1
|
Karpova A, Hiesinger PR, Kuijpers M, Albrecht A, Kirstein J, Andres-Alonso M, Biermeier A, Eickholt BJ, Mikhaylova M, Maglione M, Montenegro-Venegas C, Sigrist SJ, Gundelfinger ED, Haucke V, Kreutz MR. Neuronal autophagy in the control of synapse function. Neuron 2025; 113:974-990. [PMID: 40010347 DOI: 10.1016/j.neuron.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/24/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025]
Abstract
Neurons are long-lived postmitotic cells that capitalize on autophagy to remove toxic or defective proteins and organelles to maintain neurotransmission and the integrity of their functional proteome. Mutations in autophagy genes cause congenital diseases, sharing prominent brain dysfunctions including epilepsy, intellectual disability, and neurodegeneration. Ablation of core autophagy genes in neurons or glia disrupts normal behavior, leading to motor deficits, memory impairment, altered sociability, and epilepsy, which are associated with defects in synapse maturation, plasticity, and neurotransmitter release. In spite of the importance of autophagy for brain physiology, the substrates of neuronal autophagy and the mechanisms by which defects in autophagy affect synaptic function in health and disease remain controversial. Here, we summarize the current state of knowledge on neuronal autophagy, address the existing controversies and inconsistencies in the field, and provide a roadmap for future research on the role of autophagy in the control of synaptic function.
Collapse
Affiliation(s)
- Anna Karpova
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - P Robin Hiesinger
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Marijn Kuijpers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Anne Albrecht
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, 39120 Magdeburg, Germany; German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany
| | - Janine Kirstein
- Leibniz Institute on Aging-Fritz-Lipmann-Institute, 07754 Jena, Germany; Friedrich-Schiller-Universität, Institute for Biochemistry & Biophysics, 07745 Jena, Germany
| | - Maria Andres-Alonso
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Leibniz Group "Dendritic Organelles and Synaptic Function", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | | | - Britta J Eickholt
- Institute of Molecular Biology and Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Marina Mikhaylova
- Institute of Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Marta Maglione
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Carolina Montenegro-Venegas
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Stephan J Sigrist
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Institute of Molecular Biology and Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Eckart D Gundelfinger
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, 39120 Magdeburg, Germany; Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Volker Haucke
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institute of Molecular Biology and Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Michael R Kreutz
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, 39120 Magdeburg, Germany; Leibniz Group "Dendritic Organelles and Synaptic Function", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
2
|
Paget-Blanc V, Pronot M, Pfeffer ME, Angelo MF, Herzog E. Purification of Afference-Specific Synaptosome Populations Using Fluorescence-Activated Synaptosome Sorting. Methods Mol Biol 2025; 2910:87-104. [PMID: 40220095 DOI: 10.1007/978-1-0716-4446-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
The central nervous system contains a complex intermingled network of neuronal, glial, and vascular cells, and for several decades, neurobiologists have used subcellular fractionation methods to analyze the molecular structure and functional features of the different cell populations. Biochemists have optimized fractionation protocols that enrich specific compartments such as synapses (called "synaptosomes") and synaptic vesicles to reduce this complexity. However, these approaches suffered from a lack of specificity and purity, which is why we previously extended the conventional synaptosome preparation to purify fluorescent synaptosomes from VGLUT1venus knock-in mice on a cell sorter. We adapted our previous protocol to sort from single neuronal projections and small target regions of the brain as we did in the present example by labeling dopaminergic projections to the striatum. We proved that our newest method allows a steep enrichment in fluorescent dopaminergic synaptosomes containing presynaptic varicosities and associated postsynaptic elements and a substantial depletion in glial contaminants. Here we propose a detailed procedure for implementing projection-specific fluorescence-activated synaptosome sorting.
Collapse
Affiliation(s)
- Vincent Paget-Blanc
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Marie Pronot
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Marlene E Pfeffer
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Maria Florencia Angelo
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Etienne Herzog
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
| |
Collapse
|
3
|
Cepeda AP, Ninov M, Neef J, Parfentev I, Kusch K, Reisinger E, Jahn R, Moser T, Urlaub H. Proteomic Analysis Reveals the Composition of Glutamatergic Organelles of Auditory Inner Hair Cells. Mol Cell Proteomics 2024; 23:100704. [PMID: 38128648 PMCID: PMC10832297 DOI: 10.1016/j.mcpro.2023.100704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/08/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
In the ear, inner hair cells (IHCs) employ sophisticated glutamatergic ribbon synapses with afferent neurons to transmit auditory information to the brain. The presynaptic machinery responsible for neurotransmitter release in IHC synapses includes proteins such as the multi-C2-domain protein otoferlin and the vesicular glutamate transporter 3 (VGluT3). Yet, much of this likely unique molecular machinery remains to be deciphered. The scarcity of material has so far hampered biochemical studies which require large amounts of purified samples. We developed a subcellular fractionation workflow combined with immunoisolation of VGluT3-containing membrane vesicles, allowing for the enrichment of glutamatergic organelles that are likely dominated by synaptic vesicles (SVs) of IHCs. We have characterized their protein composition in mice before and after hearing onset using mass spectrometry and confocal imaging and provide a fully annotated proteome with hitherto unidentified proteins. Despite the prevalence of IHC marker proteins across IHC maturation, the profiles of trafficking proteins differed markedly before and after hearing onset. Among the proteins enriched after hearing onset were VAMP-7, syntaxin-7, syntaxin-8, syntaxin-12/13, SCAMP1, V-ATPase, SV2, and PKCα. Our study provides an inventory of the machinery associated with synaptic vesicle-mediated trafficking and presynaptic activity at IHC ribbon synapses and serves as a foundation for future functional studies.
Collapse
Affiliation(s)
- Andreia P Cepeda
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Momchil Ninov
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Jakob Neef
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience & Synaptic Nanophysiology Group Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Iwan Parfentev
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kathrin Kusch
- Functional Auditory Genomics Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Ellen Reisinger
- Gene Therapy for Hearing Impairment and Deafness, Department for Otolaryngology, Head & Neck Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience & Synaptic Nanophysiology Group Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
4
|
Parisi MJ, Aimino MA, Mosca TJ. A conditional strategy for cell-type-specific labeling of endogenous excitatory synapses in Drosophila. CELL REPORTS METHODS 2023; 3:100477. [PMID: 37323572 PMCID: PMC10261928 DOI: 10.1016/j.crmeth.2023.100477] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/28/2023] [Accepted: 04/19/2023] [Indexed: 06/17/2023]
Abstract
Chemical neurotransmission occurs at specialized contacts where neurotransmitter release machinery apposes neurotransmitter receptors to underlie circuit function. A series of complex events underlies pre- and postsynaptic protein recruitment to neuronal connections. To better study synaptic development in individual neurons, we need cell-type-specific strategies to visualize endogenous synaptic proteins. Although presynaptic strategies exist, postsynaptic proteins remain less studied because of a paucity of cell-type-specific reagents. To study excitatory postsynapses with cell-type specificity, we engineered dlg1[4K], a conditionally labeled marker of Drosophila excitatory postsynaptic densities. With binary expression systems, dlg1[4K] labels central and peripheral postsynapses in larvae and adults. Using dlg1[4K], we find that distinct rules govern postsynaptic organization in adult neurons, multiple binary expression systems can concurrently label pre- and postsynapse in a cell-type-specific manner, and neuronal DLG1 can sometimes localize presynaptically. These results validate our strategy for conditional postsynaptic labeling and demonstrate principles of synaptic organization.
Collapse
Affiliation(s)
- Michael J. Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Michael A. Aimino
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Timothy J. Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| |
Collapse
|
5
|
Lum JS, Berg T, Chisholm CG, Vendruscolo M, Yerbury JJ. Vulnerability of the spinal motor neuron presynaptic terminal sub-proteome in ALS. Neurosci Lett 2022; 778:136614. [PMID: 35367314 DOI: 10.1016/j.neulet.2022.136614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder, characterised by the loss of motor neurons and subsequent paralysis. Evidence indicates that synaptic alterations are associated with the early stages of ALS pathogenesis. A hallmark of ALS postmortem tissue is the presence of proteinaceous inclusions, indicative of disturbed protein homeostasis, particularly in spinal cord motor neurons. We recently demonstrated that spinal cord motor neurons contain a supersaturated proteome, as they possess proteins at concentrations that exceed their solubility limits, resulting in a metastable proteome conducive to protein misfolding and aggregation. Recent evidence indicates metastable sub-proteomes within neuronal compartments, such as the synapse, may be particularly vulnerable and underlie their involvement in the initial stages of neurodegenerative diseases. To investigate if the motor neuron presynaptic terminal possesses a metastable sub-proteome, we used human and mouse spinal cord motor neuron expression data to calculate supersaturation scores. Here, we found that both the human and mouse presynaptic terminal sub-proteomes have higher supersaturation scores than the entire motor neuron proteome. In addition, we observed that proteins down-regulated in ALS were over-represented in the synapse. These results provide support for the notion that the metastability of the sub-proteome within the motor neuron presynaptic terminal may be particularly susceptible to protein homeostasis disturbances in ALS, and may contribute to explaining the observed synaptic dysfunction in ALS.
Collapse
Affiliation(s)
- Jeremy S Lum
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Tracey Berg
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Christen G Chisholm
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
6
|
Gundelfinger ED, Karpova A, Pielot R, Garner CC, Kreutz MR. Organization of Presynaptic Autophagy-Related Processes. Front Synaptic Neurosci 2022; 14:829354. [PMID: 35368245 PMCID: PMC8968026 DOI: 10.3389/fnsyn.2022.829354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Brain synapses pose special challenges on the quality control of their protein machineries as they are far away from the neuronal soma, display a high potential for plastic adaptation and have a high energy demand to fulfill their physiological tasks. This applies in particular to the presynaptic part where neurotransmitter is released from synaptic vesicles, which in turn have to be recycled and refilled in a complex membrane trafficking cycle. Pathways to remove outdated and damaged proteins include the ubiquitin-proteasome system acting in the cytoplasm as well as membrane-associated endolysosomal and the autophagy systems. Here we focus on the latter systems and review what is known about the spatial organization of autophagy and endolysomal processes within the presynapse. We provide an inventory of which components of these degradative systems were found to be present in presynaptic boutons and where they might be anchored to the presynaptic apparatus. We identify three presynaptic structures reported to interact with known constituents of membrane-based protein-degradation pathways and therefore may serve as docking stations. These are (i) scaffolding proteins of the cytomatrix at the active zone, such as Bassoon or Clarinet, (ii) the endocytic machinery localized mainly at the peri-active zone, and (iii) synaptic vesicles. Finally, we sketch scenarios, how presynaptic autophagic cargos are tagged and recruited and which cellular mechanisms may govern membrane-associated protein turnover in the presynapse.
Collapse
Affiliation(s)
- Eckart D. Gundelfinger
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute of Pharmacology and Toxicology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Anna Karpova
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Rainer Pielot
- Institute of Pharmacology and Toxicology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Craig C. Garner
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Michael R. Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Center for Molecular Neurobiology (ZMNH), University Hospital Hamburg-Eppendorf, Hamburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| |
Collapse
|
7
|
O'Neil SD, Rácz B, Brown WE, Gao Y, Soderblom EJ, Yasuda R, Soderling SH. Action potential-coupled Rho GTPase signaling drives presynaptic plasticity. eLife 2021; 10:63756. [PMID: 34269176 PMCID: PMC8285108 DOI: 10.7554/elife.63756] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 07/06/2021] [Indexed: 12/30/2022] Open
Abstract
In contrast to their postsynaptic counterparts, the contributions of activity-dependent cytoskeletal signaling to presynaptic plasticity remain controversial and poorly understood. To identify and evaluate these signaling pathways, we conducted a proteomic analysis of the presynaptic cytomatrix using in vivo biotin identification (iBioID). The resultant proteome was heavily enriched for actin cytoskeleton regulators, including Rac1, a Rho GTPase that activates the Arp2/3 complex to nucleate branched actin filaments. Strikingly, we find Rac1 and Arp2/3 are closely associated with synaptic vesicle membranes in adult mice. Using three independent approaches to alter presynaptic Rac1 activity (genetic knockout, spatially restricted inhibition, and temporal optogenetic manipulation), we discover that this pathway negatively regulates synaptic vesicle replenishment at both excitatory and inhibitory synapses, bidirectionally sculpting short-term synaptic depression. Finally, we use two-photon fluorescence lifetime imaging to show that presynaptic Rac1 activation is coupled to action potentials by voltage-gated calcium influx. Thus, this study uncovers a previously unrecognized mechanism of actin-regulated short-term presynaptic plasticity that is conserved across excitatory and inhibitory terminals. It also provides a new proteomic framework for better understanding presynaptic physiology, along with a blueprint of experimental strategies to isolate the presynaptic effects of ubiquitously expressed proteins.
Collapse
Affiliation(s)
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Walter Evan Brown
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| | - Yudong Gao
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| | - Erik J Soderblom
- Department of Cell Biology, Duke University Medical Center, Durham, United States.,Proteomics and Metabolomics Shared Resource and Center for Genomic and Computational Biology, Duke University Medical Center, Durham, United States
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | - Scott H Soderling
- Department of Neurobiology, Duke University Medical Center, Durham, United States.,Department of Cell Biology, Duke University Medical Center, Durham, United States
| |
Collapse
|
8
|
A unified resource and configurable model of the synapse proteome and its role in disease. Sci Rep 2021; 11:9967. [PMID: 33976238 PMCID: PMC8113277 DOI: 10.1038/s41598-021-88945-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
Genes encoding synaptic proteins are highly associated with neuronal disorders many of which show clinical co-morbidity. We integrated 58 published synaptic proteomic datasets that describe over 8000 proteins and combined them with direct protein-protein interactions and functional metadata to build a network resource that reveals the shared and unique protein components that underpin multiple disorders. All the data are provided in a flexible and accessible format to encourage custom use.
Collapse
|
9
|
Cuveillier C, Boulan B, Ravanello C, Denarier E, Deloulme JC, Gory-Fauré S, Delphin C, Bosc C, Arnal I, Andrieux A. Beyond Neuronal Microtubule Stabilization: MAP6 and CRMPS, Two Converging Stories. Front Mol Neurosci 2021; 14:665693. [PMID: 34025352 PMCID: PMC8131560 DOI: 10.3389/fnmol.2021.665693] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
The development and function of the central nervous system rely on the microtubule (MT) and actin cytoskeletons and their respective effectors. Although the structural role of the cytoskeleton has long been acknowledged in neuronal morphology and activity, it was recently recognized to play the role of a signaling platform. Following this recognition, research into Microtubule Associated Proteins (MAPs) diversified. Indeed, historically, structural MAPs—including MAP1B, MAP2, Tau, and MAP6 (also known as STOP);—were identified and described as MT-binding and -stabilizing proteins. Extensive data obtained over the last 20 years indicated that these structural MAPs could also contribute to a variety of other molecular roles. Among multi-role MAPs, MAP6 provides a striking example illustrating the diverse molecular and cellular properties of MAPs and showing how their functional versatility contributes to the central nervous system. In this review, in addition to MAP6’s effect on microtubules, we describe its impact on the actin cytoskeleton, on neuroreceptor homeostasis, and its involvement in signaling pathways governing neuron development and maturation. We also discuss its roles in synaptic plasticity, brain connectivity, and cognitive abilities, as well as the potential relationships between the integrated brain functions of MAP6 and its molecular activities. In parallel, the Collapsin Response Mediator Proteins (CRMPs) are presented as examples of how other proteins, not initially identified as MAPs, fall into the broader MAP family. These proteins bind MTs as well as exhibiting molecular and cellular properties very similar to MAP6. Finally, we briefly summarize the multiple similarities between other classical structural MAPs and MAP6 or CRMPs.In summary, this review revisits the molecular properties and the cellular and neuronal roles of the classical MAPs, broadening our definition of what constitutes a MAP.
Collapse
|
10
|
Carvalhais LG, Martinho VC, Ferreiro E, Pinheiro PS. Unraveling the Nanoscopic Organization and Function of Central Mammalian Presynapses With Super-Resolution Microscopy. Front Neurosci 2021; 14:578409. [PMID: 33584169 PMCID: PMC7874199 DOI: 10.3389/fnins.2020.578409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022] Open
Abstract
The complex, nanoscopic scale of neuronal function, taking place at dendritic spines, axon terminals, and other minuscule structures, cannot be adequately resolved using standard, diffraction-limited imaging techniques. The last couple of decades saw a rapid evolution of imaging methods that overcome the diffraction limit imposed by Abbe's principle. These techniques, including structured illumination microscopy (SIM), stimulated emission depletion (STED), photo-activated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM), among others, have revolutionized our understanding of synapse biology. By exploiting the stochastic nature of fluorophore light/dark states or non-linearities in the interaction of fluorophores with light, by using modified illumination strategies that limit the excitation area, these methods can achieve spatial resolutions down to just a few tens of nm or less. Here, we review how these advanced imaging techniques have contributed to unprecedented insight into the nanoscopic organization and function of mammalian neuronal presynapses, revealing new organizational principles or lending support to existing views, while raising many important new questions. We further discuss recent technical refinements and newly developed tools that will continue to expand our ability to delve deeper into how synaptic function is orchestrated at the nanoscopic level.
Collapse
Affiliation(s)
- Lia G Carvalhais
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Vera C Martinho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Elisabete Ferreiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Paulo S Pinheiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
Merino P, Diaz A, Torre ER, Yepes M. Urokinase-type plasminogen activator (uPA) regulates the expression and function of growth-associated protein 43 (GAP-43) in the synapse. J Biol Chem 2019; 295:619-630. [PMID: 31819012 DOI: 10.1074/jbc.ra119.010644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/19/2019] [Indexed: 11/06/2022] Open
Abstract
Growth-associated protein 43 (GAP-43) plays a central role in the formation of presynaptic terminals, synaptic plasticity, and axonal growth and regeneration. During development, GAP-43 is found in axonal extensions of most neurons. In contrast, in the mature brain, its expression is restricted to a few presynaptic terminals and scattered axonal growth cones. Urokinase-type plasminogen activator (uPA) is a serine proteinase that, upon binding to its receptor (uPAR), catalyzes the conversion of plasminogen into plasmin and activates signaling pathways that promote cell migration, proliferation, and survival. In the developing brain, uPA induces neuritogenesis and neuronal migration. In contrast, the expression and function of uPA in the mature brain are poorly understood. However, recent evidence reveals that different forms of injury induce release of uPA and expression of uPAR in neurons and that uPA/uPAR binding triggers axonal growth and synapse formation. Here we show that binding of uPA to uPAR induces not only the mobilization of GAP-43 from the axonal shaft to the presynaptic terminal but also its activation in the axonal bouton by PKC-induced calcium-dependent phosphorylation at Ser-41 (pGAP-43). We found that this effect requires open presynaptic N-methyl-d-aspartate receptors but not plasmin generation. Furthermore, our work reveals that, following its activation by uPA/uPAR binding, pGAP-43 colocalizes with presynaptic vesicles and triggers their mobilization to the synaptic release site. Together, these data reveal a novel role of uPA as an activator of the synaptic vesicle cycle in cerebral cortical neurons via its ability to induce presynaptic recruitment and activation of GAP-43.
Collapse
Affiliation(s)
- Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329-4208
| | - Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329-4208
| | - Enrique R Torre
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329-4208
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329-4208; Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322-0001; Department of Neurology, Veterans Affairs Medical Center, Atlanta, Georgia 30033-4004.
| |
Collapse
|
12
|
Diaz A, Merino P, Manrique LG, Cheng L, Yepes M. Urokinase-type plasminogen activator (uPA) protects the tripartite synapse in the ischemic brain via ezrin-mediated formation of peripheral astrocytic processes. J Cereb Blood Flow Metab 2019; 39:2157-2171. [PMID: 29890880 PMCID: PMC6827113 DOI: 10.1177/0271678x18783653] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cerebral ischemia has a harmful effect on the synapse associated with neurological impairment. The "tripartite synapse" is assembled by the pre- and postsynaptic terminals, embraced by astrocytic elongations known as peripheral astrocytic processes (PAPs). Ischemic stroke induces the detachment of PAPs from the synapse, leading to synaptic dysfunction and neuronal death. Ezrin is a membrane-associated protein, required for the formation of PAPs, that links the cell surface to the actin cytoskeleton. Urokinase-type plasminogen activator (uPA) is a serine proteinase that upon binding to its receptor (uPAR) promotes neurite growth during development. In the adult brain, neurons release uPA and astrocytes recruit uPAR to the plasma membrane during the recovery phase from an ischemic stroke, and uPA/uPAR binding promotes functional improvement following an ischemic injury. We found that uPA induces the synthesis of ezrin in astrocytes, with the subsequent formation of PAPs that enter in direct contact with the synapse. Furthermore, either the release of neuronal uPA or intravenous treatment with recombinant uPA (ruPA) induces the formation of PAPs in the ischemic brain, and the interaction of these PAPs with the pre- and postsynaptic terminals protects the integrity of the "tripartite synapse" from the harmful effects of the ischemic injury.
Collapse
Affiliation(s)
- Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,Department of Neurology & Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,Department of Neurology & Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Luis G Manrique
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,Department of Neurology & Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Lihong Cheng
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,Department of Neurology & Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,Department of Neurology & Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.,Department of Neurology, Veterans Affairs Medical Center; Atlanta, GA, USA
| |
Collapse
|
13
|
Temporal dynamics of miRNAs in human DLPFC and its association with miRNA dysregulation in schizophrenia. Transl Psychiatry 2019; 9:196. [PMID: 31431609 PMCID: PMC6702224 DOI: 10.1038/s41398-019-0538-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/13/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
Brain development is dependent on programmed gene expression, which is both genetically and epigenetically regulated. Post-transcriptional regulation of gene expression by microRNAs (miRNAs) is essential for brain development. As abnormal brain development is hypothesized to be associated with schizophrenia, miRNAs are an intriguing target for this disorder. The aims of this study were to determine the temporal dynamics of miRNA expression in the human dorsolateral prefrontal cortex (DLPFC), and the relationship between miRNA's temporal expression pattern and dysregulation in schizophrenia. This study used next-generation sequencing to characterize the temporal dynamics of miRNA expression in the DLPFC of 109 normal subjects (second trimester-74 years of age) and miRNA expression changes in 34 schizophrenia patients. Unlike mRNAs, the majority of which exhibits a wave of change in fetuses, most miRNAs are preferentially expressed during a certain period before puberty. It is noted that in schizophrenia patients, miRNAs normally enriched in infants tend to be upregulated, while those normally enriched in prepuberty tend to be downregulated, and the targets of these miRNAs are enriched for genes encoding synaptic proteins and those associated with schizophrenia. In addition, miR-936 and miR-3162 were found to be increased in the DLPFC of patients with schizophrenia. These findings reveal the temporal dynamics of miRNAs in the human DLPFC, implicate the importance of miRNAs in DLPFC development, and suggest a possible link between schizophrenia and dysregulation of miRNAs enriched in infancy and prepuberty.
Collapse
|
14
|
Chabbert D, Caubit X, Roubertoux PL, Carlier M, Habermann B, Jacq B, Salin P, Metwaly M, Frahm C, Fatmi A, Garratt AN, Severac D, Dubois E, Kerkerian-Le Goff L, Fasano L, Gubellini P. Postnatal Tshz3 Deletion Drives Altered Corticostriatal Function and Autism Spectrum Disorder-like Behavior. Biol Psychiatry 2019; 86:274-285. [PMID: 31060802 DOI: 10.1016/j.biopsych.2019.03.974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Heterozygous deletion of the TSHZ3 gene, encoding for the teashirt zinc-finger homeobox family member 3 (TSHZ3) transcription factor that is highly expressed in cortical projection neurons (CPNs), has been linked to an autism spectrum disorder (ASD) syndrome. Similarly, mice with Tshz3 haploinsufficiency show ASD-like behavior, paralleled by molecular changes in CPNs and corticostriatal synaptic dysfunctions. Here, we aimed at gaining more insight into "when" and "where" TSHZ3 is required for the proper development of the brain, and its deficiency crucial for developing this ASD syndrome. METHODS We generated and characterized a novel mouse model of conditional Tshz3 deletion, obtained by crossing Tshz3flox/flox with CaMKIIalpha-Cre mice, in which Tshz3 is deleted in CPNs from postnatal day 2 to 3 onward. We characterized these mice by a multilevel approach combining genetics, cell biology, electrophysiology, behavioral testing, and bioinformatics. RESULTS These conditional Tshz3 knockout mice exhibit altered cortical expression of more than 1000 genes, ∼50% of which have their human orthologue involved in ASD, in particular genes encoding for glutamatergic synapse components. Consistently, we detected electrophysiological and synaptic changes in CPNs and impaired corticostriatal transmission and plasticity. Furthermore, these mice showed strong ASD-like behavioral deficits. CONCLUSIONS Our study reveals a crucial postnatal role of TSHZ3 in the development and functioning of the corticostriatal circuitry and provides evidence that dysfunction in these circuits might be determinant for ASD pathogenesis. Our conditional Tshz3 knockout mouse constitutes a novel ASD model, opening the possibility for an early postnatal therapeutic window for the syndrome linked to TSHZ3 haploinsufficiency.
Collapse
Affiliation(s)
| | | | | | | | - Bianca Habermann
- Aix Marseille Univ, CNRS, IBDM, Marseille, France; Aix Marseille Univ, INSERM, TAGC, Marseille, France
| | - Bernard Jacq
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Pascal Salin
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | | | | - Ahmed Fatmi
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Alistair N Garratt
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité University Hospital Berlin, Berlin, Germany
| | - Dany Severac
- Univ Montpellier, CNRS, INSERM, MGX, Montpellier, France
| | - Emeric Dubois
- Univ Montpellier, CNRS, INSERM, MGX, Montpellier, France
| | | | | | | |
Collapse
|
15
|
Taoufik E, Kouroupi G, Zygogianni O, Matsas R. Synaptic dysfunction in neurodegenerative and neurodevelopmental diseases: an overview of induced pluripotent stem-cell-based disease models. Open Biol 2019; 8:rsob.180138. [PMID: 30185603 PMCID: PMC6170506 DOI: 10.1098/rsob.180138] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
Synaptic dysfunction in CNS disorders is the outcome of perturbations in physiological synapse structure and function, and can be either the cause or the consequence in specific pathologies. Accumulating data in the field of neuropsychiatric disorders, including autism spectrum disorders, schizophrenia and bipolar disorder, point to a neurodevelopmental origin of these pathologies. Due to a relatively early onset of behavioural and cognitive symptoms, it is generally acknowledged that mental illness initiates at the synapse level. On the other hand, synaptic dysfunction has been considered as an endpoint incident in neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's, mainly due to the considerably later onset of clinical symptoms and progressive appearance of cognitive deficits. This dichotomy has recently been challenged, particularly since the discovery of cell reprogramming technologies and the generation of induced pluripotent stem cells from patient somatic cells. The creation of 'disease-in-a-dish' models for multiple CNS pathologies has revealed unexpected commonalities in the molecular and cellular mechanisms operating in both developmental and degenerative conditions, most of which meet at the synapse level. In this review we discuss synaptic dysfunction in prototype neurodevelopmental and neurodegenerative diseases, emphasizing overlapping features of synaptopathy that have been suggested by studies using induced pluripotent stem-cell-based systems. These valuable disease models have highlighted a potential neurodevelopmental component in classical neurodegenerative diseases that is worth pursuing and investigating further. Moving from demonstration of correlation to understanding mechanistic causality forms the basis for developing novel therapeutics.
Collapse
Affiliation(s)
- Era Taoufik
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| | - Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| | - Ourania Zygogianni
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| |
Collapse
|
16
|
Lleó A, Núñez-Llaves R, Alcolea D, Chiva C, Balateu-Paños D, Colom-Cadena M, Gomez-Giro G, Muñoz L, Querol-Vilaseca M, Pegueroles J, Rami L, Lladó A, Molinuevo JL, Tainta M, Clarimón J, Spires-Jones T, Blesa R, Fortea J, Martínez-Lage P, Sánchez-Valle R, Sabidó E, Bayés À, Belbin O. Changes in Synaptic Proteins Precede Neurodegeneration Markers in Preclinical Alzheimer's Disease Cerebrospinal Fluid. Mol Cell Proteomics 2019; 18:546-560. [PMID: 30606734 PMCID: PMC6398205 DOI: 10.1074/mcp.ra118.001290] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 01/08/2023] Open
Abstract
A biomarker of synapse loss, an early event in Alzheimer's disease (AD) pathophysiology that precedes neuronal death and symptom onset, would be a much-needed prognostic biomarker. With direct access to the brain interstitial fluid, the cerebrospinal fluid (CSF) is a potential source of synapse-derived proteins. In this study, we aimed to identify and validate novel CSF biomarkers of synapse loss in AD. Discovery: Combining shotgun proteomics of the CSF with an exhaustive search of the literature and public databases, we identified 251 synaptic proteins, from which we selected 22 for further study. Verification: Twelve proteins were discarded because of poor detection by Selected Reaction Monitoring (SRM). We confirmed the specific expression of 9 of the remaining proteins (Calsynytenin-1, GluR2, GluR4, Neurexin-2A, Neurexin-3A, Neuroligin-2, Syntaxin-1B, Thy-1, Vamp-2) at the human synapse using Array Tomography microscopy and biochemical fractionation methods. Exploration: Using SRM, we monitored these 9 synaptic proteins (20 peptides) in a cohort of CSF from cognitively normal controls and subjects in the pre-clinical and clinical AD stages (n = 80). Compared with controls, peptides from 8 proteins were elevated 1.3 to 1.6-fold (p < 0.04) in prodromal AD patients. Validation: Elevated levels of a GluR4 peptide at the prodromal stage were replicated (1.3-fold, p = 0.04) in an independent cohort (n = 60). Moreover, 7 proteins were reduced at preclinical stage 1 (0.6 to 0.8-fold, p < 0.04), a finding that was replicated (0.7 to 0.8-fold, p < 0.05) for 6 proteins in a third cohort (n = 38). In a cross-cohort meta-analysis, 6 synaptic proteins (Calsyntenin-1, GluR4, Neurexin-2A, Neurexin-3A, Syntaxin-1B and Thy-1) were reduced 0.8-fold (p < 0.05) in preclinical AD, changes that precede clinical symptoms and CSF markers of neurodegeneration. Therefore, these proteins could have clinical value for assessing disease progression, especially in preclinical stages of AD.
Collapse
Affiliation(s)
- Alberto Lleó
- From the ‡Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Raúl Núñez-Llaves
- §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- ¶Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025Barcelona, Spain
| | - Daniel Alcolea
- From the ‡Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Cristina Chiva
- ‖Proteomics Unit, Center for Genomics Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona
- **University Pompeu Fabra, 08003 Barcelona
| | | | - Martí Colom-Cadena
- §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- ¶Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025Barcelona, Spain
| | - Gemma Gomez-Giro
- ¶Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025Barcelona, Spain
| | - Laia Muñoz
- §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- ¶Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025Barcelona, Spain
| | - Marta Querol-Vilaseca
- §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- ¶Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025Barcelona, Spain
| | - Jordi Pegueroles
- §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- ¶Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025Barcelona, Spain
| | - Lorena Rami
- ‡‡Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic-Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08015 Barcelona, Spain
| | - Albert Lladó
- ‡‡Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic-Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08015 Barcelona, Spain
| | - José L Molinuevo
- ‡‡Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic-Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08015 Barcelona, Spain
| | - Mikel Tainta
- §§Department of Neurology, Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, 20009 San Sebastian, Spain
- ¶¶Servicio de Neurologia, Organización Sanitaria Integrada Goierri-Alto Urola, Osakidetza, Zumárraga, España
| | - Jordi Clarimón
- §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- ¶Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025Barcelona, Spain
| | - Tara Spires-Jones
- ‖‖Centre for Discovery Brain Sciences and UK Dementia Research Institute, University of Edinburgh EH8 9JZ, UK
| | - Rafael Blesa
- From the ‡Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Juan Fortea
- From the ‡Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Pablo Martínez-Lage
- §§Department of Neurology, Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, 20009 San Sebastian, Spain
| | - Raquel Sánchez-Valle
- ‡‡Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic-Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08015 Barcelona, Spain
| | - Eduard Sabidó
- ‖Proteomics Unit, Center for Genomics Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona
- **University Pompeu Fabra, 08003 Barcelona
| | - Àlex Bayés
- ***Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025, Barcelona, Spain
- ‡‡‡Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Olivia Belbin
- §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
- ¶Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025Barcelona, Spain
| |
Collapse
|
17
|
Cijsouw T, Ramsey AM, Lam TT, Carbone BE, Blanpied TA, Biederer T. Mapping the Proteome of the Synaptic Cleft through Proximity Labeling Reveals New Cleft Proteins. Proteomes 2018; 6:proteomes6040048. [PMID: 30487426 PMCID: PMC6313906 DOI: 10.3390/proteomes6040048] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 12/21/2022] Open
Abstract
Synapses are specialized neuronal cell-cell contacts that underlie network communication in the mammalian brain. Across neuronal populations and circuits, a diverse set of synapses is utilized, and they differ in their molecular composition to enable heterogenous connectivity patterns and functions. In addition to pre- and post-synaptic specializations, the synaptic cleft is now understood to be an integral compartment of synapses that contributes to their structural and functional organization. Aiming to map the cleft proteome, this study applied a peroxidase-mediated proximity labeling approach and used the excitatory synaptic cell adhesion protein SynCAM 1 fused to horseradish peroxidase (HRP) as a reporter in cultured cortical neurons. This reporter marked excitatory synapses as measured by confocal microcopy and was targeted to the edge zone of the synaptic cleft as determined using 3D dSTORM super-resolution imaging. Proximity labeling with a membrane-impermeant biotin-phenol compound restricted labeling to the cell surface, and Label-Free Quantitation (LFQ) mass spectrometry combined with ratiometric HRP tagging of membrane vs. synaptic surface proteins was used to identify the proteomic content of excitatory clefts. Novel cleft candidates were identified, and Receptor-type tyrosine-protein phosphatase zeta was selected and successfully validated. This study supports the robust applicability of peroxidase-mediated proximity labeling for synaptic cleft proteomics and its potential for understanding synapse heterogeneity in health and changes in diseases such as psychiatric disorders and addiction.
Collapse
Affiliation(s)
- Tony Cijsouw
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Austin M Ramsey
- Department of Physiology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - TuKiet T Lam
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA.
- W.M. Keck Biotechnology Resource Laboratory, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Beatrice E Carbone
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Thomas A Blanpied
- Department of Physiology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
18
|
Koopmans F, Pandya NJ, Franke SK, Phillippens IHCMH, Paliukhovich I, Li KW, Smit AB. Comparative Hippocampal Synaptic Proteomes of Rodents and Primates: Differences in Neuroplasticity-Related Proteins. Front Mol Neurosci 2018; 11:364. [PMID: 30333727 PMCID: PMC6176546 DOI: 10.3389/fnmol.2018.00364] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/13/2018] [Indexed: 01/20/2023] Open
Abstract
Key to the human brain’s unique capacities are a myriad of neural cell types, specialized molecular expression signatures, and complex patterns of neuronal connectivity. Neurons in the human brain communicate via well over a quadrillion synapses. Their specific contribution might be key to the dynamic activity patterns that underlie primate-specific cognitive function. Recently, functional differences were described in transmission capabilities of human and rat synapses. To test whether unique expression signatures of synaptic proteins are at the basis of this, we performed a quantitative analysis of the hippocampal synaptic proteome of four mammalian species, two primates, human and marmoset, and two rodents, rat and mouse. Abundance differences down to 1.15-fold at an FDR-corrected p-value of 0.005 were reliably detected using SWATH mass spectrometry. The high measurement accuracy of SWATH allowed the detection of a large group of differentially expressed proteins between individual species and rodent vs. primate. Differentially expressed proteins between rodent and primate were found highly enriched for plasticity-related proteins.
Collapse
Affiliation(s)
- Frank Koopmans
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Nikhil J Pandya
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sigrid K Franke
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Biomedical Primate Research Centre, Rijswijk, Netherlands
| | | | - Iryna Paliukhovich
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. Nature 2018; 558:435-439. [PMID: 29899451 DOI: 10.1038/s41586-018-0218-8] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 05/01/2018] [Indexed: 12/25/2022]
Abstract
Sleep and wake have global effects on brain physiology, from molecular changes1-4 and neuronal activities to synaptic plasticity3-7. Sleep-wake homeostasis is maintained by the generation of a sleep need that accumulates during waking and dissipates during sleep8-11. Here we investigate the molecular basis of sleep need using quantitative phosphoproteomic analysis of the sleep-deprived and Sleepy mouse models of increased sleep need. Sleep deprivation induces cumulative phosphorylation of the brain proteome, which dissipates during sleep. Sleepy mice, owing to a gain-of-function mutation in the Sik3 gene 12 , have a constitutively high sleep need despite increased sleep amount. The brain proteome of these mice exhibits hyperphosphorylation, similar to that seen in the brain of sleep-deprived mice. Comparison of the two models identifies 80 mostly synaptic sleep-need-index phosphoproteins (SNIPPs), in which phosphorylation states closely parallel changes of sleep need. SLEEPY, the mutant SIK3 protein, preferentially associates with and phosphorylates SNIPPs. Inhibition of SIK3 activity reduces phosphorylation of SNIPPs and slow wave activity during non-rapid-eye-movement sleep, the best known measurable index of sleep need, in both Sleepy mice and sleep-deprived wild-type mice. Our results suggest that phosphorylation of SNIPPs accumulates and dissipates in relation to sleep need, and therefore SNIPP phosphorylation is a molecular signature of sleep need. Whereas waking encodes memories by potentiating synapses, sleep consolidates memories and restores synaptic homeostasis by globally downscaling excitatory synapses4-6. Thus, the phosphorylation-dephosphorylation cycle of SNIPPs may represent a major regulatory mechanism that underlies both synaptic homeostasis and sleep-wake homeostasis.
Collapse
|
20
|
Chang M, Lv H, Zhang W, Ma C, He X, Zhao S, Zhang ZW, Zeng YX, Song S, Niu Y, Tong WM. Region-specific RNA m 6A methylation represents a new layer of control in the gene regulatory network in the mouse brain. Open Biol 2018; 7:rsob.170166. [PMID: 28931651 PMCID: PMC5627058 DOI: 10.1098/rsob.170166] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/09/2017] [Indexed: 12/22/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant epitranscriptomic mark found on mRNA and has important roles in various physiological processes. Despite the relatively high m6A levels in the brain, its potential functions in the brain remain largely unexplored. We performed a transcriptome-wide methylation analysis using the mouse brain to depict its region-specific methylation profile. RNA methylation levels in mouse cerebellum are generally higher than those in the cerebral cortex. Heterogeneity of RNA methylation exists across different brain regions and different types of neural cells including the mRNAs to be methylated, their methylation levels and methylation site selection. Common and region-specific methylation have different preferences for methylation site selection and thereby different impacts on their biological functions. In addition, high methylation levels of fragile X mental retardation protein (FMRP) target mRNAs suggest that m6A methylation is likely to be used for selective recognition of target mRNAs by FMRP in the synapse. Overall, we provide a region-specific map of RNA m6A methylation and characterize the distinct features of specific and common methylation in mouse cerebellum and cerebral cortex. Our results imply that RNA m6A methylation is a newly identified element in the region-specific gene regulatory network in the mouse brain.
Collapse
Affiliation(s)
- Mengqi Chang
- Department of Pathology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Hongyi Lv
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Weilong Zhang
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Chunhui Ma
- Department of Pathology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Xue He
- Department of Pathology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Shunli Zhao
- Department of Pathology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Zhi-Wei Zhang
- Department of Pathology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Yi-Xin Zeng
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Shuhui Song
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| |
Collapse
|
21
|
Merino P, Diaz A, Manrique LG, Cheng L, Yepes M. Urokinase-type plasminogen activator (uPA) promotes ezrin-mediated reorganization of the synaptic cytoskeleton in the ischemic brain. J Biol Chem 2018; 293:9234-9247. [PMID: 29720403 DOI: 10.1074/jbc.ra118.002534] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/30/2018] [Indexed: 11/06/2022] Open
Abstract
Synaptic repair in the ischemic brain is a complex process that requires reorganization of the actin cytoskeleton. Ezrin, radixin, and moesin (ERM) are a group of evolutionarily conserved proteins that link the plasma membrane to the actin cytoskeleton and act as scaffolds for signaling transduction. Urokinase-type plasminogen activator (uPA) is a serine proteinase that upon binding to the urokinase-type plasminogen activator receptor (uPAR) catalyzes the conversion of plasminogen into plasmin on the cell surface and activates intracellular signaling pathways. Early studies indicate that uPA and uPAR expression increase during the recovery phase from an ischemic stroke and that uPA binding to uPAR promotes neurorepair in the ischemic brain. The in vitro and in vivo studies presented here show that either the release of neuronal uPA or treatment with recombinant uPA induces the local synthesis of ezrin in the synapse and the recruitment of β3-integrin to the postsynaptic density (PSD) of cerebral cortical neurons by a plasminogen-independent mechanism. We found that β3-integrin has a double effect on ezrin, inducing its recruitment to the PSD via the intercellular adhesion molecule-5 (ICAM-5) and its subsequent activation by phosphorylation at Thr-567. Finally, our data indicate that by triggering the reorganization of the actin cytoskeleton in the postsynaptic terminal, active ezrin induces the recovery of dendritic spines and synapses that have been damaged by an acute ischemic stroke. In summary, our data show that uPA-uPAR binding promotes synaptic repair in the ischemic brain via ezrin-mediated reorganization of the actin cytoskeleton in the postsynaptic terminal.
Collapse
Affiliation(s)
- Paola Merino
- From the Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329.,the Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Ariel Diaz
- From the Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329.,the Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Luis Guillermo Manrique
- From the Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329.,the Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Lihong Cheng
- From the Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329.,the Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Manuel Yepes
- From the Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329, .,the Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, and.,the Department of Neurology, Veterans Affairs Medical Center, Atlanta, Georgia 30033
| |
Collapse
|
22
|
Beckert B, Acker-Palmer A, Volknandt W. Aβ42 oligomers impair the bioenergetic activity in hippocampal synaptosomes derived from APP-KO mice. Biol Chem 2018; 399:453-465. [PMID: 29337689 DOI: 10.1515/hsz-2017-0238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/20/2017] [Indexed: 11/15/2022]
Abstract
Employing hippocampal synaptosomes from amyloid precursor protein (APP)-deleted mice we analyzed the immediate effects of amyloid beta peptide 42 (Aβ42) peptide in its oligomeric or fibrillar assembly or of soluble amyloid precursor protein alpha (sAPPα) protein on their bioenergetic activity. Upon administration of oligomeric Aβ42 peptide for 30 min we observed a robust decrease both in mitochondrial activity and in mitochondrial membrane potential (MMP). In contrast the respective fibrillary or scrambled peptides showed no effect, indicating that inhibition strictly depends on the oligomerization status of the peptide. Hippocampal synaptosomes from old APP-KO mice revealed a further reduction of their already impaired bioenergetic activity upon incubation with 10 μm Aβ42 peptide. In addition we evaluated the influence of the sAPPα protein on mitochondrial activity of hippocampal synaptosomes derived from young or old APP-KO animals. In neither case 20 nm nor 200 nm sAPPα protein had an effect on mitochondrial metabolic activity. Our findings demonstrate that hippocampal synaptosomes derived from APP-KO mice are a most suitable model system to evaluate the impact of Aβ42 peptide on its bioenergetic activity and to further elucidate the molecular mechanisms underlying the impairments by oligomeric Aβ42 on mitochondrial function. Our data demonstrate that extracellular Aβ42 peptide is taken up into synaptosomes where it immediately attenuates mitochondrial activity.
Collapse
Affiliation(s)
- Benedikt Beckert
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, D-60438, Frankfurt/Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, D-60438, Frankfurt/Main, Germany
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, D-60438 Frankfurt/Main, Germany
| | - Walter Volknandt
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, D-60438, Frankfurt/Main, Germany
- Department for Molecular and Cellular Neurobiology, Goethe University Frankfurt, Max-von-Laue-Str. 13, D-60438 Frankfurt, Germany
| |
Collapse
|
23
|
Williams CL, Smith SM. Calcium dependence of spontaneous neurotransmitter release. J Neurosci Res 2018; 96:335-347. [PMID: 28699241 PMCID: PMC5766384 DOI: 10.1002/jnr.24116] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 01/14/2023]
Abstract
Spontaneous release of neurotransmitters is regulated by extracellular [Ca2+ ] and intracellular [Ca2+ ]. Curiously, some of the mechanisms of Ca2+ signaling at central synapses are different at excitatory and inhibitory synapses. While the stochastic activity of voltage-activated Ca2+ channels triggers a majority of spontaneous release at inhibitory synapses, this is not the case at excitatory nerve terminals. Ca2+ release from intracellular stores regulates spontaneous release at excitatory and inhibitory terminals, as do agonists of the Ca2+ -sensing receptor. Molecular machinery triggering spontaneous vesicle fusion may differ from that underlying evoked release and may be one of the sources of heterogeneity in release mechanisms.
Collapse
Affiliation(s)
- Courtney L. Williams
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, 97239, USA
- Section of Pulmonary & Critical Care Medicine, VA Portland Health Care System, Portland, Oregon, USA
| | - Stephen M. Smith
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, 97239, USA
- Section of Pulmonary & Critical Care Medicine, VA Portland Health Care System, Portland, Oregon, USA
| |
Collapse
|
24
|
A Cross Talk between Neuronal Urokinase-type Plasminogen Activator (uPA) and Astrocytic uPA Receptor (uPAR) Promotes Astrocytic Activation and Synaptic Recovery in the Ischemic Brain. J Neurosci 2017; 37:10310-10322. [PMID: 28931568 DOI: 10.1523/jneurosci.1630-17.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/25/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022] Open
Abstract
Urokinase-type plasminogen activator (uPA) is a serine proteinase that, upon binding to its receptor (uPAR), catalyzes the conversion of plasminogen into plasmin on the cell surface. Our previous studies indicate that uPA and uPAR expression increase in the ischemic brain during the recovery phase from an acute ischemic injury and that uPA binding to uPAR promotes neurological recovery after an acute ischemic stroke. Here, we used male mice genetically deficient on either uPA (uPA-/-) or uPAR (uPAR-/-) or with a four-amino acid substitution into the growth factor domain of uPA that abrogates its binding to uPAR (PlatGFDhu/GFDhu) to investigate the mechanism whereby uPA promotes neurorepair in the ischemic brain. We found that neurons release uPA and astrocytes recruit uPAR to their plasma membrane during the recovery phase from a hypoxic injury and that binding of neuronal uPA to astrocytic uPAR induces astrocytic activation by a mechanism that does not require plasmin generation, but instead is mediated by extracellular signal-regulated kinase 1/2 (ERK1/2)-regulated phosphorylation of the signal transducer and activator of transcription 3 (STAT3). We report that uPA/uPAR binding is necessary and sufficient to induce astrocytic activation in the ischemic brain and that astrocytes activated by neuronal uPA promote synaptic recovery in neurons that have suffered an acute hypoxic injury via a mechanism mediated by astrocytic thrombospondin-1 (TSP1) and synaptic low-density lipoprotein receptor-related protein-1 (LRP1). In summary, we show that uPA/uPAR-induced astrocytic activation mediates a cross talk between astrocytes and injured neurons that promotes synaptic recovery in the ischemic brain.SIGNIFICANCE STATEMENT To date, there is no therapeutic strategy to promote synaptic recovery in the injured brain. Here, we show that neurons release urokinase-type plasminogen activator (uPA) and astrocytes recruit the uPA receptor (uPAR) to their plasma membrane during the recovery phase from a hypoxic injury. We found that binding of neuronal uPA to astrocytic uPAR promotes astrocytic activation and that astrocytes activated by uPA-uPAR binding promote synaptic recovery in neurons that have suffered a hypoxic injury by a mechanism that does not require plasmin generation, but instead is mediated by ERK1/2-regulated STAT3 phosphorylation, astrocytic thrombospondin-1 (TSP1) and synaptic low-density lipoprotein receptor-related protein-1 (LRP1). Our work unveils a new biological function for uPA-uPAR as mediator of a neuron-astrocyte cross talk that promotes synaptic recovery in the ischemic brain.
Collapse
|
25
|
Alfieri A, Sorokina O, Adrait A, Angelini C, Russo I, Morellato A, Matteoli M, Menna E, Boeri Erba E, McLean C, Armstrong JD, Ala U, Buxbaum JD, Brusco A, Couté Y, De Rubeis S, Turco E, Defilippi P. Synaptic Interactome Mining Reveals p140Cap as a New Hub for PSD Proteins Involved in Psychiatric and Neurological Disorders. Front Mol Neurosci 2017; 10:212. [PMID: 28713243 PMCID: PMC5492163 DOI: 10.3389/fnmol.2017.00212] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/15/2017] [Indexed: 01/21/2023] Open
Abstract
Altered synaptic function has been associated with neurological and psychiatric conditions including intellectual disability, schizophrenia and autism spectrum disorder (ASD). Amongst the recently discovered synaptic proteins is p140Cap, an adaptor that localizes at dendritic spines and regulates their maturation and physiology. We recently showed that p140Cap knockout mice have cognitive deficits, impaired long-term potentiation (LTP) and long-term depression (LTD), and immature, filopodia-like dendritic spines. Only a few p140Cap interacting proteins have been identified in the brain and the molecular complexes and pathways underlying p140Cap synaptic function are largely unknown. Here, we isolated and characterized the p140Cap synaptic interactome by co-immunoprecipitation from crude mouse synaptosomes, followed by mass spectrometry-based proteomics. We identified 351 p140Cap interactors and found that they cluster to sub complexes mostly located in the postsynaptic density (PSD). p140Cap interactors converge on key synaptic processes, including transmission across chemical synapses, actin cytoskeleton remodeling and cell-cell junction organization. Gene co-expression data further support convergent functions: the p140Cap interactors are tightly co-expressed with each other and with p140Cap. Importantly, the p140Cap interactome and its co-expression network show strong enrichment in genes associated with schizophrenia, autism, bipolar disorder, intellectual disability and epilepsy, supporting synaptic dysfunction as a shared biological feature in brain diseases. Overall, our data provide novel insights into the molecular organization of the synapse and indicate that p140Cap acts as a hub for postsynaptic complexes relevant to psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Annalisa Alfieri
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Oksana Sorokina
- The Institute for Adaptive and Neural Computation, School of Informatics, University of EdinburghEdinburgh, United Kingdom
| | - Annie Adrait
- Université Grenoble Alpes, iRTSV-BGEGrenoble, France.,CEA, iRTSV-BGEGrenoble, France.,Institut National de la Santé et de la Recherche Médicale, BGEGrenoble, France
| | - Costanza Angelini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Isabella Russo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Michela Matteoli
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR)Milan, Italy.,Humanitas Clinical and Research Center, IRCCSRozzano, Italy
| | - Elisabetta Menna
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR)Milan, Italy.,Humanitas Clinical and Research Center, IRCCSRozzano, Italy
| | - Elisabetta Boeri Erba
- Institut de Biologie Structurale, Université Grenoble AlpesGrenoble, France.,CEA, DSV, IBSGrenoble, France.,Centre National de la Recherche Scientifique, IBSGrenoble, France
| | - Colin McLean
- The Institute for Adaptive and Neural Computation, School of Informatics, University of EdinburghEdinburgh, United Kingdom
| | - J Douglas Armstrong
- The Institute for Adaptive and Neural Computation, School of Informatics, University of EdinburghEdinburgh, United Kingdom
| | - Ugo Ala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy.,GenoBiToUS-Genomics and Bioinformatics, Università di TorinoTurin, Italy
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount SinaiNew York, NY, United States
| | - Alfredo Brusco
- Department of Medical Sciences, Università di TorinoTurin, Italy.,Medical Genetics Unit, Azienda Ospedaliera Città della Salute e della Scienza di TorinoTurin, Italy
| | - Yohann Couté
- Université Grenoble Alpes, iRTSV-BGEGrenoble, France.,CEA, iRTSV-BGEGrenoble, France.,Institut National de la Santé et de la Recherche Médicale, BGEGrenoble, France
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew York, NY, United States
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| |
Collapse
|
26
|
Laßek M, Weingarten J, Wegner M, Neupärtl M, Array TN, Harde E, Beckert B, Golghalyani V, Ackermann J, Koch I, Müller UC, Karas M, Acker-Palmer A, Volknandt W. APP Deletion Accounts for Age-Dependent Changes in the Bioenergetic Metabolism and in Hyperphosphorylated CaMKII at Stimulated Hippocampal Presynaptic Active Zones. Front Synaptic Neurosci 2017; 9:1. [PMID: 28163681 PMCID: PMC5247443 DOI: 10.3389/fnsyn.2017.00001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/05/2017] [Indexed: 11/13/2022] Open
Abstract
Synaptic release sites are characterized by exocytosis-competent synaptic vesicles tightly anchored to the presynaptic active zone (PAZ) whose proteome orchestrates the fast signaling events involved in synaptic vesicle cycle and plasticity. Allocation of the amyloid precursor protein (APP) to the PAZ proteome implicated a functional impact of APP in neuronal communication. In this study, we combined state-of-the-art proteomics, electrophysiology and bioinformatics to address protein abundance and functional changes at the native hippocampal PAZ in young and old APP-KO mice. We evaluated if APP deletion has an impact on the metabolic activity of presynaptic mitochondria. Furthermore, we quantified differences in the phosphorylation status after long-term-potentiation (LTP) induction at the purified native PAZ. We observed an increase in the phosphorylation of the signaling enzyme calmodulin-dependent kinase II (CaMKII) only in old APP-KO mice. During aging APP deletion is accompanied by a severe decrease in metabolic activity and hyperphosphorylation of CaMKII. This attributes an essential functional role to APP at hippocampal PAZ and putative molecular mechanisms underlying the age-dependent impairments in learning and memory in APP-KO mice.
Collapse
Affiliation(s)
- Melanie Laßek
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | - Jens Weingarten
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | - Martin Wegner
- Molecular Bioinformatics, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | - Moritz Neupärtl
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | | | - Eva Harde
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Johann Wolfgang Goethe-UniversitätFrankfurt, Germany; Max Planck Institute for Brain ResearchFrankfurt, Germany
| | - Benedikt Beckert
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | - Vahid Golghalyani
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | - Jörg Ackermann
- Molecular Bioinformatics, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | - Ina Koch
- Molecular Bioinformatics, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | - Ulrike C Müller
- Department of Pharmacy and Molecular Biotechnology, University Heidelberg Heidelberg, Germany
| | - Michael Karas
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | - Amparo Acker-Palmer
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Johann Wolfgang Goethe-UniversitätFrankfurt, Germany; Max Planck Institute for Brain ResearchFrankfurt, Germany
| | - Walter Volknandt
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| |
Collapse
|
27
|
Luquet E, Biesemann C, Munier A, Herzog E. Purification of Synaptosome Populations Using Fluorescence-Activated Synaptosome Sorting. Methods Mol Biol 2017; 1538:121-134. [PMID: 27943188 DOI: 10.1007/978-1-4939-6688-2_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
For several decades, neurobiologists have used subcellular fractionation methods to analyze the molecular structure and some functional features of the cells in the central nervous system. Indeed, brain tissue contains a complex intermingled network of neuronal, glial, and vascular cells. To reduce this complexity biochemists have optimized fractionation protocols that enrich in specific compartments such as synapses (called "synaptosomes") and synaptic vesicles, for example. However, recently, these approaches suffered from a lack of specificity and purity. In a recent effort, we extended the conventional synaptosome preparation to purify fluorescent synaptosomes on a cell sorter. We could prove that our method allows for the steep enrichment in fluorescent excitatory VGLUT1venus synaptosomes containing the presynaptic element and the tip of the post-synaptic element and a strong depletion in neuronal and glial contaminants. Here, we propose a detailed procedure for the implementation of Fluorescence Activated Synaptosome Sorting.
Collapse
Affiliation(s)
- Elisa Luquet
- Interdisciplinary Institute for Neuroscience, University Bordeaux, CNRS, UMR 5297, F-33000, Bordeaux, France
- Interdisciplinary Institute for NeuroScience, CNRS, UMR 5297, F-33000, Bordeaux, France
| | - Christoph Biesemann
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Annie Munier
- Institut de Biologie Paris Seine, University Pierre et Marie Curie, IBPS, F-75005, Paris, France
| | - Etienne Herzog
- Interdisciplinary Institute for Neuroscience, University Bordeaux, CNRS, UMR 5297, F-33000, Bordeaux, France.
- Interdisciplinary Institute for NeuroScience, CNRS, UMR 5297, F-33000, Bordeaux, France.
| |
Collapse
|
28
|
Sialana FJ, Gulyassy P, Májek P, Sjöstedt E, Kis V, Müller AC, Rudashevskaya EL, Mulder J, Bennett KL, Lubec G. Mass spectrometric analysis of synaptosomal membrane preparations for the determination of brain receptors, transporters and channels. Proteomics 2016; 16:2911-2920. [DOI: 10.1002/pmic.201600234] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/26/2016] [Accepted: 10/17/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Fernando J. Sialana
- Department of Pharmaceutical Chemistry; University of Vienna; Vienna Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences; Vienna Austria
| | - Peter Gulyassy
- Laboratory of Proteomics; Institute of Biology; Eötvös Loránd University; Budapest Hungary
| | - Peter Májek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences; Vienna Austria
| | - Evelina Sjöstedt
- Science for Life Laboratory; School of Biotechnology; KTH-Royal Institute of Technology; Stockholm Sweden
- Science for Life Laboratory; Department of Immunology; Genetics and Pathology; Uppsala University; Uppsala Sweden
| | - Viktor Kis
- Department of Anatomy; Cell and Developmental Biology; Eötvös Loránd University; Budapest Hungary
| | - André C. Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences; Vienna Austria
| | | | - Jan Mulder
- Science for Life Laboratory; Department of Neuroscience; Uppsala University; Uppsala Sweden
| | - Keiryn L. Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences; Vienna Austria
| | - Gert Lubec
- Department of Pharmaceutical Chemistry; University of Vienna; Vienna Austria
| |
Collapse
|
29
|
Pinto MJ, Almeida RD. Puzzling out presynaptic differentiation. J Neurochem 2016; 139:921-942. [PMID: 27315450 DOI: 10.1111/jnc.13702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/27/2016] [Accepted: 06/10/2016] [Indexed: 12/24/2022]
Abstract
Proper brain function in the nervous system relies on the accurate establishment of synaptic contacts during development. Countless synapses populate the adult brain in an orderly fashion. In each synapse, a presynaptic terminal loaded with neurotransmitters-containing synaptic vesicles is perfectly aligned to an array of receptors in the postsynaptic membrane. Presynaptic differentiation, which encompasses the events underlying assembly of new presynaptic units, has seen notable advances in recent years. It is now consensual that as a growing axon encounters the receptive dendrites of its partner, presynaptic assembly will be triggered and specified by multiple postsynaptically-derived factors including soluble molecules and cell adhesion complexes. Presynaptic material that reaches these distant sites by axonal transport in the form of pre-assembled packets will be retained and clustered, ultimately giving rise to a presynaptic bouton. This review focuses on the cellular and molecular aspects of presynaptic differentiation in the central nervous system, with a particular emphasis on the identity of the instructive factors and the intracellular processes used by neuronal cells to assemble functional presynaptic terminals. We provide a detailed description of the mechanisms leading to the formation of new presynaptic terminals. In brief, soma-derived packets of pre-assembled material are trafficked to distant axonal sites. Synaptogenic factors from dendritic or glial provenance activate downstream intra-axonal mediators to trigger clustering of passing material and their correct organization into a new presynaptic bouton. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Maria J Pinto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ramiro D Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,School of Allied Health Technologies, Polytechnic Institute of Oporto, Vila Nova de Gaia, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
30
|
Bodaleo FJ, Gonzalez-Billault C. The Presynaptic Microtubule Cytoskeleton in Physiological and Pathological Conditions: Lessons from Drosophila Fragile X Syndrome and Hereditary Spastic Paraplegias. Front Mol Neurosci 2016; 9:60. [PMID: 27504085 PMCID: PMC4958632 DOI: 10.3389/fnmol.2016.00060] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/11/2016] [Indexed: 11/21/2022] Open
Abstract
The capacity of the nervous system to generate neuronal networks relies on the establishment and maintenance of synaptic contacts. Synapses are composed of functionally different presynaptic and postsynaptic compartments. An appropriate synaptic architecture is required to provide the structural basis that supports synaptic transmission, a process involving changes in cytoskeletal dynamics. Actin microfilaments are the main cytoskeletal components present at both presynaptic and postsynaptic terminals in glutamatergic synapses. However, in the last few years it has been demonstrated that microtubules (MTs) transiently invade dendritic spines, promoting their maturation. Nevertheless, the presence and functions of MTs at the presynaptic site are still a matter of debate. Early electron microscopy (EM) studies revealed that MTs are present in the presynaptic terminals of the central nervous system (CNS) where they interact with synaptic vesicles (SVs) and reach the active zone. These observations have been reproduced by several EM protocols; however, there is empirical heterogeneity in detecting presynaptic MTs, since they appear to be both labile and unstable. Moreover, increasing evidence derived from studies in the fruit fly neuromuscular junction proposes different roles for MTs in regulating presynaptic function in physiological and pathological conditions. In this review, we summarize the main findings that support the presence and roles of MTs at presynaptic terminals, integrating descriptive and biochemical analyses, and studies performed in invertebrate genetic models.
Collapse
Affiliation(s)
- Felipe J Bodaleo
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de ChileSantiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO)Santiago, Chile
| | - Christian Gonzalez-Billault
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de ChileSantiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO)Santiago, Chile; The Buck Institute for Research on Aging, NovatoCA, USA
| |
Collapse
|
31
|
Laßek M, Weingarten J, Wegner M, Mueller BF, Rohmer M, Baeumlisberger D, Arrey TN, Hick M, Ackermann J, Acker-Palmer A, Koch I, Müller U, Karas M, Volknandt W. APP Is a Context-Sensitive Regulator of the Hippocampal Presynaptic Active Zone. PLoS Comput Biol 2016; 12:e1004832. [PMID: 27092780 PMCID: PMC4836664 DOI: 10.1371/journal.pcbi.1004832] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/25/2016] [Indexed: 01/18/2023] Open
Abstract
The hallmarks of Alzheimer's disease (AD) are characterized by cognitive decline and behavioral changes. The most prominent brain region affected by the progression of AD is the hippocampal formation. The pathogenesis involves a successive loss of hippocampal neurons accompanied by a decline in learning and memory consolidation mainly attributed to an accumulation of senile plaques. The amyloid precursor protein (APP) has been identified as precursor of Aβ-peptides, the main constituents of senile plaques. Until now, little is known about the physiological function of APP within the central nervous system. The allocation of APP to the proteome of the highly dynamic presynaptic active zone (PAZ) highlights APP as a yet unknown player in neuronal communication and signaling. In this study, we analyze the impact of APP deletion on the hippocampal PAZ proteome. The native hippocampal PAZ derived from APP mouse mutants (APP-KOs and NexCreAPP/APLP2-cDKOs) was isolated by subcellular fractionation and immunopurification. Subsequently, an isobaric labeling was performed using TMT6 for protein identification and quantification by high-resolution mass spectrometry. We combine bioinformatics tools and biochemical approaches to address the proteomics dataset and to understand the role of individual proteins. The impact of APP deletion on the hippocampal PAZ proteome was visualized by creating protein-protein interaction (PPI) networks that incorporated APP into the synaptic vesicle cycle, cytoskeletal organization, and calcium-homeostasis. The combination of subcellular fractionation, immunopurification, proteomic analysis, and bioinformatics allowed us to identify APP as structural and functional regulator in a context-sensitive manner within the hippocampal active zone network.
Collapse
Affiliation(s)
- Melanie Laßek
- Institute for Cell Biology and Neuroscience, Biologicum, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Jens Weingarten
- Institute for Cell Biology and Neuroscience, Biologicum, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Martin Wegner
- Institute for Molecular Bioinformatics, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Benjamin F. Mueller
- Institute of Pharmaceutical Chemistry, Cluster of Excellence “Macromolecular Complexes”, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Marion Rohmer
- Institute of Pharmaceutical Chemistry, Cluster of Excellence “Macromolecular Complexes”, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | | | | | - Meike Hick
- Department of Pharmacy and Molecular Biotechnology, University Heidelberg, Heidelberg Germany
| | - Jörg Ackermann
- Institute for Molecular Bioinformatics, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute for Cell Biology and Neuroscience, Biologicum, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Ina Koch
- Institute for Molecular Bioinformatics, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Ulrike Müller
- Department of Pharmacy and Molecular Biotechnology, University Heidelberg, Heidelberg Germany
| | - Michael Karas
- Institute of Pharmaceutical Chemistry, Cluster of Excellence “Macromolecular Complexes”, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Walter Volknandt
- Institute for Cell Biology and Neuroscience, Biologicum, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
32
|
Pers TH, Timshel P, Ripke S, Lent S, Sullivan PF, O'Donovan MC, Franke L, Hirschhorn JN. Comprehensive analysis of schizophrenia-associated loci highlights ion channel pathways and biologically plausible candidate causal genes. Hum Mol Genet 2016; 25:1247-54. [PMID: 26755824 PMCID: PMC4764200 DOI: 10.1093/hmg/ddw007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/29/2015] [Accepted: 01/05/2015] [Indexed: 12/26/2022] Open
Abstract
Over 100 associated genetic loci have been robustly associated with schizophrenia. Gene prioritization and pathway analysis have focused on a priori hypotheses and thus may have been unduly influenced by prior assumptions and missed important causal genes and pathways. Using a data-driven approach, we show that genes in associated loci: (1) are highly expressed in cortical brain areas; (2) are enriched for ion channel pathways (false discovery rates <0.05); and (3) contain 62 genes that are functionally related to each other and hence represent promising candidates for experimental follow up. We validate the relevance of the prioritized genes by showing that they are enriched for rare disruptive variants and de novo variants from schizophrenia sequencing studies (odds ratio 1.67, P = 0.039), and are enriched for genes encoding members of mouse and human postsynaptic density proteomes (odds ratio 4.56, P = 5.00 × 10(-4); odds ratio 2.60, P = 0.049).The authors wish it to be known that, in their opinion, the first 2 authors should be regarded as joint First Author.
Collapse
Affiliation(s)
- Tune H Pers
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA 02115, USA, Medical and Population Genetics Program and The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, København Ø 2100, Denmark, Department of Epidemiology Research, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - Pascal Timshel
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, København Ø 2100, Denmark, Department of Epidemiology Research, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - Stephan Ripke
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02142, USA
| | | | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-17177, Sweden, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA, Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599-7160, USA
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine and National Centre for Mental Health, Cardiff University, Cardiff CF24 4HQ, UK
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen 9711, The Netherlands and
| | - Joel N Hirschhorn
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA 02115, USA, Medical and Population Genetics Program and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
33
|
Dieterich DC, Kreutz MR. Proteomics of the Synapse--A Quantitative Approach to Neuronal Plasticity. Mol Cell Proteomics 2016; 15:368-81. [PMID: 26307175 PMCID: PMC4739661 DOI: 10.1074/mcp.r115.051482] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/29/2015] [Indexed: 11/06/2022] Open
Abstract
The advances in mass spectrometry based proteomics in the past 15 years have contributed to a deeper appreciation of protein networks and the composition of functional synaptic protein complexes. However, research on protein dynamics underlying core mechanisms of synaptic plasticity in brain lag far behind. In this review, we provide a synopsis on proteomic research addressing various aspects of synaptic function. We discuss the major topics in the study of protein dynamics of the chemical synapse and the limitations of current methodology. We highlight recent developments and the future importance of multidimensional proteomics and metabolic labeling. Finally, emphasis is given on the conceptual framework of modern proteomics and its current shortcomings in the quest to gain a deeper understanding of synaptic plasticity.
Collapse
Affiliation(s)
- Daniela C Dieterich
- From the ‡Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Research Group Neuralomics, Leibniz Institute for Neurobiology Magdeburg, Germany; ¶Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| | - Michael R Kreutz
- §RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany; ¶Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| |
Collapse
|
34
|
Yepes M, Wu F, Torre E, Cuellar-Giraldo D, Jia D, Cheng L. Tissue-type plasminogen activator induces synaptic vesicle endocytosis in cerebral cortical neurons. Neuroscience 2016; 319:69-78. [PMID: 26820595 DOI: 10.1016/j.neuroscience.2016.01.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/16/2016] [Accepted: 01/19/2016] [Indexed: 01/22/2023]
Abstract
The release of the serine proteinase tissue-type plasminogen activator (tPA) from the presynaptic terminal of cerebral cortical neurons plays a central role in the development of synaptic plasticity, adaptation to metabolic stress and neuronal survival. Our earlier studies indicate that by inducing the recruitment of the cytoskeletal protein βII-spectrin and voltage-gated calcium channels to the active zone, tPA promotes Ca(2+)-dependent translocation of synaptic vesicles (SVs) to the synaptic release site where they release their load of neurotransmitters into the synaptic cleft. Here we used a combination of in vivo and in vitro experiments to investigate whether this effect leads to depletion of SVs in the presynaptic terminal. Our data indicate that tPA promotes SV endocytosis via a mechanism that does not require the conversion of plasminogen into plasmin. Instead, we show that tPA induces calcineurin-mediated dynamin I dephosphorylation, which is followed by dynamin I-induced recruitment of the actin-binding protein profilin II to the presynaptic membrane, and profilin II-induced F-actin formation. We report that this tPA-induced sequence of events leads to the association of newly formed SVs with F-actin clusters in the endocytic zone. In summary, the data presented here indicate that following the exocytotic release of neurotransmitters tPA activates the mechanism whereby SVs are retrieved from the presynaptic membrane and endocytosed to replenish the pool of vesicles available for a new cycle of exocytosis. Together, these results indicate that in murine cerebral cortical neurons tPA plays a central role coupling SVs exocytosis and endocytosis.
Collapse
Affiliation(s)
- M Yepes
- Department of Neurology & Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA.
| | - F Wu
- Department of Neurology & Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - E Torre
- Department of Neurology & Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - D Cuellar-Giraldo
- Department of Neurology & Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - D Jia
- Department of Neurology & Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - L Cheng
- Department of Neurology & Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
35
|
Laßek M, Weingarten J, Wegner M, Volknandt W. The Amyloid Precursor Protein-A Novel Player within the Molecular Array of Presynaptic Nanomachines. Front Synaptic Neurosci 2016; 7:21. [PMID: 26834621 PMCID: PMC4719097 DOI: 10.3389/fnsyn.2015.00021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/24/2015] [Indexed: 12/27/2022] Open
Abstract
More than 20 years ago the amyloid precursor protein (APP) was identified as the precursor protein of the Aβ peptide, the main component of senile plaques in brains affected by Alzheimer’s disease (AD). The pathophysiology of AD, characterized by a massive loss of synapses, cognitive decline, and behavioral changes was in principle attributed to the accumulation of Aβ. Within the last decades, much effort has gone into understanding the molecular basis of the progression of AD. However, little is known about the actual physiological function of APPs. Allocating APP to the proteome of the structurally and functionally dynamic presynaptic active zone (PAZ) highlights APP as a hitherto unknown player within the setting of the presynapse. The molecular array of presynaptic nanomachines comprising the life cycle of synaptic vesicles, exo- and endocytosis, cytoskeletal rearrangements, and mitochondrial activity provides a balance between structural and functional maintenance and diversity. The generation of genetically designed mouse models further deciphered APP as an essential player in synapse formation and plasticity. Deletion of APP causes an age-dependent phenotype: while younger mice revealed almost no physiological impairments, this condition was changed in the elderly mice. Interestingly, the proteomic composition of neurotransmitter release sites already revealed substantial changes at young age. These changes point to a network that incorporates APP into a cluster of nanomachines. Currently, the underlying mechanism of how APP acts within these machines is still elusive. Within the scope of this review, we shall construct a network of APP interaction partners within the PAZ. Furthermore, we intend to outline how deletion of APP affects this network during space and time leading to impairments in learning and memory. These alterations may provide a molecular link to the pathogenesis of AD and the physiological function of APP in the central nervous system.
Collapse
Affiliation(s)
- Melanie Laßek
- Department of Molecular and Cellular Neurobiology, Goethe University Frankfurt Frankfurt am Main, Germany
| | - Jens Weingarten
- Department of Molecular and Cellular Neurobiology, Goethe University Frankfurt Frankfurt am Main, Germany
| | - Martin Wegner
- Department of Molecular Bioinformatics, Goethe University Frankfurt Frankfurt am Main, Germany
| | - Walter Volknandt
- Department of Molecular and Cellular Neurobiology, Goethe University Frankfurt Frankfurt am Main, Germany
| |
Collapse
|
36
|
Crawford DC, Kavalali ET. Molecular underpinnings of synaptic vesicle pool heterogeneity. Traffic 2015; 16:338-64. [PMID: 25620674 DOI: 10.1111/tra.12262] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/06/2015] [Indexed: 12/31/2022]
Abstract
Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling.
Collapse
Affiliation(s)
- Devon C Crawford
- Department of Neuroscience, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | | |
Collapse
|
37
|
Wu F, Torre E, Cuellar-Giraldo D, Cheng L, Yi H, Bichler EK, García PS, Yepes M. Tissue-type plasminogen activator triggers the synaptic vesicle cycle in cerebral cortical neurons. J Cereb Blood Flow Metab 2015; 35:1966-76. [PMID: 26126868 PMCID: PMC4671117 DOI: 10.1038/jcbfm.2015.155] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/28/2015] [Accepted: 06/02/2015] [Indexed: 12/14/2022]
Abstract
The active zone (AZ) is a thickening of the presynaptic membrane where exocytosis takes place. Chemical synapses contain neurotransmitter-loaded synaptic vesicles (SVs) that at rest are tethered away from the synaptic release site, but after the presynaptic inflow of Ca(+2) elicited by an action potential translocate to the AZ to release their neurotransmitter load. We report that tissue-type plasminogen activator (tPA) is stored outside the AZ of cerebral cortical neurons, either intermixed with small clear-core vesicles or in direct contact with the presynaptic membrane. We found that cerebral ischemia-induced release of neuronal tPA, or treatment with recombinant tPA, recruits the cytoskeletal protein βII-spectrin to the AZ and promotes the binding of SVs to βII-spectrin, enlarging the population of SVs in proximity to the synaptic release site. This effect does not require the generation of plasmin and is followed by the recruitment of voltage gated calcium channels (VGCC) to the presynaptic terminal that leads to Ca(+2)-dependent synapsin I phosphorylation, freeing SVs to translocate to the AZ to deliver their neurotransmitter load. Our studies indicate that tPA activates the SV cycle and induces the structural and functional changes in the synapse that are required for successful neurotransmission.
Collapse
Affiliation(s)
- Fang Wu
- Department of Neurology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Enrique Torre
- Department of Neurology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David Cuellar-Giraldo
- Department of Neurology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lihong Cheng
- Department of Neurology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hong Yi
- Apkarian Integrated Electron Microscopy Core, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Edyta K Bichler
- Department of Anesthesiology, Veterans Affairs Medical Center, Atlanta, Georgia, USA.,Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Paul S García
- Department of Anesthesiology, Veterans Affairs Medical Center, Atlanta, Georgia, USA.,Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Manuel Yepes
- Department of Neurology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Neurology, Veterans Affairs Medical Center, Atlanta, Georgia, USA
| |
Collapse
|
38
|
Hussain S, Bashir ZI. The epitranscriptome in modulating spatiotemporal RNA translation in neuronal post-synaptic function. Front Cell Neurosci 2015; 9:420. [PMID: 26582006 PMCID: PMC4628113 DOI: 10.3389/fncel.2015.00420] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/04/2015] [Indexed: 01/08/2023] Open
Abstract
The application of next-generation-sequencing based methods has recently allowed the sequence-specific occurrence of RNA modifications to be investigated in transcriptome-wide settings. This has led to the emergence of a new field of molecular genetics research termed “epitranscriptomics.” Investigations have shown that these modifications can exert control over protein synthesis via various mechanisms, and particularly when occurring on messenger RNAs, can be dynamically regulated. Here, we propose that RNA modifications may be a critical regulator over the spatiotemporal control of protein-synthesis in neurons, which is supported by our finding that the RNA methylase NSun2 colocalizes with the translational-repressor FMRP at neuronal dendrites. We also observe that NSun2 commonly methylates mRNAs which encode components of the postsynaptic proteome, and further find that NSun2 and FMRP likely share a common subset of mRNA targets which include those that are known to be translated at dendrites in an activity-dependent manner. We consider potential roles for RNA modifications in space- time- and activity-dependent regulation of protein synthesis in neuronal physiology, with a particular focus on synaptic plasticity modulation.
Collapse
Affiliation(s)
- Shobbir Hussain
- Department of Biology and Biochemistry, University of Bath Bath, UK
| | - Zafar I Bashir
- School of Physiology and Pharmacology, University of Bristol Bristol, UK
| |
Collapse
|
39
|
Mosca TJ. On the Teneurin track: a new synaptic organization molecule emerges. Front Cell Neurosci 2015; 9:204. [PMID: 26074772 PMCID: PMC4444827 DOI: 10.3389/fncel.2015.00204] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/11/2015] [Indexed: 11/16/2022] Open
Abstract
To achieve proper synaptic development and function, coordinated signals must pass between the pre- and postsynaptic membranes. Such transsynaptic signals can be comprised of receptors and secreted ligands, membrane associated receptors, and also pairs of synaptic cell adhesion molecules. A critical open question bridging neuroscience, developmental biology, and cell biology involves identifying those signals and elucidating how they function. Recent work in Drosophila and vertebrate systems has implicated a family of proteins, the Teneurins, as a new transsynaptic signal in both the peripheral and central nervous systems. The Teneurins have established roles in neuronal wiring, but studies now show their involvement in regulating synaptic connections between neurons and bridging the synaptic membrane and the cytoskeleton. This review will examine the Teneurins as synaptic cell adhesion molecules, explore how they regulate synaptic organization, and consider how some consequences of human Teneurin mutations may have synaptopathic origins.
Collapse
Affiliation(s)
- Timothy J Mosca
- Department of Biology, Stanford University Stanford, CA, USA
| |
Collapse
|
40
|
Regional Specializations of the PAZ Proteomes Derived from Mouse Hippocampus, Olfactory Bulb and Cerebellum. Proteomes 2015; 3:74-88. [PMID: 28248263 PMCID: PMC5217373 DOI: 10.3390/proteomes3020074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/05/2015] [Indexed: 11/25/2022] Open
Abstract
Neurotransmitter release as well as structural and functional dynamics at the presynaptic active zone (PAZ) comprising synaptic vesicles attached to the presynaptic plasma membrane are mediated and controlled by its proteinaceous components. Here we describe a novel experimental design to immunopurify the native PAZ-complex from individual mouse brain regions such as olfactory bulb, hippocampus, and cerebellum with high purity that is essential for comparing their proteome composition. Interestingly, quantitative immunodetection demonstrates significant differences in the abundance of prominent calcium-dependent PAZ constituents. Furthermore, we characterized the proteomes of the immunoisolated PAZ derived from the three brain regions by mass spectrometry. The proteomes of the release sites from the respective regions exhibited remarkable differences in the abundance of a large variety of PAZ constituents involved in various functional aspects of the release sites such as calcium homeostasis, synaptic plasticity and neurogenesis. On the one hand, our data support an identical core architecture of the PAZ for all brain regions and, on the other hand, demonstrate that the proteinaceous composition of their presynaptic active zones vary, suggesting that changes in abundance of individual proteins strengthen the ability of the release sites to adapt to specific functional requirements.
Collapse
|
41
|
Michel K, Müller JA, Oprişoreanu AM, Schoch S. The presynaptic active zone: A dynamic scaffold that regulates synaptic efficacy. Exp Cell Res 2015; 335:157-64. [PMID: 25720549 DOI: 10.1016/j.yexcr.2015.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 02/10/2015] [Indexed: 12/30/2022]
Abstract
Before fusing with the presynaptic plasma membrane to release neurotransmitter into the synaptic cleft synaptic vesicles have to be recruited to and docked at a specialized area of the presynaptic nerve terminal, the active zone. Exocytosis of synaptic vesicles is restricted to the presynaptic active zone, which is characterized by a unique and highly interconnected set of proteins. The protein network at the active zone is integrally involved in this process and also mediates changes in release properties, for example in response to alterations in the level of neuronal network activity. In recent years the development of novel techniques has greatly advanced our understanding of the molecular identity of respective active zone components as well as of the ultrastructure of this membranous subcompartment and of the SV release machinery. Furthermore, active zones are now viewed as dynamic structures whose composition and size are correlated with synaptic efficacy. Therefore, the dynamic remodeling of the protein network at the active zone has emerged as one potential mechanism underlying acute and long-term synaptic plasticity. Here, we will discuss this recent progress and its implications for our view of the role of the AZ in synaptic function.
Collapse
Affiliation(s)
- Katrin Michel
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, 53105 Bonn, Germany
| | - Johannes Alexander Müller
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, 53105 Bonn, Germany
| | - Ana-Maria Oprişoreanu
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, 53105 Bonn, Germany
| | - Susanne Schoch
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, 53105 Bonn, Germany; Department of Epileptology University of Bonn Medical Center, 53105 Bonn, Germany.
| |
Collapse
|
42
|
Carney KE, Milanese M, van Nierop P, Li KW, Oliet SHR, Smit AB, Bonanno G, Verheijen MHG. Proteomic analysis of gliosomes from mouse brain: identification and investigation of glial membrane proteins. J Proteome Res 2014; 13:5918-27. [PMID: 25308431 DOI: 10.1021/pr500829z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Astrocytes are being increasingly recognized as crucial contributors to neuronal function at synapses, axons, and somas. Reliable methods that can provide insight into astrocyte proteins at the neuron-astrocyte functional interface are highly desirable. Here, we conducted a mass spectrometry analysis of Percoll gradient-isolated gliosomes, a viable preparation of glial subcellular particles often used to study mechanisms of astrocytic transmitter uptake and release and their regulation. Gliosomes were compared with synaptosomes, a preparation containing the neurotransmitter release machinery, and, accordingly, synaptosomes were enriched for proteins involved in synaptic vesicle-mediated transport. Interestingly, gliosome preparations were found to be enriched for different classes of known astrocyte proteins, such as VAMP3 (involved in astrocyte exocytosis), Ezrin (perisynaptic astrocyte cytoskeletal protein), and Basigin (astrocyte membrane glycoprotein), as well as for G-protein-mediated signaling proteins. Mass spectrometry data are available via ProteomeXchange with the identifier PXD001375. Together, these data provide the first detailed description of the gliosome proteome and show that gliosomes can be a useful preparation to study glial membrane proteins and associated processes.
Collapse
Affiliation(s)
- Karen E Carney
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam , 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Laßek M, Weingarten J, Volknandt W. The synaptic proteome. Cell Tissue Res 2014; 359:255-65. [PMID: 25038742 DOI: 10.1007/s00441-014-1943-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/04/2014] [Indexed: 11/29/2022]
Abstract
Synapses are focal hot spots for signal transduction and plasticity in the brain. A synapse comprises an axon terminus, the presynapse, the synaptic cleft containing extracellular matrix proteins as well as adhesion molecules, and the postsynaptic density as target structure for chemical signaling. The proteomes of the presynaptic and postsynaptic active zones control neurotransmitter release and perception. These tasks demand short- and long-term structural and functional dynamics of the synapse mediated by its proteinaceous inventory. This review addresses subcellular fractionation protocols and the related proteomic approaches to the various synaptic subcompartments with an emphasis on the presynaptic active zone (PAZ). Furthermore, it discusses major constituents of the PAZ including the amyloid precursor protein family members. Numerous proteins regulating the rearrangement of the cytoskeleton are indicative of the functional and structural dynamics of the pre- and postsynapse. The identification of protein candidates of the synapse provides the basis for further analyzing the interaction of synaptic proteins with their targets, and the effect of their deletion opens novel insights into the functional role of these proteins in neuronal communication. The knowledge of the molecular interactome is also a prerequisite for understanding numerous neurodegenerative diseases.
Collapse
Affiliation(s)
- Melanie Laßek
- Molecular and Cellular Neurobiology, Goethe University, Frankfurt, Germany
| | | | | |
Collapse
|
44
|
Laßek M, Weingarten J, Volknandt W. The Proteome of the Murine Presynaptic Active Zone. Proteomes 2014; 2:243-257. [PMID: 28250380 PMCID: PMC5302740 DOI: 10.3390/proteomes2020243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/09/2014] [Accepted: 04/21/2014] [Indexed: 01/09/2023] Open
Abstract
The proteome of the presynaptic active zone controls neurotransmitter release and the short- and long-term structural and functional dynamics of the nerve terminal. The proteinaceous inventory of the presynaptic active zone has recently been reported. This review will evaluate the subcellular fractionation protocols and the proteomic approaches employed. A breakthrough for the identification of the proteome of the presynaptic active zone was the successful employment of antibodies directed against a cytosolic epitope of membrane integral synaptic vesicle proteins for the immunopurification of synaptic vesicles docked to the presynaptic plasma membrane. Combining immunopurification and subsequent analytical mass spectrometry, hundreds of proteins, including synaptic vesicle proteins, components of the presynaptic fusion and retrieval machinery, proteins involved in intracellular and extracellular signaling and a large variety of adhesion molecules, were identified. Numerous proteins regulating the rearrangement of the cytoskeleton are indicative of the functional and structural dynamics of the presynapse. This review will critically discuss both the experimental approaches and prominent protein candidates identified. Many proteins have not previously been assigned to the presynaptic release sites and may be directly involved in the short- and long-term structural modulation of the presynaptic compartment. The identification of proteinaceous constituents of the presynaptic active zone provides the basis for further analyzing the interaction of presynaptic proteins with their targets and opens novel insights into the functional role of these proteins in neuronal communication.
Collapse
Affiliation(s)
- Melanie Laßek
- Institute for Cell Biology and Neuroscience, Department Molecular and Cellular Neurobiology, Max von Laue Str. 13, 60438 Frankfurt am Main, Germany.
| | - Jens Weingarten
- Institute for Cell Biology and Neuroscience, Department Molecular and Cellular Neurobiology, Max von Laue Str. 13, 60438 Frankfurt am Main, Germany.
| | - Walter Volknandt
- Institute for Cell Biology and Neuroscience, Department Molecular and Cellular Neurobiology, Max von Laue Str. 13, 60438 Frankfurt am Main, Germany.
| |
Collapse
|