1
|
Barron A, Manna S, McElwain CJ, Musumeci A, McCarthy FP, O’Keeffe GW, McCarthy CM. Maternal pre-eclampsia serum increases neurite growth and mitochondrial function through a potential IL-6-dependent mechanism in differentiated SH-SY5Y cells. Front Physiol 2023; 13:1043481. [PMID: 36714304 PMCID: PMC9877349 DOI: 10.3389/fphys.2022.1043481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction: Pre-eclampsia (PE) is a common and serious hypertensive disorder of pregnancy, which affects 3%-5% of first-time pregnancies and is a leading cause of maternal and neonatal morbidity and mortality. Prenatal exposure to PE is associated with an increased risk of neurodevelopmental disorders in affected offspring, although the cellular and molecular basis of this increased risk is largely unknown. Methods: Here, we examined the effects of exposure to maternal serum from women with PE or a healthy uncomplicated pregnancy on the survival, neurite growth and mitochondrial function of neuronally differentiated human SH-SY5Y neuroblastoma cells, which are commonly used to study neurite growth. Neurite growth and mitochondrial function are two strongly linked neurodevelopmental parameters in which alterations have been implicated in neurodevelopmental disorders. Following this, we investigated the pleiotropic cytokine interleukin-6 (IL-6) levels as a potential mechanism. Results: Cells exposed to 3% (v/v) PE serum for 72 h exhibited increased neurite growth (p < 0.05), which was validated in the human neural progenitor cell line, ReNcell® VM (p < 0.01), and mitochondrial respiration (elevated oxygen consumption rate (p < 0.05), basal mitochondrial respiration, proton leak, ATP synthesis, and non-mitochondrial respiration) compared to control serum-treated cells. ELISA analysis showed elevations in maternal IL-6 in PE sera (p < 0.05) and placental explants (p < 0.05). In support of this, SH-SY5Y cells exposed to 3% (v/v) PE serum for 24 h had increased phospho-STAT3 levels, which is a key intracellular mediator of IL-6 signalling (p < 0.05). Furthermore, treatment with anti-IL-6 neutralizing antibody blocked the effects of PE serum on neurite growth (p < 0.05), and exposure to IL-6 promoted neurite growth in SH-SY5Y cells (p < 0.01). Discussion: Collectively these data show elevated serum levels of maternal IL-6 in PE, which increases neurite growth and mitochondrial function in SH-SY5Y cells. This rationalizes the further study of IL-6 as a potential mediator between PE exposure and neurodevelopmental outcome in the offspring.
Collapse
Affiliation(s)
- Aaron Barron
- Department of Anatomy and Neuroscience, University College, Cork, Ireland,Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Samprikta Manna
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland,Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Colm J. McElwain
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Andrea Musumeci
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Gerard W. O’Keeffe
- Department of Anatomy and Neuroscience, University College, Cork, Ireland,Cork Neuroscience Centre, University College Cork, Cork, Ireland,*Correspondence: Gerard W. O’Keeffe, ; Cathal M. McCarthy,
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland,*Correspondence: Gerard W. O’Keeffe, ; Cathal M. McCarthy,
| |
Collapse
|
2
|
Naudé PJW, Pariante C, Hoffman N, Koopowitz SM, Donald KA, Zar HJ, Stein DJ. Antenatal maternal depression, early life inflammation and neurodevelopment in a South African birth cohort. Brain Behav Immun 2022; 105:160-168. [PMID: 35803482 DOI: 10.1016/j.bbi.2022.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/07/2022] [Accepted: 07/03/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Antenatal exposure to maternal psychological adversity, including depression, increases the risk of impaired neurodevelopment in children. The underlying biological mechanisms remain unclear, especially in early life during critical windows of development and maturation. This study investigated the association of antenatal maternal depression, maternal and early life inflammatory markers and neurodevelopmental outcomes in children at 2 years of age. METHODS A subgroup of mothers and their children (n = 255) that were enrolled in a South African birth cohort study, the Drakenstein Child Health Study, were followed from the antenatal period through to 2 years of child age. Maternal depressive symptoms were measured by the Beck Depression Inventory (BDI-II) at 26 weeks gestation. Serum inflammatory markers [granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon-γ (IFN-γ), interleukin IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70, IL-13, tumour necrosis factor-α (TNF-α), neutrophil gelatinase-associated lipocalin (NGAL) and metalloproteinase-9 (MMP-9)] were measured in mothers at enrolment and in their children at 6-10 weeks and at 2 years. Neurodevelopment was assessed at 2 years using the Bayley Scales of Infant and Toddler Development III. RESULTS Antenatal depressive symptoms (present in 25% of the mothers) were significantly associated with higher levels of IL-7 (p = 0.008), IL-8 (p = 0.019) and TNF-α (p = 0.031) in the mothers after correcting for sociodemographic and lifestyle factors. Serum IL-1β and NGAL levels were significantly elevated over time in children born to mothers with depressive symptoms compared to those without depression, after controlling for maternal and child health and sociodemographic factors. Elevated infant IL-1β at 6-10 weeks of age partially mediated the association of maternal depressive symptoms with poorer language scores at 2 years. CONCLUSION Alterations in early life immunity, as reflected by elevated IL-1β, is a potential pathway through which antenatal maternal depressive symptoms may impact language development in young children.
Collapse
Affiliation(s)
- Petrus J W Naudé
- Department of Psychiatry and Mental Health, University of Cape Town, South Africa; Neuroscience Institute, University of Cape Town, South Africa.
| | - Carmine Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Nadia Hoffman
- Department of Psychiatry and Mental Health, University of Cape Town, South Africa
| | | | - Kirsten A Donald
- Neuroscience Institute, University of Cape Town, South Africa; Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa; SA-MRC Unit on Child and Adolescent Health, University of Cape Town, South Africa
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, South Africa; Neuroscience Institute, University of Cape Town, South Africa; SU/UCT MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, South Africa
| |
Collapse
|
3
|
Zengeler KE, Lukens JR. Innate immunity at the crossroads of healthy brain maturation and neurodevelopmental disorders. Nat Rev Immunol 2021; 21:454-468. [PMID: 33479477 PMCID: PMC9213174 DOI: 10.1038/s41577-020-00487-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 12/29/2022]
Abstract
The immune and nervous systems have unique developmental trajectories that individually build intricate networks of cells with highly specialized functions. These two systems have extensive mechanistic overlap and frequently coordinate to accomplish the proper growth and maturation of an organism. Brain resident innate immune cells - microglia - have the capacity to sculpt neural circuitry and coordinate copious and diverse neurodevelopmental processes. Moreover, many immune cells and immune-related signalling molecules are found in the developing nervous system and contribute to healthy neurodevelopment. In particular, many components of the innate immune system, including Toll-like receptors, cytokines, inflammasomes and phagocytic signals, are critical contributors to healthy brain development. Accordingly, dysfunction in innate immune signalling pathways has been functionally linked to many neurodevelopmental disorders, including autism and schizophrenia. This review discusses the essential roles of microglia and innate immune signalling in the assembly and maintenance of a properly functioning nervous system.
Collapse
Affiliation(s)
- Kristine E Zengeler
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), Charlottesville, VA, USA.
- Neuroscience Graduate Program, Charlottesville, VA, USA.
- Cell and Molecular Biology Training Program, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - John R Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), Charlottesville, VA, USA.
- Neuroscience Graduate Program, Charlottesville, VA, USA.
- Cell and Molecular Biology Training Program, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Barron A, McCarthy CM, O'Keeffe GW. Preeclampsia and Neurodevelopmental Outcomes: Potential Pathogenic Roles for Inflammation and Oxidative Stress? Mol Neurobiol 2021; 58:2734-2756. [PMID: 33492643 DOI: 10.1007/s12035-021-02290-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
Preeclampsia (PE) is a common and serious hypertensive disorder of pregnancy that occurs in approximately 3-5% of first-time pregnancies and is a well-known leading cause of maternal and neonatal mortality and morbidity. In recent years, there has been accumulating evidence that in utero exposure to PE acts as an environmental risk factor for various neurodevelopmental disorders, particularly autism spectrum disorder and ADHD. At present, the mechanism(s) mediating this relationship are uncertain. In this review, we outline the most recent evidence implicating a causal role for PE exposure in the aetiology of various neurodevelopmental disorders and provide a novel interpretation of neuroanatomical alterations in PE-exposed offspring and how these relate to their sub-optimal neurodevelopmental trajectory. We then postulate that inflammation and oxidative stress, two prominent features of the pathophysiology of PE, are likely to play a major role in mediating this association. The increased inflammation in the maternal circulation, placenta and fetal circulation in PE expose the offspring to both prenatal maternal immune activation-a risk factor for neurodevelopmental disorders, which has been well-characterised in animal models-and directly higher concentrations of pro-inflammatory cytokines, which adversely affect neuronal development. Similarly, the exaggerated oxidative stress in the mother, placenta and foetus induces the placenta to secrete factors deleterious to neurons, and exposes the fetal brain to directly elevated oxidative stress and thus adversely affects neurodevelopmental processes. Finally, we describe the interplay between inflammation and oxidative stress in PE, and how both systems interact to potentially alter neurodevelopmental trajectory in exposed offspring.
Collapse
Affiliation(s)
- Aaron Barron
- Department of Anatomy and Neuroscience, University College, Cork, Ireland.,Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Cathal M McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College, Cork, Ireland. .,Cork Neuroscience Centre, University College Cork, Cork, Ireland.
| |
Collapse
|
5
|
Zhang ZZ, Zhuang ZQ, Sun SY, Ge HH, Wu YF, Cao L, Xia L, Yang QG, Wang F, Chen GH. Effects of Prenatal Exposure to Inflammation Coupled With Stress Exposure During Adolescence on Cognition and Synaptic Protein Levels in Aged CD-1 Mice. Front Aging Neurosci 2020; 12:157. [PMID: 32774299 PMCID: PMC7381390 DOI: 10.3389/fnagi.2020.00157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Age-associated impairment of spatial learning and memory (AISLM) presents substantial challenges to our health and society. Increasing evidence has indicated that embryonic exposure to inflammation accelerates the AISLM, and this can be attributable, at least partly, to changed synaptic plasticity associated with the activities of various proteins. However, it is still uncertain whether social psychological factors affect this AISLM and/or the expression of synaptic protein-associated genes. Synaptotagmin-1 (Syt1) and activity-regulated cytoskeleton-associated protein (Arc) are two synaptic proteins closely related to cognitive functions. In this study, pregnant CD-1 mice received daily intraperitoneal injections of lipopolysaccharide (LPS) (50 μg/kg) or normal saline at days 15-17 of gestation, and half of the offspring of each group were then subjected to stress for 28 days in adolescence. The Morris water maze (MWM) test was used to separately evaluate spatial learning and memory at 3 and 15 months of age, while western blotting and RNAscope assays were used to measure the protein and mRNA levels of Arc and Syt1 in the hippocampus. The results showed that, at 15 months of age, control mice had worse cognitive ability and higher protein and mRNA levels of Arc and Syt1 than their younger counterparts. Embryonic exposure to inflammation or exposure to stress in adolescence aggravated the AISLM, as well as the age-related increase in Arc and Syt1 expression. Moreover, the hippocampal protein and mRNA levels of Arc and Syt1 were significantly correlated with the performance in the learning and memory periods of the MWM test, especially in the mice that had suffered adverse insults in early life. Our findings indicated that prenatal exposure to inflammation or stress exposure in adolescence exacerbated the AISLM and age-related upregulation of Arc and Syt1 expression, and these effects were linked to cognitive impairments in CD-1 mice exposed to adverse factors in early life.
Collapse
Affiliation(s)
- Zhe-Zhe Zhang
- Department of Neurology or Department of Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhan-Qiang Zhuang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Shi-Yu Sun
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - He-Hua Ge
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yong-Fang Wu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Lei Cao
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lan Xia
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qi-Gang Yang
- Department of Neurology or Department of Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fang Wang
- Department of Neurology or Department of Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Schwarz AP, Rotov AY, Chuprina OI, Krytskaya DU, Trofimov AN, Kosheverova VV, Ischenko AM, Zubareva OE. Developmental prefrontal mRNA expression of D2 dopamine receptor splice variants and working memory impairments in rats after early life Interleukin-1β elevation. Neurobiol Learn Mem 2018; 155:231-238. [PMID: 30092312 DOI: 10.1016/j.nlm.2018.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 11/29/2022]
Abstract
Long (D2L) and Short (D2S) isoforms of D2 dopamine receptor differ in their biochemical and physiological properties, which could affect functioning of prefrontal cortex. Contribution of distinct D2 dopamine receptor isoforms to cognitive dysfunctions and its developmental regulation are currently not fully elucidated. In the present study, we evaluated developmental mRNA expression of D2S/D2L dopamine receptor isoforms within the rat medial prefrontal cortex (mPFC) in the model of neurodevelopmental cognitive dysfunction. Working memory performance (Y-maze spontaneous alternations) and D2S/D2L mRNA expression in the mPFC (by qRT-PCR) were evaluated in juvenile (P27), adolescent (P42-47) and adult (P75-90) rats after chronic early life treatment with proinflammatory cytokine interleukin (IL)-1β (1 µg/kg i.p. daily P15-21). It was shown that IL-1β elevation during the 3rd week of life leads to working memory deficit originating in juvenile animals and persisting into adulthood. D2S mRNA expression was strongly downregulated during adolescence, and such downregulation was exaggerated in animals injected with IL-1β during P15-21. Early life IL-1β administrations influenced developmental changes in the D2S/D2L mRNA ratio. This measure was found to be decreased in adolescent and adult control (intact and vehicle-treated) rats compared to juvenile control, while in the case of IL-1β-treated animals, the decrease in D2S/D2L ratio was observed only in adulthood but not in adolescence compared to juvenile rats. During the adolescence, D2S mRNA expression was downregulated and D2S/D2L ratio was upregulated in the mPFC of rats treated with IL-1β during the 3rd week of life compared to controls. Based on these data we conclude that changes in the developmental expression of D2 dopamine receptor splice variants within mPFC may underlie long-lasting cognitive deficit associated with neonatal pathology.
Collapse
Affiliation(s)
- Alexander P Schwarz
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia.
| | - Alexander Yu Rotov
- Laboratory of Evolution of the Sensory Organs, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez avenue 44, 199223 St. Petersburg, Russia
| | - Olga I Chuprina
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia
| | - Darya U Krytskaya
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia
| | - Alexander N Trofimov
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia
| | - Vera V Kosheverova
- Laboratory of Intracellular Membranes Dynamics, Department of the Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky avenue 4, 194064 St. Petersburg, Russia
| | - Alexander M Ischenko
- Laboratory of Protein Biochemistry, Research Institute of Highly Pure Biopreparations, Pudozhskaya street 7, 197110 St. Petersburg, Russia
| | - Olga E Zubareva
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia; Laboratory of Molecular Mechanisms of Neuronal Interactions, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez avenue 44, 199223 St. Petersburg, Russia
| |
Collapse
|
7
|
Straley ME, Van Oeffelen W, Theze S, Sullivan AM, O'Mahony SM, Cryan JF, O'Keeffe GW. Distinct alterations in motor & reward seeking behavior are dependent on the gestational age of exposure to LPS-induced maternal immune activation. Brain Behav Immun 2017; 63:21-34. [PMID: 27266391 DOI: 10.1016/j.bbi.2016.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 11/18/2022] Open
Abstract
The dopaminergic system is involved in motivation, reward and the associated motor activities. Mesodiencephalic dopaminergic neurons in the ventral tegmental area (VTA) regulate motivation and reward, whereas those in the substantia nigra (SN) are essential for motor control. Defective VTA dopaminergic transmission has been implicated in schizophrenia, drug addiction and depression whereas dopaminergic neurons in the SN are lost in Parkinson's disease. Maternal immune activation (MIA) leading to in utero inflammation has been proposed to be a risk factor for these disorders, yet it is unclear how this stimulus can lead to the diverse disturbances in dopaminergic-driven behaviors that emerge at different stages of life in affected offspring. Here we report that gestational age is a critical determinant of the subsequent alterations in dopaminergic-driven behavior in rat offspring exposed to lipopolysaccharide (LPS)-induced MIA. Behavioral analysis revealed that MIA on gestational day 16 but not gestational day 12 resulted in biphasic impairments in motor behavior. Specifically, motor impairments were evident in early life, which were resolved by adolescence, but subsequently re-emerged in adulthood. In contrast, reward seeking behaviors were altered in offspring exposed MIA on gestational day 12. These changes were not due to a loss of dopaminergic neurons per se in the postnatal period, suggesting that they reflect functional changes in dopaminergic systems. This highlights that gestational age may be a key determinant of how MIA leads to distinct alterations in dopaminergic-driven behavior across the lifespan of affected offspring.
Collapse
Affiliation(s)
- Megan E Straley
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland; The Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital, Cork, Ireland
| | - Wesley Van Oeffelen
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Sarah Theze
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland; The Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital, Cork, Ireland.
| |
Collapse
|
8
|
Han Q, Lin Q, Huang P, Chen M, Hu X, Fu H, He S, Shen F, Zeng H, Deng Y. Microglia-derived IL-1β contributes to axon development disorders and synaptic deficit through p38-MAPK signal pathway in septic neonatal rats. J Neuroinflammation 2017; 14:52. [PMID: 28288671 PMCID: PMC5348817 DOI: 10.1186/s12974-017-0805-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/26/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Axon development plays a pivotal role in the formation of synapse, nodes of Ranvier, and myelin sheath. Interleukin-1β (IL-1β) produced by microglia may cause myelination disturbances through suppression of oligodendrocyte progenitor cell maturation in the septic neonatal rats. Here, we explored if a microglia-derived IL-1β would disturb axon development in the corpus callosum (CC) following lipopolysaccharide (LPS) administration, and if so, whether it is associated with disorder of synapse formation in the cerebral cortex and node of Ranvier. METHODS Sprague-Dawley rats (1-day old) in the septic model group were intraperitoneally administrated with lipopolysaccharide (1 mg/kg) and then sacrificed for detection of IL-1β, interleukin-1 receptor (IL-1R1), neurofilament-68, neurofilament-160, and neurofilament-200, proteolipid, synaptophysin, and postsynaptic density 95 (PSD95) expression by western blotting and immunofluorescence. Electron microscopy was conducted to observe alterations of axonal myelin sheath and synapses in the cortex, and proteolipid expression was assessed using in situ hybridization. The effect of IL-1β on neurofilament and synaptophysin expression in primary neuron cultures was determined by western blotting and immunofluorescence. P38-MAPK signaling pathway was investigated to determine whether it was involved in the inhibition of IL-1β on neurofilament and synaptophysin expression. RESULTS In 1-day old septic rats, IL-1β expression was increased in microglia coupled with upregulated expression of IL-1R1 on the axons. The expression of neurofilament-68, neurofilament-160, and neurofilament-200 (NFL, NFM, NFH) and proteolipid (PLP) was markedly reduced in the CC at 7, 14, and 28 days after LPS administration. Simultaneously, cortical synapses and mature oligodendrocytes were significantly reduced. By electron microscopy, some axons showed smaller diameter and thinner myelin sheath with damaged ultrastructure of node of Ranvier compared with the control rats. In the cerebral cortex of LPS-injected rats, some axo-dendritic synapses appeared abnormal looking as manifested by the presence of swollen and clumping of synaptic vesicles near the presynaptic membrane. In primary cultured neurons incubated with IL-1β, expression of NFL, NFM, and synaptophysin was significantly downregulated. Furthermore, p38-MAPK signaling pathway was implicated in disorder of axon development and synaptic deficit caused by IL-1β treatment. CONCLUSIONS The present results suggest that microglia-derived IL-1β might suppress axon development through activation of p38-MAPK signaling pathway that would contribute to formation disorder of cortical synapses and node of Ranvier following LPS exposure.
Collapse
Affiliation(s)
- Qianpeng Han
- Southern Medical University, Guangzhou, 510515 People’s Republic of China
- Department of Critical Care and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 People’s Republic of China
- Department of Critical Care Medicine, Yueyang First People’s Hospital, Yueyang, 414000 People’s Republic of China
| | - Qiongyu Lin
- Southern Medical University, Guangzhou, 510515 People’s Republic of China
- Department of Critical Care and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 People’s Republic of China
| | - Peixian Huang
- Department of Critical Care and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 People’s Republic of China
- Shantou University Medical College, Shantou, Guangdong 515063 People’s Republic of China
| | - Mengmeng Chen
- Department of Critical Care and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 People’s Republic of China
- Shantou University Medical College, Shantou, Guangdong 515063 People’s Republic of China
| | - Xin Hu
- Department of Anatomy, Basic medical school of Wuhan University, Wuhan, Hubei 430071 People’s Republic of China
| | - Hui Fu
- Department of Anatomy, Basic medical school of Wuhan University, Wuhan, Hubei 430071 People’s Republic of China
| | - Shaoru He
- Department of Neonatology, Guangzhou General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 People’s Republic of China
| | - Fengcai Shen
- Department of Critical Care and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 People’s Republic of China
- Shantou University Medical College, Shantou, Guangdong 515063 People’s Republic of China
| | - Hongke Zeng
- Southern Medical University, Guangzhou, 510515 People’s Republic of China
- Department of Critical Care and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 People’s Republic of China
| | - Yiyu Deng
- Southern Medical University, Guangzhou, 510515 People’s Republic of China
- Department of Critical Care and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 People’s Republic of China
| |
Collapse
|
9
|
Wu PJ, Liu HY, Huang TN, Hsueh YP. AIM 2 inflammasomes regulate neuronal morphology and influence anxiety and memory in mice. Sci Rep 2016; 6:32405. [PMID: 27561456 PMCID: PMC5000013 DOI: 10.1038/srep32405] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/09/2016] [Indexed: 12/20/2022] Open
Abstract
Inflammasomes are the protein assemblies that consist of inflammasome sensors, adaptor apoptosis-associated speck-like proteins containing a CARD (ASC) and inflammasome caspase. Inflammasomes sense multiple danger signals via various inflammasome sensors and consequently use caspase to trigger proteolytic processing and secretion of IL-1β cytokines. Recent studies have suggested that neurons use their own innate immune system to detect danger signals and regulate neuronal morphology. Here, we investigate whether inflammasomes, the critical components of innate immunity, participate in regulation of neuronal morphology and function. Among various sensors, Absent in melanoma 2 (Aim2) expression in neurons is most prominent. Adding synthetic double-stranded DNA (dsDNA) to cultured neurons induces IL-1β secretion in an AIM2-dependent manner and consequently downregulates dendritic growth but enhances axon extension. The results of Aim2 knockout and knockdown show that AIM2 acts cell-autonomously to regulate neuronal morphology. Behavioral analyses further reveal that Aim2-/- mice exhibit lower locomotor activity, increased anxious behaviors and reduced auditory fear memory. In conclusion, our study suggests that AIM2 inflammasomes regulate neuronal morphology and influence mouse behaviors.
Collapse
Affiliation(s)
- Pei-Jung Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hsin-Yu Liu
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Tzyy-Nan Huang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Ping Hsueh
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
10
|
Li XW, Cao L, Wang F, Yang QG, Tong JJ, Li XY, Chen GH. Maternal inflammation linearly exacerbates offspring age-related changes of spatial learning and memory, and neurobiology until senectitude. Behav Brain Res 2016; 306:178-96. [PMID: 26992827 DOI: 10.1016/j.bbr.2016.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/01/2016] [Accepted: 03/05/2016] [Indexed: 01/06/2023]
Abstract
Maternal inflammation during pregnancy can elevate the risk of neurodegenerative disorders in offspring. However, how it affects age-related impairments of spatial learning and memory and changes in the neurobiological indictors in the offspring in later adulthood is still elusive. In this study, the CD-1 mice with maternal gestational inflammation due to receiving lipopolysaccharide (LPS, i.p. 50 or 25μg/kg) were divided into 3-, 12-, 18-, and 22-month-old groups. The spatial learning and memory were evaluated using a six-radial arm water maze and the levels of presynaptic proteins (synaptotagmin-1 and syntaxin-1) and histone acetylation (H3K9ac and H4K8ac) in the dorsal hippocampus were detected using the immunohistochemical method. The results indicated that there were significant age-related impairments of spatial learning and memory, decreased levels of H4K8ac, H3K9ac, and syntaxin-1, and increased levels of synaptotagmin-1 in the offspring mice from 12 months old to 22 months old compared to the same-age controls. Maternal LPS treatment significantly exacerbated the offspring impairments of spatial learning and memory, the reduction of H3K9ac, H4K8ac, and syntaxin-1, and the increment of synaptotagmin-1 from 12 months old to 22 months old compared to the same-age control groups. The changes in the neurobiological indicators significantly correlated with the impairments of spatial learning and memory. Furthermore, this correlation, besides the age and LPS-treatment effects, also showed a dose-dependent effect. Our results suggest that maternal inflammation during pregnancy could exacerbate age-related impairments of spatial learning and memory, and neurobiochemical indicators in the offspring CD-1 mice from midlife to senectitude.
Collapse
Affiliation(s)
- Xue-Wei Li
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Lei Cao
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, PR China
| | - Fang Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Qi-Gang Yang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Jing-Jing Tong
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Xue-Yan Li
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China; Department of Neurology, the Affiliated Chaohu Hospital of Anhui Medical University, and the Center of Anhui Province in Psychologic Medicine, Chaohu, Hefei 238000, Anhui Province, PR China
| | - Gui-Hai Chen
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China; Department of Neurology, the Affiliated Chaohu Hospital of Anhui Medical University, and the Center of Anhui Province in Psychologic Medicine, Chaohu, Hefei 238000, Anhui Province, PR China; Department of Neurology, the First People's Hospital of Chenzhou, Chenzhou 423000, Hunan Province, PR China.
| |
Collapse
|
11
|
Golubeva AV, Crampton S, Desbonnet L, Edge D, O'Sullivan O, Lomasney KW, Zhdanov AV, Crispie F, Moloney RD, Borre YE, Cotter PD, Hyland NP, O'Halloran KD, Dinan TG, O'Keeffe GW, Cryan JF. Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood. Psychoneuroendocrinology 2015; 60:58-74. [PMID: 26135201 DOI: 10.1016/j.psyneuen.2015.06.002] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/12/2015] [Accepted: 06/08/2015] [Indexed: 12/26/2022]
Abstract
Early-life adverse experiences, including prenatal stress (PNS), are associated with a higher prevalence of neurodevelopmental, cardiovascular and metabolic disorders in affected offspring. Here, in a rat model of chronic PNS, we investigate the impact of late gestational stress on physiological outcomes in adulthood. Sprague-Dawley pregnant dams were subjected to repeated restraint stress from embryonic day 14 to day 20, and their male offspring were assessed at 4 months of age. PNS induced an exaggeration of the hypothalamic-pituitary-adrenal (HPA) axis response to stress, as well as an elevation of blood pressure and impairment of cognitive function. Altered respiratory control was also observed, as demonstrated by increased variability in basal respiratory frequency and abnormal frequency responses to both hypoxic and hypercapnic challenges. PNS also affected gastrointestinal neurodevelopment and function, as measured by a decrease in the innervation density of distal colon and an increase in the colonic secretory response to catecholaminergic stimulation. Finally, PNS induced long lasting alterations in the intestinal microbiota composition. 16S rRNA gene 454 pyrosequencing revealed a strong trend towards decreased numbers of bacteria in the Lactobacillus genus, accompanied by elevated abundance of the Oscillibacter, Anaerotruncus and Peptococcus genera in PNS animals. Strikingly, relative abundance of distinct bacteria genera significantly correlated with certain respiratory parameters and the responsiveness of the HPA axis to stress. Together, these findings provide novel evidence that PNS induces long-term maladaptive alterations in the gastrointestinal and respiratory systems, accompanied by hyper-responsiveness to stress and alterations in the gut microbiota.
Collapse
Affiliation(s)
- Anna V Golubeva
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Sean Crampton
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Lieve Desbonnet
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Deirdre Edge
- Department of Physiology, University College Cork, Cork, Ireland
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Moorepark Fermoy, County Cork, Ireland
| | - Kevin W Lomasney
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Pharmacology & Therapeutics, University College Cork, Cork, Ireland
| | - Alexander V Zhdanov
- School of Biochemistry & Cell Biology, University College Cork, Cork, Ireland
| | - Fiona Crispie
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark Fermoy, County Cork, Ireland
| | - Rachel D Moloney
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Yuliya E Borre
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Paul D Cotter
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark Fermoy, County Cork, Ireland
| | - Niall P Hyland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Pharmacology & Therapeutics, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Psychiatry, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland; Irish Centre for Foetal and Neonatal Translational Research (INFANT), CUMH, Cork, Ireland.
| | - John F Cryan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
12
|
Monzón-Sandoval J, Castillo-Morales A, Crampton S, McKelvey L, Nolan A, O'Keeffe G, Gutierrez H. Modular and coordinated expression of immune system regulatory and signaling components in the developing and adult nervous system. Front Cell Neurosci 2015; 9:337. [PMID: 26379506 PMCID: PMC4551857 DOI: 10.3389/fncel.2015.00337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/14/2015] [Indexed: 12/14/2022] Open
Abstract
During development, the nervous system (NS) is assembled and sculpted through a concerted series of neurodevelopmental events orchestrated by a complex genetic programme. While neural-specific gene expression plays a critical part in this process, in recent years, a number of immune-related signaling and regulatory components have also been shown to play key physiological roles in the developing and adult NS. While the involvement of individual immune-related signaling components in neural functions may reflect their ubiquitous character, it may also reflect a much wider, as yet undescribed, genetic network of immune-related molecules acting as an intrinsic component of the neural-specific regulatory machinery that ultimately shapes the NS. In order to gain insights into the scale and wider functional organization of immune-related genetic networks in the NS, we examined the large scale pattern of expression of these genes in the brain. Our results show a highly significant correlated expression and transcriptional clustering among immune-related genes in the developing and adult brain, and this correlation was the highest in the brain when compared to muscle, liver, kidney and endothelial cells. We experimentally tested the regulatory clustering of immune system (IS) genes by using microarray expression profiling in cultures of dissociated neurons stimulated with the pro-inflammatory cytokine TNF-alpha, and found a highly significant enrichment of immune system-related genes among the resulting differentially expressed genes. Our findings strongly suggest a coherent recruitment of entire immune-related genetic regulatory modules by the neural-specific genetic programme that shapes the NS.
Collapse
Affiliation(s)
- Jimena Monzón-Sandoval
- School of Life Sciences, University of Lincoln Lincoln, UK ; Department of Biology and Biochemistry, University of Bath Bath, UK
| | - Atahualpa Castillo-Morales
- School of Life Sciences, University of Lincoln Lincoln, UK ; Department of Biology and Biochemistry, University of Bath Bath, UK
| | - Sean Crampton
- Department of Anatomy and Neuroscience, Biosciences Institute, University College Cork Cork, Ireland
| | - Laura McKelvey
- Department of Anatomy and Neuroscience, Biosciences Institute, University College Cork Cork, Ireland
| | - Aoife Nolan
- Department of Anatomy and Neuroscience, Biosciences Institute, University College Cork Cork, Ireland
| | - Gerard O'Keeffe
- Department of Anatomy and Neuroscience, Biosciences Institute, University College Cork Cork, Ireland ; Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital Cork, Ireland
| | | |
Collapse
|
13
|
Dixon AR, Philbert MA. Morphometric assessment of toxicant induced neuronal degeneration in full and restricted contact co-cultures of embryonic cortical rat neurons and astrocytes: using m-Dinitrobezene as a model neurotoxicant. Toxicol In Vitro 2015; 29:564-74. [PMID: 25553915 PMCID: PMC4418429 DOI: 10.1016/j.tiv.2014.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/05/2014] [Accepted: 12/11/2014] [Indexed: 01/22/2023]
Abstract
With m-Dinitrobenzene (m-DNB) as a selected model neurotoxicant, we demonstrate how to assess neurotoxicity, using morphology based measurement of neurite degeneration, in a conventional "full-contact" and a modern "restricted-contact" co-culture of rat cortical neurons and astrocytes. In the "full-contact" co-culture, neurons and astrocytes in complete physical contact are "globally" exposed to m-DNB. A newly emergent "restricted-contact" co-culture is attained with a microfluidic device that polarizes neuron somas and neurites into separate compartments, and the neurite compartment is "selectively" exposed to m-DNB. Morphometric analysis of the neuronal area revealed that m-DNB exposure produced no significant change in mean neuronal cell area in "full-contact" co-cultures, whereas a significant decrease was observed for neuron monocultures. Neurite elaboration into a neurite exclusive compartment in a compartmentalized microfluidic device, for both monocultures (no astrocytes) and "restricted" co-cultures (astrocytes touching neurites), decreased with exposure to increasing concentrations of m-DNB, but the average neurite area was higher in co-cultures. By using co-culture systems that more closely approach biological and architectural complexities, and the directionality of exposure found in the brain, this study provides a methodological foundation for unraveling the role of physical contact between astrocytes and neurons in mitigating the toxic effects of chemicals such as m-DNB.
Collapse
Affiliation(s)
- Angela R Dixon
- Toxicology Program, School of Public Health, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Martin A Philbert
- Toxicology Program, School of Public Health, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
14
|
The neurite growth inhibitory effects of soluble TNFα on developing sympathetic neurons are dependent on developmental age. Differentiation 2015; 88:124-30. [PMID: 25582843 DOI: 10.1016/j.diff.2014.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 11/22/2022]
Abstract
During development, the growth of neural processes is regulated by an array of cellular and molecular mechanisms which influence growth rate, direction and branching. Recently, many members of the TNF superfamily have been shown to be key regulators of neurite growth during development. The founder member of this family, TNFα can both promote and inhibit neurite growth depending on the cellular context. Specifically, transmembrane TNFα promotes neurite growth, while soluble TNFα inhibits it. While the growth promoting effects of TNFα are restricted to a defined developmental window of early postnatal development, whether the growth inhibitory effects of soluble TNFα occur throughout development is unknown. In this study we used the extensively studied, well characterised neurons of the superior cervical ganglion to show that the growth inhibitory effects of soluble TNFα are restricted to a specific period of late embryonic and early postnatal development. Furthermore, we show that this growth inhibitory effect of soluble TNFα requires NF-κB signalling at all developmental stages at which soluble TNFα inhibits neurite growth. These findings raise the possibility that increases in the amount of soluble TNFα in vivo, for example as a result of maternal inflammation, could negatively affect neurite growth in developing neurons at specific stages of development.
Collapse
|
15
|
Hegazy HG, Ali EHA, Elgoly AHM. Interplay between pro-inflammatory cytokines and brain oxidative stress biomarkers: evidence of parallels between butyl paraben intoxication and the valproic acid brain physiopathology in autism rat model. Cytokine 2014; 71:173-80. [PMID: 25461396 DOI: 10.1016/j.cyto.2014.10.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/28/2014] [Accepted: 10/28/2014] [Indexed: 01/06/2023]
Abstract
Butyl paraben is a preservative used in food, drugs and cosmetics. Neurotoxic effect was reported recently beside the potential estrogenic activity of parabens. There is controversy as to the potential harmful effects of butyl parabens, which are suspected to contribute to autism and learning disabilities. The purpose of this study was to examine the similarities between paraben intoxication signs in the rat brain and brain markers in an autistic like rat model. This study provides evidence of many parallels between the two, including (1) oxidative stress, (2) decreased reduced glutathione levels and elevated oxidised glutathione, (3) mitochondrial dysfunction, and (4) neuroinflammation and increased pro-inflammatory cytokine levels in the brain (tumour necrosis factor-alpha, interleukin-1-beta, and interleukin-6). (5) Increased protein oxidation reported by a significant increase in 3-nitrotyrosine (3-NT)/tyrosine ratio. (6) A marked disturbance was found in the production of energy carriers (AMP, ATP and AMP/ATP ratio) in comparison with the control. The evidence suggests that paraben may, to some extent, either cause or contribute to the brain physiopathology in ASDs or pathogens that produce the brain pathology observed in the diagnosed rat model of ASD.
Collapse
Affiliation(s)
- Hoda G Hegazy
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Elham H A Ali
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt.
| | - Amany H Mahmoud Elgoly
- Hormone Evaluation Department, National Organization for Drug Control And Research (NODCAR), Giza, Egypt
| |
Collapse
|
16
|
Straley M, Togher K, Nolan A, Kenny L, O'Keeffe G. LPS alters placental inflammatory and endocrine mediators and inhibits fetal neurite growth in affected offspring during late gestation. Placenta 2014; 35:533-8. [DOI: 10.1016/j.placenta.2014.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/30/2014] [Accepted: 06/03/2014] [Indexed: 12/27/2022]
|
17
|
Class-IIa Histone Deacetylase Inhibition Promotes the Growth of Neural Processes and Protects Them Against Neurotoxic Insult. Mol Neurobiol 2014; 51:1432-42. [DOI: 10.1007/s12035-014-8820-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/15/2014] [Indexed: 11/25/2022]
|
18
|
Castillo-Morales A, Monzón-Sandoval J, Urrutia AO, Gutiérrez H. Increased brain size in mammals is associated with size variations in gene families with cell signalling, chemotaxis and immune-related functions. Proc Biol Sci 2013; 281:20132428. [PMID: 24285197 PMCID: PMC3866400 DOI: 10.1098/rspb.2013.2428] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genomic determinants underlying increased encephalization across mammalian lineages are unknown. Whole genome comparisons have revealed large and frequent changes in the size of gene families, and it has been proposed that these variations could play a major role in shaping morphological and physiological differences among species. Using a genome-wide comparative approach, we examined changes in gene family size (GFS) and degree of encephalization in 39 fully sequenced mammalian species and found a significant over-representation of GFS variations in line with increased encephalization in mammals. We found that this relationship is not accounted for by known correlates of brain size such as maximum lifespan or body size and is not explained by phylogenetic relatedness. Genes involved in chemotaxis, immune regulation and cell signalling-related functions are significantly over-represented among those gene families most highly correlated with encephalization. Genes within these families are prominently expressed in the human brain, particularly the cortex, and organized in co-expression modules that display distinct temporal patterns of expression in the developing cortex. Our results suggest that changes in GFS associated with encephalization represent an evolutionary response to the specific functional requirements underlying increased brain size in mammals.
Collapse
Affiliation(s)
| | | | - Araxi O. Urrutia
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
- e-mail:
| | - Humberto Gutiérrez
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK
- e-mail:
| |
Collapse
|
19
|
Mitogen-activated protein kinase phosphatase (MKP)-1 as a neuroprotective agent: promotion of the morphological development of midbrain dopaminergic neurons. Neuromolecular Med 2013; 15:435-46. [PMID: 23584919 DOI: 10.1007/s12017-013-8230-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/05/2013] [Indexed: 12/24/2022]
Abstract
A greater understanding of the mechanisms that promote the survival and growth of dopaminergic neurons is essential for the advancement of cell replacement therapies for Parkinson's disease (PD). Evidence supports a role for the mitogen-activated protein kinase p38 in the demise of dopaminergic neurons, while mitogen-activated protein kinase phosphatase-1 (MKP-1), which negatively regulates p38 activity, has not yet been investigated in this context. Here, we show that MKP-1 is expressed in dopaminergic neurons cultured from E14 rat ventral mesencephalon (VM). When dopaminergic neurons were transfected to overexpress MKP-1, they displayed a more complex morphology than their control counterparts in vitro. Specifically, MKP-1-transfection induced significant increases in neurite length and branching with a maximum increase observed in primary branches. We demonstrate that inhibition of dopaminergic neurite growth induced by treatment of rat VM neurons with the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA) in vitro is mediated by p38 and is concomitant with a significant and selective decrease in MKP-1 expression in these neurons. We further show that overexpression of MKP-1 in dopaminergic neurons contributes to neuroprotection against the effects of 6-OHDA. Collectively, we report that MKP-1 can promote the growth and elaboration of dopaminergic neuronal processes and can help protect them from the neurotoxic effects of 6-OHDA. Thus, we propose that strategies aimed at augmenting MKP-1 expression or activity may be beneficial in protecting dopaminergic neurons and may provide potential therapeutic approaches for PD.
Collapse
|
20
|
McKelvey L, Gutierrez H, Nocentini G, Crampton SJ, Davies AM, Riccardi CR, O'keeffe GW. The intracellular portion of GITR enhances NGF-promoted neurite growth through an inverse modulation of Erk and NF-κB signalling. Biol Open 2012; 1:1016-23. [PMID: 23213379 PMCID: PMC3507174 DOI: 10.1242/bio.20121024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/05/2012] [Indexed: 01/01/2023] Open
Abstract
NF-κB transcription factors play a key role in regulating the growth of neural processes in the developing PNS. Although several secreted proteins have been shown to activate NF-κB to inhibit the growth of developing sympathetic neurons, it is unknown how the endogenous level of NF-κB activity present in these neurons is restricted to allow neurite growth to occur during their normal development. Here we show that activation of the glucocorticoid-induced tumour necrosis factor receptor (GITR) inhibits NF-κB activation while promoting the activation of Erk in developing sympathetic neurons. Conversely, inhibition of GITR results in an increase in NF-κB dependent gene transcription and a decrease in Erk activation leading to a reduction in neurite growth. These findings show that GITR signalling can regulate the extent of sympathetic neurite growth through an inverse modulation of Erk and NF-κB signalling, which provides an optimal environment for NGF-promoted growth.
Collapse
Affiliation(s)
- Laura McKelvey
- Department of Anatomy and Neuroscience, Biosciences Institute, University College Cork , Cork , Ireland
| | | | | | | | | | | | | |
Collapse
|
21
|
Crampton SJ, Collins LM, Toulouse A, Nolan YM, O'Keeffe GW. Exposure of foetal neural progenitor cells to IL-1β impairs their proliferation and alters their differentiation - a role for maternal inflammation? J Neurochem 2012; 120:964-73. [PMID: 22192001 DOI: 10.1111/j.1471-4159.2011.07634.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During pregnancy, activation of the maternal immune system results in inflammation in the foetal nervous system. The causative agents are pro-inflammatory cytokines like interleukin-1β (IL-1β), produced by the foetus. In this study, we examine the effect of IL-1β on the proliferation and differentiation of neural progenitor cells (NPCs) to better understand its potential effects on the developing brain. We find that the IL-1β receptor (IL-1R1) is expressed in the ventral mesencephalon of the developing brain. Furthermore, IL-1R1 is expressed on Nestin-positive, Sox-2-positive NPCs. IL-1β treatment reduced the numbers of proliferating NPCs, an effect prevented by the IL-1R1 receptor antagonist. LDH and MTT assays, and western blot analysis for cleaved caspase 3 and poly(ADP-ribose) polymerase, confirmed that this was not due to an increase in cell death but rather an induction of differentiation. To further study the effects of IL-1β on cell fate determination, we differentiated NPCs in the presence and absence of IL-1β. Il-1β promoted gliogenesis and inhibited neurogenesis, an effect that required p38-MAPK kinase signalling. In summary, these data show that exposure of NPCs to IL-1β affects their development. This necessitates an examination of the consequences that maternal immune system activation during pregnancy has on the cellular architecture of the developing brain.
Collapse
Affiliation(s)
- Sean J Crampton
- Department of Anatomy and Neuroscience, Biosciences Institute, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|