development and Diseases. Front Cell Dev Biol 2021; 9:793605. [PMID: 34901033 PMCID: PMC8656156 DOI: 10.3389/fcell.2021.793605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cardiac transcription factors orchestrate a regulatory network controlling cardiovascular development. Isl1, a LIM-homeodomain transcription factor, acts as a key player in multiple organs during embryonic development. Its crucial roles in cardiovascular development have been elucidated by extensive studies, especially as a marker gene for the second heart field progenitors. Here, we summarize the roles of Isl1 in cardiovascular development and function, and outline its cellular and molecular modes of action, thus providing insights for the molecular basis of cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Ren
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Danxiu Miao
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China.,Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, China
| | - Yanshu Li
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, China
| | - Rui Gao
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
26
|
Sanooghi D, Vahdani P, Bagher Z, Faghihi F, Lotfi A. In vitro characterization of human bone marrow mesenchymal stem cell-derived motor neurons induced by epigenetic modifiers. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Motor neurons (MNs) are distinct types of cells in the dorso-ventral axis of the spinal cord. These cells are developed in the presence of two main morphogens, including Sonic hedgehog (Shh) and retinoic acid (RA). On the other hand, human bone marrow mesenchymal stem cells (hBM-MSCs) are known as a multipotent type of cells with neural differentiation capacity. In this regard, the aim of this study was to quantitatively evaluate the expression of MN-related genes and the potent epigenetic regulatory genes involved in neurogenesis, including Enhancer of zeste homolog 2 (EZH-2) and P300, during hBM-MSC differentiation into MN-like cells, using RA and Shh. After isolating and inducing the cells with Shh and RA, the results were evaluated using immunocytochemistry and qRT-PCR.
Results
Our findings showed that the treated cells could express choline acetyltransferase (ChAT) and insulin gene enhancer binding protein-1 (Islet-1) antigens at the protein level, 2 weeks after induction. Moreover, at the second week after induction, the induced cells expressed MN-related genes (ChAT and ISLET-1) and epigenetic regulatory genes (EZH-2 and P300) at significant levels compared to the control (non-treated BM-MSCs) and to the induced cells at the first week (day 7). In addition, the expression of EZH-2, as a histone-modifying gene, was also significantly upregulated at the first week compared to the control. No significant upregulation was detected in the expression of motor neuron and pancreas homeobox 1 (MNX-1) in the treated groups compared to the control group.
Conclusion
We concluded that epigenetic modifiers, P300 and EZH-2, are important mediators for regulating the process of motor neuron differentiation induced by RA and Shh.
Collapse
|
27
|
Siddiqi F, Trakimas AL, Joseph DJ, Lippincott ML, Marsh ED, Wolfe JH. Islet1 Precursors Contribute to Mature Interneuron Subtypes in Mouse Neocortex. Cereb Cortex 2021; 31:5206-5224. [PMID: 34228108 PMCID: PMC8491676 DOI: 10.1093/cercor/bhab152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/15/2022] Open
Abstract
Cortical interneurons (GABAergic cells) arise during embryogenesis primarily from the medial and caudal ganglionic eminences (MGE and CGE, respectively) with a small population generated from the preoptic area (POA). Progenitors from the lateral ganglionic eminence (LGE) are thought to only generate GABAergic medium spiny neurons that populate the striatum and project to the globus pallidus. Here, we report evidence that neuronal precursors that express the LGE-specific transcription factor Islet1 (Isl1) can give rise to a small population of cortical interneurons. Lineage tracing and homozygous deletion of Nkx2.1 in Isl1 fate-mapped mice showed that neighboring MGE/POA-specific Nkx2.1 cells and LGE-specific Isl1 cells make both common and distinct lineal contributions towards cortical interneuron fate. Although the majority of cells had overlapping transcriptional domains between Nkx2.1 and Isl1, a population of Isl1-only derived cells also contributed to the adult cerebral cortex. The data indicate that Isl1-derived cells may originate from both the LGE and the adjacent LGE/MGE boundary regions to generate diverse neuronal progeny. Thus, a small population of neocortical interneurons appear to originate from Isl-1-positive precursors.
Collapse
Affiliation(s)
- Faez Siddiqi
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Alexandria L Trakimas
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donald J Joseph
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Eric D Marsh
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John H Wolfe
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Kong JS, Huang X, Choi Y, Yi H, Kang J, Kim S, Kim J, Lee H, Rim YA, Ju JH, Chung WK, Woolf CJ, Jang J, Cho D. Promoting Long-Term Cultivation of Motor Neurons for 3D Neuromuscular Junction Formation of 3D In Vitro Using Central-Nervous-Tissue-Derived Bioink. Adv Healthc Mater 2021; 10:e2100581. [PMID: 34363335 DOI: 10.1002/adhm.202100581] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/16/2021] [Indexed: 12/14/2022]
Abstract
3D cell printing technology is in the spotlight for producing 3D tissue or organ constructs useful for various medical applications. In printing of neuromuscular tissue, a bioink satisfying all the requirements is a challenging issue. Gel integrity and motor neuron activity are two major characters because a harmonious combination of extracellular materials essential to motor neuron activity consists of disadvantages in mechanical properties. Here, a method for fabrication of 3D neuromuscular tissue is presented using a porcine central nervous system tissue decellularized extracellular matrix (CNSdECM) bioink. CNSdECM retains CNS tissue-specific extracellular molecules, provides rheological properties crucial for extrusion-based 3D cell printing, and reveals positive effects on the growth and maturity of axons of motor neurons compared with Matrigel. It also allows long-term cultivation of human-induced-pluripotent-stem-cell-derived lower motor neurons and sufficiently supports their cellular behavior to carry motor signals to muscle fibers. CNSdECM bioink holds great promise for producing a tissue-engineered motor system using 3D cell printing.
Collapse
Affiliation(s)
- Jeong Sik Kong
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro, Nam‐gu Pohang Kyungbuk 37673 Republic of Korea
| | - Xuan Huang
- FM Kirby Neurobiology Center Boston Children's Hospital and Department of Neurobiology Harvard Medical School Boston MA 02115 USA
| | - Yeong‐Jin Choi
- Department of Mechanical Engineering Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro, Nam‐gu Pohang Kyungbuk 37673 Republic of Korea
- Materials Processing Innovation Research Division Korea Institute of Materials Science (KIMS) 797 10 Changwondaero, Kyungnam Changwon 51508 Republic of Korea
| | - Hee‐Gyeong Yi
- Department of Mechanical Engineering Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro, Nam‐gu Pohang Kyungbuk 37673 Republic of Korea
- Department of Rural and Biosystems Engineering College of Agriculture and Life Sciences Chonnam National University Gwangju 61186 Republic of Korea
| | - Junsu Kang
- Department of Mechanical Engineering Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro, Nam‐gu Pohang Kyungbuk 37673 Republic of Korea
| | - Sejin Kim
- Department of Mechanical Engineering Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro, Nam‐gu Pohang Kyungbuk 37673 Republic of Korea
| | - Jongmin Kim
- Department of Mechanical Engineering Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro, Nam‐gu Pohang Kyungbuk 37673 Republic of Korea
| | - Hyungseok Lee
- Department of Mechanical Engineering Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro, Nam‐gu Pohang Kyungbuk 37673 Republic of Korea
- Department of Mechanical and Biomedical Engineering Kangwon National University (KNU) 1 Gangwondaehak‐gil, Seoksa‐dong Chuncheon‐si Gangwon‐do 24341 Republic of Korea
- Interdisciplinary Program in Biohealth‐Machinery Convergence Engineering Kangwon National University (KNU) Chuncheon 24341 Republic of Korea
| | - Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine The Catholic University of Korea Seoul 137‐701 Republic of Korea
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine The Catholic University of Korea Seoul 137‐701 Republic of Korea
| | - Wan Kyun Chung
- Department of Mechanical Engineering Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro, Nam‐gu Pohang Kyungbuk 37673 Republic of Korea
| | - Clifford J. Woolf
- FM Kirby Neurobiology Center Boston Children's Hospital and Department of Neurobiology Harvard Medical School Boston MA 02115 USA
| | - Jinah Jang
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro, Nam‐gu Pohang Kyungbuk 37673 Republic of Korea
- Department of Mechanical Engineering Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro, Nam‐gu Pohang Kyungbuk 37673 Republic of Korea
- Department of Convergence IT Engineering Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro, Nam‐gu Pohang Kyungbuk 37673 Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology Yonsei University Seoul 03722 Republic of Korea
| | - Dong‐Woo Cho
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro, Nam‐gu Pohang Kyungbuk 37673 Republic of Korea
- Department of Mechanical Engineering Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro, Nam‐gu Pohang Kyungbuk 37673 Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
29
|
Kurashina M, Wang J, Lin J, Lee KK, Johal A, Mizumoto K. Sustained expression of unc-4 homeobox gene and unc-37/Groucho in postmitotic neurons specifies the spatial organization of the cholinergic synapses in C. elegans. eLife 2021; 10:66011. [PMID: 34388088 PMCID: PMC8363302 DOI: 10.7554/elife.66011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 08/07/2021] [Indexed: 11/13/2022] Open
Abstract
Neuronal cell fate determinants establish the identities of neurons by controlling gene expression to regulate neuronal morphology and synaptic connectivity. However, it is not understood if neuronal cell fate determinants have postmitotic functions in synapse pattern formation. Here we identify a novel role for UNC-4 homeobox protein and its corepressor UNC-37/Groucho, in tiled synaptic patterning of the cholinergic motor neurons in Caenorhabditis elegans. We show that unc-4 is not required during neurogenesis but is required in the postmitotic neurons for proper synapse patterning. In contrast, unc-37 is required in both developing and postmitotic neurons. The synaptic tiling defects of unc-4 mutants are suppressed by bar-1/β-catenin mutation, which positively regulates the expression of ceh-12/HB9. Ectopic ceh-12 expression partly underlies the synaptic tiling defects of unc-4 and unc-37 mutants. Our results reveal a novel postmitotic role of neuronal cell fate determinants in synapse pattern formation through inhibiting the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Mizuki Kurashina
- Department of Zoology, University of British Columbia, Vancouver, Canada.,Graduate Program in Cell and Developmental Biology, University of British Columbia, Vancouver, Canada
| | - Jane Wang
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Jeffrey Lin
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Kathy Kyungeun Lee
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Arpun Johal
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Kota Mizumoto
- Department of Zoology, University of British Columbia, Vancouver, Canada.,Graduate Program in Cell and Developmental Biology, University of British Columbia, Vancouver, Canada.,Life Sciences Institute, University of British Columbia, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
30
|
Ma Q, Yang F, Mackintosh C, Jayani RS, Oh S, Jin C, Nair SJ, Merkurjev D, Ma W, Allen S, Wang D, Almenar-Queralt A, Garcia-Bassets I. Super-Enhancer Redistribution as a Mechanism of Broad Gene Dysregulation in Repeatedly Drug-Treated Cancer Cells. Cell Rep 2021; 31:107532. [PMID: 32320655 DOI: 10.1016/j.celrep.2020.107532] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/07/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is an antineoplastic drug administered at suboptimal and intermittent doses to avoid life-threatening effects. Although this regimen shortly improves symptoms in the short term, it also leads to more malignant disease in the long term. We describe a multilayered analysis ranging from chromatin to translation-integrating chromatin immunoprecipitation sequencing (ChIP-seq), global run-on sequencing (GRO-seq), RNA sequencing (RNA-seq), and ribosome profiling-to understand how cisplatin confers (pre)malignant features by using a well-established ovarian cancer model of cisplatin exposure. This approach allows us to segregate the human transcriptome into gene modules representing distinct regulatory principles and to characterize that the most cisplatin-disrupted modules are associated with underlying events of super-enhancer plasticity. These events arise when cancer cells initiate without ultimately ending the program of drug-stimulated death. Using a PageRank-based algorithm, we predict super-enhancer regulator ISL1 as a driver of this plasticity and validate this prediction by using CRISPR/dCas9-KRAB inhibition (CRISPRi) and CRISPR/dCas9-VP64 activation (CRISPRa) tools. Together, we propose that cisplatin reprograms cancer cells when inducing them to undergo near-to-death experiences.
Collapse
Affiliation(s)
- Qi Ma
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Feng Yang
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Carlos Mackintosh
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ranveer Singh Jayani
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Soohwan Oh
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chunyu Jin
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sreejith Janardhanan Nair
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daria Merkurjev
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wubin Ma
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephanie Allen
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dong Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Angels Almenar-Queralt
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ivan Garcia-Bassets
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
31
|
Park H, You HH, Song G. Multiple toxicity of propineb in developing zebrafish embryos: Neurotoxicity, vascular toxicity, and notochord defects in normal vertebrate development. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108993. [PMID: 33529709 DOI: 10.1016/j.cbpc.2021.108993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/06/2021] [Accepted: 01/24/2021] [Indexed: 12/15/2022]
Abstract
A dithiocarbamate (DTC) fungicide, propineb, affects thyroid function and exerts immunotoxicity, cytotoxicity, and neurotoxicity in humans. Long-term exposure to propineb is associated with carcinogenicity, teratogenicity, malfunction of the reproductive system, and abnormalities in vital signs during organ development. However, there is no evidence of acute toxicity attributable to propineb in zebrafish. Therefore, in the present study, we assessed the toxicity of propineb in zebrafish by studying its adverse effects on embryo development, angiogenesis, and notochord development. Embryos with propineb exposure developed morphological and physiological defects and in larvae, apoptosis and notochord defects were induced in the early development stage. Transgenic fli1:eGFP zebrafish exposed to propineb showed abnormal larval development with defects in angiogenesis and deformed vasculature. Propineb induced irreversible damage to the neural development of embryos and neurogenic defects in developing zebrafish in transgenic olig2:dsRED zebrafish. These results show that exposure to propineb triggers abnormalities in different organ systems of zebrafish and suggests the physiological complexity of the response to propineb.
Collapse
Affiliation(s)
- Hahyun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hyekyoung Hannah You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
32
|
Guo T, Bai YH, Cheng XJ, Han HB, Du H, Hu Y, Jia SQ, Xing XF, Ji JF. Insulin gene enhancer protein 1 mediates glycolysis and tumorigenesis of gastric cancer through regulating glucose transporter 4. Cancer Commun (Lond) 2021; 41:258-272. [PMID: 33570246 PMCID: PMC7968886 DOI: 10.1002/cac2.12141] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/14/2020] [Accepted: 01/31/2021] [Indexed: 12/19/2022] Open
Abstract
Background Insulin gene enhancer protein 1, (ISL1), a LIM‐homeodomain transcription factor, is involved in multiple tumors and is associated with insulin secretion and metabolic phenotypes. However, the role of ISL1 in stimulating glycolysis to promote tumorigenesis in gastric cancer (GC) is unclear. In this study, we aimed to characterize the expression pattern of ISL1 in GC patients and explore its molecular biological mechanism in glycolysis and tumorigenesis. Methods We analyzed the expression and clinical significance of ISL1 in GC using immunohistochemistry and real‐time polymerase chain reaction (PCR). Flow cytometry and IncuCyte assays were used to measure cell proliferation after ISL1 knockdown. RNA‐sequencing was performed to identify differentially expressed genes, followed by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Set Enrichment Analysis (GSEA) to reveal key signaling pathways likely regulated by ISL1 in GC. Alteration of the glycolytic ability of GC cells with ISL1 knockdown was validated by measuring the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) and by detecting glucose consumption and lactate production. The expression of glucose transporter 4 (GLUT4) and ISL1 was assessed by Western blotting, immunohistochemistry, and immunofluorescent microscopy. The luciferase reporter activity and chromatin immunoprecipitation assays were performed to determine the transcriptional regulation of ISL1 on GLUT4. Results High levels of ISL1 and GLUT4 expression was associated with short survival of GC patients. ISL1 knockdown inhibited cell proliferation both in vitro and in vivo. KEGG analysis and GSEA for RNA‐sequencing data indicated impairment of the glycolysis pathway in GC cells with ISL1 knockdown, which was validated by reduced glucose uptake and lactate production, decreased ECAR, and increased OCR. Mechanistic investigation indicated that ISL1 transcriptionally regulated GLUT4 through binding to its promoter. Conclusion ISL1 facilitates glycolysis and tumorigenesis in GC via the transcriptional regulation of GLUT4.
Collapse
Affiliation(s)
- Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Yan-Hua Bai
- Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Xiao-Jing Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Hai-Bo Han
- The Tissue Bank, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Hong Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Ying Hu
- The Tissue Bank, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Shu-Qin Jia
- Department of Molecular Diagnosis, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Xiao-Fang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Jia-Fu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| |
Collapse
|
33
|
Bcl-2-Assisted Reprogramming of Mouse Astrocytes and Human Fibroblasts into Induced Neurons. Methods Mol Biol 2021; 2352:57-71. [PMID: 34324180 DOI: 10.1007/978-1-0716-1601-7_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Direct neuronal reprogramming is a promising strategy to generate various types of neurons that are, otherwise, inaccessible for researchers. However, the efficiency of neuronal conversion is highly dependent on the transcription factor used, the identity of the initial cells to convert, their species' background, and the neuronal subtype to which cells will convert. Regardless of these conditioning factors, the apoptotic regulator Bcl-2 acts as a pan-neuronal reprogramming enhancer. Bcl-2 mediates its effect in reprogramming by preventing an overshot of oxidative stress during the acquisition of a neuronal oxidative metabolism, thus reducing cell death by ferroptosis and facilitating the phenotypic conversion. In this chapter, we outline two methods to obtain either mouse or human neurons derived from postnatal astrocytes and skin fibroblasts, respectively. The overall reprogramming strategy is based on the co-expression of Bcl-2 and the transcription factor Neurog2 that produces mostly excitatory neurons. However, the method can be easily adapted to achieve alternative neuronal subtypes by using additional transcription factors, such as Isl1 for motor neurons. Therefore, our approaches provide solid but flexible platforms to obtain human and mouse induced neurons in vitro that can be applied to basic or translational research.
Collapse
|
34
|
Ho R, Workman MJ, Mathkar P, Wu K, Kim KJ, O'Rourke JG, Kellogg M, Montel V, Banuelos MG, Arogundade OA, Diaz-Garcia S, Oheb D, Huang S, Khrebtukova I, Watson L, Ravits J, Taylor K, Baloh RH, Svendsen CN. Cross-Comparison of Human iPSC Motor Neuron Models of Familial and Sporadic ALS Reveals Early and Convergent Transcriptomic Disease Signatures. Cell Syst 2020; 12:159-175.e9. [PMID: 33382996 DOI: 10.1016/j.cels.2020.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/10/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Induced pluripotent stem cell (iPSC)-derived neural cultures from amyotrophic lateral sclerosis (ALS) patients can model disease phenotypes. However, heterogeneity arising from genetic and experimental variability limits their utility, impacting reproducibility and the ability to track cellular origins of pathogenesis. Here, we present methodologies using single-cell RNA sequencing (scRNA-seq) analysis to address these limitations. By repeatedly differentiating and applying scRNA-seq to motor neurons (MNs) from healthy, familial ALS, sporadic ALS, and genome-edited iPSC lines across multiple patients, batches, and platforms, we account for genetic and experimental variability toward identifying unified and reproducible ALS signatures. Combining HOX and developmental gene expression with global clustering, we anatomically classified cells into rostrocaudal, progenitor, and postmitotic identities. By relaxing statistical thresholds, we discovered genes in iPSC-MNs that were concordantly dysregulated in postmortem MNs and yielded predictive ALS markers in other human and mouse models. Our approach thus revealed early, convergent, and MN-resolved signatures of ALS.
Collapse
Affiliation(s)
- Ritchie Ho
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Michael J Workman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Pranav Mathkar
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kathryn Wu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kevin J Kim
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jacqueline G O'Rourke
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | - Maria G Banuelos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Sandra Diaz-Garcia
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel Oheb
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Steven Huang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | - John Ravits
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Robert H Baloh
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
35
|
Vermeiren S, Bellefroid EJ, Desiderio S. Vertebrate Sensory Ganglia: Common and Divergent Features of the Transcriptional Programs Generating Their Functional Specialization. Front Cell Dev Biol 2020; 8:587699. [PMID: 33195244 PMCID: PMC7649826 DOI: 10.3389/fcell.2020.587699] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Sensory fibers of the peripheral nervous system carry sensation from specific sense structures or use different tissues and organs as receptive fields, and convey this information to the central nervous system. In the head of vertebrates, each cranial sensory ganglia and associated nerves perform specific functions. Sensory ganglia are composed of different types of specialized neurons in which two broad categories can be distinguished, somatosensory neurons relaying all sensations that are felt and visceral sensory neurons sensing the internal milieu and controlling body homeostasis. While in the trunk somatosensory neurons composing the dorsal root ganglia are derived exclusively from neural crest cells, somato- and visceral sensory neurons of cranial sensory ganglia have a dual origin, with contributions from both neural crest and placodes. As most studies on sensory neurogenesis have focused on dorsal root ganglia, our understanding of the molecular mechanisms underlying the embryonic development of the different cranial sensory ganglia remains today rudimentary. However, using single-cell RNA sequencing, recent studies have made significant advances in the characterization of the neuronal diversity of most sensory ganglia. Here we summarize the general anatomy, function and neuronal diversity of cranial sensory ganglia. We then provide an overview of our current knowledge of the transcriptional networks controlling neurogenesis and neuronal diversification in the developing sensory system, focusing on cranial sensory ganglia, highlighting specific aspects of their development and comparing it to that of trunk sensory ganglia.
Collapse
Affiliation(s)
- Simon Vermeiren
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Eric J Bellefroid
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Simon Desiderio
- Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier, France
| |
Collapse
|
36
|
Crapser JD, Ochaba J, Soni N, Reidling JC, Thompson LM, Green KN. Microglial depletion prevents extracellular matrix changes and striatal volume reduction in a model of Huntington's disease. Brain 2020; 143:266-288. [PMID: 31848580 DOI: 10.1093/brain/awz363] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/22/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease is associated with a reactive microglial response and consequent inflammation. To address the role of these cells in disease pathogenesis, we depleted microglia from R6/2 mice, a rapidly progressing model of Huntington's disease marked by behavioural impairment, mutant huntingtin (mHTT) accumulation, and early death, through colony-stimulating factor 1 receptor inhibition (CSF1Ri) with pexidartinib (PLX3397) for the duration of disease. Although we observed an interferon gene signature in addition to downregulated neuritogenic and synaptic gene pathways with disease, overt inflammation was not evident by microglial morphology or cytokine transcript levels in R6/2 mice. Nonetheless, CSF1Ri-induced microglial elimination reduced or prevented disease-related grip strength and object recognition deficits, mHTT accumulation, astrogliosis, and striatal volume loss, the latter of which was not associated with reductions in cell number but with the extracellular accumulation of chondroitin sulphate proteoglycans (CSPGs)-a primary component of glial scars. A concurrent loss of proteoglycan-containing perineuronal nets was also evident in R6/2 mice, and microglial elimination not only prevented this but also strikingly increased perineuronal nets in the brains of naïve littermates, suggesting a new role for microglia as homeostatic regulators of perineuronal net formation and integrity.
Collapse
Affiliation(s)
- Joshua D Crapser
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Joseph Ochaba
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Neelakshi Soni
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Jack C Reidling
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.,Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Kim N Green
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| |
Collapse
|
37
|
Lee H, Lee HY, Lee BE, Gerovska D, Park SY, Zaehres H, Araúzo-Bravo MJ, Kim JI, Ha Y, Schöler HR, Kim JB. Sequentially induced motor neurons from human fibroblasts facilitate locomotor recovery in a rodent spinal cord injury model. eLife 2020; 9:e52069. [PMID: 32571478 PMCID: PMC7311175 DOI: 10.7554/elife.52069] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 05/22/2020] [Indexed: 01/07/2023] Open
Abstract
Generation of autologous human motor neurons holds great promise for cell replacement therapy to treat spinal cord injury (SCI). Direct conversion allows generation of target cells from somatic cells, however, current protocols are not practicable for therapeutic purposes since converted cells are post-mitotic that are not scalable. Therefore, therapeutic effects of directly converted neurons have not been elucidated yet. Here, we show that human fibroblasts can be converted into induced motor neurons (iMNs) by sequentially inducing POU5F1(OCT4) and LHX3. Our strategy enables scalable production of pure iMNs because of the transient acquisition of proliferative iMN-intermediate cell stage which is distinct from neural progenitors. iMNs exhibited hallmarks of spinal motor neurons including transcriptional profiles, electrophysiological property, synaptic activity, and neuromuscular junction formation. Remarkably, transplantation of iMNs showed therapeutic effects, promoting locomotor functional recovery in rodent SCI model. Together, our advanced strategy will provide tools to acquire sufficient human iMNs that may represent a promising cell source for personalized cell therapy.
Collapse
Affiliation(s)
- Hyunah Lee
- Hans Schöler Stem Cell Research Center (HSSCRC), Ulsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
| | - Hye Yeong Lee
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Byeong Eun Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine Group, Computational Biomedicine Data Analysis Platform, Biodonostia Health Research InstituteSan SebastiánSpain
| | - Soo Yong Park
- Hans Schöler Stem Cell Research Center (HSSCRC), Ulsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
| | - Holm Zaehres
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular BiomedicineMünsterGermany
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine Group, Computational Biomedicine Data Analysis Platform, Biodonostia Health Research InstituteSan SebastiánSpain
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular BiomedicineMünsterGermany
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
| | - Jae-Ick Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
| | - Yoon Ha
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular BiomedicineMünsterGermany
| | - Jeong Beom Kim
- Hans Schöler Stem Cell Research Center (HSSCRC), Ulsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
| |
Collapse
|
38
|
RNA-seq Reveals Dysregulation of Novel Melanocyte Genes upon Oxidative Stress: Implications in Vitiligo Pathogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2841814. [PMID: 31871544 PMCID: PMC6913168 DOI: 10.1155/2019/2841814] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/01/2019] [Indexed: 01/01/2023]
Abstract
Oxidative stress is known to induce melanocyte death, but the underlying mechanisms are incompletely understood. To identify oxidative stress-induced global gene expression changes in melanocytes, we treated PIG1 melanocytes with H2O2 in a dose- and time-dependent manner and performed RNA-seq. This approach allowed us to capture the events occurring early as well as late phase after treatment with H2O2. Our bioinformatics analysis identified differentially expressed genes involved in various biological processes of melanocytes which are known to contribute to the vitiligo development, such as apoptosis, autophagy, cell cycle regulation, cell adhesion, immune and inflammatory responses, melanocyte pluripotency, and developmental signaling such as WNT and NOTCH pathways. We uncovered several novel genes that are not previously described to be involved in melanocytic response to stress nor in vitiligo pathogenesis. Quantitative PCR and western blot analysis of selected proteins, performed on PIG1 and primary human epidermal melanocytes, confirmed the RNA-seq data. Interestingly, we discovered an aberrant regulation of several transcription factors that are involved in diabetes, neurological, and psychiatric diseases, all of which are comorbid conditions in patients with vitiligo. Our results may lead to a better understanding of the molecular mechanisms underlying vitiligo pathogenesis and help developing new drug targets for effective treatment.
Collapse
|
39
|
Taga A, Dastgheyb R, Habela C, Joseph J, Richard JP, Gross SK, Lauria G, Lee G, Haughey N, Maragakis NJ. Role of Human-Induced Pluripotent Stem Cell-Derived Spinal Cord Astrocytes in the Functional Maturation of Motor Neurons in a Multielectrode Array System. Stem Cells Transl Med 2019; 8:1272-1285. [PMID: 31631575 PMCID: PMC6877769 DOI: 10.1002/sctm.19-0147] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/30/2019] [Indexed: 01/15/2023] Open
Abstract
The ability to generate human‐induced pluripotent stem cell (hiPSC)‐derived neural cells displaying region‐specific phenotypes is of particular interest for modeling central nervous system biology in vitro. We describe a unique method by which spinal cord hiPSC‐derived astrocytes (hiPSC‐A) are cultured with spinal cord hiPSC‐derived motor neurons (hiPSC‐MN) in a multielectrode array (MEA) system to record electrophysiological activity over time. We show that hiPSC‐A enhance hiPSC‐MN electrophysiological maturation in a time‐dependent fashion. The sequence of plating, density, and age in which hiPSC‐A are cocultured with MN, but not their respective hiPSC line origin, are factors that influence neuronal electrophysiology. When compared to coculture with mouse primary spinal cord astrocytes, we observe an earlier and more robust electrophysiological maturation in the fully human cultures, suggesting that the human origin is relevant to the recapitulation of astrocyte/motor neuron crosstalk. Finally, we test pharmacological compounds on our MEA platform and observe changes in electrophysiological activity, which confirm hiPSC‐MN maturation. These findings are supported by immunocytochemistry and real‐time PCR studies in parallel cultures demonstrating human astrocyte mediated changes in the structural maturation and protein expression profiles of the neurons. Interestingly, this relationship is reciprocal and coculture with neurons influences astrocyte maturation as well. Taken together, these data indicate that in a human in vitro spinal cord culture system, astrocytes support hiPSC‐MN maturation in a time‐dependent and species‐specific manner and suggest a closer approximation of in vivo conditions. stem cells translational medicine2019;8:1272&1285 We describe a fully human, spinal cord‐specific, coculture platform with human‐induced pluripotent stem cell‐derived motor neurons and astrocytes for multielectrode array recording. We show that human‐induced pluripotent stem cell‐derived motor neurons/human‐induced pluripotent stem cell‐derived astrocytes bidirectional morphological and molecular maturation is reflected by electrophysiological recordings with multielectrode array recording.![]()
Collapse
Affiliation(s)
- Arens Taga
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Raha Dastgheyb
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christa Habela
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jessica Joseph
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Sarah K Gross
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Giuseppe Lauria
- Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Gabsang Lee
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - Norman Haughey
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
40
|
Gao T, Li J, Li N, Gao Y, Yu L, Zhuang S, Zhao Y, Dong X. lncrps25 play an essential role in motor neuron development through controlling the expression of olig2 in zebrafish. J Cell Physiol 2019; 235:3485-3496. [PMID: 31549395 DOI: 10.1002/jcp.29237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022]
Abstract
lncrps25 is an intergenic long noncoding RNA (lncRNA), which is location close to rps25 (ribosomal protein S25) gene, is reported share high conserved sequence with NREP (neuronal regeneration-related protein) 3'-untranslated region. The function and mechanism of most of the lncRNA in embryo development remain largely unknown. In zebrafish, lncrps25 is widely expressed in the early embryonic stage and spinal cord during development. Morpholino (MO) knockdown of zebrafish lncrps25 exhibit locomotor behavior defects, caused by abnormal development of motor neurons. In addition, the defect of swimming ability and motor neurons could be recovery by microinject with lncrps25 RNA in lncrps25 morphants. By performing RNA sequencing and quantitative real-time polymerase chain reaction, we found that olig2 (oligodendrocyte transcription factor 2) messenger RNA (mRNA) was downregulated in lncrps25 morphants. Moreover, overexpression of olig2 mRNA in lncrps25 morphants partially rescued motor neurons development. Taken together, these results indicate that lncrps25 plays an essential role in the development of motor neurons in zebrafish.
Collapse
Affiliation(s)
- Tianheng Gao
- College of Oceanography, Hohai University, Nanjing, China
| | - Jingyun Li
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Nan Li
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Yan Gao
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Lingling Yu
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang, China
| | - Sisi Zhuang
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China.,Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yingmin Zhao
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang, China
| | - Xiaohua Dong
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang, China
| |
Collapse
|
41
|
Gao R, Liang X, Cheedipudi S, Cordero J, Jiang X, Zhang Q, Caputo L, Günther S, Kuenne C, Ren Y, Bhattacharya S, Yuan X, Barreto G, Chen Y, Braun T, Evans SM, Sun Y, Dobreva G. Pioneering function of Isl1 in the epigenetic control of cardiomyocyte cell fate. Cell Res 2019; 29:486-501. [PMID: 31024170 PMCID: PMC6796926 DOI: 10.1038/s41422-019-0168-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/01/2019] [Indexed: 01/25/2023] Open
Abstract
Generation of widely differing and specialized cell types from a single totipotent zygote involves large-scale transcriptional changes and chromatin reorganization. Pioneer transcription factors play key roles in programming the epigenome and facilitating recruitment of additional regulatory factors during successive cell lineage specification and differentiation steps. Here we show that Isl1 acts as a pioneer factor driving cardiomyocyte lineage commitment by shaping the chromatin landscape of cardiac progenitor cells. Using an Isl1 hypomorphic mouse line which shows congenital heart defects, genome-wide profiling of Isl1 binding together with RNA- and ATAC-sequencing of cardiac progenitor cells and their derivatives, we uncover a regulatory network downstream of Isl1 that orchestrates cardiogenesis. Mechanistically, we show that Isl1 binds to compacted chromatin and works in concert with the Brg1-Baf60c-based SWI/SNF complex to promote permissive cardiac lineage-specific alterations in the chromatin landscape not only of genes with critical functions in cardiac progenitor cells, but also of cardiomyocyte structural genes that are highly expressed when Isl1 itself is no longer present. Thus, the Isl1/Brg1-Baf60c complex plays a crucial role in orchestrating proper cardiogenesis and in establishing epigenetic memory of cardiomyocyte fate commitment.
Collapse
Affiliation(s)
- Rui Gao
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Anatomy and Developmental Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xingqun Liang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | | | - Julio Cordero
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Anatomy and Developmental Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xue Jiang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qingquan Zhang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Luca Caputo
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Carsten Kuenne
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yonggang Ren
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Anatomy and Developmental Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Xuejun Yuan
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Guillermo Barreto
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yihan Chen
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sylvia M Evans
- Department of Medicine, Skaggs School of Pharmacy, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Yunfu Sun
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Gergana Dobreva
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Department of Anatomy and Developmental Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Medical Faculty, University of Frankfurt, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
42
|
Contemporary Circulating Enterovirus D68 Strains Have Acquired the Capacity for Viral Entry and Replication in Human Neuronal Cells. mBio 2018; 9:mBio.01954-18. [PMID: 30327438 PMCID: PMC6191546 DOI: 10.1128/mbio.01954-18] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Since the EV-D68 outbreak during the summer of 2014, evidence of a causal link to a type of limb paralysis (AFM) has been mounting. In this article, we describe a neuronal cell culture model (SH-SY5Y cells) in which a subset of contemporary 2014 outbreak strains of EV-D68 show infectivity in neuronal cells, or neurotropism. We confirmed the difference in neurotropism in vitro using primary human neuron cell cultures and in vivo with a mouse paralysis model. Using the SH-SY5Y cell model, we determined that a barrier to viral entry is at least partly responsible for neurotropism. SH-SY5Y cells may be useful in determining if specific EV-D68 genetic determinants are associated with neuropathogenesis, and replication in this cell line could be used as rapid screening tool for identification of neurotropic EV-D68 strains. This may assist with better understanding of pathogenesis and epidemiology and with the development of potential therapies. Enterovirus D68 (EV-D68) has historically been associated with respiratory illnesses. However, in the summers of 2014 and 2016, EV-D68 outbreaks coincided with a spike in polio-like acute flaccid myelitis/paralysis (AFM/AFP) cases. This raised concerns that EV-D68 could be the causative agent of AFM during these recent outbreaks. To assess the potential neurotropism of EV-D68, we utilized the neuroblastoma-derived neuronal cell line SH-SY5Y as a cell culture model to determine if differential infection is observed for different EV-D68 strains. In contrast to HeLa and A549 cells, which support viral infection of all EV-D68 strains tested, SH-SY5Y cells only supported infection by a subset of contemporary EV-D68 strains, including isolates from the 2014 outbreak. Viral replication and infectivity in SH-SY5Y were assessed using multiple assays: virus production, cytopathic effects, cellular ATP release, and VP1 capsid protein production. Similar differential neurotropism was also observed in differentiated SH-SY5Y cells, primary human neuron cultures, and a mouse paralysis model. Using the SH-SY5Y cell culture model, we determined that barriers to viral binding and entry were at least partly responsible for the differential infectivity phenotype. Transfection of genomic RNA into SH-SY5Y generated virions for all EV-D68 isolates, but only a single round of replication was observed from strains that could not directly infect SH-SY5Y. In addition to supporting virus replication and other functional studies, this cell culture model may help identify the signatures of virulence to confirm epidemiological associations between EV-D68 strains and AFM and allow for the rapid identification and characterization of emerging neurotropic strains.
Collapse
|
43
|
Zhang Q, Huang R, Ye Y, Guo X, Lu J, Zhu F, Gong X, Zhang Q, Yan J, Luo L, Zhuang S, Chen Y, Zhao X, Evans SM, Jiang C, Liang X, Sun Y. Temporal requirements for ISL1 in sympathetic neuron proliferation, differentiation, and diversification. Cell Death Dis 2018; 9:247. [PMID: 29445148 PMCID: PMC5833373 DOI: 10.1038/s41419-018-0283-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/14/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022]
Abstract
Malformations of the sympathetic nervous system have been associated with cardiovascular instability, gastrointestinal dysfunction, and neuroblastoma. A better understanding of the factors regulating sympathetic nervous system development is critical to the development of potential therapies. Here, we have uncovered a temporal requirement for the LIM homeodomain transcription factor ISL1 during sympathetic nervous system development by the analysis of two mutant mouse lines: an Isl1 hypomorphic line and mice with Isl1 ablated in neural crest lineages. During early development, ISL1 is required for sympathetic neuronal fate determination, differentiation, and repression of glial differentiation, although it is dispensable for initial noradrenergic differentiation. ISL1 also plays an essential role in sympathetic neuron proliferation by controlling cell cycle gene expression. During later development, ISL1 is required for axon growth and sympathetic neuron diversification by maintaining noradrenergic differentiation, but repressing cholinergic differentiation. RNA-seq analyses of sympathetic ganglia from Isl1 mutant and control embryos, together with ISL1 ChIP-seq analysis on sympathetic ganglia, demonstrated that ISL1 regulates directly or indirectly several distinct signaling pathways that orchestrate sympathetic neurogenesis. A number of genes implicated in neuroblastoma pathogenesis are direct downstream targets of ISL1. Our study revealed a temporal requirement for ISL1 in multiple aspects of sympathetic neuron development, and suggested Isl1 as a candidate gene for neuroblastoma.
Collapse
Affiliation(s)
- Qingquan Zhang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ru Huang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Youqiong Ye
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaoxia Guo
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Lu
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fugui Zhu
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaohui Gong
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qitong Zhang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Yan
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lina Luo
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shaowei Zhuang
- Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| | - Yihan Chen
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaodong Zhao
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sylvia M Evans
- Department of Medicine, Department of Pharmacology, Skaggs School of Pharmacy, University of California San Diego, California, USA
| | - Cizhong Jiang
- School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Xingqun Liang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yunfu Sun
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
44
|
A Regulatory Circuitry Between Gria2, miR-409, and miR-495 Is Affected by ALS FUS Mutation in ESC-Derived Motor Neurons. Mol Neurobiol 2018; 55:7635-7651. [PMID: 29430619 PMCID: PMC6132778 DOI: 10.1007/s12035-018-0884-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
Mutations in fused in sarcoma (FUS) cause amyotrophic lateral sclerosis (ALS). FUS is a multifunctional protein involved in the biogenesis and activity of several types of RNAs, and its role in the pathogenesis of ALS may involve both direct effects of disease-associated mutations through gain- and loss-of-function mechanisms and indirect effects due to the cross talk between different classes of FUS-dependent RNAs. To explore how FUS mutations impinge on motor neuron-specific RNA-based circuitries, we performed transcriptome profiling of small and long RNAs of motor neurons (MNs) derived from mouse embryonic stem cells carrying a FUS-P517L knock-in mutation, which is equivalent to human FUS-P525L, associated with a severe and juvenile-onset form of ALS. Combining ontological, predictive and molecular analyses, we found an inverse correlation between several classes of deregulated miRNAs and their corresponding mRNA targets in both homozygous and heterozygous P517L MNs. We validated a circuitry in which the upregulation of miR-409-3p and miR-495-3p, belonging to a brain-specific miRNA subcluster implicated in several neurodevelopmental disorders, produced the downregulation of Gria2, a subunit of the glutamate α‐amino‐3‐hydroxy‐5‐methyl-4-isoxazole propionic acid (AMPA) receptor with a significant role in excitatory neurotransmission. Moreover, we found that FUS was involved in mediating such miRNA repression. Gria2 alteration has been proposed to be implicated in MN degeneration, through disturbance of Ca2+ homeostasis, which triggers a cascade of damaging “excitotoxic” events. The molecular cross talk identified highlights a role for FUS in excitotoxicity and in miRNA-dependent regulation of Gria2. This circuitry also proved to be deregulated in heterozygosity, which matches the human condition perfectly.
Collapse
|
45
|
Molecular specification of facial branchial motor neurons in vertebrates. Dev Biol 2018; 436:5-13. [PMID: 29391164 DOI: 10.1016/j.ydbio.2018.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/27/2018] [Accepted: 01/28/2018] [Indexed: 02/02/2023]
Abstract
Orofacial muscles are critical for life-sustaining behaviors, such as feeding and breathing. Centuries of work by neuroanatomists and surgeons resulted in the mapping of bulbar motor neurons in the brainstem and the course of the cranial nerves that carry their axons. Despite the sophisticated understanding of the anatomy of the region, the molecular mechanisms that dictate the development and maturation of facial motor neurons remain poorly understood. This fundamental problem has been recently revisited by physiologists with novel techniques of studying the rhythmic contraction of orofacial muscles in relationship to breathing. The molecular understanding of facial motor neuron development will not only lead to the comprehension of the neural basis of facial expression but may also unlock new avenues to generate stem cell-derived replacements. This review summarizes the current understanding of molecular programs involved in facial motor neuron generation, migration, and maturation, including neural circuit assembly.
Collapse
|
46
|
Sollinger C, Lillis J, Malik J, Getman M, Proschel C, Steiner L. Erythropoietin Signaling Regulates Key Epigenetic and Transcription Networks in Fetal Neural Progenitor Cells. Sci Rep 2017; 7:14381. [PMID: 29084993 PMCID: PMC5662632 DOI: 10.1038/s41598-017-14366-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Erythropoietin (EPO) and its receptor are highly expressed in the developing nervous system, and exogenous EPO therapy is potentially neuroprotective, however the epigenetic and transcriptional changes downstream of EPO signaling in neural cells are not well understood. To delineate epigenetic changes associated with EPO signaling, we compared histone H3 lysine 4 dimethylation (H3K4me2) in EPO treated and control fetal neural progenitor cells, identifying 1,150 differentially bound regions. These regions were highly enriched near protein coding genes and had significant overlap with H4Acetylation, a mark of active regulatory elements. Motif analyses and co-occupancy studies revealed a complex regulatory network underlying the differentially bound regions, including previously identified mediators of EPO signaling (STAT5, STAT3), and novel factors such as REST, an epigenetic modifier central to neural differentiation and plasticity, and NRF1, a key regulator of antioxidant response and mitochondrial biogenesis. Global transcriptome analyses on neural tubes isolated from E9.0 EpoR-null and littermate control embryos validated our in vitro findings, further suggesting a role for REST and NRF1 downstream of EPO signaling. These data support a role for EPO in regulating the survival, proliferation, and differentiation of neural progenitor cells, and suggest a basis for its function in neural development and neuroprotection.
Collapse
Affiliation(s)
| | - Jacquelyn Lillis
- Functional Genomic Center, University of Rochester, Rochester, New York, USA
| | - Jeffrey Malik
- Department of Pediatrics, University of Rochester, Rochester, New York, USA
| | - Michael Getman
- Department of Pediatrics, University of Rochester, Rochester, New York, USA
| | - Chris Proschel
- Department of Pediatrics, University of Rochester, Rochester, New York, USA.,Department of Biomedical Genetics, University of Rochester, Rochester, New York, USA
| | - Laurie Steiner
- Department of Pediatrics, University of Rochester, Rochester, New York, USA.
| |
Collapse
|
47
|
Moghaddam SA, Yousefi B, Sanooghi D, Faghihi F, Hayati Roodbari N, Bana N, Joghataei MT, Pooyan P, Arjmand B. Differentiation potential of human CD133 positive hematopoietic stem cells into motor neuron- like cells, in vitro. J Chem Neuroanat 2017; 86:35-40. [PMID: 28754612 DOI: 10.1016/j.jchemneu.2017.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/12/2017] [Accepted: 07/19/2017] [Indexed: 01/15/2023]
Abstract
Spinal cord injuries and motor neuron-related disorders impact on life of many patients around the world. Since pharmacotherapy and surgical approaches were not efficient to regenerate these types of defects; stem cell therapy as a good strategy to restore the lost cells has become the focus of interest among the scientists. Umbilical cord blood CD133+ hematopoietic stem cells (UCB- CD133+ HSCs) with self- renewal property and neural lineage differentiation capacity are ethically approved cell candidate for use in regenerative medicine. In this regard the aim of this study was to quantitatively evaluate the capability of these cells to differentiate into motor neuron-like cells (MNL), in vitro. CD133+ HSCs were isolated from human UCB using MACS system. After cell characterization using flow cytometry, the cells were treated with a combination of Retinoic acid, Sonic hedgehog, Brain derived neurotrophic factor, and B27 through a 2- step procedure for two weeks. The expression of MN-specific markers was examined using qRT- PCR, flow cytometry and immunocytochemistry. By the end of the two-week differentiation protocol, CD133+ cells acquired unipolar MNL morphology with thin and long neurites. The expression of Isl-1(62.15%), AChE (41.83%), SMI-32 (21.55%) and Nestin (17.46%) was detected using flow cytometry and immunocytochemistry. The analysis of the expression of PAX6, ISL-1, ACHE, CHAT and SMI-32 revealed that MNLs present these neural markers at levels comparable with undifferentiated cells. In Conclusion Human UCB- CD133+ HSCs are remarkably potent cell candidates to transdifferentiate into motor neuron-like cells, in vitro.
Collapse
Affiliation(s)
| | - Behnam Yousefi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Sanooghi
- Department of Genetics, Faculty of Biological Sciences, Shahid Beheshti University, Tehran, Iran
| | - Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nikoo Bana
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Paria Pooyan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Babak Arjmand
- Department of Neurosurgery and Iranian Tissue Bank, Tehran University of Medical Sciences/Tehran University, Tehran, Iran
| |
Collapse
|
48
|
Gaiti F, Jindrich K, Fernandez-Valverde SL, Roper KE, Degnan BM, Tanurdžić M. Landscape of histone modifications in a sponge reveals the origin of animal cis-regulatory complexity. eLife 2017; 6:22194. [PMID: 28395144 PMCID: PMC5429095 DOI: 10.7554/elife.22194] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/27/2017] [Indexed: 01/24/2023] Open
Abstract
Combinatorial patterns of histone modifications regulate developmental and cell type-specific gene expression and underpin animal complexity, but it is unclear when this regulatory system evolved. By analysing histone modifications in a morphologically-simple, early branching animal, the sponge Amphimedonqueenslandica, we show that the regulatory landscape used by complex bilaterians was already in place at the dawn of animal multicellularity. This includes distal enhancers, repressive chromatin and transcriptional units marked by H3K4me3 that vary with levels of developmental regulation. Strikingly, Amphimedon enhancers are enriched in metazoan-specific microsyntenic units, suggesting that their genomic location is extremely ancient and likely to place constraints on the evolution of surrounding genes. These results suggest that the regulatory foundation for spatiotemporal gene expression evolved prior to the divergence of sponges and eumetazoans, and was necessary for the evolution of animal multicellularity.
Collapse
Affiliation(s)
- Federico Gaiti
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Katia Jindrich
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | | | - Kathrein E Roper
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Miloš Tanurdžić
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
49
|
Intron-specific patterns of divergence of lin-11 regulatory function in the C. elegans nervous system. Dev Biol 2017; 424:90-103. [DOI: 10.1016/j.ydbio.2017.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/08/2017] [Accepted: 02/12/2017] [Indexed: 12/19/2022]
|
50
|
The Isl1-Lhx3 Complex Promotes Motor Neuron Specification by Activating Transcriptional Pathways that Enhance Its Own Expression and Formation. eNeuro 2017; 4:eN-NWR-0349-16. [PMID: 28451636 PMCID: PMC5394944 DOI: 10.1523/eneuro.0349-16.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/27/2017] [Accepted: 03/11/2017] [Indexed: 01/27/2023] Open
Abstract
Motor neuron (MN) progenitor cells rapidly induce high expression of the transcription factors Islet-1 (Isl1), LIM-homeobox 3 (Lhx3), and the transcriptional regulator LMO4, as they differentiate. While these factors are critical for MN specification, the mechanisms regulating their precise temporal and spatial expression patterns are not well characterized. Isl1 and Lhx3 form the Isl1-Lhx3 complex, which induces the transcription of genes critical for MN specification and maturation. Here, we report that Isl1, Lhx3, and Lmo4 are direct target genes of the Isl1-Lhx3 complex. Our results show that specific genomic loci associated with these genes recruit the Isl1-Lhx3 complex to activate the transcription of Isl1, Lhx3, and Lmo4 in embryonic MNs of chick and mouse. These findings support a model in which the Isl1-Lhx3 complex amplifies its own expression through a potent autoregulatory feedback loop and simultaneously enhances the transcription of Lmo4. LMO4 blocks the formation of the V2 interneuron-specifying Lhx3 complex. In developing MNs, this action inhibits the expression of V2 interneuron genes and increases the pool of unbound Lhx3 available to incorporate into the Isl1-Lhx3 complex. Identifying the pathways that regulate the expression of these key factors provides important insights into the genetic strategies utilized to promote MN differentiation and maturation.
Collapse
|