1
|
Li T, Feng J, Chen Y, Zhang Y, Wang H, Zhang C. Visualized Detection of Tobacco Anthracnose by a Recombinase Polymerase Amplification-Lateral Flow Dipstick Assay. PLANT DISEASE 2024; 108:3614-3622. [PMID: 39146007 DOI: 10.1094/pdis-07-24-1382-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Anthracnose caused by Colletotrichum spp. is a widespread fungal disease that is detrimental to tobacco growth and inflicts economic damage of up to 100 million in tobacco-growing regions in China. An early diagnostic tool is vital for the accurate determination and management of anthracnose in the field. This study investigated the diversity of Colletotrichum spp. on tobacco leaves with anthracnose and developed a recombinase polymerase amplification-lateral flow dipstick (RPA-LFD) diagnostic method for the rapid and equipment-independent detection of the main Colletotrichum spp. causing tobacco anthracnose. This assay targeted the chitin synthase gene (chs1) and could be performed in a few minutes (6 to 10 min). All isolates of C. karstii, C. fructicola, and C. gloeosporioides yielded positive results in the RPA-LFD assay, and no cross-reaction occurred with other fungal species from tobacco or other hosts. The detection threshold was 1 pg of genomic DNA under optimal reaction conditions. The entire RPA-LFD assay enabled the detection of pathogen visualization within 30 min without specialized equipment by combining a polyethylene glycol-KOH method for extracting gDNA rapidly from tobacco leaves infected with C. karstii, C. fructicola, and C. gloeosporioides. Based on these results, the RPA-LFD assay is easy to operate, rapid, and equipment-independent and is promising for development as a kit to diagnose tobacco anthracnose in resource-limited settings at point-of-care.
Collapse
Affiliation(s)
- Tao Li
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Ji Feng
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Yangyin Chen
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Yu Zhang
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Hancheng Wang
- Guizhou Academy of Tobacco Plant Science, Guiyang 550081, China
| | - Chuanqing Zhang
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| |
Collapse
|
2
|
Lv X, Jiang J, Yang Z, Lan S, Ma Y, Deng J, Zhou C, Wang Z, Li Y, Ma Z. Rapid detection of Puccinia striiformis f. sp. tritici from wheat stripe rust samples using recombinase polymerase amplification combined with multiple visualization methods. Int J Biol Macromol 2024; 283:137634. [PMID: 39579823 DOI: 10.1016/j.ijbiomac.2024.137634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Puccinia striiformis f. sp. tritici (Pst), the airborne fungal pathogen of wheat stripe rust, causes a decline in wheat quality and severe yield loss. Effective field management of wheat stripe rust heavily relies on timely and accurate monitoring of incoming fungal sources. Therefore, rapid and accurate detection of Pst is invaluable in disease control programs. In this study, three assays using recombinase polymerase amplification (RPA) combined with different visualization methods, including RPA followed by agarose gel electrophoresis, RPA lateral-flow dipstick (RPA-LFD) technology, and real-time RPA, were developed for rapidly and sensitively detecting Pst. The RPA and RPA-LFD assays were conducted at an isothermal temperature of 39 °C within 30 min. The real-time RPA assay required only a 20-min reaction at 39 °C. The specificities of the three assays were determined based on the lack of cross-reactivity with the other seven control wheat pathogens. The detection limits of RPA and real-time RPA were 105 fg/μL, and that of RPA-LFD was 104 fg/μL. Additionally, the three RPA assays detected Pst in field leaf samples. Among the 73 samples examined, 44 (60.3 %), 45 (61.6 %), and 60 (82.2 %) tested positive in the RPA, real-time RPA, and RPA-LFD assays, respectively. The result suggested that RPA-LFD was the most sensitive in detecting Pst from field samples. Giving the simple, rapid, and practical nature of RPA assays, this method can serve as a promising molecular diagnostic tools for accurate and rapid detection of Pst.
Collapse
Affiliation(s)
- Xuan Lv
- Department of Plant Pathology, Ministry of Agriculture and Rural Affairs (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jiarui Jiang
- Department of Plant Pathology, Ministry of Agriculture and Rural Affairs (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ziqian Yang
- Department of Plant Pathology, Ministry of Agriculture and Rural Affairs (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Sishu Lan
- Department of Plant Pathology, Ministry of Agriculture and Rural Affairs (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yue Ma
- Department of Plant Pathology, Ministry of Agriculture and Rural Affairs (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jie Deng
- Department of Plant Pathology, Ministry of Agriculture and Rural Affairs (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Congying Zhou
- Department of Plant Pathology, Ministry of Agriculture and Rural Affairs (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhifang Wang
- Department of Plant Pathology, Ministry of Agriculture and Rural Affairs (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuchen Li
- Department of Plant Pathology, Ministry of Agriculture and Rural Affairs (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhanhong Ma
- Department of Plant Pathology, Ministry of Agriculture and Rural Affairs (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Wu X, Liu G, Chang Y, Zheng M, Liu L, Xia X, Feng Y. Rapid and sensitive detection of chikungunya virus using one-tube, reverse transcription, semi-nested multi-enzyme isothermal rapid amplification, and lateral flow dipstick assays. J Clin Microbiol 2024; 62:e0038324. [PMID: 39140738 PMCID: PMC11389142 DOI: 10.1128/jcm.00383-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
Chikungunya fever is an acute infectious disease caused by chikungunya virus (CHIKV), which is transmitted by Aedes mosquitoes. Simple, rapid, and sensitive detection of CHIKV is critical for its prevention and spread. To address this issue, we combined one-tube, reverse transcription semi-nested, multi-enzyme isothermal rapid amplification, and lateral flow dipstick strips assay to detect CHIKV RNA. The study used a 318-bp gene fragment of CHIKV NSP4 as the target of the assay. This method of amplification takes 30 min for two-step amplification at 39°C. The dilution of amplification products was added to the LFD strip with results visible to the naked eye after 10 min. The method has a sensitivity of 1 copy/μL for the detection of CHIKV RNA, which is 100-fold higher than the conventional reverse transcription-multi-enzyme isothermal rapid amplification and 10-fold higher than the reverse transcription quantitative PCR (RT-qPCR) method. In addition, the method demonstrated good specificity and a better detection rate (85.7%, 18 of 21) than RT-qPCR (80.9%, 17 of 21) in clinically confirmed patient plasma samples. Thus, the rapid CHIKV RNA assay developed in this study will be an important tool for the rapid and accurate screening of patients for chikungunya fever. IMPORTANCE This study presents a new one-tube, reverse transcription semi-nested, multi-enzyme isothermal rapid amplification assay combined with lateral flow dipstick strips for the detection of CHIKV. This technique significantly improves sensitivity and outperforms RT-qPCR for the detection of CHIKV, especially in samples with low viral loads. It is also significantly faster than conventional RT-qPCR and does not require special equipment or a standard PCR laboratory. The combination of the isothermal amplification technology developed in this study with point-of-care molecular testing offers the potential for rapid, on-site, low-cost molecular diagnosis of CHIKV.
Collapse
Affiliation(s)
- Xinlin Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Kecan Biotechnology Co., Ltd, Kunming, Yunnan, China
| | - Gaowen Liu
- Yunnan Kecan Biotechnology Co., Ltd, Kunming, Yunnan, China
| | - Yingchao Chang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Kecan Biotechnology Co., Ltd, Kunming, Yunnan, China
| | - Mengyuan Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Li Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Kecan Biotechnology Co., Ltd, Kunming, Yunnan, China
| | - Xueshan Xia
- Yunnan Provincial Key Laboratory of Public Health and Biosafety, Kunming Medical University, Kunming, Yunnan, China
| | - Yue Feng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Public Health and Biosafety, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
4
|
Storms SM, Shisler J, Nguyen TH, Zuckermann FA, Lowe JF. Lateral flow paired with RT-LAMP: A speedy solution for Influenza A virus detection in swine. Vet Microbiol 2024; 296:110174. [PMID: 38981201 DOI: 10.1016/j.vetmic.2024.110174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/31/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Influenza A Virus in swine (IAV-S) is a zoonotic pathogen that is nearly ubiquitous in commercial swine in the USA. Swine possess sialic acid receptors that allow co-infection of human and avian viruses with the potential of pandemic reassortment. We aimed to develop a fast and robust testing method for IAV-S detection on swine farms. Two primers of the RT-LAMP assay were labeled for use in a lateral flow readout. A commercially available lateral flow kit was used to read the amplicon product. With a runtime of ∼ 45 minutes, the limit of detection for the assay is comparable with an RT-qPCR Cq less than 35, with a sensitivity of 83.5 % and a specificity of 89.6 %. This assay allows veterinarians and producers with limited access to diagnostic services to perform and detect Matrix gene amplification on-site with low equipment costs. The time from sample collection to detection is less than one hour, making this method an accessible, convenient, and affordable tool to prevent the spread of zoonotic disease.
Collapse
Affiliation(s)
- Suzanna M Storms
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802, USA.
| | - Joanna Shisler
- Department of Microbiology, University of Illinois at Urbana-Champaign. Chemical and Life Sciences Laboratory, B103 CLSL, MC-110, S Goodwin Ave, Urbana, IL 61801, USA.
| | - Thanh H Nguyen
- Department of Civil Engineering, University of Illinois at Urbana-Champaign, 205 N Mathews Ave, Urbana, IL 61801, USA.
| | - Federico A Zuckermann
- Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802, USA.
| | - James F Lowe
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802, USA.
| |
Collapse
|
5
|
Adewusi OO, Waldner CL, Hanington PC, Hill JE, Freeman CN, Otto SJG. Laboratory tools for the direct detection of bacterial respiratory infections and antimicrobial resistance: a scoping review. J Vet Diagn Invest 2024; 36:400-417. [PMID: 38456288 PMCID: PMC11110769 DOI: 10.1177/10406387241235968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Rapid laboratory tests are urgently required to inform antimicrobial use in food animals. Our objective was to synthesize knowledge on the direct application of long-read metagenomic sequencing to respiratory samples to detect bacterial pathogens and antimicrobial resistance genes (ARGs) compared to PCR, loop-mediated isothermal amplification, and recombinase polymerase amplification. Our scoping review protocol followed the Joanna Briggs Institute and PRISMA Scoping Review reporting guidelines. Included studies reported on the direct application of these methods to respiratory samples from animals or humans to detect bacterial pathogens ±ARGs and included turnaround time (TAT) and analytical sensitivity. We excluded studies not reporting these or that were focused exclusively on bioinformatics. We identified 5,636 unique articles from 5 databases. Two-reviewer screening excluded 3,964, 788, and 784 articles at 3 levels, leaving 100 articles (19 animal and 81 human), of which only 7 studied long-read sequencing (only 1 in animals). Thirty-two studies investigated ARGs (only one in animals). Reported TATs ranged from minutes to 2 d; steps did not always include sample collection to results, and analytical sensitivity varied by study. Our review reveals a knowledge gap in research for the direct detection of bacterial respiratory pathogens and ARGs in animals using long-read metagenomic sequencing. There is an opportunity to harness the rapid development in this space to detect multiple pathogens and ARGs on a single sequencing run. Long-read metagenomic sequencing tools show potential to address the urgent need for research into rapid tests to support antimicrobial stewardship in food animal production.
Collapse
Affiliation(s)
- Olufunto O. Adewusi
- HEAT-AMR (Human-Environment-Animal Transdisciplinary Antimicrobial Resistance) Research Group, University of Alberta, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Cheryl L. Waldner
- Departments of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Janet E. Hill
- Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Claire N. Freeman
- Departments of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Simon J. G. Otto
- HEAT-AMR (Human-Environment-Animal Transdisciplinary Antimicrobial Resistance) Research Group, University of Alberta, Edmonton, AB, Canada
- Healthy Environments Thematic Area Lead, Centre for Healthy Communities, University of Alberta, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Wu Y, Huang T, Chen X, Wang M, Wang X, Zhang Y, Zhou N. A lateral flow strip for on-site detection of homocysteine based on a truncated aptamer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2456-2463. [PMID: 38591267 DOI: 10.1039/d4ay00274a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
An elevated level of homocysteine (Hcy) in serum is closely related to the development of various diseases. Therefore, homocysteine has been widely employed as a biomarker in medical diagnosis and the on-site detection of homocysteine is highly desired. In this study, a truncated highly specific aptamer for homocysteine was screened and used to design a lateral flow strip (LFS) for the detection of homocysteine. The aptamer was derived from a previously reported sequence. Based on the result of molecular docking, the original sequence was subjected to truncation, resulting in a reduction of the length from 66 nt to 55 nt. Based on the truncated aptamer, the LFS was designed for the detection of homocysteine. In the presence of homocysteine, the aptamer selectively binds to it, releasing cDNA from the aptamer/cDNA duplex. This allows cDNA to bind to the capture probe immobilized on the T zone of the strip, resulting in a red signal on the T zone from gold nanoparticles (AuNPs). The strip enables the visual detection of homocysteine in 5 min. Quantitative detection can be facilitated with the aid of ImageJ software. In this mode, the linear detection range for homocysteine is within 5-50 μM, with a detection limit of 4.18 μM. The strip has been effectively utilized for the detection of homocysteine in human serum. Consequently, the combination of the truncated aptamer and the strip offers a method that is sensitive, quick, and economical for the on-site detection of homocysteine.
Collapse
Affiliation(s)
- Yunqing Wu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Tianyu Huang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xin Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Mingyuan Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xiaoli Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Yuting Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Sciaudone M, Carpena R, Calderón M, Sheen P, Zimic M, Coronel J, Gilman RH, Bowman NM. Rapid detection of Mycobacterium tuberculosis using recombinase polymerase amplification: A pilot study. PLoS One 2023; 18:e0295610. [PMID: 38064441 PMCID: PMC10707601 DOI: 10.1371/journal.pone.0295610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Tuberculosis remains one of the leading causes of death worldwide, especially in low- and middle-income countries. Tuberculosis treatment and control efforts are hindered by the difficulty in making the diagnosis, as currently available diagnostic tests are too slow, too expensive, or not sufficiently sensitive. Recombinase polymerase amplification (RPA) is a novel technique that allows for the amplification of DNA rapidly, at constant temperature, and with minimal expense. We calculated and compared the limit of detection, sensitivity, and specificity of two RPA-based assays for the diagnosis of pulmonary tuberculosis, using two sets of published primers. We also calculated and compared the assays' limits of detection and compared their performance using two different DNA extraction methods prior to amplification (a commercially available DNA extraction kit vs. the chelex method). The RPA-lateral flow assay had a limit of detection of 5 fg/μL of DNA, a sensitivity of 53.2%, and a specificity of 93.3%, while the real time-RPA assay had a limit of detection of 25 fg/μL of DNA, a sensitivity of 85.1%, and a specificity of 93.3%. There was no difference in assay performance when DNA extraction was carried out using the commercial kit vs. the chelex method. The real-time RPA assay has adequate sensitivity and specificity for the diagnosis of pulmonary tuberculosis and could be a viable diagnostic tool in resource-limited settings, but the lateral flow assay did not perform as well, perhaps due to the fact we used stored sputum specimens from a biorepository. More work is needed to optimize the RPA-lateral flow assay, to get a more accurate estimate of its specificity and sensitivity using prospectively collected specimens, and to develop both assays into point-of-care tests that can be easily deployed in the field.
Collapse
Affiliation(s)
- Michael Sciaudone
- Department of Medicine, Section of Infectious Diseases, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- Center for Intelligent Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Renzo Carpena
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Maritza Calderón
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Patricia Sheen
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Mirko Zimic
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Jorge Coronel
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Robert H. Gilman
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Natalie M. Bowman
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
8
|
Dey MK, Iftesum M, Devireddy R, Gartia MR. New technologies and reagents in lateral flow assay (LFA) designs for enhancing accuracy and sensitivity. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4351-4376. [PMID: 37615701 DOI: 10.1039/d3ay00844d] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Lateral flow assays (LFAs) are a popular method for quick and affordable diagnostic testing because they are easy to use, portable, and user-friendly. However, LFA design has always faced challenges regarding sensitivity, accuracy, and complexity of the operation. By integrating new technologies and reagents, the sensitivity and accuracy of LFAs can be improved while minimizing the complexity and potential for false positives. Surface enhanced Raman spectroscopy (SERS), photoacoustic techniques, fluorescence resonance energy transfer (FRET), and the integration of smartphones and thermal readers can improve LFA accuracy and sensitivity. To ensure reliable and accurate results, careful assay design and validation, appropriate controls, and optimization of assay conditions are necessary. Continued innovation in LFA technology is crucial to improving the reliability and accuracy of rapid diagnostic testing and expanding its applications to various areas, such as food testing, water quality monitoring, and environmental testing.
Collapse
Affiliation(s)
- Mohan Kumar Dey
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Maria Iftesum
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Ram Devireddy
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
9
|
Wang F, Wang H, Zhang L, Ji T, Gao Y, Wang Y, Dong S, Gao X. An improved recombinase polymerase amplification assay for the visual detection of Staphylococcus epidermidis with lateral flow strips. Clin Chim Acta 2023; 548:117455. [PMID: 37394163 DOI: 10.1016/j.cca.2023.117455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
Staphylococcus epidermidis is an opportunistic pathogenic microorganism that is an important cause of cross-infection in hospitals. The development of rapid and effective detection techniques is important for its control. The application of traditional identification and PCR-based methods is limited by their requirements for both laboratory instrumentation and trained personnel. To overcome this issue, we developed a fast detection approach for S. epidermidis that was based on recombinase polymerase amplification (RPA) and lateral flow strips (LFS). First, five pairs of primers were designed for molecular diagnosis using the sesB gene as the target, and were screened for their amplification performance and the formation of primer dimers. Specific probes were then designed based on the best primer pairs screened, which were susceptible to primer-dependent artifacts and generated false-positive signals when used for LFS detection. This weakness of the LFS assay was overcome by modifying the sequences of the primers and probes. The efficacy of these measures was rigorously tested, and improved the RPA-LFS system. Standardized systems completed the amplification process within 25 min at a constant temperature of 37 °C, followed by visualization of the LFS within 3 min. The approach was very sensitive (with a detection limit of 8.91 CFU/μL), with very good interspecies specificity. In the analysis of clinical samples, the approach produced results consistent with PCR and 97.78% consistent with the culture-biochemical method, with a kappa index of 0.938. Our method was rapid, accurate, and less dependent on equipment and trained personnel than traditional methods, and provided information for the timely development of rational antimicrobial treatment plans. It has high potential utility in clinical settings, particularly in resource-constrained locations.
Collapse
Affiliation(s)
- Fang Wang
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China; Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang 222023, China
| | - Hui Wang
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China
| | - Linhai Zhang
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China
| | - Tuo Ji
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China; Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang 222023, China
| | - Yuzhi Gao
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China; Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang 222023, China
| | - Yan Wang
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China
| | - Shude Dong
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China.
| | - Xuzhu Gao
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China; Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang 222023, China.
| |
Collapse
|
10
|
Advances in nucleic acid amplification techniques (NAATs): COVID-19 point-of-care diagnostics as an example. Biosens Bioelectron 2022; 206:114109. [PMID: 35245867 DOI: 10.1016/j.bios.2022.114109] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
Abstract
Achieving superhigh sensitivity is the ultimate goal for bio-detection in modern analytical science and life science. Among variable signal amplification strategies, nucleic acid amplification technologies are revolutionizing the field of bio-detection, providing greater possibilities in novel diagnosis achieving high efficiency, specificity, and cost-effectiveness. Nucleic acid amplification techniques (NAATs), such as Polymerase Chain Reaction (PCR), Rolling Circle Amplification (RCA), Loop-Mediated Isothermal Amplification (LAMP), Recombinase Polymerase Amplification (RPA), CRISPR-related amplification, and others are dominating methods employed in research and clinical settings. They each provide distinctively unique features that can offer desirable performance in terms of sensitivity, specificity, simplicity, stability, and cost. NAATs are in unmet demand in molecular diagnosis, especially in point-of-care scenario. This review will discuss the principles and recent advancements of each NAAT, respectively, revealing their strengths and challenges in achieving rapid and accurate bio-detection with a focus on point-of-care diagnosis. Furthermore, this review will explore the application of each of the technologies through the contemporary COVID-19 pandemic, analyzing their ability in point-of-care diagnosis of the COVID-19 with high sensitivity to emphasize significance of developing NAATs based methods in battling COVID-19. Finally, advantages and potentials of each NAAT in enhancements of sensitivity and specificity in bio-detection from bench side to the bedside will be discussed, aiming for full exploitation of capability of each NAAT. This review will provide novel aspects in the selection and combination of usages of various NAATs based on their distinctive characteristics and limitations. A possible advancing direction of future accurate POCT is also proposed.
Collapse
|
11
|
Sohrabi H, Majidi MR, Fakhraei M, Jahanban-Esfahlan A, Hejazi M, Oroojalian F, Baradaran B, Tohidast M, Guardia MDL, Mokhtarzadeh A. Lateral flow assays (LFA) for detection of pathogenic bacteria: A small point-of-care platform for diagnosis of human infectious diseases. Talanta 2022; 243:123330. [DOI: 10.1016/j.talanta.2022.123330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 12/31/2022]
|
12
|
Chen S, Yuan H, Yan X. Rapid visual detection of benzimidazole resistance in Botrytis cinerea by recombinase polymerase amplification combined with a lateral flow dipstick. PEST MANAGEMENT SCIENCE 2022; 78:821-830. [PMID: 34719103 DOI: 10.1002/ps.6697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/24/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Benzimidazole resistance in Botrytis cinerea is related to point mutations in the target β-tubulin gene (TUB2). Three mutations (E198A, E198K, E198V) at codon 198 account for most of the resistant strains. A rapid on-site diagnostic assay would be useful to detect the presence and monitor further spread of this resistance mechanism. RESULTS A recombinase polymerase amplification combined with lateral flow detection (RPA-LFD) method was established for the rapid detection of methyl benzimidazole carbamate (MBC) resistance in B. cinerea. Based on the three mutations at TUB2 codon 198, three sets of RPA-LFD primers were designed, and each of these primer sets was able to specifically amplify the DNA containing its corresponding mutation; no amplification was detected with other mutated or wild-type DNA. The assay was optimized for specificity and sensitivity and was shown to detect the presence of 2 × 102 copies μl-1 of target DNA per reaction within 10 min. DNA from eight other common fungal species of small fruit did not yield a signal. The system worked well over a wide range of temperatures from 25 to 45°C. Crude DNA obtained from boiled mycelium and conidia of symptomatic fruit could be used as templates, which simplified the assay process. CONCLUSION This study developed a novel assay based on RPA-LFD for the rapid and equipment-free detection of MBC-resistant isolates. In combination with a simple DNA extraction method, the assay could detect B. cinerea MBC-resistant isolates even without specialized equipment within 30 min. Considering its specificity, stability and simplicity, the RPA-LFD assay could be a promising tool for rapid on-site diagnosis of fungicide-resistant isolates. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuning Chen
- China and Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huizhu Yuan
- China and Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaojing Yan
- China and Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Zhu X, Zhao Y, Zhu C, Wang Y, Liu Y, Su J. Rapid detection of cagA-positive Helicobacter pylori based on duplex recombinase aided amplification combined with lateral flow dipstick assay. Diagn Microbiol Infect Dis 2022; 103:115661. [DOI: 10.1016/j.diagmicrobio.2022.115661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/20/2022] [Accepted: 02/06/2022] [Indexed: 11/03/2022]
|
14
|
Wang Z, Wang Y, Lin L, Wu T, Zhao Z, Ying B, Chang L. A finger-driven disposable micro-platform based on isothermal amplification for the application of multiplexed and point-of-care diagnosis of tuberculosis. Biosens Bioelectron 2022; 195:113663. [PMID: 34610534 DOI: 10.1016/j.bios.2021.113663] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/29/2021] [Accepted: 09/19/2021] [Indexed: 02/08/2023]
Abstract
Tuberculosis (TB) remains the high-risk infectious pathogen that caused global pandemic and high mortality, particularly in the areas lack in health resources. Clinical TB screening and diagnosis are so far mainly conducted on limited types of commercial platforms, which are expensive and require skilled personnel. In this work, we introduced a low-cost and portable finger-driven microfluidic chip (named Fd-MC) based on recombinase polymerase amplification (RPA) for rapid on-site detection of TB. After injection of the pre-treated sample solution, the pre-packaged buffer was driven by the pressure generated by the finger-actuated operation to accomplish sequential processes of diagnosis in a fully isolated microchannel. An in-situ fluorescence strategy based on FAM-probe was implemented for on-chip results read-out though a hand-held UV lamp. Hence, the Fd-MC proved unique advantageous for avoiding the risk of infection or environmental contamination. In addition, the Fd-MC was designed for multiplexed detection, which is able to not only identify TB/non-TB infection, but also differentiate between human Mycobacterium tuberculosis and Mycobacterium bovis. The platform was verified in 37 clinical samples, statistically with 100% specificity and 95.2% sensitivity as compared to commercial real-time RPA. Overall, the proposed platform eliminates the need on external pumps and skilled personnel, holding promise to POC testing in the resource-limited area.
Collapse
Affiliation(s)
- Zhiying Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Long Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Tao Wu
- Department of Laboratory Medicine, Med+X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Clinical Laboratory Medicine, People's Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest Minzu University), Yinchuan 750002, China
| | - Zhenzhen Zhao
- Department of Laboratory Medicine, Med+X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, Med+X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
15
|
Ghosh A, Jangra S, Dietzgen RG, Yeh WB. Frontiers Approaches to the Diagnosis of Thrips (Thysanoptera): How Effective Are the Molecular and Electronic Detection Platforms? INSECTS 2021; 12:insects12100920. [PMID: 34680689 PMCID: PMC8540714 DOI: 10.3390/insects12100920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary Thrips are important agricultural and forest pests. They cause damage by sucking plant sap and transmitting several plant viruses. Correct identification is the key for epidemiological studies and formulating appropriate management strategies. The application of molecular and electronic detection platforms has improved the morphological character-based diagnosis of thrips species. This article reviews research on molecular and automated identification of thrips species and discusses future research strategies for rapid and high throughput thrips diagnosis. Abstract Thrips are insect pests of economically important agricultural, horticultural, and forest crops. They cause damage by sucking plant sap and by transmitting several tospoviruses, ilarviruses, carmoviruses, sobemoviruses, and machlomoviruses. Accurate and timely identification is the key to successful management of thrips species. However, their small size, cryptic nature, presence of color and reproductive morphs, and intraspecies genetic variability make the identification of thrips species challenging. The use of molecular and electronic detection platforms has made thrips identification rapid, precise, sensitive, high throughput, and independent of developmental stages. Multi-locus phylogeny based on mitochondrial, nuclear, and other markers has resolved ambiguities in morphologically indistinguishable thrips species. Microsatellite, RFLP, RAPD, AFLP, and CAPS markers have helped to explain population structure, gene flow, and intraspecies heterogeneity. Recent techniques such as LAMP and RPA have been employed for sensitive and on-site identification of thrips. Artificial neural networks and high throughput diagnostics facilitate automated identification. This review also discusses the potential of pyrosequencing, microarrays, high throughput sequencing, and electronic sensors in delimiting thrips species.
Collapse
Affiliation(s)
- Amalendu Ghosh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.G.); (S.J.)
| | - Sumit Jangra
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.G.); (S.J.)
| | - Ralf G. Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
- Correspondence:
| | - Wen-Bin Yeh
- Department of Entomology, National Chung Hsing University, Taichung City 402, Taiwan;
| |
Collapse
|
16
|
Lu Y, Li MC, Liu HC, Lin SQ, Zhao XQ, Liu ZG, Zhao LL, Wan KL. Detecting Mycobacterium tuberculosis complex and rifampicin resistance via a new rapid multienzyme isothermal point mutation assay. Anal Biochem 2021; 630:114341. [PMID: 34411551 DOI: 10.1016/j.ab.2021.114341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
Simple, rapid, and accurate detection of the Mycobacterium tuberculosis complex (MTBC) and drug resistance is critical for improving patient care and decreasing the spread of tuberculosis. To this end, we have developed a new simple and rapid molecular method, which combines multienzyme isothermal rapid amplification and a lateral flow strip, to detect MTBC and simultaneously detect rifampin (RIF) resistance. Our findings showed that it has sufficient sensitivity and specificity for discriminating 118 MTBC strains from 51 non-tuberculosis mycobacteria strains and 11 of the most common respiratory tract bacteria. Further, compared to drug susceptibility testing, the assay has a sensitivity, specificity, and accuracy of 54.1%, 100.0%, and 75.2%, respectively, for detection of RIF resistance. Some of the advantages of this assay are that no special instrumentation is required, a constant low temperature of 39 °C is sufficient for the reaction, the turnaround time is less than 20 min from the start of the reaction to read out and the result can be seen with the naked eye and does not require specialized training. These characteristics of the new assay make it particularly useful for detecting MTBC and RIF resistance in resource-limited settings.
Collapse
Affiliation(s)
- Yao Lu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Ma-Chao Li
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Hai-Can Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Shi-Qiang Lin
- Department of Bioinformatics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Xiu-Qin Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Zhi-Guang Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Li-Li Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Kang-Lin Wan
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
17
|
Rasmi Y, Li X, Khan J, Ozer T, Choi JR. Emerging point-of-care biosensors for rapid diagnosis of COVID-19: current progress, challenges, and future prospects. Anal Bioanal Chem 2021; 413:4137-4159. [PMID: 34008124 PMCID: PMC8130795 DOI: 10.1007/s00216-021-03377-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic is currently a serious global health threat. While conventional laboratory tests such as quantitative real-time polymerase chain reaction (qPCR), serology tests, and chest computerized tomography (CT) scan allow diagnosis of COVID-19, these tests are time-consuming and laborious, and are limited in resource-limited settings or developing countries. Point-of-care (POC) biosensors such as chip-based and paper-based biosensors are typically rapid, portable, cost-effective, and user-friendly, which can be used for COVID-19 in remote settings. The escalating demand for rapid diagnosis of COVID-19 presents a strong need for a timely and comprehensive review on the POC biosensors for COVID-19 that meet ASSURED criteria: Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Deliverable to end users. In the present review, we discuss the importance of rapid and early diagnosis of COVID-19 and pathogenesis of COVID-19 along with the key diagnostic biomarkers. We critically review the most recent advances in POC biosensors which show great promise for the detection of COVID-19 based on three main categories: chip-based biosensors, paper-based biosensors, and other biosensors. We subsequently discuss the key benefits of these biosensors and their use for the detection of antigen, antibody, and viral nucleic acids. The commercial POC biosensors for COVID-19 are critically compared. Finally, we discuss the key challenges and future perspectives of developing emerging POC biosensors for COVID-19. This review would be very useful for guiding strategies for developing and commercializing rapid POC tests to manage the spread of infections.Graphical abstract.
Collapse
Affiliation(s)
- Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, 5714783734, Urmia, Iran
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, 5714783734, Urmia, Iran
| | - Xiaokang Li
- Ludwig Institute for Cancer Research, University of Lausanne, Agora Center, 1005, Lausanne, Switzerland
- Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), 1011, Lausanne, Switzerland
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Kingdom of Saudi Arabia
| | - Tugba Ozer
- Department of Bioengineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
18
|
Rapid detection of multidrug-resistant tuberculosis based on allele-specific recombinase polymerase amplification and colorimetric detection. PLoS One 2021; 16:e0253235. [PMID: 34115793 PMCID: PMC8195408 DOI: 10.1371/journal.pone.0253235] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/01/2021] [Indexed: 11/19/2022] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) poses a serious threat to TB control. Early diagnosis and proper treatment are essential factors to limit the spread of the disease. The existing molecular tests for MDR-TB usually require specific instruments, steady power supply, and routine maintenance, which might be obstacles for low-resource settings. This study aimed to develop allele-specific isothermal recombinase polymerase amplification (allele-specific RPA) to simultaneously detect the most common mutations in the rpoB gene at codons 516, 526, and 531, which are associated with rifampicin resistance, and in the katG gene at codon 315, which is related to isoniazid resistance. Allele-specific primers targeting four major mutations, rpoB516, rpoB526, rpoB531, and katG315, were constructed and used in individual RPA reactions. The RPA amplicons were endpoints detected by the naked eye immediately after applying SYBR Green I. The optimised RPA assay was evaluated with the Mycobacterium tuberculosis wild-type strain H37Rv and 141 clinical M. tuberculosis isolates. The results revealed that allele-specific RPA combined with SYBR Green I detection (AS-RPA/SYBR) detected these four major mutations with 100% sensitivity and specificity relative to DNA sequencing. The limits of detection for these particular mutations with AS-RPA/SYBR were 5 ng. As a result of the outstanding performance of AS-RPA/SYBR, including its easy setup, speed, lack of a specific instrument requirement, and lack of cross-reaction with other bacteria, this technique may be integrated for the molecular diagnosis of MDR-TB, especially in low-resource settings.
Collapse
|
19
|
Brunauer A, Verboket RD, Kainz DM, von Stetten F, Früh SM. Rapid Detection of Pathogens in Wound Exudate via Nucleic Acid Lateral Flow Immunoassay. BIOSENSORS-BASEL 2021; 11:bios11030074. [PMID: 33800856 PMCID: PMC8035659 DOI: 10.3390/bios11030074] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022]
Abstract
The rapid detection of pathogens in infected wounds can significantly improve the clinical outcome. Wound exudate, which can be collected in a non-invasive way, offers an attractive sample material for the detection of pathogens at the point-of-care (POC). Here, we report the development of a nucleic acid lateral flow immunoassay for direct detection of isothermally amplified DNA combined with fast sample preparation. The streamlined protocol was evaluated using human wound exudate spiked with the opportunistic pathogen Pseudomonas aeruginosa that cause severe health issues upon wound colonization. A detection limit of 2.1 × 105 CFU per mL of wound fluid was achieved, and no cross-reaction with other pathogens was observed. Furthermore, we integrated an internal amplification control that excludes false negative results and, in combination with the flow control, ensures the validity of the test result. The paper-based approach with only three simple hands-on steps has a turn-around time of less than 30 min and covers the complete analytical process chain from sample to answer. This newly developed workflow for wound fluid diagnostics has tremendous potential for reliable pathogen POC testing and subsequent target-oriented therapy.
Collapse
Affiliation(s)
- Anna Brunauer
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - René D Verboket
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Daniel M Kainz
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Felix von Stetten
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Susanna M Früh
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
20
|
Bushmeat Species Identification: Recombinase Polymerase Amplification (RPA) Combined with Lateral Flow (LF) Strip for Identification of Formosan Reeves' Muntjac ( Muntiacus reevesi micrurus). Animals (Basel) 2021; 11:ani11020426. [PMID: 33562213 PMCID: PMC7914887 DOI: 10.3390/ani11020426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Illegal hunting of wild animals and the consumption of bushmeat are recognized not only as a threat to biodiversity, but also as a risk for transmitting zoonotic diseases. Illegal sales of meat products from Formosan Reeves’ muntjac (Muntiacus reevesi micrurus) is a growing issue in Taiwan, bringing forth the demand for a fast and cost-effective technique for meat species identification. In this study, a new recombinase polymerase amplification combined with a lateral flow strip to identify Formosan Reeves’ muntjac in meat products was described. This method only requires minimal sample preparation and an isothermal heating process. The result can be interpreted by the naked eye within 30 min. The system we designed efficiently detected a variety of meat products, and no cross-reactions were observed with other animal species. This simple assay provides a sensitive and specific method to identify bushmeat sources in various meat products, which holds the potential for on-field application in the future. Abstract The identification of animal species of meat in meat products is of great concern for various reasons, such as public health, religious beliefs, food allergies, legal perspectives, and bushmeat control. In this study, we developed a new technique to identify Formosan Reeves’ muntjac in meat using recombinase polymerase amplification (RPA) in combination with a lateral flow (LF) strip. The DNA extracted from a piece of Formosan Reeves’ muntjac meat was amplified by a pair of specific primers based on its mitochondrial cytochrome b gene for 10 min at a constant temperature ranging from 30 to 45 °C using RPA. Using the specific probe added to the RPA reaction system, the amplified products were visualized on the LF strip within 5 min. The total operating time from quick DNA extraction to visualizing the result was approximately 30 min. The RPA-LF system we designed was efficient when using boiled, pan-fried, roasted, stir-fried, or stewed samples. The advantages of simple operation, speediness, and cost-effectiveness make our RPA-LF method a promising molecular detection tool for meat species identification of either raw or variously cooked Formosan Reeves’ muntjac meat. It is also possible to apply this method to identify the meat of other wildlife sources.
Collapse
|
21
|
Fang W, Cai Y, Zhu L, Wang H, Lu Y. Rapid and Highly Sensitive Detection of Toxigenic Vibrio cholerae Based on Recombinase-Aided Amplification Combining with Lateral Flow Assay. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01909-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Xu Y, Wu P, Zhang H, Li J. Rapid detection of Mycobacterium tuberculosis based on antigen 85B via real-time recombinase polymerase amplification. Lett Appl Microbiol 2020; 72:106-112. [PMID: 32726877 DOI: 10.1111/lam.13364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 11/29/2022]
Abstract
Tuberculosis (TB), as a common infectious disease, still remains a severe challenge to public health. Due to the unsatisfied clinical needs of currently available diagnostic vehicles, it is desired to establish a new approach for universally detecting Mycobacterium tuberculosis. Herein, we designed a real-time recombinase polymerase amplification (RPA) technology for identifying M. tuberculosis within 20 min at 39°C via custom-designed oligonucleotide primers and probe, which could specifically target antigen 85B (Ag85B). Particularly, the primers F4-R4 produced the fastest fluorescence signal with the probe among four pairs of designed primers in the RPA assays. The optimal primers/probe combination could effectively identify M. tuberculosis with the detection limit of 4·0 copies per μl, as it could not show a positive signal for the genomic DNA from other mycobacteria or pathogens. The Ag85B-based RPA could determine the genomic DNA extracted from M. tuberculosis with high reliability (100%, 22/22). More importantly, when testing clinical sputum samples, the real-time RPA displayed an admirable sensitivity (90%, 95% CI: 80·0-96·0%) and specificity (98%, 95% CI: 89·0-100·0%) compared to traditional smear microscopy, which was similar to the assay of Xpert MTB/RIF. This real-time RPA based Ag85B provides a promising strategy for the rapid and universal diagnosis of TB.
Collapse
Affiliation(s)
- Y Xu
- Department of Infectious Diseases, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.,Department of Infectious Diseases, the Affiliated Zhongda Hospital of Southeast University, Nanjing, PR China
| | - P Wu
- Department of Infectious Diseases, the Affiliated Zhongda Hospital of Southeast University, Nanjing, PR China
| | - H Zhang
- Department of Microbial Inspection, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, PR China
| | - J Li
- Department of Infectious Diseases, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
23
|
Lu X, Zheng Y, Zhang F, Yu J, Dai T, Wang R, Tian Y, Xu H, Shen D, Dou D. A Rapid, Equipment-Free Method for Detecting Phytophthora infestans in the Field Using a Lateral Flow Strip-Based Recombinase Polymerase Amplification Assay. PLANT DISEASE 2020; 104:2774-2778. [PMID: 32924873 DOI: 10.1094/pdis-01-20-0203-sc] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Late blight, caused by the oomycete Phytophthora infestans, is a major constraint on the production of potatoes and tomatoes as well as a constant threat to global food security. An early diagnostic tool is important for the effective management of late blight in the field. Here, in combination with a simplified DNA extraction method, we developed a lateral flow strip-based recombinase polymerase amplification (LF-RPA) assay for the rapid, equipment-free detection of P. infestans. This assay targets the Ras-related protein (Ypt1) gene and can be performed over a wide range of temperatures (25 to 45°C). All 12 P. infestans isolates yielded positive detection results using the LF-RPA assay, and no cross-reaction occurred with related oomycetes or fungal species. With this assay, the detection limit was 500 fg of genomic DNA in optimized conditions. Furthermore, by combining a simplified polyethylene glycol-NaOH method for extracting DNA from plant samples, the entire LF-RPA assay enabled the detection of P. infestans within 30 min with no specialized equipment. When applied to field samples, it successfully detected P. infestans in naturally diseased potato plants from eight different fields in China. Therefore, the LF-RPA assay is simple, rapid, and cost-effective and has potential for further development as a kit for diagnosing late blight in resource-limited settings or even on-site.
Collapse
Affiliation(s)
- Xinyu Lu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Zheng
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Fan Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia Yu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingting Dai
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Rongbo Wang
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yuee Tian
- Department of Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Heng Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
Direct detection of methicillin-resistant in Staphylococcus spp. in positive blood culture by isothermal recombinase polymerase amplification combined with lateral flow dipstick assay. World J Microbiol Biotechnol 2020; 36:162. [PMID: 32989593 DOI: 10.1007/s11274-020-02938-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Abstract
Methicillin-resistant staphylococci (MRS) are important antimicrobial-resistant pathogens in sepsis. Conventional blood cultures take 24-72 h. The polymerase chain reaction (PCR)-based methods give faster results (2-3 h) but need expensive thermal cyclers. We therefore developed an isothermal recombinase polymerase amplification (RPA) combined with lateral flow dipstick (LFD) assay for rapid detection of MRS in spiked blood culture samples. Fifty-six clinical isolates including 38 mecA-carrying staphylococci and 18 non-mecA-carrying organisms as confirmed by PCR methods were studied. RPA primer set and probe specific for mecA gene (encoding penicillin-binding protein 2a) were designed. RPA reaction was carried out under isothermal condition (45 °C) within 20 min and read by LFD in 5 min. The RPA-LFD provided 92.1% (35/38) sensitivity for identifying MRS in positive blood culture samples, and no cross-amplification was found (100% specificity). This test failed to detect three mecA-carrying S.sciuri isolates. The detection limits of RPA-LFD method for identifying MRS were equal to those of PCR method. The RPA-LFD is simple, fast, and user-friendly. This method could detect the mecA gene directly from the positive blood culture samples without requirement for special equipment. This method would be useful for appropriate antibiotic therapy and infection control, particularly in a low-resource setting.
Collapse
|
25
|
Xu H, Zhang X, Cai Z, Dong X, Chen G, Li Z, Qiu L, He L, Liang B, Liu X, Liu J. An Isothermal Method for Sensitive Detection of Mycobacterium tuberculosis Complex Using Clustered Regularly Interspaced Short Palindromic Repeats/Cas12a Cis and Trans Cleavage. J Mol Diagn 2020; 22:1020-1029. [PMID: 32470556 DOI: 10.1016/j.jmoldx.2020.04.212] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis is one of the most serious infectious diseases, resulting in death worldwide. Traditional detection methods are not enough to meet the clinical requirements of rapid diagnosis, high specificity, and high sensitivity. Fast, sensitive, and accurate detection of Mycobacterium tuberculosis (MTB) is urgently needed to treat and control tuberculosis disease. Clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas12a) exhibit strong nonspecific degradation ability of exogenous single-strand nucleic acids (trans cleavage) after specific recognition of target sequence. We purified Cas12a protein and selected a proper guide RNA based on conserved sequences of MTB from designed guide RNA library. Then, we proposed a novel detection method based on recombinase polymerase amplification and CRISPR/Cas12a nuclease system for specific and sensitive detection of MTB DNA. The assay, based on fluorescence detection, showed 4.48 fmol/L of limit of detection and good linear correlation of concentration with fluorescence value (R2 = 0.9775). It also showed good performance in distinguishing other bacteria. Furthermore, its clinical performance was evaluated by 193 samples and showed sensitivity of 99.29% (139/140) and specificity of 100% (53/53) at 99% CI, compared with culture method. Taken together, the CRISPR/Cas12a system showed good specificity, excellent sensitivity, and excellent accuracy for MTB detection, and it meets requirements of MTB detection in clinical samples and has great potential for clinical translation.
Collapse
Affiliation(s)
- Haipo Xu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Xiaolong Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xiuqing Dong
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Geng Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Zhenli Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Liman Qiu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Lei He
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, People's Republic of China
| | - Bin Liang
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China.
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China; Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
26
|
Wu H, Zhao P, Yang X, Li J, Zhang J, Zhang X, Zeng Z, Dong J, Gao S, Lu C. A Recombinase Polymerase Amplification and Lateral Flow Strip Combined Method That Detects Salmonella enterica Serotype Typhimurium With No Worry of Primer-Dependent Artifacts. Front Microbiol 2020; 11:1015. [PMID: 32655504 PMCID: PMC7324538 DOI: 10.3389/fmicb.2020.01015] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
On-site detection demands are quickly increasing to control foodborne pathogenic bacteria along with the long food supply chains. Combining the isothermal recombinase polymerase amplification (RPA) with lateral flow strips (LFSs) is a promising molecular detection approach for the short reaction time, low isothermal condition, and simple and "instrument-free" procedure. However, the method comes with a non-negligible intrinsic risk of the primer-dependent artifacts. In this study, with an important foodborne pathogenic bacterium Salmonella enterica serotype Typhimurium (S. Typhimurium) as the model, system measures including the careful selection of primers targeting unique virulence genes, use of a probe in the RPA reaction, introducing base substitutions with specific guidelines in the primer and probe sequences, and analyzing and screening the primer-probe complex formation were taken to eliminate the primer-dependent artifacts. The measures were strictly tested for the efficacy, and the standardized method was able to specifically detect S. typhimurium within 30 min at 42°C without any interference of probe-primer signals. The established RPA-LFS method shared high sensitivity with the detection limit of 1 CFU/μl of unpurified culture. Our study provided practical measures for the prevention of false positive signals from primer-dimers or primer-probe complexes when using the RPA-LFS method in pathogen detections, and also established a readily applicable method for S. Typhimurium detection.
Collapse
Affiliation(s)
- Huahua Wu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Panpan Zhao
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaohan Yang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Juan Li
- Wuhan Institute for Food and Cosmetic Control, Wuhan, China
| | - Jingyu Zhang
- Department of Animal Science, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Xun Zhang
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Zihan Zeng
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Song Gao
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Chen Lu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
27
|
R NV, G H T, R DV, M H, H H, N S. Lateral Flow Genochromatographic Strip for Naked-Eye Detection of Mycobacterium Tuberculosis PCR Products with Gold Nanoparticles as a Reporter. J Biomed Phys Eng 2020; 10:307-318. [PMID: 32637375 PMCID: PMC7321395 DOI: 10.31661/jbpe.v0i0.1912-1018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022]
Abstract
Background Mycobacterium tuberculosis (MTB) is a pathogen causing tuberculosis (TB) in human, and TB can cause enormous social and economic disruptions. Lateral flow test strips (LFTSs) are inexpensive, portable, disposable, rapid, and easy-to-use analytical tools. Objective LFTSs were prepared for the detection of MTB. LFTSs were fabricated using a new specific probe for MTB H37Rv, based on IS6110 sequence gene, and tailed with poly deoxyadenine (dA). Material and Methods In this experimental study, to create test and control zones, streptavidin (STP) and a 150-mer dA were dotted on a nitrocellolose membrane. Gold nanoparticles (GNPs) were conjugated with poly deoxythymidine sequence and placed on the conjugate pad. The composition of immersion buffers for sample pad and conjugate pad, running solution, solutions of GNPs-S-dT150 and STP were introduced. DNA genome of MTB and Mycobacterium bovis in clinical samples was amplified with PCR, and then detected by the LFTSs. During the assay, samples were firstly hybridized in two steps and then placed on a conjugate pad in a manner that positive and negative samples provided two and one red lines, respectively, on the detection pad. Results After PCR reaction with biotinylated primer, hybridization process with specific MTB probe-dA70-100 toke 10 min, and running process on the strip was performed within 5 min. Conclusion We showed that LFTS can discriminate a particular bacteria strain from others. The LFTSs can be redesigned for detection of other pathogenic genomes.
Collapse
Affiliation(s)
- Nazari-Vanani R
- MSc, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tondro G H
- MSc, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Dehdari Vais R
- MSc, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haghkhah M
- PhD, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Heli H
- PhD, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sattarahmady N
- PhD, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
28
|
Gao X, Liu X, Zhang Y, Wei Y, Wang Y. Rapid and visual detection of porcine deltacoronavirus by recombinase polymerase amplification combined with a lateral flow dipstick. BMC Vet Res 2020; 16:130. [PMID: 32381014 PMCID: PMC7203717 DOI: 10.1186/s12917-020-02341-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 04/22/2020] [Indexed: 01/19/2023] Open
Abstract
Background Porcine Deltacoronavirus (PDCoV) is a newly emerging Coronavirus that was first identified in 2012 in Hong Kong, China. Since then, PDCoV has subsequently been reported worldwide, causing a high number of neonatal piglet deaths and significant economic losses to the swine industry. Therefore, it is necessary to establish a highly sensitive and specific method for the rapid diagnosis of PDCoV. Results In the present study, a highly sensitive and specific diagnostic method using recombinase polymerase amplification combined with a lateral flow dipstick (LFD-RPA) was developed for rapid and visual detection of PDCoV. The system can be performed under a broad range of temperature conditions from 10 to 37 °C, and the detection of PDCoV can be completed in 10 min at 37 °C. The sensitivity of this assay was 10 times higher than that of conventional PCR with a lower detection limit of 1 × 102 copies/µl of PDCoV. Meanwhile, the LFD-RPA assay specifically amplified PDCoV, while there was no cross-amplification with other swine-associated viruses, including Porcine epidemic diarrhea virus (PEDV), Transmissible gastroenteritis virus (TGEV), Porcine kobuvirus (PKoV), Foot and mouth disease virus (FMDV), Porcine reproductive and respiratory syndrome virus (PRRSV), Porcine circovirus type 2 (PCV2), Classical swine fever virus (CSFV) and Seneca valley virus (SVV). The repeatability of the test results indicated that this assay had good repeatability. In addition, 68 clinical samples (48 fecal swab specimens and 20 intestinal specimens) were further tested by LFD-RPA and RT-PCR assay. The positive rate of LFD-RPA clinical samples was 26.47% higher than that of conventional PCR (23.53%). Conclusions The LFD-RPA assay successfully detected PDCoV in less than 20 min in this study, providing a potentially valuable tool to improve molecular detection for PDCoV and to monitor the outbreak of PDCoV, especially in low-resource areas and laboratories.
Collapse
Affiliation(s)
- Xiang Gao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Xinsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yonglu Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
29
|
Yersinia pestis detection using biotinylated dNTPs for signal enhancement in lateral flow assays. Anal Chim Acta 2020; 1112:54-61. [PMID: 32334682 DOI: 10.1016/j.aca.2020.03.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/01/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
Abstract
Due to the extreme infectivity of Yersinia pestis it poses a serious threat as a potential biowarfare agent, which can be rapidly and facilely disseminated. A cost-effective and specific method for its rapid detection at extremely low levels is required, in order to facilitate a timely intervention for containment. Here, we report an ultrasensitive method exploiting a combination of isothermal nucleic acid amplification with a tailed forward primer and biotinylated dNTPs, which is performed in less than 30 min. The polymerase chain reaction (PCR) and enzyme linked oligonucleotide assay (ELONA) were used to optimise assay parameters for implementation on the LFA, and achieved detection limits of 45 pM and 940 fM using SA-HRP and SA-polyHRP, respectively. Replacing PCR with isothermal amplification, namely recombinase polymerase amplification, similar signals were obtained (314 fM), with just 15 min of amplification. The lateral flow detection of the isothermally amplified and labelled amplicon was then explored and detection limits of 7 fM and 0.63 fg achieved for synthetic and genomic DNA, respectively. The incorporation of biotinylated dNTPs and their exploitation for the ultrasensitive molecular detection of a nucleic acid target has been demonstrated and this generic platform can be exploited for a multitude of diverse real life applications.
Collapse
|
30
|
Gumaa MM, Cao X, Li Z, Lou Z, Zhang N, Zhang Z, Zhou J, Fu B. Establishment of a recombinase polymerase amplification (RPA) assay for the detection of Brucella spp. Infection. Mol Cell Probes 2019; 47:101434. [PMID: 31401295 PMCID: PMC7127669 DOI: 10.1016/j.mcp.2019.101434] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/21/2019] [Accepted: 08/07/2019] [Indexed: 11/17/2022]
Abstract
Brucellosis is a worldwide re-emerging zoonosis. It has an economic impact due to abortion and loss of fertility in livestock. In this study, Real-time recombinase polymerase amplification (RT-RPA-BP26) targeting Brucella spp. bp26 gene and Lateral flow dipstick (LFD-RPA-IS711) combined with SYBR- Green recombinase polymerase amplification (RPA) targeting insertion sequence IS711 region of Brucella spp. bp26 gene, was developed to detect Brucella spp. from different sample types in domestic animals. The sensitivity and specificity of the two developed RPAs were compared with real-time PCR, PCR, and Rose Bengal Plate Test (RBPT). The analytical sensitivity and detection limit of Real-time RPA and LFD RPA were four and six copies per reaction respectively. The detection of six colony forming units (CFU) of the bacteria-bearing construct with the target sequence was within 20 min at 40 °C for Real-time RPA and 37 °C for LFD RPA. The LFD RPA could work at temperatures between 30 and 35 °C and could be completed within 10–30 min. No significant differences were observed when comparing the results from Real-time RPA and LFD RPA to Real-time PCR and PCR. Both methods showed no cross reactivity with Chlamydia abortus, Toxoplasma gondii, Salmonella typhimurium, and Escherichia coli. In conclusion, RPA is a useful and convenient field and point of care test for brucellosis. RPA essays have been developed for detection of Brucella spp. Kappa analysis showed perfect agreement with RT-PCT Nd PCR.
Collapse
Affiliation(s)
- M M Gumaa
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China.
| | - Xiaoan Cao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China.
| | - Zhaocai Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China.
| | - Zhongzi Lou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China.
| | - Nianzhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China.
| | - Zhijun Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China.
| | - Jizhang Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China
| | - Baoquan Fu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China
| |
Collapse
|
31
|
Fu M, Chen G, Zhang C, Wang Y, Sun R, Zhou J. Rapid and sensitive detection method for Karlodinium veneficum by recombinase polymerase amplification coupled with lateral flow dipstick. HARMFUL ALGAE 2019; 84:1-9. [PMID: 31128793 DOI: 10.1016/j.hal.2019.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
The dinoflagellate Karlodinium veneficum that is usually present at relatively low cell abundances is a globally-distributed harmful algal bloom-forming species, which negatively affects marine ecosystems, fisheries, and human health. Hence, an efficient detection platform for the rapid and sensitive identification of K. veneficum is highly demanded. In this study, a method referred to as recombinase polymerase amplification coupled with lateral flow dipstick (RPA-LFD) was developed for the rapid detection of K. veneficum. The primers for RPA and the detection probe for LFD were designed to specially target the internal transcribed spacer of K. veneficum by molecular cloning and multiple alignments of the related sequences. The developed RPA can gain an approximately 300 bp specific band from K. veneficum. Successful amplification for RPA could be achieved at a temperature range of 35 °C-45 °C. RPA for 30 min could produce enough products that could generate clearly visible electrophoresis bands and were adequate for subsequent LFD analysis. The RPA products can be visually detected by the naked eyes through an LFD after an automatic chromatography for 5 min at room temperature. The developed RPA-LFD was exclusively specific for K. veneficum and displayed no cross-reactivity with other algal species that are commonly distributed along the Chinese coast. In addition, the lowest detection limit of RPA-LFD was 10 ng μL-1 of genomic DNA and 0.1 cell mL-1, which was 100-fold sensitive than conventional PCR. In conclusion, the developed RPA-LFD assay in this study can be used as a rapid and sensitive method to monitor K. veneficum in the future.
Collapse
Affiliation(s)
- Mengqi Fu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Rui Sun
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Jin Zhou
- The Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| |
Collapse
|
32
|
Ma Q, Yao J, Yuan S, Liu H, Wei N, Zhang J, Shan W. Development of a lateral flow recombinase polymerase amplification assay for rapid and visual detection of Cryptococcus neoformans/C. gattii in cerebral spinal fluid. BMC Infect Dis 2019; 19:108. [PMID: 30717679 PMCID: PMC6360735 DOI: 10.1186/s12879-019-3744-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/25/2019] [Indexed: 12/21/2022] Open
Abstract
Background For definitive diagnosis of cryptococcal meningitis, Cryptococcus neoformans and/or C. gattii must be identified within cerebral spinal fluid from the patients. The traditional methods for detecting Cryptococcus spp. such as India ink staining and culture are not ideal. Although sensitive and specific enough, detection of cryptococcal antigen polysaccharide has a high dose hook effect. Therefore, the aim of this study was to introduce a new rapid and simple detection method of Cryptococcus neoformans and C. gattii in cerebral spinal fluid. Methods The lateral flow strips combined with recombinase polymerase amplification (LF-RPA) assay was constructed to detect the specific DNA sequences of C. neoformans and C. gattii. The detection limit was evaluated using serial dilutions of C. neoformans and C. gattii genomic DNA. The specificity was assessed by excessive amount of other pathogens genomic DNA. The optimal detection time and amplification temperature were also analyzed. The diagnostic parameters were first calculated using 114 clinical specimens and then compared with that of other diagnostic method. A brief analysis and comparison of different DNA extraction methods was discussed, too. Results The LF-RPA assay could detect 0.64 pg of genomic DNA of C. neoformans per reaction within 10 min and was highly specific for Cryptococcus spp.. The system could work well at a wide range of temperature from 25 to 45 °C. The overall sensitivity and specificity were 95.2 and 95.8% respectively. As amplification template for LF-RPA assay, both cell lysates and genomic DNA produce similar experimental results. Conclusions The LF-RPA system described here is shown to be a sensitive and specific method for the visible, rapid, and accurate detection of Cryptococcus spp. in cerebral spinal fluid and might be useful for clinical preliminary screening of cryptococcal meningitis.
Collapse
Affiliation(s)
- Qinglin Ma
- Institute of Maternity and Child Medical Research, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, No.2004 Hongli Road, Shenzhen, 518028, Guangdong, China.,Clinical Laboratory, Shenzhen Third People's Hospital, No.29 Bulan Road, Shenzhen, 518112, Guangdong, China
| | - Jilong Yao
- Institute of Maternity and Child Medical Research, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, No.2004 Hongli Road, Shenzhen, 518028, Guangdong, China
| | - Shixin Yuan
- Institute of Maternity and Child Medical Research, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, No.2004 Hongli Road, Shenzhen, 518028, Guangdong, China
| | - Houming Liu
- Clinical Laboratory, Shenzhen Third People's Hospital, No.29 Bulan Road, Shenzhen, 518112, Guangdong, China
| | - Ning Wei
- Personnel Section, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, No.2004 Hongli Road, Shenzhen, 518028, Guangdong, China.
| | - Jianming Zhang
- Institute of Maternity and Child Medical Research, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, No.2004 Hongli Road, Shenzhen, 518028, Guangdong, China.
| | - Wanshui Shan
- Clinical Laboratory, Shenzhen Third People's Hospital, No.29 Bulan Road, Shenzhen, 518112, Guangdong, China.
| |
Collapse
|
33
|
Frimpong M, Ahor HS, Wahed AAE, Agbavor B, Sarpong FN, Laing K, Wansbrough-Jones M, Phillips RO. Rapid detection of Mycobacterium ulcerans with isothermal recombinase polymerase amplification assay. PLoS Negl Trop Dis 2019; 13:e0007155. [PMID: 30707706 PMCID: PMC6373974 DOI: 10.1371/journal.pntd.0007155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/13/2019] [Accepted: 01/14/2019] [Indexed: 01/05/2023] Open
Abstract
Background Access to an accurate diagnostic test for Buruli ulcer (BU) is a research priority according to the World Health Organization. Nucleic acid amplification of insertion sequence IS2404 by polymerase chain reaction (PCR) is the most sensitive and specific method to detect Mycobacterium ulcerans (M. ulcerans), the causative agent of BU. However, PCR is not always available in endemic communities in Africa due to its cost and technological sophistication. Isothermal DNA amplification systems such as the recombinase polymerase amplification (RPA) have emerged as a molecular diagnostic tool with similar accuracy to PCR but having the advantage of amplifying a template DNA at a constant lower temperature in a shorter time. The aim of this study was to develop RPA for the detection of M. ulcerans and evaluate its use in Buruli ulcer disease. Methodology and principal findings A specific fragment of IS2404 of M. ulcerans was amplified within 15 minutes at a constant 42°C using RPA method. The detection limit was 45 copies of IS2404 molecular DNA standard per reaction. The assay was highly specific as all 7 strains of M. ulcerans tested were detected, and no cross reactivity was observed to other mycobacteria or clinically relevant bacteria species. The clinical performance of the M. ulcerans (Mu-RPA) assay was evaluated using DNA extracted from fine needle aspirates or swabs taken from 67 patients in whom BU was suspected and 12 patients with clinically confirmed non-BU lesions. All results were compared to a highly sensitive real-time PCR. The clinical specificity of the Mu-RPA assay was 100% (95% CI, 84–100), whiles the sensitivity was 88% (95% CI, 77–95). Conclusion The Mu-RPA assay represents an alternative to PCR, especially in areas with limited infrastructure. Current diagnostic methods to detect M. ulcerans suffer from delayed time-to-results in most endemic countries by the prolonged period of time for the shipment and storage of samples to a distant, centralized laboratory. The M. ulcerans recombinase polymerase amplification assay (Mu-RPA) is a new, rapid diagnostic test developed for the detection of M. ulcerans infection, known commonly as Buruli ulcer, a chronic, debilitating, necrotizing disease of the skin and soft tissues. This assay is suitable for use on a portable detection device, with the potential to be used for quick diagnosis at the point of need, providing timely results to health workers at Buruli ulcer treatment clinics.
Collapse
Affiliation(s)
- Michael Frimpong
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- * E-mail:
| | - Hubert Senanu Ahor
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ahmed Abd El Wahed
- Division of Microbiology and Animal Hygiene, Georg-August University, Goettingen, Germany
| | - Bernadette Agbavor
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Francisca Naana Sarpong
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kenneth Laing
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Mark Wansbrough-Jones
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Richard Odame Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
34
|
Cui J, Zhao Y, Sun Y, Yu L, Liu Q, Zhan X, Li M, He L, Zhao J. Detection of Babesia gibsoni in dogs by combining recombinase polymerase amplification (RPA) with lateral flow (LF) dipstick. Parasitol Res 2018; 117:3945-3951. [PMID: 30293152 DOI: 10.1007/s00436-018-6104-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/30/2018] [Indexed: 01/16/2023]
Abstract
Babesia gibsoni is a protozoan parasite responsible for the majority of reported cases of canine babesiosis in China. Currently, microscopic examination of the Giemsa-stained thin blood smears is the main diagnosis method in clinic. Here, we report the recombinase polymerase amplification-lateral flow (LF-RPA) dipstick detection method for targeting B. gibsoni cytochrome c oxidase subunit I (cox I) gene. The reaction takes only 20-30 min under isothermal temperatures between 30 and 45 °C. Specificity was evaluated using DNA from related apicomplexan parasites and their host, while the sensitivity was calculated based on the DNA from the experimental B. gibsoni-infected dogs. Results indicated that the LF-RPA method is 20 times more sensitive than the conventional PCR based on 18S rRNA and has no cross reaction with any other test DNAs. The applicability of the LF-RPA method was further evaluated using 15 samples collected from clinic. Thirteen of the 15 samples (86.67%) were detected as positive by LF-RPA, while 10 of them (66.67%) were found positive by conventional PCR. Overall, the novel LF-RPA assay is effective for the detection of B. gobsini and has considerable advantages over the conventional PCR in sensitivity, specificity, simplicity in operation, less time consumption, and visual detection. The LF-RPA method may facilitate the surveillance and early detection of B. gibsoni infection in dogs.
Collapse
Affiliation(s)
- Jie Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yangnan Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yali Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Long Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xueyan Zhan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Muxiao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| |
Collapse
|
35
|
Rapid Detection of Staphylococcus aureus via Recombinase Polymerase Amplification Combined with Lateral Flow Strip. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1200-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
36
|
Shahin K, Gustavo Ramirez-Paredes J, Harold G, Lopez-Jimena B, Adams A, Weidmann M. Development of a recombinase polymerase amplification assay for rapid detection of Francisella noatunensis subsp. orientalis. PLoS One 2018; 13:e0192979. [PMID: 29444148 PMCID: PMC5812721 DOI: 10.1371/journal.pone.0192979] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/01/2018] [Indexed: 11/18/2022] Open
Abstract
Francisella noatunensis subsp. orientalis (Fno) is the causative agent of piscine francisellosis in warm water fish including tilapia. The disease induces chronic granulomatous inflammation with high morbidity and can result in high mortality. Early and accurate detection of Fno is crucial to set appropriate outbreak control measures in tilapia farms. Laboratory detection of Fno mainly depends on bacterial culture and molecular techniques. Recombinase polymerase amplification (RPA) is a novel isothermal technology that has been widely used for the molecular diagnosis of various infectious diseases. In this study, a recombinase polymerase amplification (RPA) assay for rapid detection of Fno was developed and validated. The RPA reaction was performed at a constant temperature of 42°C for 20 min. The RPA assay was performed using a quantitative plasmid standard containing a unique Fno gene sequence. Validation of the assay was performed not only by using DNA from Fno, closely related Francisella species and other common bacterial pathogens in tilapia farms, but also by screening 78 Nile tilapia and 5 water samples. All results were compared with those obtained by previously established real-time qPCR. The developed RPA showed high specificity in detection of Fno with no cross-detection of either the closely related Francisella spp. or the other tested bacteria. The Fno-RPA performance was highly comparable to the published qPCR with detection limits at 15 and 11 DNA molecules detected, respectively. The RPA gave quicker results in approximately 6 min in contrast to the qPCR that needed about 90 min to reach the same detection limit, taking only 2.7–3 min to determine Fno in clinical samples. Moreover, RPA was more tolerant to reaction inhibitors than qPCR when tested with field samples. The fast reaction, simplicity, cost-effectiveness, sensitivity and specificity make the RPA an attractive diagnostic tool that will contribute to controlling the infection through prompt on-site detection of Fno.
Collapse
Affiliation(s)
- Khalid Shahin
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
- Aquatic Animal Diseases Lab, Division of Aquaculture, National Institute of Oceanography and Fisheries, Suez, Egypt
- * E-mail:
| | - Jose Gustavo Ramirez-Paredes
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Graham Harold
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Benjamin Lopez-Jimena
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Alexandra Adams
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Manfred Weidmann
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| |
Collapse
|
37
|
Mo Y, Cui F, Li D, Dai Y, Li X, Zhang X, Qiu Y, Yin Y, Zhang X, Xu W. Establishment of a rapid and sensitive method based on recombinase polymerase amplification to detect mts90, a new molecular target of Mycobacterium tuberculosis. RSC Adv 2017. [DOI: 10.1039/c7ra09999a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The paper is about rapid screening of tuberculosis for detecting mts90, a new molecular target ofMycobacterium tuberculosis.
Collapse
|