1
|
Togashi H. Checkerboard cellular pattern in auditory epithelia: Implications for auditory function and sensory pathology. Hear Res 2025; 459:109220. [PMID: 39983543 DOI: 10.1016/j.heares.2025.109220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
Sensory epithelia are composed of specialized cells arranged in specific patterns essential for function. The auditory epithelium of the organ of Corti features a highly conserved checkerboard pattern of mechanosensory hair and supporting cells, preventing direct hair cell contact and preserving epithelial integrity. In mice, disruption of this pattern results in deafness due to hair cell apoptosis caused by abnormal adherens and tight junction formation and structural fragility. This pattern is evolutionarily conserved across species, highlighting its functional significance. Direct hair cell contact, which normally does not occur, leads to abnormal adhesion molecule accumulation, altered ion permeability, and subsequent cell death. The checkerboard pattern likely evolved to optimize hair-supporting cell interactions while maintaining epithelial stability. This review explores the physiological significance of this cellular arrangement in auditory function and the consequences of its disruption, which leads to hearing loss. Understanding the mechanisms governing this pattern may provide insights into hearing disorders and potential therapeutic approaches.
Collapse
Affiliation(s)
- Hideru Togashi
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
2
|
Yadav SS, Srinivasan K, Sharma SS, Datusalia AK. Decoding the Nectin Interactome: Implications for Brain Development, Plasticity, and Neurological Disorders. ACS Chem Neurosci 2025; 16:1000-1020. [PMID: 40025835 DOI: 10.1021/acschemneuro.5c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025] Open
Abstract
The nectin family of cell adhesion molecules (CAMs) comprising nectins and nectin-like molecules has emerged as a key regulator of various pivotal neural processes, including neuronal development, migration, synapse formation, and plasticity. Nectins engage in homophilic and heterophilic interactions to mediate cell-cell adhesion, contributing to the establishment and maintenance of neural circuits. Their extracellular domains facilitate trans-synaptic interactions, while intracellular domains participate in signaling cascades influencing cytoskeletal dynamics and synaptic function. The exhibition of distinct localization patterns in neurons, astrocytes, and the blood-brain barrier underscores their diverse roles in the brain. The dysregulation of nectins has been implicated in several neurological disorders, such as neurodevelopmental disorders, depression, schizophrenia, and Alzheimer's disease. This review examines the structural and functional characteristics of nectins and their distribution and molecular mechanisms governing neural connectivity and cognition. It further discusses experimental studies unraveling nectin-mediated pathophysiology and potential therapeutic interventions targeting nectin-related pathways. Collectively, this comprehensive analysis highlights the significance of nectins in brain development, function, and disorders, paving the way for future research directions and clinical implications.
Collapse
Affiliation(s)
- Shreyash Santosh Yadav
- Molecular NeuroTherapeutics Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh 226002, India
| | - Krishnamoorthy Srinivasan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Ashok Kumar Datusalia
- Molecular NeuroTherapeutics Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh 226002, India
| |
Collapse
|
3
|
Takato M, Sakamoto S, Nonaka H, Tanimura Valor FY, Tamura T, Hamachi I. Photoproximity labeling of endogenous receptors in the live mouse brain in minutes. Nat Chem Biol 2025; 21:109-119. [PMID: 39090312 DOI: 10.1038/s41589-024-01692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Understanding how protein-protein interaction networks in the brain give rise to cognitive functions necessitates their characterization in live animals. However, tools available for this purpose require potentially disruptive genetic modifications and lack the temporal resolution necessary to track rapid changes in vivo. Here we leverage affinity-based targeting and photocatalyzed singlet oxygen generation to identify neurotransmitter receptor-proximal proteins in the live mouse brain using only small-molecule reagents and minutes of photoirradiation. Our photooxidation-driven proximity labeling for proteome identification (named PhoxID) method not only recapitulated the known interactomes of three endogenous neurotransmitter receptors (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), inhibitory γ-aminobutyric acid type A receptor and ionotropic glutamate receptor delta-2) but also uncovered age-dependent shifts, identifying NECTIN3 and IGSF3 as developmentally regulated AMPAR-proximal proteins in the cerebellum. Overall, this work establishes a flexible and generalizable platform to study receptor microenvironments in genetically intact specimens with an unprecedented temporal resolution.
Collapse
Affiliation(s)
- Mikiko Takato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Seiji Sakamoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto, Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto, Japan
| | - Fátima Yuri Tanimura Valor
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto, Japan.
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto, Japan.
| |
Collapse
|
4
|
Miyoshi E, Morabito S, Henningfield CM, Das S, Rahimzadeh N, Shabestari SK, Michael N, Emerson N, Reese F, Shi Z, Cao Z, Srinivasan SS, Scarfone VM, Arreola MA, Lu J, Wright S, Silva J, Leavy K, Lott IT, Doran E, Yong WH, Shahin S, Perez-Rosendahl M, Head E, Green KN, Swarup V. Spatial and single-nucleus transcriptomic analysis of genetic and sporadic forms of Alzheimer's disease. Nat Genet 2024; 56:2704-2717. [PMID: 39578645 PMCID: PMC11631771 DOI: 10.1038/s41588-024-01961-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/26/2024] [Indexed: 11/24/2024]
Abstract
The pathogenesis of Alzheimer's disease (AD) depends on environmental and heritable factors, with its molecular etiology still unclear. Here we present a spatial transcriptomic (ST) and single-nucleus transcriptomic survey of late-onset sporadic AD and AD in Down syndrome (DSAD). Studying DSAD provides an opportunity to enhance our understanding of the AD transcriptome, potentially bridging the gap between genetic mouse models and sporadic AD. We identified transcriptomic changes that may underlie cortical layer-preferential pathology accumulation. Spatial co-expression network analyses revealed transient and regionally restricted disease processes, including a glial inflammatory program dysregulated in upper cortical layers and implicated in AD genetic risk and amyloid-associated processes. Cell-cell communication analysis further contextualized this gene program in dysregulated signaling networks. Finally, we generated ST data from an amyloid AD mouse model to identify cross-species amyloid-proximal transcriptomic changes with conformational context.
Collapse
Affiliation(s)
- Emily Miyoshi
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Samuel Morabito
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Mathematical, Computational, and Systems Biology (MCSB) Program, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems (CCBS), University of California, Irvine, Irvine, CA, USA
| | - Caden M Henningfield
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Sudeshna Das
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Negin Rahimzadeh
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Mathematical, Computational, and Systems Biology (MCSB) Program, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems (CCBS), University of California, Irvine, Irvine, CA, USA
| | - Sepideh Kiani Shabestari
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Neethu Michael
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Nora Emerson
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Fairlie Reese
- Center for Complex Biological Systems (CCBS), University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Zechuan Shi
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Zhenkun Cao
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Shushrruth Sai Srinivasan
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Mathematical, Computational, and Systems Biology (MCSB) Program, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems (CCBS), University of California, Irvine, Irvine, CA, USA
- Department of Computer Science, University of California, Irvine, Irvine, CA, USA
| | - Vanessa M Scarfone
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Miguel A Arreola
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Jackie Lu
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Sierra Wright
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Justine Silva
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Kelsey Leavy
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Ira T Lott
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California, Irvine, School of Medicine, Orange, CA, USA
| | - Eric Doran
- Department of Pediatrics, University of California, Irvine, School of Medicine, Orange, CA, USA
| | - William H Yong
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Saba Shahin
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Mari Perez-Rosendahl
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Elizabeth Head
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Kim N Green
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA.
- Center for Complex Biological Systems (CCBS), University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
5
|
Barragan-Galvez JC, Hernandez-Flores A, Lopez-Ortega O, Rodriguez-Alvarez AA, Maravillas-Montero JL, Ortiz-Navarrete V. The constant domain of CRTAM is essential for high-affinity interaction with Nectin-like 2. Biochem Biophys Rep 2024; 39:101813. [PMID: 39263316 PMCID: PMC11388666 DOI: 10.1016/j.bbrep.2024.101813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
CRTAM (Class-I MHC restricted T cell-associated molecule) is a member of the Nectin-like family, composed of two extracellular domains, one constant domain (IgC) and another variable domain (IgV), expressed in activated CD8 T cells, epithelial cells, natural killer (NK) cells, and in a subpopulation of CD4 T cells. CRTAM recognizes the ligand Nectin-like 2 (Necl2) through the IgV domain. However, the role of the IgC domain during this ligand recognition has yet to be understood. In this study, we show the purification of soluble-folded Ig domains of CRTAM, and we demonstrate that the IgC domain forms a homodimer in solution via hydrophobic interactions. By surface plasmon resonance (SPR) analysis, we also demonstrate that CRTAM binds to Necl2 with an affinity of 2.16 nM. In conclusion, CRTAM's IgC is essential for a high-affinity interaction with Necl-2.
Collapse
Affiliation(s)
- Juan Carlos Barragan-Galvez
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, 36200, Mexico
| | | | - Orestes Lopez-Ortega
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, 75015, Paris, France
| | | | - Jose Luis Maravillas-Montero
- Research Support Network, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Vianney Ortiz-Navarrete
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
6
|
Rajendrakumar AL, Arbeev KG, Bagley O, Yashin AI, Ukraintseva S. The SNP rs6859 in NECTIN2 gene is associated with underlying heterogeneous trajectories of cognitive changes in older adults. BMC Neurol 2024; 24:78. [PMID: 38408961 PMCID: PMC10898142 DOI: 10.1186/s12883-024-03577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/20/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Functional decline associated with dementia, including in Alzheimer's disease (AD), is not uniform across individuals, and respective heterogeneity is not yet fully explained. Such heterogeneity may in part be related to genetic variability among individuals. In this study, we investigated whether the SNP rs6859 in nectin cell adhesion molecule 2 (NECTIN2) gene (a major risk factor for AD) influences trajectories of cognitive decline in older participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI). METHODS We retrospectively analyzed records on 1310 participants from the ADNI database for the multivariate analysis. We used longitudinal measures of Mini-Mental State Examination (MMSE) scores in participants, who were cognitively normal, or having AD, or other cognitive deficits to investigate the trajectories of cognitive changes. Multiple linear regression, linear mixed models and latent class analyses were conducted to investigate the association of the SNP rs6859 with MMSE. RESULTS The regression coefficient per one allele dose of the SNP rs6859 was independently associated with MMSE in both cross-sectional (-2.23, p < 0.01) and linear mixed models (-2.26, p < 0.01) analyses. The latent class model with three distinct subgroups (class 1: stable and gradual decline, class 2: intermediate and late decline, and class 3: lowest and irregular) performed best in the posterior classification, 42.67% (n = 559), 21.45% (n = 281), 35.88% (n = 470) were classified as class 1, class 2, and class 3. In the heterogeneous linear mixed model, the regression coefficient per one allele dose of rs6859 - A risk allele was significantly associated with MMSE class 1 and class 2 memberships and related decline; Class 1 (-2.28, 95% CI: -4.05, -0.50, p < 0.05), Class 2 (-5.56, 95% CI: -9.61, -1.51, p < 0.01) and Class 3 (-0.37, 95% CI: -1.62, 0.87, p = 0.55). CONCLUSIONS This study found statistical evidence supporting the classification of three latent subclass groups representing complex MMSE trajectories in the ADNI cohort. The SNP rs6859 can be suggested as a candidate genetic predictor of variation in modeling MMSE trajectory, as well as for identifying latent classes with higher baseline MMSE. Functional studies may help further elucidate this relationship.
Collapse
Affiliation(s)
- Aravind Lathika Rajendrakumar
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708-0408, USA
| | - Konstantin G Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708-0408, USA.
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708-0408, USA
| | - Anatoliy I Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708-0408, USA
| | - Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708-0408, USA
| |
Collapse
|
7
|
Asghari K, Niknam Z, Mohammadpour-Asl S, Chodari L. Cellular junction dynamics and Alzheimer's disease: a comprehensive review. Mol Biol Rep 2024; 51:273. [PMID: 38302794 DOI: 10.1007/s11033-024-09242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by progressive neuronal damage and cognitive decline. Recent studies have shed light on the involvement of not only the blood-brain barrier (BBB) dysfunction but also significant alterations in cellular junctions in AD pathogenesis. In this review article, we explore the role of the BBB and cellular junctions in AD pathology, with a specific focus on the hippocampus. The BBB acts as a crucial protective barrier between the bloodstream and the brain, maintaining brain homeostasis and regulating molecular transport. Preservation of BBB integrity relies on various junctions, including gap junctions formed by connexins, tight junctions composed of proteins such as claudins, occludin, and ZO-1, as well as adherence junctions involving molecules like vascular endothelial (VE) cadherin, Nectins, and Nectin-like molecules (Necls). Abnormalities in these junctions and junctional components contribute to impaired neuronal signaling and increased cerebrovascular permeability, which are closely associated with AD advancement. By elucidating the underlying molecular mechanisms governing BBB and cellular junction dysfunctions within the context of AD, this review offers valuable insights into the pathogenesis of AD and identifies potential therapeutic targets for intervention.
Collapse
Affiliation(s)
- Keyvan Asghari
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Shadi Mohammadpour-Asl
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
8
|
Clarin JD, Reddy N, Alexandropoulos C, Gao WJ. The role of cell adhesion molecule IgSF9b at the inhibitory synapse and psychiatric disease. Neurosci Biobehav Rev 2024; 156:105476. [PMID: 38029609 PMCID: PMC10842117 DOI: 10.1016/j.neubiorev.2023.105476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023]
Abstract
Understanding perturbations in synaptic function between health and disease states is crucial to the treatment of neuropsychiatric illness. While genome-wide association studies have identified several genetic loci implicated in synaptic dysfunction in disorders such as autism and schizophrenia, many have not been rigorously characterized. Here, we highlight immunoglobulin superfamily member 9b (IgSF9b), a cell adhesion molecule thought to localize exclusively to inhibitory synapses in the brain. While both pre-clinical and clinical studies suggest its association with psychiatric diseases, our understanding of IgSF9b in synaptic maintenance, neural circuits, and behavioral phenotypes remains rudimentary. Moreover, these functions wield undiscovered influences on neurodevelopment. This review evaluates current literature and publicly available gene expression databases to explore the implications of IgSF9b dysfunction in rodents and humans. Through a focused analysis of one high-risk gene locus, we identify areas requiring further investigation and unearth clues related to broader mechanisms contributing to the synaptic etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Jacob D Clarin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Natasha Reddy
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Cassandra Alexandropoulos
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States.
| |
Collapse
|
9
|
Messina A, Crescimanno C, Cuccì G, Caraci F, Signorelli MS. Cell adhesion molecules in the pathogenesis of the schizophrenia. Folia Med (Plovdiv) 2023; 65:707-712. [PMID: 38351751 DOI: 10.3897/folmed.65.e101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/16/2023] [Indexed: 02/16/2024] Open
Abstract
The causes of schizophrenia remain obscure and complex to identify. Alterations in dopaminergic and serotonergic neurotransmission are, to date, the primary pharmacological targets in treatment. Underlying abnormalities in neural networks have been identified as cell adhesion molecules (CAMs) involved in synaptic remodeling and interplay between neurons-neurons and neurons-glial cells. Among the CAMs, several families have been identified, such as integrins, selectins, cadherins, immunoglobulins, nectins, and the neuroligin-neurexin complex. In this paper, cell adhesion molecules involved in the pathogenesis of schizophrenia will be described.
Collapse
|
10
|
Hermans D, Rodriguez-Mogeda C, Kemps H, Bronckaers A, de Vries HE, Broux B. Nectins and Nectin-like molecules drive vascular development and barrier function. Angiogenesis 2023; 26:349-362. [PMID: 36867287 DOI: 10.1007/s10456-023-09871-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
Angiogenesis, barriergenesis, and immune cell migration are all key physiological events that are dependent on the functional characteristics of the vascular endothelium. The protein family of Nectins and Nectin-like molecules (Necls) is a group of cell adhesion molecules that are widely expressed by different endothelial cell types. The family includes four Nectins (Nectin-1 to -4) and five Necls (Necl-1 to -5) that either interact with each other by forming homo- and heterotypical interactions or bind to ligands expressed within the immune system. Nectin and Necl proteins are mainly described to play a role in cancer immunology and in the development of the nervous system. However, Nectins and Necls are underestimated players in the formation of blood vessels, their barrier properties, and in guiding transendothelial migration of leukocytes. This review summarizes their role in supporting the endothelial barrier through their function in angiogenesis, cell-cell junction formation, and immune cell migration. In addition, this review provides a detailed overview of the expression patterns of Nectins and Necls in the vascular endothelium.
Collapse
Affiliation(s)
- Doryssa Hermans
- Department of Immunology and Infection, UHasselt, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Carla Rodriguez-Mogeda
- Molecular Cell Biology and Immunology, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Hannelore Kemps
- Department of Cardio & Organ Systems, UHasselt, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
- KU Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, Leuven, Belgium
| | - Annelies Bronckaers
- Department of Cardio & Organ Systems, UHasselt, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Helga E de Vries
- Molecular Cell Biology and Immunology, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Bieke Broux
- Department of Immunology and Infection, UHasselt, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium.
| |
Collapse
|
11
|
Miyoshi E, Morabito S, Henningfield CM, Rahimzadeh N, Kiani Shabestari S, Das S, Michael N, Reese F, Shi Z, Cao Z, Scarfone V, Arreola MA, Lu J, Wright S, Silva J, Leavy K, Lott IT, Doran E, Yong WH, Shahin S, Perez-Rosendahl M, Head E, Green KN, Swarup V. Spatial and single-nucleus transcriptomic analysis of genetic and sporadic forms of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550282. [PMID: 37546983 PMCID: PMC10402031 DOI: 10.1101/2023.07.24.550282] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) depends on environmental and heritable factors, with remarkable differences evident between individuals at the molecular level. Here we present a transcriptomic survey of AD using spatial transcriptomics (ST) and single-nucleus RNA-seq in cortical samples from early-stage AD, late-stage AD, and AD in Down Syndrome (AD in DS) donors. Studying AD in DS provides an opportunity to enhance our understanding of the AD transcriptome, potentially bridging the gap between genetic mouse models and sporadic AD. Our analysis revealed spatial and cell-type specific changes in disease, with broad similarities in these changes between sAD and AD in DS. We performed additional ST experiments in a disease timecourse of 5xFAD and wildtype mice to facilitate cross-species comparisons. Finally, amyloid plaque and fibril imaging in the same tissue samples used for ST enabled us to directly link changes in gene expression with accumulation and spread of pathology.
Collapse
Affiliation(s)
- Emily Miyoshi
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Samuel Morabito
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
- Mathematical, Computational, and Systems Biology (MCSB) Program, University of California Irvine, Irvine, CA, USA
- Center for Complex Biological Systems (CCBS), University of California Irvine, Irvine, CA, USA
| | - Caden M Henningfield
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Negin Rahimzadeh
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
- Mathematical, Computational, and Systems Biology (MCSB) Program, University of California Irvine, Irvine, CA, USA
- Center for Complex Biological Systems (CCBS), University of California Irvine, Irvine, CA, USA
| | - Sepideh Kiani Shabestari
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, USA
| | - Sudeshna Das
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Neethu Michael
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Fairlie Reese
- Center for Complex Biological Systems (CCBS), University of California Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Zechuan Shi
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Zhenkun Cao
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Vanessa Scarfone
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, USA
| | - Miguel A Arreola
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Jackie Lu
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Sierra Wright
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Justine Silva
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Kelsey Leavy
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Ira T Lott
- Department of Pediatrics, University of California Irvine School of Medicine, Orange, CA, USA
| | - Eric Doran
- Department of Pediatrics, University of California Irvine School of Medicine, Orange, CA, USA
| | - William H Yong
- Department of Pathology and Laboratory Medicine, University of California Irvine , Irvine, CA, USA
| | - Saba Shahin
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Mari Perez-Rosendahl
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine , Irvine, CA, USA
| | - Elizabeth Head
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine , Irvine, CA, USA
| | - Kim N Green
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
- Center for Complex Biological Systems (CCBS), University of California Irvine, Irvine, CA, USA
| |
Collapse
|
12
|
Nozawa O, Miyata M, Shiotani H, Kameyama T, Komaki R, Shimizu T, Kuriu T, Kashiwagi Y, Sato Y, Koebisu M, Aiba A, Okabe S, Mizutani K, Takai Y. Necl2/3-mediated mechanism for tripartite synapse formation. Development 2023; 150:285820. [PMID: 36458527 DOI: 10.1242/dev.200931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Ramified, polarized protoplasmic astrocytes interact with synapses via perisynaptic astrocyte processes (PAPs) to form tripartite synapses. These astrocyte-synapse interactions mutually regulate their structures and functions. However, molecular mechanisms for tripartite synapse formation remain elusive. We developed an in vitro co-culture system for mouse astrocytes and neurons that induced astrocyte ramifications and PAP formation. Co-cultured neurons were required for astrocyte ramifications in a neuronal activity-dependent manner, and synaptically-released glutamate and activation of astrocytic mGluR5 metabotropic glutamate receptor were likely involved in astrocyte ramifications. Astrocytic Necl2 trans-interacted with axonal Necl3, inducing astrocyte-synapse interactions and astrocyte functional polarization by recruiting EAAT1/2 glutamate transporters and Kir4.1 K+ channel to the PAPs, without affecting astrocyte ramifications. This Necl2/3 trans-interaction increased functional synapse number. Thus, astrocytic Necl2, synaptically-released glutamate and axonal Necl3 cooperatively formed tripartite glutamatergic synapses in vitro. Studies on hippocampal mossy fiber synapses in Necl3 knockout and Necl2/3 double knockout mice confirmed these previously unreported mechanisms for astrocyte-synapse interactions and astrocyte functional polarization in vivo.
Collapse
Affiliation(s)
- Osamu Nozawa
- Division of Pathogenetic Signaling, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
| | - Hajime Shiotani
- Division of Pathogenetic Signaling, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
| | - Takeshi Kameyama
- Division of Pathogenetic Signaling, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
| | - Ryouhei Komaki
- Division of Pathogenetic Signaling, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
| | - Tatsuhiro Shimizu
- Division of Pathogenetic Signaling, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
| | - Toshihiko Kuriu
- Osaka Medical and Pharmaceutical University, Research and Development Center, Takatsuki, Osaka 569-8686, Japan
| | - Yutaro Kashiwagi
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuka Sato
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Michinori Koebisu
- Section of Animal Research and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Atsu Aiba
- Section of Animal Research and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
13
|
Spear PG. Opportunities, Technology, and the Joy of Discovery. Annu Rev Virol 2022; 9:1-17. [PMID: 35363539 DOI: 10.1146/annurev-virology-100520-012840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
My grandparents were immigrants. My paternal grandfather was illiterate. Yet my parents were able to complete college and to become teachers. I had a conventional upbringing in a small town in Florida, graduating from high school in 1960. I was fortunate enough to graduate cum laude from Florida State University and to earn other credentials leading to faculty positions at outstanding institutions of higher education: the University of Chicago and Northwestern University. At a time when women were rarely the leaders of research groups, I was able to establish a well-funded research program and to make contributions to our understanding of viral entry into cells. My best research was done after I became confident enough to seek productive interactions with collaborators. I am grateful for the collaborators and collaborations that moved our field forward and for my trainees who have gone on to successes in many different careers. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Patricia G Spear
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| |
Collapse
|
14
|
Blaschuk OW. Potential Therapeutic Applications of N-Cadherin Antagonists and Agonists. Front Cell Dev Biol 2022; 10:866200. [PMID: 35309924 PMCID: PMC8927039 DOI: 10.3389/fcell.2022.866200] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
This review focuses on the cell adhesion molecule (CAM), known as neural (N)-cadherin (CDH2). The molecular basis of N-cadherin-mediated intercellular adhesion is discussed, as well as the intracellular signaling pathways regulated by this CAM. N-cadherin antagonists and agonists are then described, and several potential therapeutic applications of these intercellular adhesion modulators are considered. The usefulness of N-cadherin antagonists in treating fibrotic diseases and cancer, as well as manipulating vascular function are emphasized. Biomaterials incorporating N-cadherin modulators for tissue regeneration are also presented. N-cadherin antagonists and agonists have potential for broad utility in the treatment of numerous maladies.
Collapse
|
15
|
Chatterjee S, Sinha S, Kundu CN. Nectin cell adhesion molecule-4 (NECTIN-4): A potential target for cancer therapy. Eur J Pharmacol 2021; 911:174516. [PMID: 34547246 DOI: 10.1016/j.ejphar.2021.174516] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/30/2022]
Abstract
NECTIN-4 [a poliovirus receptor-related-4 (pvrl-4) encoded protein] is a Ca2+ independent immunoglobulin-like protein. Along with other Nectins (Nectin-1, -2 and -3), it is primarily involved in cell-cell adhesion. In contrast to other Nectins, Nectin-4 is specifically enriched in the embryonic and placental tissues but its expression significantly declines in adult life. In recent years, it has been found that Nectin-4 is especially overexpressed and served as a tumor associated inducer in various malignant tumors including breast, lung, colorectal, pancreatic, ovarian cancers etc. Over-expression of Nectin-4 is associated with various aspects of tumor progression like proliferation, angiogenesis, epithelial to mesenchymal transition, metastasis, DNA repair, tumor relapse, poor prognosis in several types of cancer. This review systematically highlights the implications of Nectin-4 in every possible aspect of cancer and the molecular mechanism of Nectin-4 mediated cancer progression. We have further emphasized on the therapeutic strategies that are being proposed to specifically target Nectin-4.
Collapse
Affiliation(s)
- Subhajit Chatterjee
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Saptarshi Sinha
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|