1
|
Xu X, Chen W, Zheng J, Liao JY, Yan H, Zhu S. The proximity proteome of pre-40S pre-ribosomal particle components PNO1 and NOB1 using turboID proximity labeling technology. Gene 2025; 955:149411. [PMID: 40157618 DOI: 10.1016/j.gene.2025.149411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/19/2025] [Accepted: 03/09/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND The ribosome assembly factors PNO1 and NOB1 play crucial roles in the maturation of the 40S ribosomal small subunit. TurboID is an efficient biotin ligase that can biotinylate proteins in proximity to the target protein and is widely used to study complex biological processes within cells. In this study, we employed this technology to investigate the complex proximity network of PNO1 and NOB1 within the cell, further revealing their key roles in ribosome biogenesis. RESULTS Firstly, through immunofluorescence experiments, we observed that PNO1 and NOB1 have different localizations within the cell. Subsequently, by analyzing the proximal proteins labeled by PNO1-TurboID and NOB1-TurboID, we identified 871 proximal proteins for PNO1 and 1044 for NOB1, with 663 overlapping proteins. Functional analysis revealed that these proximal proteins are predominantly enriched in biological processes related to ribosome assembly, rRNA processing, and translation, all of which are closely linked to ribosome biogenesis. Notably, we validated the mass spectrometry-identified proteins through co-IP experiments and found that PNO1 and NOB1 interact with the translation-related proteins EIF4B and EIF4G2. CONCLUSION Our study constructed the protein network environment of ribosome assembly factors PNO1 and NOB1 within the cell and found that their neighboring proteins are primarily involved in key biological processes such as ribosome processing, mRNA translation, and the cell cycle, all of which are critical for ribosome biogenesis. These findings provide a valuable foundation for further understanding the roles of PNO1 and NOB1 in ribosome biogenesis and how they regulate this process.
Collapse
Affiliation(s)
- Xingyuan Xu
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenli Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiefu Zheng
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei 516600, China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Haiyan Yan
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei 516600, China.
| | - Shuang Zhu
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Mocăniță M, Martz K, D'Costa VM. Characterizing host-microbe interactions with bacterial effector proteins using proximity-dependent biotin identification (BioID). Commun Biol 2025; 8:597. [PMID: 40210669 PMCID: PMC11985969 DOI: 10.1038/s42003-025-07950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/18/2025] [Indexed: 04/12/2025] Open
Abstract
Bacterial pathogens have evolved diverse strategies to manipulate host cells to establish infection. At a molecular level, this is often mediated by virulence factors that are secreted into host cells (herein referred to as effectors), which target host cellular pathways by initiating host-pathogen protein-protein interactions that alter cellular function in the host. By establishing this network of host-pathogen protein-protein interactions, pathogenic bacteria modulate and hijack host cell processes for the benefit of the pathogen, ultimately promoting survival, replication, and cell-to-cell spread within the host. Effector proteins also mediate diverse host-microbe interactions in nature, contributing to symbiotic relationships spanning from mutualism to commensalism to parasitism. While effector proteins play crucial roles in nature, molecular properties such as the transient nature of the underlying protein-protein interactions and their affinity for targeting host biological membranes often presents challenges to elucidating host targets and mechanism of action. Proximity-dependent biotin identification (termed BioID) has proven to be a valuable tool in the field of cell biology to identify candidate protein-protein interactions in eukaryotic cells, yet has remained relatively underexploited by bacterial pathogenesis researchers. Here, we discuss bacterial effector function at a molecular level, and challenges presented by traditional approaches to host target identification. We highlight the BioID approach and its potential strengths in the context of identifying host-pathogen protein-protein interactions, and explore BioID's implementation to study host-microbe interactions mediated by bacteria. Collectively, BioID represents a powerful tool for the study of bacterial effector proteins, providing new insight into our understanding of pathogenesis and other symbiotic relationships, and opportunities to identify new factors that contribute to host response to infection.
Collapse
Affiliation(s)
- Mădălina Mocăniță
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Kailey Martz
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Vanessa M D'Costa
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
3
|
Matsuhisa K, Sato S, Kaneko M. Identification of E3 Ubiquitin Ligase Substrates Using Biotin Ligase-Based Proximity Labeling Approaches. Biomedicines 2025; 13:854. [PMID: 40299435 PMCID: PMC12024899 DOI: 10.3390/biomedicines13040854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/30/2025] Open
Abstract
Ubiquitylation is a post-translational modification originally identified as the first step in protein degradation by the ubiquitin-proteasome system. Ubiquitylation is also known to regulate many cellular processes without degrading the ubiquitylated proteins. Substrate proteins are specifically recognized and ubiquitylated by ubiquitin ligases. It is necessary to identify the substrates for each ubiquitin ligase to understand the physiological and pathological roles of ubiquitylation. Recently, a promiscuous mutant of a biotin ligase derived from Escherichia coli, BioID, and its variants have been utilized to analyze protein-protein interaction. In this review, we summarize the current knowledge regarding the molecular mechanisms underlying ubiquitylation, BioID-based approaches for interactome studies, and the application of BirA and its variants for the identification of ubiquitin ligase substrates.
Collapse
Affiliation(s)
- Koji Matsuhisa
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| | - Shinya Sato
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8521, Japan;
| | - Masayuki Kaneko
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8521, Japan;
| |
Collapse
|
4
|
Chen L, Li Y, Guo Y, Wang G, Feng N, Sun J, Zhong Y, Yao Y, Ding L, Ju H. Two-Level Spatially Localized Proximity Labeling for Cross-Biological-Hierarchy Measurement and Manipulation. Angew Chem Int Ed Engl 2025; 64:e202421448. [PMID: 39805739 DOI: 10.1002/anie.202421448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/31/2024] [Accepted: 01/13/2025] [Indexed: 01/16/2025]
Abstract
Proximity labeling (PL) has emerged as a powerful technique for the in situ elucidation of biomolecular interaction networks. However, PL methods generally rely on single-biological-hierarchy control of spatial localization at the labeling site, which limits their application in multi-tiered biological systems. Here, we introduced another enzymatic reaction upstream of an enzyme-based PL reaction and targeted the two enzymes to markers indicating different biological hierarchies, establishing a two-level spatially localized proximity labeling (P2L) platform for in situ molecular measurement and manipulation. Using the cellular- and glycan-level as the hierarchical models, we demonstrated the ability of P2L to efficiently execute a two-step logic operation and to discriminate target cells with different levels of glycosylation within mixed cell populations. By mounting clickable handles via P2L, we reprogrammed the robust covalent assembly of cells at designated sites. The combination of P2L with proteomics led to the profiling of the protein microenvironment of specific glycans on target cells, revealing changes in tumor-cell-surface interactions under immune pressure from a glycan perspective. P2L provides not only a solution for revealing the heterogeneity of biological systems, but also new insights in the fields of intelligent logic computation, enzyme engineering, tissue engineering, etc.
Collapse
Affiliation(s)
- Liusheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yiran Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuna Guo
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, 250117, China
| | - Guyu Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Nan Feng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiahui Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yihong Zhong
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China
| | - Yunyan Yao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
5
|
Lin Z, Liu D, Xu Y, Wang M, Yu Y, Diener AC, Liu KH. Pupylation-Based Proximity-Tagging of FERONIA-Interacting Proteins in Arabidopsis. Mol Cell Proteomics 2024; 23:100828. [PMID: 39147029 PMCID: PMC11532908 DOI: 10.1016/j.mcpro.2024.100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/11/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
The plasma membrane-localized receptor kinase FERONIA (FER) plays critical roles in a remarkable variety of biological processes throughout the life cycle of Arabidopsis thaliana. Revealing the molecular connections of FER that underlie these processes starts with identifying the proteins that interact with FER. We applied pupylation-based interaction tagging (PUP-IT) to survey cellular proteins in proximity to FER, encompassing weak and transient interactions that can be difficult to capture for membrane proteins. We reproducibly identified 581, 115, and 736 specific FER-interacting protein candidates in protoplasts, seedlings, and flowers, respectively. We also confirmed 14 previously characterized FER-interacting proteins. Protoplast transient gene expression expedited the testing of new gene constructs for PUP-IT analyses and the validation of candidate proteins. We verified the proximity labeling of five selected candidates that were not previously characterized as FER-interacting proteins. The PUP-IT method could be a valuable tool to survey and validate protein-protein interactions for targets of interest in diverse subcellular compartments in plants.
Collapse
Affiliation(s)
- Zhuoran Lin
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Di Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Yifan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Mengyang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - YongQi Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Andrew C Diener
- Department of Molecular Biology, Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Kun-Hsiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China; Department of Molecular Biology, Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA; Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China.
| |
Collapse
|
6
|
Johnson BS, Farkas D, El-Mergawy R, Adair JA, Elhance A, Eltobgy M, Coan FM, Chafin L, Joseph JA, Cornwell A, Johns FJ, Rosas L, Rojas M, Farkas L, Bednash JS, Londino JD, Ray P, Ray A, Kagan V, Lee JS, Chen BB, Mallampalli RK. Targeted degradation of extracellular mitochondrial aspartyl-tRNA synthetase modulates immune responses. Nat Commun 2024; 15:6172. [PMID: 39039092 PMCID: PMC11263397 DOI: 10.1038/s41467-024-50031-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
The severity of bacterial pneumonia can be worsened by impaired innate immunity resulting in ineffective pathogen clearance. We describe a mitochondrial protein, aspartyl-tRNA synthetase (DARS2), which is released in circulation during bacterial pneumonia in humans and displays intrinsic innate immune properties and cellular repair properties. DARS2 interacts with a bacterial-induced ubiquitin E3 ligase subunit, FBXO24, which targets the synthetase for ubiquitylation and degradation, a process that is inhibited by DARS2 acetylation. During experimental pneumonia, Fbxo24 knockout mice exhibit elevated DARS2 levels with an increase in pulmonary cellular and cytokine levels. In silico modeling identified an FBXO24 inhibitory compound with immunostimulatory properties which extended DARS2 lifespan in cells. Here, we show a unique biological role for an extracellular, mitochondrially derived enzyme and its molecular control by the ubiquitin apparatus, which may serve as a mechanistic platform to enhance protective host immunity through small molecule discovery.
Collapse
Affiliation(s)
- Benjamin S Johnson
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Daniela Farkas
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Rabab El-Mergawy
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Jessica A Adair
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Ajit Elhance
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Moemen Eltobgy
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Francesca M Coan
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Lexie Chafin
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Jessica A Joseph
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Alex Cornwell
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Finny J Johns
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Lorena Rosas
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Mauricio Rojas
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Laszlo Farkas
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Joseph S Bednash
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - James D Londino
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Prabir Ray
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, the University of Pittsburgh, Pittsburgh, PA, and Sleep Medicine, Pittsburgh, PA, USA
| | - Anuradha Ray
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, the University of Pittsburgh, Pittsburgh, PA, and Sleep Medicine, Pittsburgh, PA, USA
| | - Valerian Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janet S Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Bill B Chen
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, the University of Pittsburgh, Pittsburgh, PA, and Sleep Medicine, Pittsburgh, PA, USA
| | - Rama K Mallampalli
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Zhang S, Tang Q, Zhang X, Chen X. Proximitomics by Reactive Species. ACS CENTRAL SCIENCE 2024; 10:1135-1147. [PMID: 38947200 PMCID: PMC11212136 DOI: 10.1021/acscentsci.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024]
Abstract
The proximitome is defined as the entire collection of biomolecules spatially in the proximity of a biomolecule of interest. More broadly, the concept of the proximitome can be extended to the totality of cells proximal to a specific cell type. Since the spatial organization of biomolecules and cells is essential for almost all biological processes, proximitomics has recently emerged as an active area of scientific research. One of the growing strategies for proximitomics leverages reactive species-which are generated in situ and spatially confined, to chemically tag and capture proximal biomolecules and cells for systematic analysis. In this Outlook, we summarize different types of reactive species that have been exploited for proximitomics and discuss their pros and cons for specific applications. In addition, we discuss the current challenges and future directions of this exciting field.
Collapse
Affiliation(s)
- Shaoran Zhang
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s
Republic of China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Qi Tang
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s
Republic of China
- Beijing
National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People’s
Republic of China
| | - Xu Zhang
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s
Republic of China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Xing Chen
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s
Republic of China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- Beijing
National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People’s
Republic of China
- Synthetic
and Functional Biomolecules Center, Peking
University, Beijing 100871, People’s
Republic of China
- Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
8
|
Liu X, Abad L, Chatterjee L, Cristea IM, Varjosalo M. Mapping protein-protein interactions by mass spectrometry. MASS SPECTROMETRY REVIEWS 2024:10.1002/mas.21887. [PMID: 38742660 PMCID: PMC11561166 DOI: 10.1002/mas.21887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Protein-protein interactions (PPIs) are essential for numerous biological activities, including signal transduction, transcription control, and metabolism. They play a pivotal role in the organization and function of the proteome, and their perturbation is associated with various diseases, such as cancer, neurodegeneration, and infectious diseases. Recent advances in mass spectrometry (MS)-based protein interactomics have significantly expanded our understanding of the PPIs in cells, with techniques that continue to improve in terms of sensitivity, and specificity providing new opportunities for the study of PPIs in diverse biological systems. These techniques differ depending on the type of interaction being studied, with each approach having its set of advantages, disadvantages, and applicability. This review highlights recent advances in enrichment methodologies for interactomes before MS analysis and compares their unique features and specifications. It emphasizes prospects for further improvement and their potential applications in advancing our knowledge of PPIs in various biological contexts.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Lawrence Abad
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Lopamudra Chatterjee
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Ito Y, Nagamoto S, Takano T. Synaptic proteomics decode novel molecular landscape in the brain. Front Mol Neurosci 2024; 17:1361956. [PMID: 38726307 PMCID: PMC11079194 DOI: 10.3389/fnmol.2024.1361956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Synapses play a pivotal role in forming neural circuits, with critical implications for brain functions such as learning, memory, and emotions. Several advances in synaptic research have demonstrated the diversity of synaptic structure and function, which can form thousands of connections depending on the neuronal cell types. Moreover, synapses not only interconnect neurons but also establish connections with glial cells such as astrocytes, which play a key role in the architecture and function of neuronal circuits in the brain. Emerging evidence suggests that dysfunction of synaptic proteins contributes to a variety of neurological and psychiatric disorders. Therefore, it is crucial to determine the molecular networks within synapses in various neuronal cell types to gain a deeper understanding of how the nervous system regulates brain function. Recent advances in synaptic proteome approaches, such as fluorescence-activated synaptosome sorting (FASS) and proximity labeling, have allowed for a detailed and spatial analysis of many cell-type-specific synaptic molecules in vivo. In this brief review, we highlight these novel spatial proteomic approaches and discuss the regulation of synaptic formation and function in the brain. This knowledge of molecular networks provides new insight into the understanding of many neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Yuki Ito
- Division of Molecular Systems for Brain Function, Institute for Advanced Study, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Division of Integrated Omics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Sayaka Nagamoto
- Division of Molecular Systems for Brain Function, Institute for Advanced Study, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tetsuya Takano
- Division of Molecular Systems for Brain Function, Institute for Advanced Study, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Neurophysiology, Keio University School of Medicine, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
10
|
Merino-Cacho L, Barroso-Gomila O, Hernández-Sánchez S, Ramirez J, Mayor U, Sutherland JD, Barrio R. Biotin-Based Strategies to Explore the World of Ubiquitin and Ubiquitin-Like Modifiers. Chembiochem 2024; 25:e202300746. [PMID: 38081789 DOI: 10.1002/cbic.202300746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Indexed: 01/06/2024]
Abstract
A complex code of cellular signals is mediated by ubiquitin and ubiquitin-like (Ub/UbL) modifications on substrate proteins. The so-called Ubiquitin Code specifies protein fates, such as stability, subcellular localization, functional activation or suppression, and interactions. Hundreds of enzymes are involved in placing and removing Ub/UbL on thousands of substrates, while the consequences of modifications and the mechanisms of specificity are still poorly defined. Challenges include rapid and transient engagement of enzymes and Ub/UbL interactors, low stoichiometry of modified versus non-modified cellular substrates, and protease-mediated loss of Ub/UbL in lysates. To decipher this complexity and confront the challenges, many tools have been created to trap and identify substrates and interactors linked to Ub/UbL modification. This review focuses on an assortment of biotin-based tools developed for this purpose (for example BioUbLs, UbL-ID, BioE3, BioID), taking advantage of the strong affinity of biotin-streptavidin and the stringent lysis/washing approach allowed by it, paired with sensitive mass-spectrometry-based proteomic methods. Knowing how substrates change during development and disease, the consequences of substrate modification, and matching substrates to particular UbL-ligating enzymes will contribute new insights into how Ub/UbL signaling works and how it can be exploited for therapies.
Collapse
Affiliation(s)
- Laura Merino-Cacho
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Orhi Barroso-Gomila
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Sandra Hernández-Sánchez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - James D Sutherland
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| |
Collapse
|
11
|
Abstract
Proteins are workhorses in the cell; they form stable and more often dynamic, transient protein-protein interactions, assemblies, and networks and have an intimate interplay with DNA and RNA. These network interactions underlie fundamental biological processes and play essential roles in cellular function. The proximity-dependent biotinylation labeling approach combined with mass spectrometry (PL-MS) has recently emerged as a powerful technique to dissect the complex cellular network at the molecular level. In PL-MS, by fusing a genetically encoded proximity-labeling (PL) enzyme to a protein or a localization signal peptide, the enzyme is targeted to a protein complex of interest or to an organelle, allowing labeling of proximity proteins within a zoom radius. These biotinylated proteins can then be captured by streptavidin beads and identified and quantified by mass spectrometry. Recently engineered PL enzymes such as TurboID have a much-improved enzymatic activity, enabling spatiotemporal mapping with a dramatically increased signal-to-noise ratio. PL-MS has revolutionized the way we perform proteomics by overcoming several hurdles imposed by traditional technology, such as biochemical fractionation and affinity purification mass spectrometry. In this review, we focus on biotin ligase-based PL-MS applications that have been, or are likely to be, adopted by the plant field. We discuss the experimental designs and review the different choices for engineered biotin ligases, enrichment, and quantification strategies. Lastly, we review the validation and discuss future perspectives.
Collapse
Affiliation(s)
- Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA;
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Ruben Shrestha
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA;
| | - Sumudu S Karunadasa
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA;
| | - Pei-Qiao Xie
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA;
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
12
|
Kovanich D, Low TY, Zaccolo M. Using the Proteomics Toolbox to Resolve Topology and Dynamics of Compartmentalized cAMP Signaling. Int J Mol Sci 2023; 24:4667. [PMID: 36902098 PMCID: PMC10003371 DOI: 10.3390/ijms24054667] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
cAMP is a second messenger that regulates a myriad of cellular functions in response to multiple extracellular stimuli. New developments in the field have provided exciting insights into how cAMP utilizes compartmentalization to ensure specificity when the message conveyed to the cell by an extracellular stimulus is translated into the appropriate functional outcome. cAMP compartmentalization relies on the formation of local signaling domains where the subset of cAMP signaling effectors, regulators and targets involved in a specific cellular response cluster together. These domains are dynamic in nature and underpin the exacting spatiotemporal regulation of cAMP signaling. In this review, we focus on how the proteomics toolbox can be utilized to identify the molecular components of these domains and to define the dynamic cellular cAMP signaling landscape. From a therapeutic perspective, compiling data on compartmentalized cAMP signaling in physiological and pathological conditions will help define the signaling events underlying disease and may reveal domain-specific targets for the development of precision medicine interventions.
Collapse
Affiliation(s)
- Duangnapa Kovanich
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
13
|
Tsai M, Osman W, Adair J, ElMergawy R, Chafin L, Johns F, Farkas D, Elhance A, Londino J, Mallampalli RK. The E3 ligase subunit FBXO45 binds the interferon-λ receptor and promotes its degradation during influenza virus infection. J Biol Chem 2022; 298:102698. [PMID: 36379255 PMCID: PMC9747586 DOI: 10.1016/j.jbc.2022.102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022] Open
Abstract
Influenza remains a major public health challenge, as the viral infection activates multiple biological networks linked to altered host innate immunity. Following infection, IFN-λ, a ligand crucial for the resolution of viral infections, is known to bind to its cognate receptor, IFNLR1, in lung epithelia. However, little is known regarding the molecular expression and regulation of IFNLR1. Here, we show that IFNLR1 is a labile protein in human airway epithelia that is rapidly degraded after influenza infection. Using an unbiased proximal ligation biotin screen, we first identified that the Skp-Cullin-F box E3 ligase subunit, FBXO45, binds to IFNLR1. We demonstrate that FBXO45, induced in response to influenza infection, mediates IFNLR1 protein polyubiquitination and degradation through the ubiquitin-proteasome system by docking with its intracellular receptor domain. Furthermore, we found ectopically expressed FBXO45 and its silencing in cells differentially regulated both IFNLR1 protein stability and interferon-stimulated gene expression. Mutagenesis studies also indicated that expression of a K319R/K320R IFNLR1 variant in cells exhibited reduced polyubiquitination, yet greater stability and proteolytic resistance to FBXO45 and influenza-mediated receptor degradation. These results indicate that the IFN-λ-IFNLR1 receptor axis is tightly regulated by the Skp-Cullin-F box ubiquitin machinery, a pathway that may be exploited by influenza infection as a means to limit antiviral responses.
Collapse
|