1
|
Zhang Y, Qi Z, Qin G, Jiang H, Han R, Che D. Research on the Optimization of Dietary Energy Supply in Growing and Fattening Pigs Under a Low-Temperature Environment. Animals (Basel) 2025; 15:1117. [PMID: 40281951 PMCID: PMC12024142 DOI: 10.3390/ani15081117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
The purpose of this study was to investigate the effects of the optimization of dietary energy supply on the growth performance, nutrient digestibility, energy metabolism, nutrient oxidation, slaughter performance, and meat quality of growing and fattening pigs under a low-temperature environment. In this study, forty-eight 60-day-old growing barrows (Duroc × Landrace × Large White) with an initial body weight of 31.24 ± 3.56 kg were completely randomized into two treatment groups, with four replicates in each treatment group and six pigs in each replicate. The two groups were fed diets with equal protein levels and different energy levels (a conventional diet and an energy-optimized diet); the dietary energy level was increased by 8% by adding 6% fat, and the two groups were kept at the same ambient temperature (10 ± 1 °C) all day. After 5 d of prefeeding, the final weight reached approximately 110.00 kg prior to slaughter (99 days of age), and four pigs with a body weight of about 80.00 kg were selected in the two groups for digestion, metabolism, and respiratory calorimetry. The results showed that the average daily feed intake of the TES group (energy-optimized diet group, high fat and energy) was lower than that of the CON group (conventional diet group, normal fat and energy) (p < 0.05). Compared with the CON group, the feed-to-gain ratio was lower in the TES group during the fattening period (60-110 kg) (p < 0.05). Compared to the CON group, fat and energy digestibility in the TES group were higher (p < 0.05), fecal nitrogen and urine nitrogen were lower (p < 0.05), the nitrogen deposition rate increased (p < 0.05), and fat oxidation and the sedimentation energy rate also increased (p < 0.05). The serum triglyceride concentration in the TES group was higher than that in the CON group (p < 0.05). Compared to the CON group, the carcass weight, body fat content, backfat thickness, and eye muscle area in the TES group increased (p < 0.05); the L* value of flesh color also increased (p < 0.05); and the shear force was lower (p < 0.05). The dietary energy should be optimized under a low-temperature environment, and the feed conversion efficiency of fattening pigs could be improved by improving dietary energy levels by adding fat, increasing the fat oxidation proportion, promoting nitrogen deposition and sedimentation energy, and improving slaughter performance and meat quality.
Collapse
Affiliation(s)
| | | | | | | | - Rui Han
- Jilin Provincial Swine Industry Technical Innovation Center, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Ministry of Education Laboratory of Animal Production and Security, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Z.Q.); (G.Q.); (H.J.)
| | - Dongsheng Che
- Jilin Provincial Swine Industry Technical Innovation Center, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Ministry of Education Laboratory of Animal Production and Security, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Z.Q.); (G.Q.); (H.J.)
| |
Collapse
|
2
|
Molinero E, Pena RN, Estany J, Ros‐Freixedes R. Association between mitochondrial DNA copy number and production traits in pigs. J Anim Breed Genet 2025; 142:170-183. [PMID: 39189093 PMCID: PMC11812088 DOI: 10.1111/jbg.12894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/29/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Mitochondria are essential organelles in the regulation of cellular energetic metabolism. Mitochondrial DNA copy number (mtDNA_CN) can be used as a proxy for mitochondria number, size, and activity. The aims of our study are to evaluate the effect of mtDNA_CN and mitochondrial haploblocks on production traits in pigs, and to identify the genetic background of this cellular phenotype. We collected performance data of 234 pigs and extracted DNA from skeletal muscle. Whole-genome sequencing data was used to determine mtDNA_CN. We found positive correlations of muscle mtDNA_CN with backfat thickness at 207 d (+0.14; p-value = 0.07) and negative correlations with carcase loin thickness (-0.14; p-value = 0.03). Pigs with mtDNA_CN values below the lower quartile had greater loin thickness (+4.1 mm; p-value = 0.01) and lower backfat thickness (-1.1 mm; p-value = 0.08), which resulted in greater carcase lean percentage (+2.4%; p-value = 0.04), than pigs with mtDNA_CN values above the upper quartile. These results support the hypothesis that a reduction of mitochondrial activity is associated with greater feed efficiency. Higher mtDNA_CN was also positively correlated with higher meat ultimate pH (+0.19; p-value <0.01) but we did not observe significant difference for meat ultimate pH between the two groups with extreme mtDNA_CN. We found no association of the most frequent mitochondrial haploblocks with mtDNA_CN or the production traits, but several genomic regions that harbour potential candidate genes with functions related to mitochondrial biogenesis and homeostasis were associated with mtDNA_CN. These regions provide new insights into the genetic background of this cellular phenotype but it is still uncertain if such associations translate into noticeable effects on the production traits.
Collapse
Affiliation(s)
- Eduard Molinero
- Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
- Agrotecnio‐CERCA CenterLleidaSpain
| | - Ramona N. Pena
- Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
- Agrotecnio‐CERCA CenterLleidaSpain
| | - Joan Estany
- Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
- Agrotecnio‐CERCA CenterLleidaSpain
| | - Roger Ros‐Freixedes
- Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
- Agrotecnio‐CERCA CenterLleidaSpain
| |
Collapse
|
3
|
Wu L, Zhuang Z, Jia W, Li Y, Lu Y, Xu M, Bai H, Wang Z, Chang G, Jiang Y. Exploring the molecular basis of efficient feed utilization in low residual feed intake slow-growing ducks based on breast muscle transcriptome. Poult Sci 2025; 104:104613. [PMID: 39631277 PMCID: PMC11652873 DOI: 10.1016/j.psj.2024.104613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Residual feed intake (RFI) has recently gained attention as a key indicator of feed efficiency in poultry. In this study, 800 slow-growing ducks with similar initial body weights were reared in an experimental facility until they were culled at 42 d of age. Thirty high RFI (HRFI) and 30 low RFI (LRFI) birds were selected to evaluate their growth performance, carcass characteristics, and muscle development. Transcriptome and weighted gene co-expression correlation network analyses of pectoral muscles were conducted on six LRFI and six HRFI ducks. The results revealed that selecting for LRFI significantly reduced feed consumption (P < 0.05) and improved feed efficiency without affecting the growth performance, slaughter rate, or meat quality of ducks (P > 0.05). Moreover, compared with HRFI ducks, LRFI ducks had a lower pectoral muscle fat content (P < 0.05), larger muscle fiber diameter and area (P < 0.05), and lower muscle fiber density (P < 0.05). There were significant differences in gene expression between LRFI and HRFI ducks, with 102 upregulated and 258 downregulated genes, which were enriched in the PPAR signaling pathway, adipocytokine signaling pathway, actin cytoskeleton regulation, ECM-receptor interaction, and focal adhesion. The expression of genes associated with fat and energy metabolism, including ACSL6, PCK1, APOC3, HMGCS2, PRKAG3, and G6PC1, was downregulated in LRFI ducks, and weighted gene co-expression correlation network analysis identified PRKAG3 as a hub gene. Our findings indicate that reduced mitochondrial energy metabolism may contribute to the RFI of slow-growing ducks, with PRKAG3 playing a pivotal role in this biological process. These findings provide novel insights into the molecular changes underlying RFI variation in slow-growing ducks.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Zhong Zhuang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Wenqian Jia
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Yongpeng Li
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Yijia Lu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Minghong Xu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, PR China
| | - Zhixiu Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Guobin Chang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Yong Jiang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
4
|
Mondin C, Faggion S, Giannuzzi D, Gallo L, Schiavon S, Carnier P, Bonfatti V. Genetic merit of sires for ad libitum residual feed intake affects feed efficiency of restricted-fed heavy pigs but not body weight gain tissue composition. PLoS One 2024; 19:e0312307. [PMID: 39418252 PMCID: PMC11486364 DOI: 10.1371/journal.pone.0312307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
The study aimed at evaluating how sires, classified for their additive genetic effects on residual feed intake (RFI) of ad libitum-fed progeny, influence growth performance, tissue accretion, and gain composition in restricted-fed offspring (96-168 kg body weight, BW). A total of 416 purebred C21 Goland pigs, offspring of 23 sires, were randomly allocated to three feeding groups: ad libitum, restricted medium-protein, or restricted low-protein. Empty BW, body lipid mass and body protein mass were estimated from individual BW and backfat measures using literature equations. Residuals of a linear regression of average daily feed intake on average empty BW, body lipid and protein daily gains were used as estimates of individual RFI in ad libitum-fed pigs. Additive genetic effects of sires on RFI of ad libitum-fed pigs were estimated with a linear animal model and solutions of the model were used to allocate the sires to low- (LRFI), medium- (MRFI), or high-RFI (HRFI) groups. Restricted-fed progeny of LRFI sires exhibited reduced average daily feed intake (-3%) compared to MRFI and HRFI progeny. This indicates that LRFI progeny make a more efficient use of energy intake and implies that variation in RFI across families, assessed under ad libitum feeding, is related to the across-family variation in feed efficiency detected under restricted feeding. LRFI progeny exhibited also a lower feed conversion ratio (-11%), partially resulting from of a 3% increase in growth rate compared with HRFI. Thus, LRFI progeny consumed less feed, while growing at a similar or slightly higher rate than MRFI or HRFI. No significant differences across sire classes were observed for daily tissue accretion and gain composition. Hence, we can hypothesise that efficient sires would not affect carcass leanness of heavy pig progeny fed restricted.
Collapse
Affiliation(s)
- Chiara Mondin
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (Padova), Italy
| | - Sara Faggion
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (Padova), Italy
| | - Diana Giannuzzi
- Department of Agronomy, Food, Natural Resource, Animals and Environment, University of Padova, Legnaro (Padova), Italy
| | - Luigi Gallo
- Department of Agronomy, Food, Natural Resource, Animals and Environment, University of Padova, Legnaro (Padova), Italy
| | - Stefano Schiavon
- Department of Agronomy, Food, Natural Resource, Animals and Environment, University of Padova, Legnaro (Padova), Italy
| | - Paolo Carnier
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (Padova), Italy
| | - Valentina Bonfatti
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (Padova), Italy
| |
Collapse
|
5
|
Keogh K, McGee M, Kenny DA. Effect of breed and dietary composition on the miRNA profile of beef steers divergent for feed efficiency. Sci Rep 2024; 14:20046. [PMID: 39209905 PMCID: PMC11362461 DOI: 10.1038/s41598-024-70669-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Identifying and breeding cattle that are more feed efficient is of great benefit to beef production. Additionally, it is crucial that genes contributing to feed efficiency are robust across varying management settings including dietary source as well as being relevant across contrasting breeds of cattle. The aim of this study was to determine miRNAs that are contributing to the expression of residual feed intake (RFI) across two breeds and dietary sources. miRNA profiling was undertaken in Longissimus dorsi tissue of Charolais and Holstein-Friesian steers divergent for RFI phenotype following two contrasting consecutive diets (high-forage and high-concentrate). Ten miRNA were identified as differentially expressed (adj. P < 0.1) across the breed and diet contrasts examined. Of particular interest was the differential expression of miR-2419-5p and miR-2415-3p, both of which were up-regulated in the Low-RFI Charolais steers across each dietary phase. Pathway analysis of target mRNA genes of differentially expressed miRNA revealed enrichment (P < 0.05) for pathways including metabolic related pathways, insulin receptor signalling, adipogenesis as well as pathways related to skeletal muscle growth. These results provide insight into the skeletal muscle miRNAome of beef cattle and their potential molecular regulatory mechanisms relating to feed efficiency in beef cattle.
Collapse
Affiliation(s)
- Kate Keogh
- Animal and Bioscience Research Department, Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland.
| | - M McGee
- Livestock Systems Research Department, Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
| | - D A Kenny
- Animal and Bioscience Research Department, Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
| |
Collapse
|
6
|
Little EA, Dunkelberger J, Hanson D, Eggert J, Gonda MG, MacNeil MD, Dee S. Comparison of differences in performance between pigs whose sires were identified using different selection strategies after experimental infection with PRRSV. Transl Anim Sci 2024; 8:txae128. [PMID: 39296530 PMCID: PMC11408270 DOI: 10.1093/tas/txae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
The objective of this study was to evaluate differences in the performance of offspring of boars selected with an index emphasizing resilience and boars selected based on a traditional index, emphasizing feed efficiency and carcass quality (traditional) index vs. a customized (resilience) index. The resilience index was identical to the traditional index, except that extra emphasis was placed on piglet vitality (increased by 66%), growth rate (decreased by 14%), and feed intake (increased substantially by 5,157%). Sows were mated to either boars selected based on the resilience index or boars selected on the traditional index. Weaned offspring were vaccinated for Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and experimentally infected with PRRSV RFLP 1-7-4 four weeks later. Offspring were allocated to pens (n ~ 27 pigs/pen; n = 27 pens/group) by sire-selection group for a total of 1,458 pigs in 54 pens. The weight of each pen was recorded on 0, 42, and 110 d postinfection (DPI) and used to calculate average daily gain (ADG), average daily feed intake (ADFI), and feed conversion ratio (FCR). Mortalities were recorded from 0 to 110 DPI and necropsies were routinely performed to characterize pathogens present within the barn. Pigs classified as full value (i.e., >104 kg and void of defects) were slaughtered and hot carcass weight (HCW), backfat, loin depth, and lean weight were obtained from the slaughter plant. Effects of progeny group on performance, carcass characteristics, and mortality rate were estimated with a mixed linear model. Differences between progeny groups in ADG (P > 0.27), HCW (P = 0.68), backfat (P = 0.13), or loin depth (P = 0.39), and mortality rate (P = 0.29) were not detected. From 0 to 42 DPI, offspring of boars selected based on the resilience index had higher ADFI (0.06 kg/d, P = 0.01) and higher FCR (0.12, P = 0.01). In summary, results from this study do not support selection of boars for increased feed intake, piglet viability, and robustness in order to prevent losses caused by PRRSV, but selection response was only measured after one generation of male selection. The impact of multiple generations of selection, or the development of an index including traits derived from data collected under disease-challenged conditions should be explored. The data collected for this study are a valuable resource to explore additional genetic selection strategies for enhanced resilience to a multifactorial PRRS challenge.
Collapse
Affiliation(s)
- Erin A Little
- Pipestone Applied Research, Pipestone, MN 56164, USA
| | | | - Daniel Hanson
- Pipestone Applied Research, Pipestone, MN 56164, USA
| | - John Eggert
- Topigs Norsvin USA, Burnsville, MN 55337, USA
| | - Michael G Gonda
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - Michael D MacNeil
- Delta G, Miles City, MT 59301, USA
- Department of Animal, Wildlife and Grassland Sciences, University of the Free State, Bloemfontein, South Africa
| | - Scott Dee
- Pipestone Applied Research, Pipestone, MN 56164, USA
| |
Collapse
|
7
|
Liu H, Zhu C, Wang Y, Wang Z, Zou K, Song W, Tao Z, Xu W, Zhang S, Wang Z, Li H. Effects of residual feed intake on the economic traits of fast-growing meat ducks. Poult Sci 2024; 103:103879. [PMID: 38833748 PMCID: PMC11190701 DOI: 10.1016/j.psj.2024.103879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
Feed efficiency (FE) is a crucial economic indicator of meat duck production. The objective of this study was to assess the impact of residual feed intake (RFI), defined as the difference between the actual and expected feed intake based on animal's production and maintenance requirements, on the growth performance (GP), slaughter and internal organ characteristics of fast-growing meat ducks. In total, 1,300 healthy 14-day-old male fast-growing meat ducks were housed in individual cages until slaughter at the age of 35 d. The characteristics of the carcass and internal organs of 30 ducks with the highest RFI (HRFI) and the lowest RFI (LRFI) were respectively determined. RFI, the feed conversion ratio (FCR), and average day feed intake (ADFI) were significantly lower in the LRFI group than the HRFI group (P < 0.001), while there were no significant differences in marketing BW or BW gain (BWG) (P > 0.05). The thigh muscle and lean meat yields were higher, and the abdominal fat content was lower (P < 0.001) in the LRFI group, while there were no significant differences in other carcass traits between the groups (P > 0.05). The liver and gizzard yields were significantly higher (P < 0.001) in the LRFI group, while there were no significant differences (P > 0.05) in intestinal length between the groups. RFI was highly positively correlate with FCR and ADFI (P < 0.01), but negatively correlated the yields of thigh muscle, lean meat, liver, and gizzard, and positively correlated with abdominal fat content. These results indicate that selection for low RFI could improve the FE of fast-growing meat ducks without affecting the marketing BW and BWG, while increasing yields of thigh muscle and lean meat and reducing abdominal fat content. These findings offer useful insights into the biological processes that influence FE of fast-growing meat ducks.
Collapse
Affiliation(s)
- Hongxiang Liu
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Chunhong Zhu
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Yifei Wang
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Zhen Wang
- Shandong Hekangyuan Group Co., Ltd, Jinan, 250000, China
| | - Kexin Zou
- Shandong Hekangyuan Group Co., Ltd, Jinan, 250000, China
| | - Weitao Song
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Zhiyun Tao
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Wenjuan Xu
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Shuangjie Zhang
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Zhicheng Wang
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Huifang Li
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China.
| |
Collapse
|
8
|
Identification of Differentially Expressed miRNAs in Porcine Adipose Tissues and Evaluation of Their Effects on Feed Efficiency. Genes (Basel) 2022; 13:genes13122406. [PMID: 36553673 PMCID: PMC9778086 DOI: 10.3390/genes13122406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Feed efficiency (FE) is a very important trait affecting the economic benefits of pig breeding enterprises. Adipose tissue can modulate a variety of processes such as feed intake, energy metabolism and systemic physiological processes. However, the mechanism by which microRNAs (miRNAs) in adipose tissues regulate FE remains largely unknown. Therefore, this study aimed to screen potential miRNAs related to FE through miRNA sequencing. The miRNA profiles in porcine adipose tissues were obtained and 14 miRNAs were identified differentially expressed in adipose tissues of pigs with extreme differences in FE, of which 9 were down-regulated and 5 were up-regulated. GO and KEGG analyses indicated that these miRNAs were significantly related to lipid metabolism and these miRNAs modulated FE by regulating lipid metabolism. Subsequently, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) of five randomly selected DEMs was used to verify the reliability of miRNA-seq data. Furthermore, 39 differentially expressed target genes of these DEMs were obtained, and DEMs-target mRNA interaction networks were constructed. In addition, the most significantly down-regulated miRNAs, ssc-miR-122-5p and ssc-miR-192, might be the key miRNAs for FE. Our results reveal the mechanism by which adipose miRNAs regulate feed efficiency in pigs. This study provides a theoretical basis for the further study of swine feed efficiency improvement.
Collapse
|
9
|
Bai H, Guo Q, Yang B, Dong Z, Li X, Song Q, Jiang Y, Wang Z, Chang G, Chen G. Effects of residual feed intake divergence on growth performance, carcass traits, meat quality, and blood biochemical parameters in small-sized meat ducks. Poult Sci 2022; 101:101990. [PMID: 35841639 PMCID: PMC9289854 DOI: 10.1016/j.psj.2022.101990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022] Open
Abstract
Feed efficiency (FE) is a major economic trait of meat duck. This study aimed to evaluate the effects of residual feed intake (RFI) divergence on growth performance, carcass traits, meat quality, and blood biochemical parameters in small-sized meat ducks. A total of 500 healthy 21-day-old male ducks were housed in individual cages until slaughter at 63 d of age. The growth performance was determined for all the ducks. The carcass yield, meat quality, and blood biochemical parameters were determined for the selected 30 high-RFI (HRFI) and 30 low-RFI (LRFI) ducks. In terms of growth performance, the RFI, feed conversion ratio (FCR), and average daily feed intake (ADFI) were found to be significantly lower in the LRFI group (P < 0.01), whereas no differences were observed in the BW and body weight gain (P > 0.05). For slaughter performance, no differences were observed in the carcass traits between the LRFI and HRFI groups (P > 0.05). For meat quality, the shear force of breast muscle was significantly lower in the LRFI group (P < 0.05), while the other meat quality traits of breast and thigh muscles demonstrated no differences (P > 0.05). For blood biochemical parameters, the serum concentrations of triglycerides (TG) and glucose (GLU) were significantly lower in the LRFI group (P < 0.05), while the other parameters showed no differences (P > 0.05). The correlation analysis demonstrated a high positive correlation between RFI, FCR, and ADFI (P < 0.01). The RFI demonstrated a negative effect on the breast muscle and lean meat yields, but a positive effect on the shear force of breast muscle (P < 0.05). Further, the RFI demonstrated a positive effect on the TG and GLU levels (P < 0.05). These results indicate that the selection for low RFI could improve the FE of small-sized meat ducks without affecting the production performance. This study provides valuable insight into the biological processes underlying the variations in FE in small-sized meat ducks.
Collapse
Affiliation(s)
- H Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Jiangsu Yangzhou 225009, China
| | - Q Guo
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - B Yang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Z Dong
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - X Li
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Q Song
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Y Jiang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Z Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - G Chang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Jiangsu Yangzhou 225009, China; Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - G Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Jiangsu Yangzhou 225009, China; Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
10
|
Vincent A, Dessauge F, Gondret F, Lebret B, Le Floc'h N, Louveau I, Lefaucheur L. Poor hygiene of housing conditions influences energy metabolism in a muscle type-dependent manner in growing pigs differing in feed efficiency. Sci Rep 2022; 12:7991. [PMID: 35568703 PMCID: PMC9107456 DOI: 10.1038/s41598-022-12050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/03/2022] [Indexed: 11/28/2022] Open
Abstract
The ability of pigs to cope with inflammatory challenges may by modified by selection for residual feed intake (RFI), a measure of feed efficiency. In the current study, we evaluated skeletal muscle metabolic responses to degraded hygiene conditions in pigs divergently selected for RFI. At 82 d of age, low RFI and high RFI pigs were housed in either poor or good hygiene conditions. After a 6-week challenge, the poor hygiene conditions induced a decrease in growth performance (P < 0.001) and in plasma IGF-I concentrations (P < 0.003) in both lines. In the slow-twitch oxidative semispinalis muscle, poor hygiene conditions induced a shift towards a more oxidative metabolism and an activation of the AMPK pathway in pigs of both RFI lines. In the fast-twitch glycolytic longississimus muscle, poor hygiene conditions were associated to a less glycolytic metabolism in the HRFI line only. Poor hygiene conditions also increased the protein level of lipidation of microtubule-associated protein 1 light-chain 3β (LC3-II) in both RFI lines, suggesting an activation of the autophagy pathway. Altogether, the data revealed muscle-type specific metabolic adaptations to poor hygiene conditions, which may be related to different strategies to fuel the activated immune system.
Collapse
Affiliation(s)
- Annie Vincent
- PEGASE, INRAE, Institut Agro, 35590, Saint-Gilles, France.
| | | | | | | | | | | | | |
Collapse
|
11
|
Miao Y, Fu C, Liao M, Fang F. Differences in Liver microRNA profiling in pigs with low and high
feed efficiency. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:312-329. [PMID: 35530409 PMCID: PMC9039951 DOI: 10.5187/jast.2022.e4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/20/2021] [Accepted: 01/09/2022] [Indexed: 11/21/2022]
Abstract
Feed cost is the main factor affecting the economic benefits of pig industry.
Improving the feed efficiency (FE) can reduce the feed cost and improve the
economic benefits of pig breeding enterprises. Liver is a complex metabolic
organ which affects the distribution of nutrients and regulates the efficiency
of energy conversion from nutrients to muscle or fat, thereby affecting feed
efficiency. MicroRNAs (miRNAs) are small non-coding RNAs that can regulate feed
efficiency through the modulation of gene expression at the post-transcriptional
level. In this study, we analyzed miRNA profiling of liver tissues in High-FE
and Low-FE pigs for the purpose of identifying key miRNAs related to feed
efficiency. A total 212~221 annotated porcine miRNAs and 136~281 novel
miRNAs were identified in the pig liver. Among them, 188 annotated miRNAs were
co-expressed in High-FE and Low-FE pigs. The 14 miRNAs were significantly
differentially expressed (DE) in the livers of high-FE pigs and low-FE pigs, of
which 5 were downregulated and 9 were upregulated. Kyoto Encyclopedia of Genes
and Genomes analysis of liver DE miRNAs in high-FE pigs and low-FE pigs
indicated that the target genes of DE miRNAs were significantly enriched in
insulin signaling pathway, Gonadotropin-releasing hormone signaling pathway, and
mammalian target of rapamycin signaling pathway. To verify the reliability of
sequencing results, 5 DE miRNAs were randomly selected for quantitative reverse
transcription-polymerase chain reaction (qRT-PCR). The qRT-PCR results of miRNAs
were confirmed to be consistent with sequencing data. DE miRNA data indicated
that liver-specific miRNAs synergistically acted with mRNAs to improve feed
efficiency. The liver miRNAs expression analysis revealed the metabolic pathways
by which the liver miRNAs regulate pig feed efficiency.
Collapse
Affiliation(s)
- Yuanxin Miao
- College of Bioengineering,Jingchu
University of Technology, Jingmen 448000, Hubei, China
- Key Laboratory of Agricultural Animal
Genetics, Breeding and Reproduction of Ministry of Education, Huazhong
Agricultural University, Wuhan 430070, China
| | - Chuanke Fu
- Key Laboratory of Agricultural Animal
Genetics, Breeding and Reproduction of Ministry of Education, Huazhong
Agricultural University, Wuhan 430070, China
| | - Mingxing Liao
- Key Laboratory of Agricultural Animal
Genetics, Breeding and Reproduction of Ministry of Education, Huazhong
Agricultural University, Wuhan 430070, China
| | - Fang Fang
- Key Laboratory of Agricultural Animal
Genetics, Breeding and Reproduction of Ministry of Education, Huazhong
Agricultural University, Wuhan 430070, China
- National Center for International Research
on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong
Agricultural University, Wuhan 430070, China
- Corresponding author: Fang Fang, Key Laboratory of
Agricultural Animal Genetics, Breeding and Reproduction of Ministry of
Education, Huazhong Agricultural University, Wuhan 430070, China. Tel:
+86-278-728-2091, E-mail:
| |
Collapse
|
12
|
Lebret B, Čandek-Potokar M. Review: Pork quality attributes from farm to fork. Part I. Carcass and fresh meat. Animal 2021; 16 Suppl 1:100402. [PMID: 34836808 DOI: 10.1016/j.animal.2021.100402] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/28/2022] Open
Abstract
This work considers all factors along the production chain from farm to fork influencing the quality of fresh pork and processed products. Pork quality is multidimensional and comprises various attributes: commercial value of carcasses, meat organoleptic, nutritional, technological (i.e. suitability for processing and storage) properties, convenience, and societal image. The latter denotes cultural, ethical (including animal welfare) and environmental dimensions related to pork production, including geographical origin, all of which influence societal perceptions for pork. This review covers the impact of production factors, slaughter methods, carcass processing, and post mortem ageing on fresh meat quality. The impact on pork quality from some of these factors are now well documented and clearly established (e.g. genetics and pork technological attributes; diet and lipid profile; preslaughter and slaughter conditions and pork technological or organoleptic attributes…). Gaps in scientific knowledge are also identified, including the need for a better understanding of regulatory pathways for oxidative stress in vivo and post mortem that can contribute to optimise pork organoleptic and nutritional attributes and its suitability for processing and storage. This review highlights the strong interactions between primary production factors on pork quality attributes. Interactions are particularly marked in alternative production systems, in which synergies between factors can lead to specific quality characteristics that can be used to market pork at a premium as branded products. There are also antagonisms between quality attributes, namely between carcass commercial value and pork technological and organoleptic properties, between nutritional attributes and processing and storage suitability of fat tissues, between societal image and pork technological attributes in outdoor production systems, and between societal image (better welfare) and organoleptic attributes (risk for boar taint) in entire male production. Further research is needed to better understand the effects of some specific production factors and their interactions on quality attributes. A holistic approach with the use of multicriteria analyses can help to work out the trade-offs between pork quality attributes and between stakeholders (farmer, slaughterhouse or processing plant, consumers, citizens …) whose priorities may differ.
Collapse
Affiliation(s)
- B Lebret
- PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France.
| | - M Čandek-Potokar
- KIS, Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Zem Fraga A, Louveau I, Campos PHRF, Hauschild L, Le Floc'h N. Selection for feed efficiency elicits different postprandial plasma metabolite profiles in response to poor hygiene of housing conditions in growing pigs. PLoS One 2021; 16:e0246216. [PMID: 33780478 PMCID: PMC8006997 DOI: 10.1371/journal.pone.0246216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022] Open
Abstract
This study was conducted to compare postprandial plasma concentrations of insulin, energy-related metabolites, and amino acids measured after a 6-week challenge consisting of exposure to good or poor hygiene of housing conditions of 24 growing pigs divergently selected for low-RFI (LRFI) and high-RFI (HRFI). Blood indicators of immune responses were assessed from samples collected before 0 (W0), and 3 (W3), and 6 weeks (W6) after pigs transfer to their respective hygiene of housing conditions. Plasma haptoglobin concentrations and blood neutrophil granulocyte numbers were greater in poor than in good hygiene of housing conditions at W3. Plasma concentrations of total immunoglobulin G were greater (p = 0.04) in poor than in good hygiene of housing conditions at W6. At W6, pigs were fitted with an intravenous catheter for serial blood samplings. Low-RFI pigs had greater insulin (p < 0.001) and lower triglyceride (p = 0.04) average plasma concentrations than HRFI pigs in both conditions. In poor hygiene of housing conditions, the peaks of insulin and glucose were observed earlier and that of insulin was greater in LRFI than in HRFI pigs. Irrespective of genetic line, average plasma concentrations of histidine, isoleucine, leucine, methionine, threonine, valine, and alanine were greater in poor compared with good hygiene of housing conditions. Only HRFI pigs had greater lysine, asparagine, proline, and tyrosine plasma concentrations in poor than in good hygiene of housing conditions. Conversely, arginine, tryptophan, proline, and tyrosine plasma concentrations were lower only for LRFI pigs housed in poor hygiene conditions. Our results suggest that, contrary to HRFI, LRFI pigs increase or maintain their utilization of tryptophan, arginine, and lysine when housed in poor hygiene conditions. This indicates that this difference may contribute to the better capacity of LRFI to cope with poor hygiene of housing conditions.
Collapse
Affiliation(s)
- Alícia Zem Fraga
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
- PEGASE, INRAE, Institut Agro, Saint Gilles, France
| | | | | | - Luciano Hauschild
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | | |
Collapse
|
14
|
Li W, Zheng M, Zhao G, Wang J, Liu J, Wang S, Feng F, Liu D, Zhu D, Li Q, Guo L, Guo Y, Liu R, Wen J. Identification of QTL regions and candidate genes for growth and feed efficiency in broilers. Genet Sel Evol 2021; 53:13. [PMID: 33549052 PMCID: PMC7866652 DOI: 10.1186/s12711-021-00608-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/26/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Feed accounts for about 70% of the total cost of poultry meat production. Residual feed intake (RFI) has become the preferred measure of feed efficiency because it is phenotypically independent of growth rate and body weight. In this study, our aim was to estimate genetic parameters and identify quantitative trait loci (QTL) for feed efficiency in 3314 purebred broilers using a genome-wide association study. Broilers were genotyped using a custom 55 K single nucleotide polymorphism (SNP) array. RESULTS Estimates of genomic heritability for seven growth and feed efficiency traits, including body weight at 28 days of age (BW28), BW42, average daily feed intake (ADFI), RFI, and RFI adjusted for weight of abdominal fat (RFIa), ranged from 0.12 to 0.26. Eleven genome-wide significant SNPs and 15 suggestively significant SNPs were detected, of which 19 clustered around two genomic regions. A region on chromosome 16 (2.34-2.66 Mb) was associated with both BW28 and BW42, and the most significant SNP in this region, AX_101003762, accounted for 7.6% of the genetic variance of BW28. The other region, on chromosome 1 (91.27-92.43 Mb) was associated with RFI and ADFI, and contains the NSUN3 and EPHA6 as candidate genes. The most significant SNP in this region, AX_172588157, accounted for 4.4% of the genetic variance of RFI. In addition, a genomic region containing the gene AGK on chromosome 1 was found to be associated with RFIa. The NSUN3 and AGK genes were found to be differentially expressed in breast muscle, thigh muscle, and abdominal fat between male broilers with high and low RFI. CONCLUSIONS We identified QTL regions for BW28 and BW42 (spanning 0.32 Mb) and RFI (spanning 1.16 Mb). The NSUN3, EPHA6, and AGK were identified as the most likely candidate genes for these QTL. These genes are involved in mitochondrial function and behavioral regulation. These results contribute to the identification of candidate genes and variants for growth and feed efficiency in poultry.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Maiqing Zheng
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jie Wang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jie Liu
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Shunli Wang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Furong Feng
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan, 528515 China
| | - Dawei Liu
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan, 528515 China
| | - Dan Zhu
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan, 528515 China
| | - Qinghe Li
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Liping Guo
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yuming Guo
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Ranran Liu
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jie Wen
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
15
|
López-Pedrouso M, Lorenzo JM, Gagaoua M, Franco D. Application of Proteomic Technologies to Assess the Quality of Raw Pork and Pork Products: An Overview from Farm-To-Fork. BIOLOGY 2020; 9:E393. [PMID: 33187082 PMCID: PMC7696211 DOI: 10.3390/biology9110393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
The quality assurance of pork meat and products includes the study of factors prior to slaughter such as handling practices, diet and castration, and others during the post-mortem period such as aging, storage, and cooking. The development over the last two decades of high-throughput techniques such as proteomics offer great opportunities to examine the molecular mechanisms and study a priori the proteins in the living pigs and main post-mortem changes and post-translational modifications during the conversion of the muscle into the meat. When the most traditional crossbreeding and rearing strategies to improve pork quality were assessed, the main findings indicate that metabolic pathways early post-mortem were affected. Among the factors, it is well documented that pre-slaughter stress provokes substantial changes in the pork proteome that led to defective meat, and consequently, novel protein biomarkers should be identified and validated. Additionally, modifications in pork proteins had a strong effect on the sensory attributes due to the impact of processing, either physical or chemical. Maillard compounds and protein oxidation should be monitored in order to control proteolysis and volatile compounds. Beyond this, the search of bioactive peptides is becoming a paramount goal of the food and nutraceutical industry. In this regard, peptidomics is a major tool to identify and quantify these peptides with beneficial effects for human health.
Collapse
Affiliation(s)
- María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, D15 DY05 Dublin 15, Ireland;
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
| |
Collapse
|
16
|
Carmelo VAO, Kadarmideen HN. Genome Regulation and Gene Interaction Networks Inferred From Muscle Transcriptome Underlying Feed Efficiency in Pigs. Front Genet 2020; 11:650. [PMID: 32655625 PMCID: PMC7324801 DOI: 10.3389/fgene.2020.00650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/28/2020] [Indexed: 01/03/2023] Open
Abstract
Improvement of feed efficiency (FE) is key for Sustainability and cost reduction in pig production. Our aim was to characterize the muscle transcriptomic profiles in Danbred Duroc (Duroc; n = 13) and Danbred Landrace (Landrace; n = 28), in relation to FE for identifying potential biomarkers. RNA-seq data on the 41 pigs was analyzed employing differential gene expression methods, gene-gene interaction and network analysis, including pathway and functional analysis. We also compared the results with genome regulation in human exercise data, hypothesizing that increased FE mimics processes triggered in exercised muscle. In the differential expression analysis, 13 genes were differentially expressed, including: MRPS11, MTRF1, TRIM63, MGAT4A, KLH30. Based on a novel gene selection method, the divergent count, we performed pathway enrichment analysis. We found five significantly enriched pathways related to feed conversion ratio (FCR). These pathways were mainly related to mitochondria, and summarized in the mitochondrial translation elongation (MTR) pathway. In the gene interaction analysis, the most interesting genes included the mitochondrial genes: PPIF, MRPL35, NDUFS4 and the fat metabolism and obesity genes: AACS, SMPDL3B, CTNNBL1, NDUFS4, and LIMD2. In the network analysis, we identified two modules significantly correlated with FCR. Pathway enrichment of module genes identified MTR, electron transport chain and DNA repair as enriched pathways. The network analysis revealed the mitochondrial gene group NDUF as key network hub genes, showing their potential as biomarkers. Results show that genes related to human exercise were enriched in identified FCR related genes. We conclude that mitochondrial activity is a key driver for FCR in muscle tissue, and mitochondrial genes could be potential biomarkers for FCR in pigs.
Collapse
Affiliation(s)
- Victor A O Carmelo
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Haja N Kadarmideen
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
17
|
Xu C, Wang X, Zhuang Z, Wu J, Zhou S, Quan J, Ding R, Ye Y, Peng L, Wu Z, Zheng E, Yang J. A Transcriptome Analysis Reveals that Hepatic Glycolysis and Lipid Synthesis Are Negatively Associated with Feed Efficiency in DLY Pigs. Sci Rep 2020; 10:9874. [PMID: 32555275 PMCID: PMC7303214 DOI: 10.1038/s41598-020-66988-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/01/2020] [Indexed: 12/25/2022] Open
Abstract
Feed efficiency (FE) is an important trait in the porcine industry. Therefore, understanding the molecular mechanisms of FE is vital for the improvement of this trait. In this study, 6 extreme high-FE and 6 low-FE pigs were selected from 225 Duroc × (Landrace × Yorkshire) (DLY) pigs for transcriptomic analysis. RNA-seq analysis was performed to determine differentially expressed genes (DEGs) in the liver tissues of the 12 individuals, and 507 DEGs were identified between high-FE pigs (HE- group) and low-FE pigs (LE- group). A gene ontology (GO) enrichment and pathway enrichment analysis were performed and revealed that glycolytic metabolism and lipid synthesis-related pathways were significantly enriched within DEGs; all of these DEGs were downregulated in the HE- group. Moreover, Weighted gene co-expression analysis (WGCNA) revealed that oxidative phosphorylation, thermogenesis, and energy metabolism-related pathways were negatively related to HE- group, which might result in lower energy consumption in higher efficiency pigs. These results implied that the higher FE in the HE- group may be attributed to a lower glycolytic, energy consumption and lipid synthesizing potential in the liver. Furthermore, our findings suggested that the inhibition of lipid synthesis and glucose metabolic activity in the liver may be strategies for improving the FE of DLY pigs.
Collapse
Affiliation(s)
- Cineng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Xingwang Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Yong Ye
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Longlong Peng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China.
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China.
| |
Collapse
|
18
|
Outhouse AC, Helm ET, Patterson BM, Dekkers JCM, Rauw WM, Schwartz KJ, Gabler NK, Huff-Lonergan E, Lonergan SM. Effect of a dual enteric and respiratory pathogen challenge on swine growth, efficiency, carcass composition, and pork quality1. J Anim Sci 2020; 97:4710-4720. [PMID: 31634906 DOI: 10.1093/jas/skz332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/18/2019] [Indexed: 11/14/2022] Open
Abstract
The objective of this study was to determine the influence of a dual respiratory and enteric pathogen challenge on growth performance, carcass composition, and pork quality of high and low feed efficient pigs. Pigs divergently selected for low and high residual feed intake (RFI, ~68 kg) from the 11th generation of Iowa State University RFI project were used to represent high and low feed efficiency. To elicit a dual pathogen challenge, half of the pigs (n = 12/line) were inoculated with Mycoplasma hyopneumoniae (Mh) and Lawsonia intracellularis (MhLI) on days post-inoculation (dpi) 0. Pigs in a separate room of the barn were not inoculated and used as controls (n = 12/RFI line). Pigs were weighed and feed intake was recorded to calculate ADG, ADFI, and G:F for the acclimation period (period 1: dpi -21 to 0), during peak infection (period 2: dpi 0 to 42), and during the remaining growth period to reach market weight (period 3: dpi 42 to harvest). At ~125 kg, pigs were harvested using standard commercial procedures. Carcasses were evaluated for composition (weight, fat free lean, loin eye area, 10th rib fat depth) and meat quality (pH decline, temperature decline, Hunter L, a, and b, subjective color and marbling, star probe, drip loss, cook loss, proximate composition, and desmin degradation). Challenged pigs had lesser ADFI than controls during period 2 (P < 0.05), but had greater ADG and G:F during period 3 (P < 0.05). Selection for feed efficiency did not result in a differential response to MhLI (P > 0.05). Loin chops from the less feed efficient, high RFI pigs, had greater drip loss, greater cook loss, lesser moisture content, greater Hunter L values, and greater Hunter b values (P < 0.05) than loin chops from low RFI pigs. Infection status did not significantly affect carcass composition or pork quality traits (P > 0.05). These results indicate that a MhLI challenge early in growth did not significantly affect ultimate carcass composition or meat quality traits. Selection for greater feed efficiency in pigs did not affect their response to pathogenic challenge.
Collapse
Affiliation(s)
| | - Emma T Helm
- Department of Animal Science, Iowa State University, Ames, IA
| | | | | | | | - Kent J Schwartz
- School of Veterinary Medicine, Iowa State University, Ames, IA
| | | | | | | |
Collapse
|
19
|
Hou X, Pu L, Wang L, Liu X, Gao H, Yan H, Zhang J, Zhang Y, Yue J, Zhang L, Wang L. Transcriptome Analysis of Skeletal Muscle in Pigs with Divergent Residual Feed Intake Phenotypes. DNA Cell Biol 2020; 39:404-416. [PMID: 32004088 DOI: 10.1089/dna.2019.4878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Residual feed intake (RFI) is defined as the difference between the observed and expected feed intake for maintenance and growth requirements. In this study, the expression profiles of mRNAs and long noncoding RNAs (lncRNAs) from skeletal muscle in Duroc pigs with divergent RFI phenotypes were investigated by Illumina sequencing. Finally, a total of 2195 annotated lncRNAs and 1976 novel lncRNAs were obtained. About 210 mRNAs and 43 lncRNAs were differentially expressed among high and low RFI pigs. The differentially expressed mRNAs were potentially involved in the biological processes of lipid metabolism, extracellular matrix organization, cell proliferation, and cell adhesion. The lipolysis in skeletal muscle was increased in high RFI pigs, suggesting that high RFI pigs might need more energy than low RFI pigs. However, skeletal muscle development was increased in low RFI pigs. These results suggested that low RFI pigs might be more efficient in energy utilization during skeletal muscle growth. The function of lncRNA was also analyzed by target prediction. Nine lncRNAs might be candidate lncRNAs for the determination of RFI phenotype, by the regulation of the biological processes of lipid metabolism, cell proliferation, and cell adhesion. This study should facilitate a further understanding of the molecular mechanism for the determination of RFI phenotype in pigs.
Collapse
Affiliation(s)
- Xinhua Hou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Pu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Ligang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongmei Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua Yan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinshan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuebo Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingwei Yue
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Longchao Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Carmelo VAO, Banerjee P, da Silva Diniz WJ, Kadarmideen HN. Metabolomic networks and pathways associated with feed efficiency and related-traits in Duroc and Landrace pigs. Sci Rep 2020; 10:255. [PMID: 31937890 PMCID: PMC6959238 DOI: 10.1038/s41598-019-57182-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
Improving feed efficiency (FE) is a major goal of pig breeding, reducing production costs and providing sustainability to the pig industry. Reliable predictors for FE could assist pig producers. We carried out untargeted blood metabolite profiling in uncastrated males from Danbred Duroc (n = 59) and Danbred Landrace (n = 50) pigs at the beginning and end of a FE testing phase to identify biomarkers and biological processes underlying FE and related traits. By applying linear modeling and clustering analyses coupled with WGCNA framework, we identified 102 and 73 relevant metabolites in Duroc and Landrace based on two sampling time points. Among them, choline and pyridoxamine were hub metabolites in Duroc in early testing phase, while, acetoacetate, cholesterol sulfate, xanthine, and deoxyuridine were identified in the end of testing. In Landrace, cholesterol sulfate, thiamine, L-methionine, chenodeoxycholate were identified at early testing phase, while, D-glutamate, pyridoxamine, deoxycytidine, and L-2-aminoadipate were found at the end of testing. Validation of these results in larger populations could establish FE prediction using metabolomics biomarkers. We conclude that it is possible to identify a link between blood metabolite profiles and FE. These results could lead to improved nutrient utilization, reduced production costs, and increased FE.
Collapse
Affiliation(s)
- Victor Adriano Okstoft Carmelo
- Quantitative Genomics, Bioinformatics and Computational Biology, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Priyanka Banerjee
- Quantitative Genomics, Bioinformatics and Computational Biology, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Wellison Jarles da Silva Diniz
- Quantitative Genomics, Bioinformatics and Computational Biology, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark.,Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Haja N Kadarmideen
- Quantitative Genomics, Bioinformatics and Computational Biology, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
21
|
Ukhtverov AM, Khakimov IN, Zaitseva ES, Zaspa LF, Kanaeva ES. The efficiency of pig breeding by maturity and bacon thickness at different selection intensities. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20201700017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Scientific and economic experience in the study of the comparative effectiveness of using simultaneous and sequential selection at its various intensities (75, 50 and 30% in boars and 30% in breeding sows) by early maturity and thickness of bacon, aimed at improving feeding and meat qualities, established that simultaneous selection by a set of characters is possible, because connections between them in either the positive or the negative direction have not been identified. However, when one of the traits during prolonged selection improves by an excessive amount, other non-breeding traits deteriorate. At the same time, simultaneous and sequential selection by the early maturity and thickness of the bacon makes it possible to select the same animals for further breeding, regardless of the intensity of the rejection. A different level of producers’ selection intensity (75, 50, 30%) and the same breeding sows (30%) in terms of early maturity and bacon thickness ensure an improvement in these characteristics by an unequal value during one generation.
Collapse
|
22
|
Skugor A, Kjos NP, Sundaram AYM, Mydland LT, Ånestad R, Tauson AH, Øverland M. Effects of long-term feeding of rapeseed meal on skeletal muscle transcriptome, production efficiency and meat quality traits in Norwegian Landrace growing-finishing pigs. PLoS One 2019; 14:e0220441. [PMID: 31390356 PMCID: PMC6685631 DOI: 10.1371/journal.pone.0220441] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/16/2019] [Indexed: 12/30/2022] Open
Abstract
This study was performed to investigate the effects of dietary inclusion of 20% rapeseed meal (RSM) as an alternative to soybean meal (SBM) in a three-month feeding experiment with growing finishing pigs. Dietary alteration affected growth performance, several carcass traits and transcriptional responses in the skeletal muscle, but did not affect measured meat quality traits. In general, pigs fed the RSM test diet exhibited reduced growth performance compared to pigs on SBM control diet. Significant transcriptional changes in the skeletal muscle of growing pigs fed RSM diet were likely the consequence of an increased amount of fiber and higher polyunsaturated fatty acids, and presence of bioactive phytochemicals, such as glucosinolates. RNAseq pipeline using Tophat2-Cuffdiff identified 57 upregulated and 63 downregulated genes in RSM compared to SBM pigs. Significantly enriched among downregulated pathways was p53-mediated signalling involved in cellular proliferation, while activation of negative growth regulators (IER5, KLF10, BTG2, KLF11, RETREG1, PRUNE2) in RSM fed pigs provided further evidence for reduced proliferation and increased cellular death, in accordance with the observed reduction in performance traits. Upregulation of well-known metabolic controllers (PDK4, UCP3, ESRRG and ESRRB), involved in energy homeostasis (glucose and lipid metabolism, and mitochondrial function), suggested less available energy and nutrients in RSM pigs. Furthermore, several genes supported more pronounced proteolysis (ABTB1, OTUD1, PADI2, SPP1) and reduced protein synthesis (THBS1, HSF4, AP1S2) in RSM muscle tissue. In parallel, higher levels of NR4A3, PDK4 and FGF21, and a drop in adropin, ELOVL6 and CIDEC/FSP27 indicated increased lipolysis and fatty acid oxidation, reflective of lower dressing percentage. Finally, pigs exposed to RSM showed greater expression level of genes responsive to oxidative stress, indicated by upregulation of GPX1, GPX2, and TXNIP.
Collapse
Affiliation(s)
- Adrijana Skugor
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Nils Petter Kjos
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | | | - Liv Torunn Mydland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Ragnhild Ånestad
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Anne-Helene Tauson
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Margareth Øverland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
23
|
Vigors S, O'Doherty JV, Bryan K, Sweeney T. A comparative analysis of the transcriptome profiles of liver and muscle tissue in pigs divergent for feed efficiency. BMC Genomics 2019; 20:461. [PMID: 31170913 PMCID: PMC6555042 DOI: 10.1186/s12864-019-5740-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/26/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The improvement of feed efficiency is a key economic goal within the pig production industry. The objective of this study was to examine transcriptomic differences in both the liver and muscle of pigs divergent for feed efficiency, thus improving our understanding of the molecular mechanisms influencing feed efficiency and enabling the identification of candidate biomarkers. Residual feed intake (RFI) was calculated for two populations of pigs from two different farms of origin/genotype. The 6 most efficient (LRFI) and 6 least efficient (HRFI) animals from each population were selected for further analysis of Longissimus Dorsi muscle (n = 22) and liver (n = 23). Transcriptomic data were generated from liver and muscle collected post-slaughter. RESULTS The transcriptomic data segregated based on the RFI value of the pig rather than genotype/farm of origin. A total of 6463 genes were identified as being differentially expressed (DE) in muscle, while 964 genes were identified as being DE in liver. Genes that were commonly DE between muscle and liver (n = 526) were used for the multi-tissue analysis. These 526 genes were associated with protein targeting to membrane, extracellular matrix organisation and immune function. In the muscle-only analysis, genes associated with RNA processing, protein synthesis and energy metabolism were down regulated in the LRFI animals while in the liver-only analysis, genes associated with cell signalling and lipid homeostasis were up regulated in the LRFI animals. CONCLUSIONS Differences in the transcriptome segregated on pig RFI value rather than the genotype/farm of origin. Multi-tissue analysis identified that genes associated with GO terms protein targeting to membrane, extracellular matrix organisation and a range of terms relating to immune function were over represented in the differentially expressed genes of both liver and muscle.
Collapse
Affiliation(s)
- Stafford Vigors
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - John V O'Doherty
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kenneth Bryan
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
24
|
Horodyska J, Reyer H, Wimmers K, Trakooljul N, Lawlor PG, Hamill RM. Transcriptome analysis of adipose tissue from pigs divergent in feed efficiency reveals alteration in gene networks related to adipose growth, lipid metabolism, extracellular matrix, and immune response. Mol Genet Genomics 2018; 294:395-408. [PMID: 30483895 DOI: 10.1007/s00438-018-1515-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 11/13/2018] [Indexed: 12/14/2022]
Abstract
Adipose tissue is hypothesized to play a vital role in regulation of feed efficiency (FE; efficiency in converting energy and nutrients into tissue), of which improvement will simultaneously reduce environmental impact and feed cost per pig. The objective of the present study was to sequence the subcutaneous adipose tissue transcriptome in FE-divergent pigs (n = 16) and identify relevant biological processes underpinning observed differences in FE. We previously demonstrated that high-FE pigs were associated with lower fatness when compared to their counterparts. Here, ontology analysis of a total of 209 annotated genes that were differentially expressed at a p < 0.01 revealed establishment of a dense extracellular matrix and inhibition of capillary formation as one underlying mechanism to achieve suppressed adipogenesis. Moreover, mechanisms ensuring an efficient utilization of lipids in high-FE pigs might be orchestrated by upstream regulators including CEBPA and EGF. Consequently, high-FE adipose tissue could exhibit more efficient cholesterol disposal, whilst inhibition of inflammatory and immune response in high-FE pigs may be an indicator of an optimally functioning adipose tissue. Taken together, adipose tissue growth, extracellular matrix formation, lipid metabolism and inflammatory and immune response are key biological events underpinning the differences in FE. Further investigations focusing on elucidating these processes would assist the animal production industry in optimizing strategies related to nutrient utilization and product quality.
Collapse
Affiliation(s)
- Justyna Horodyska
- Teagasc, Food Research Centre, Ashtown, Dublin 15, Ireland.,Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Henry Reyer
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Peadar G Lawlor
- Teagasc, Pig Development Department, AGRIC, Moorepark, Fermoy, Co. Cork, Ireland
| | - Ruth M Hamill
- Teagasc, Food Research Centre, Ashtown, Dublin 15, Ireland.
| |
Collapse
|
25
|
Horodyska J, Wimmers K, Reyer H, Trakooljul N, Mullen AM, Lawlor PG, Hamill RM. RNA-seq of muscle from pigs divergent in feed efficiency and product quality identifies differences in immune response, growth, and macronutrient and connective tissue metabolism. BMC Genomics 2018; 19:791. [PMID: 30384851 PMCID: PMC6211475 DOI: 10.1186/s12864-018-5175-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Feed efficiency (FE) is an indicator of efficiency in converting energy and nutrients from feed into a tissue that is of major environmental and economic significance. The molecular mechanisms contributing to differences in FE are not fully elucidated, therefore the objective of this study was to profile the porcine Longissimus thoracis et lumborum (LTL) muscle transcriptome, examine the product quality from pigs divergent in FE and investigate the functional networks underpinning the potential relationship between product quality and FE. RESULTS RNA-Seq (n = 16) and product quality (n = 40) analysis were carried out in the LTL of pigs differing in FE status. A total of 272 annotated genes were differentially expressed with a P < 0.01. Functional annotation revealed a number of biological events related to immune response, growth, carbohydrate & lipid metabolism and connective tissue indicating that these might be the key mechanisms governing differences in FE. Five most significant bio-functions altered in FE groups were 'haematological system development & function', 'lymphoid tissue structure & development', 'tissue morphology', 'cellular movement' and 'immune cell trafficking'. Top significant canonical pathways represented among the differentially expressed genes included 'IL-8 signalling', 'leukocyte extravasation signalling, 'sphingosine-1-phosphate signalling', 'PKCθ signalling in T lymphocytes' and 'fMLP signalling in neutrophils'. A minor impairment in the quality of meat, in relation to texture and water-holding capacity, produced by high-FE pigs was observed. High-FE pigs also had reduced intramuscular fat content and improved nutritional profile in terms of fatty acid composition. CONCLUSIONS Ontology analysis revealed enhanced activity of adaptive immunity and phagocytes in high-FE pigs suggesting more efficient conserving of resources, which can be utilised for other important biological processes. Shifts in carbohydrate conversion into glucose in FE-divergent muscle may underpin the divergent evolution of pH profile in meat from the FE-groups. Moreover, altered amino acid metabolism and increased mobilisation & flux of calcium may influence growth in FE-divergent muscle. Furthermore, decreased degradation of fibroblasts in FE-divergent muscle could impact on collagen turnover and alter tenderness of meat, whilst enhanced lipid degradation in high-FE pigs may potentially underlie a more efficient fat metabolism in these animals.
Collapse
Affiliation(s)
- Justyna Horodyska
- Teagasc, Food Research Centre, Ashtown, Dublin, 15, Ireland.,Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| | - Henry Reyer
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | | | - Peadar G Lawlor
- Teagasc, Pig Development Department, AGRIC, Moorepark, Fermoy, Co. Cork, Ireland
| | - Ruth M Hamill
- Teagasc, Food Research Centre, Ashtown, Dublin, 15, Ireland.
| |
Collapse
|
26
|
Metabolic characteristics and nutrient utilization in high-feed-efficiency pigs selected using different feed conversion ratio models. SCIENCE CHINA-LIFE SCIENCES 2018; 62:959-970. [DOI: 10.1007/s11427-018-9372-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 09/20/2018] [Indexed: 01/05/2023]
|
27
|
Voillet V, San Cristobal M, Père MC, Billon Y, Canario L, Liaubet L, Lefaucheur L. Integrated Analysis of Proteomic and Transcriptomic Data Highlights Late Fetal Muscle Maturation Process. Mol Cell Proteomics 2018; 17:672-693. [PMID: 29311229 PMCID: PMC5880113 DOI: 10.1074/mcp.m116.066357] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 10/13/2017] [Indexed: 01/08/2023] Open
Abstract
In pigs, the perinatal period is the most critical time for survival. Piglet maturation, which occurs at the end of gestation, is an important determinant of early survival. Skeletal muscle plays a key role in adaptation to extra-uterine life, e.g. motor function and thermoregulation. Progeny from two breeds with extreme neonatal mortality rates were analyzed at 90 and 110 days of gestation (dg). The Large White breed is a highly selected breed for lean growth and exhibits a high rate of neonatal mortality, whereas the Meishan breed is fatter and more robust and has a low neonatal mortality. Our aim was to identify molecular signatures underlying late fetal longissimus muscle development. First, integrated analysis was used to explore relationships between co-expression network models built from a proteomic data set (bi-dimensional electrophoresis) and biological phenotypes. Second, correlations with a transcriptomic data set (microarrays) were investigated to combine different layers of expression with a focus on transcriptional regulation. Muscle glycogen content and myosin heavy chain polymorphism were good descriptors of muscle maturity and were used for further data integration analysis. Using 89 identified unique proteins, network inference, correlation with biological phenotypes and functional enrichment revealed that mitochondrial oxidative metabolism was a key determinant of neonatal muscle maturity. Some proteins, including ATP5A1 and CKMT2, were important nodes in the network related to muscle metabolism. Transcriptomic data suggest that overexpression of mitochondrial PCK2 was involved in the greater glycogen content of Meishan fetuses at 110 dg. GPD1, an enzyme involved in the mitochondrial oxidation of cytosolic NADH, was overexpressed in Meishan. Thirty-one proteins exhibited a positive correlation between mRNA and protein levels in both extreme fetal genotypes, suggesting transcriptional regulation. Gene ontology enrichment and Ingenuity analyses identified PPARGC1A and ESR1 as possible transcriptional factors positively involved in late fetal muscle maturation.
Collapse
Affiliation(s)
- Valentin Voillet
- From the ‡GenPhyse, Université de Toulouse, INRA, ENVT, F-31326 Castanet-Tolosan, France
| | - Magali San Cristobal
- From the ‡GenPhyse, Université de Toulouse, INRA, ENVT, F-31326 Castanet-Tolosan, France
| | | | - Yvon Billon
- ¶INRA, UE1372, GenESI, F-17700 Surgères, France
| | - Laurianne Canario
- From the ‡GenPhyse, Université de Toulouse, INRA, ENVT, F-31326 Castanet-Tolosan, France
| | - Laurence Liaubet
- From the ‡GenPhyse, Université de Toulouse, INRA, ENVT, F-31326 Castanet-Tolosan, France
| | | |
Collapse
|
28
|
Analysis of meat quality traits and gene expression profiling of pigs divergent in residual feed intake. Meat Sci 2018; 137:265-274. [DOI: 10.1016/j.meatsci.2017.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/08/2017] [Accepted: 11/16/2017] [Indexed: 11/19/2022]
|
29
|
Zhang X, Wang W, Mo F, La Y, Li C, Li F. Association of residual feed intake with growth and slaughtering performance, blood metabolism, and body composition in growing lambs. Sci Rep 2017; 7:12681. [PMID: 28978940 PMCID: PMC5627304 DOI: 10.1038/s41598-017-13042-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to determine the association of residual feed intake (RFI) with growth performance, blood metabolic parameters, and body composition factors in growing lambs. Individual body weight (BW) and dry matter intake (DMI) were determined in 137 male Hu lambs that were given a pellet feed four times a day for 50 d. RFI did not show a correlation with metabolic BW (MBW) or average daily gain (ADG), but it showed a positive correlation with DMI and feed conversation ratio (FCR). Organ weight and intestine length had a large influence on RFI in lambs. The low-RFI lambs have smaller rumen and longer duodenum indicating the less feed intake and more sufficient absorption rate of low-RFI lambs. The smaller organs like liver, lung and kidney in low-RFI lambs may be related to lower energy consumption and slower metabolic rate. The observed bigger testis was in low-RFI lambs was another cause of the improved feed efficiency. Finally, the plasma concentrations of thyroxine (T4) and adrenocorticotropic hormone (ACTH) were lower in the ELow-RFI group than in the EHigh-RFI group. This study provides new insight into the biological processes underlying variations in feed efficiency in growing lambs.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.,College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730000, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730000, China.,Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin, 733300, China
| | - Futao Mo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730000, China
| | - Yongfu La
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730000, China
| | - Chong Li
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.,College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730000, China.,Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin, 733300, China
| | - Fadi Li
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
30
|
Gilbert H, Billon Y, Brossard L, Faure J, Gatellier P, Gondret F, Labussière E, Lebret B, Lefaucheur L, Le Floch N, Louveau I, Merlot E, Meunier-Salaün MC, Montagne L, Mormede P, Renaudeau D, Riquet J, Rogel-Gaillard C, van Milgen J, Vincent A, Noblet J. Review: divergent selection for residual feed intake in the growing pig. Animal 2017; 11:1427-1439. [PMID: 28118862 PMCID: PMC5561440 DOI: 10.1017/s175173111600286x] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022] Open
Abstract
This review summarizes the results from the INRA (Institut National de la Recherche Agronomique) divergent selection experiment on residual feed intake (RFI) in growing Large White pigs during nine generations of selection. It discusses the remaining challenges and perspectives for the improvement of feed efficiency in growing pigs. The impacts on growing pigs raised under standard conditions and in alternative situations such as heat stress, inflammatory challenges or lactation have been studied. After nine generations of selection, the divergent selection for RFI led to highly significant (P<0.001) line differences for RFI (-165 g/day in the low RFI (LRFI) line compared with high RFI line) and daily feed intake (-270 g/day). Low responses were observed on growth rate (-12.8 g/day, P<0.05) and body composition (+0.9 mm backfat thickness, P=0.57; -2.64% lean meat content, P<0.001) with a marked response on feed conversion ratio (-0.32 kg feed/kg gain, P<0.001). Reduced ultimate pH and increased lightness of the meat (P<0.001) were observed in LRFI pigs with minor impact on the sensory quality of the meat. These changes in meat quality were associated with changes of the muscular energy metabolism. Reduced maintenance energy requirements (-10% after five generations of selection) and activity (-21% of time standing after six generations of selection) of LRFI pigs greatly contributed to the gain in energy efficiency. However, the impact of selection for RFI on the protein metabolism of the pig remains unclear. Digestibility of energy and nutrients was not affected by selection, neither for pigs fed conventional diets nor for pigs fed high-fibre diets. A significant improvement of digestive efficiency could likely be achieved by selecting pigs on fibre diets. No convincing genetic or blood biomarker has been identified for explaining the differences in RFI, suggesting that pigs have various ways to achieve an efficient use of feed. No deleterious impact of the selection on the sow reproduction performance was observed. The resource allocation theory states that low RFI may reduce the ability to cope with stressors, via the reduction of a buffer compartment dedicated to responses to stress. None of the experiments focussed on the response of pigs to stress or challenges could confirm this theory. Understanding the relationships between RFI and responses to stress and energy demanding processes, as such immunity and lactation, remains a major challenge for a better understanding of the underlying biological mechanisms of the trait and to reconcile the experimental results with the resource allocation theory.
Collapse
Affiliation(s)
- H. Gilbert
- GenPhySE, INRA, INP,
ENSAT, Université de Toulouse,
31326 Castanet-Tolosan, France
| | - Y. Billon
- GenESI, INRA, 17700
Surgères, France
| | - L. Brossard
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - J. Faure
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - P. Gatellier
- QuaPA, INRA, 63122 Saint
Genès-Champanelle, France
| | - F. Gondret
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - E. Labussière
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - B. Lebret
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - L. Lefaucheur
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - N. Le Floch
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - I. Louveau
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - E. Merlot
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | | | - L. Montagne
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - P. Mormede
- GenPhySE, INRA, INP,
ENSAT, Université de Toulouse,
31326 Castanet-Tolosan, France
| | - D. Renaudeau
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - J. Riquet
- GenPhySE, INRA, INP,
ENSAT, Université de Toulouse,
31326 Castanet-Tolosan, France
| | - C. Rogel-Gaillard
- GABI, INRA,
AgroParisTech, Université Paris-Saclay,
78350 Jouy-en-Josas Cedex, France
| | - J. van Milgen
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - A. Vincent
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - J. Noblet
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| |
Collapse
|
31
|
Strategies towards Improved Feed Efficiency in Pigs Comprise Molecular Shifts in Hepatic Lipid and Carbohydrate Metabolism. Int J Mol Sci 2017; 18:ijms18081674. [PMID: 28763040 PMCID: PMC5578064 DOI: 10.3390/ijms18081674] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 11/29/2022] Open
Abstract
Due to the central role of liver tissue in partitioning and metabolizing of nutrients, molecular liver-specific alterations are of considerable interest to characterize an efficient conversion and usage of feed in livestock. To deduce tissue-specific and systemic effects on nutrient metabolism and feed efficiency (FE) twenty-four animals with extreme phenotypes regarding residual feed intake (RFI) were analyzed. Transcriptome and fatty acid profiles of liver tissue were complemented with measurements on blood parameters and thyroid hormone levels. Based on 803 differentially-abundant probe sets between low- and high-FE animals, canonical pathways like integrin signaling and lipid and carbohydrate metabolism, were shown to be affected. Molecular alterations of lipid metabolism show a pattern of a reduced hepatic usage of fatty acids in high-FE animals. Complementary analyses at the systemic level exclusively pointed to increased circulating triglycerides which were, however, accompanied by considerably lower concentrations of saturated and polyunsaturated fatty acids in the liver of high-FE pigs. These results are in accordance with altered muscle-to-fat ratios usually ascribed to FE animals. It is concluded that strategies to improve FE might favor a metabolic shift from energy storage towards energy utilization and mobilization.
Collapse
|
32
|
Impact of hygiene of housing conditions on performance and health of two pig genetic lines divergent for residual feed intake. Animal 2017; 12:350-358. [PMID: 28651668 DOI: 10.1017/s1751731117001379] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pigs selected for high performance may be more at risk of developing diseases. This study aimed to assess the health and performance of two pig lines divergently selected for residual feed intake (RFI) (low RFI (LRFI) v. high RFI (HRFI)) and housed in two contrasted hygiene conditions (poor v. good) using a 2×2 factorial design (n=40/group). The challenge period (Period 1), started on week zero (W0) when 12-week-old pigs were transferred to good or poor housing conditions. At week 6 (W6), half of the pigs in each group were slaughtered. During a recovery period (Period 2) from W6 to W13 to W14, the remaining pigs (n=20/group) were transferred in good hygiene conditions before being slaughtered. Blood was collected every three (Period 1) or 2 weeks (Period 2) to assess blood indicators of immune and inflammatory responses. Pulmonary lesions at slaughter and performance traits were evaluated. At W6, pneumonia prevalence was greater for pigs housed in poor than in good conditions (51% v. 8%, respectively, P<0.001). Irrespective of hygiene conditions, lung lesion scores were lower for LRFI pigs than for HRFI pigs (P=0.03). At W3, LRFI in poor conditions had the highest number of blood granulocytes (hygiene×line, P=0.03) and at W6, HRFI pigs in poor conditions had the greatest plasma haptoglobin concentrations (hygiene×line, P=0.02). During Period 1, growth rate and growth-to-feed ratio were less affected by poor hygiene in LRFI pigs than in HRFI pigs (hygiene×line, P=0.001 and P=0.02, respectively). Low residual feed intake pigs in poor conditions ate more than the other groups (hygiene×line, P=0.002). Irrespective of the line, fasting plasma glucose concentrations were higher in poor conditions, whereas fasting free fatty acids concentrations were lower than in good conditions. At the end of Period 2, pneumonia prevalence was similar for both housing conditions (39% v. 38%, respectively). During Period 2, plasma protein concentrations were greater for pigs previously housed in poor than in good conditions during Period 1. Immune traits, gain-to-feed ratio, BW gain and feed consumption did not differ during Period 2. Nevertheless, at W12, BW of HRFI previously housed in poor conditions was 13.4 kg lower than BW of HRFI pigs (P<0.001) previously housed in good conditions. In conclusion, health of the most feed efficient LRFI pigs was less impaired by poor hygiene conditions. This line was able to preserve its health, growth performance and its feed ingestion to a greater extent than the less efficient HRFI line.
Collapse
|
33
|
Gondret F, Vincent A, Houée-Bigot M, Siegel A, Lagarrigue S, Causeur D, Gilbert H, Louveau I. A transcriptome multi-tissue analysis identifies biological pathways and genes associated with variations in feed efficiency of growing pigs. BMC Genomics 2017; 18:244. [PMID: 28327084 PMCID: PMC5361837 DOI: 10.1186/s12864-017-3639-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/17/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Animal's efficiency in converting feed into lean gain is a critical issue for the profitability of meat industries. This study aimed to describe shared and specific molecular responses in different tissues of pigs divergently selected over eight generations for residual feed intake (RFI). RESULTS Pigs from the low RFI line had an improved gain-to-feed ratio during the test period and displayed higher leanness but similar adiposity when compared with pigs from the high RFI line at 132 days of age. Transcriptomics data were generated from longissimus muscle, liver and two adipose tissues using a porcine microarray and analyzed for the line effect (n = 24 pigs per line). The most apparent effect of the line was seen in muscle, whereas subcutaneous adipose tissue was the less affected tissue. Molecular data were analyzed by bioinformatics and subjected to multidimensional statistics to identify common biological processes across tissues and key genes participating to differences in the genetics of feed efficiency. Immune response, response to oxidative stress and protein metabolism were the main biological pathways shared by the four tissues that distinguished pigs from the low or high RFI lines. Many immune genes were under-expressed in the four tissues of the most efficient pigs. The main genes contributing to difference between pigs from the low vs high RFI lines were CD40, CTSC and NTN1. Different genes associated with energy use were modulated in a tissue-specific manner between the two lines. The gene expression program related to glycogen utilization was specifically up-regulated in muscle of pigs from the low RFI line (more efficient). Genes involved in fatty acid oxidation were down-regulated in muscle but were promoted in adipose tissues of the same pigs when compared with pigs from the high RFI line (less efficient). This underlined opposite line-associated strategies for energy use in skeletal muscle and adipose tissue. Genes related to cholesterol synthesis and efflux in liver and perirenal fat were also differentially regulated in pigs from the low vs high RFI lines. CONCLUSIONS Non-productive functions such as immunity, defense against pathogens and oxidative stress contribute likely to inter-individual variations in feed efficiency.
Collapse
Affiliation(s)
| | - Annie Vincent
- Pegase, Agrocampus Ouest, INRA, 35590, Saint-Gilles, France
| | - Magalie Houée-Bigot
- Laboratoire de Mathématiques Appliquées, IRMAR, Agrocampus Ouest, 35000, Rennes, France
| | - Anne Siegel
- IRISA, CNRS, Université Rennes-1, INRIA, 35042, Rennes cedex, France
| | | | - David Causeur
- Laboratoire de Mathématiques Appliquées, IRMAR, Agrocampus Ouest, 35000, Rennes, France
| | - Hélène Gilbert
- GenPhySE, INRA, ENVT, Université de Toulouse, 31326, Castanet-Tolosan cedex, France
| | | |
Collapse
|
34
|
Jiang M, Fan W, Xing S, Wang J, Li P, Liu R, Li Q, Zheng M, Cui H, Wen J, Zhao G. Effects of balanced selection for intramuscular fat and abdominal fat percentage and estimates of genetic parameters. Poult Sci 2017; 96:282-287. [DOI: 10.3382/ps/pew334] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/01/2016] [Accepted: 08/06/2016] [Indexed: 01/07/2023] Open
|
35
|
Effect of inflammation stimulation on energy and nutrient utilization in piglets selected for low and high residual feed intake. Animal 2016; 9:1653-61. [PMID: 26381577 DOI: 10.1017/s1751731115000932] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Selection of animals for improved feed efficiency can affect sustainability of animal production because the most efficient animals may face difficulties coping with challenges. The objective of this study was to determine the effects of an inflammatory challenge (using an intravenous injection of complete Freund's adjuvant - CFA) in piglets from two lines of pigs divergently selected during the fattening period for a low (RFI-) or a high (RFI+) residual feed intake (RFI; difference between actual feed intake and theoretical feed requirements). Nitrogen and energy balances (including heat production - HP - and its components: activity-related HP - AHP, thermic effect of feeding, and resting HP) were measured individually in thirteen 20-kg BW castrated male piglets (six and seven from RFI+ and RFI- line, respectively) fed at the same level (1.72 MJ ME/kg BW0.60 per day) from 3 days before to 3 days after CFA injection. Dynamics of dietary U-13C-glucose oxidation were estimated from measurements of 13CO2 production on the day before and 3 days after the CFA injection. Oxidation of dietary nutrients and lipogenesis were calculated based on HP and O2 consumption and CO2 production. The data were analyzed as repeated measurements within piglets in a mixed model. Before CFA injection, RFI- piglets had a lower resting energy expenditure than RFI+ piglets, which tended to increase energy retention because of a higher energy retention as fat. The CFA injection did not affect feed intake from the day following CFA injection onwards but it increased energy retention (P=0.04). Time to recover 50% of 13C from dietary glucose as expired 13CO2 was higher in RFI+ piglets before inducing inflammation but decreased after to the level of RFI- piglets (P<0.01). Oxidation of U-13C-glucose tended to slightly increased in RFI- piglets and to decreased in RFI+ piglets (P=0.10) because of CFA. Additionally, RFI- piglets had a lower respiratory quotient during the 1st day following the CFA injection whereas RFI+ piglets tended to have a higher respiratory quotient. In conclusion, selection for RFI during the fattening period also affected the energy metabolism of pigs during earlier stages of growth. The effects of CFA injection were moderated in both lines but the most efficient animals (RFI-) exhibited a marked re-orientation of nutrients only during the 1st day after CFA, and seemed to recover thereafter, whereas the less efficient piglets expressed a more prolonged alteration of their metabolism.
Collapse
|
36
|
Combined effect of divergent selection for breast muscle ultimate pH and dietary amino acids on chicken performance, physical activity and meat quality. Animal 2016; 11:335-344. [PMID: 27476550 DOI: 10.1017/s1751731116001580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Responses to changes in dietary Lys and other essential amino acid (AA) concentrations were evaluated in 480 male and female broilers originating from two lines divergently selected for high (pHu+) or low (pHu-) ultimate pH (pHu) of breast muscle. The two genetic lines were fed with two grower isoenergetic diets differing in both true digestible Lys (control=10.2 g/kg and experimental=7.0 g/kg) and amounts of other essential AA calculated in relation to Lys, which were sufficient for the control diet or in excess for the experimental diet. There were six repetitions per treatment. Birds were weighed individually at days 0, 21, 28 and 43. Feed consumption was recorded per pen and feed conversion was calculated over the growing period. The physical activity and walking ability of broilers were recorded during the whole rearing period. Breast and leg yield, and abdominal fat percentage were measured at 43 days of age, as were pHu, color, drip and cooking loss, Warner-Bratzler shear force, and curing-cooking yield of the breast Pectoralis major and pHu of the thigh Sartorius muscle. Divergent selection greatly affected most breast meat quality traits without significantly changing growth rate or feed efficiency. When subjected to a variation in dietary intake of AA, birds from the two genotypes responded in a similar way in terms of animal's growth, feed efficiency, body composition and meat quality traits. Although line and diet did not affect physical or feeding activities of the broilers, a significant effect of line-by-diet interaction was observed on gait score. Contrary to the pHu- birds, the walking ability of pHu+ birds was impaired when fed the control diet that favored growth and breast muscle development and limited storage of carbohydrate in muscle.
Collapse
|
37
|
Drouilhet L, Monteville R, Molette C, Lague M, Cornuez A, Canario L, Ricard E, Gilbert H. Impact of selection for residual feed intake on production traits and behavior of mule ducks. Poult Sci 2016; 95:1999-2010. [PMID: 27333975 PMCID: PMC4983686 DOI: 10.3382/ps/pew185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 12/18/2022] Open
Abstract
A divergent selection experiment of Muscovy sires based on the residual feed intake (RFI) of their male mule progeny was initiated in 2009. Using electronic feeders, the aim of this study was to establish whether 3 generations of selection for RFI had an impact on feeding behavior traits and general behavior, and to examine its effect on liver and meat quality. Eighty mule ducks, issued from 8 Muscovy drakes per line with extreme RFI, were tested in a pen equipped with 4 electronic feeders. Feeding behaviors were recorded from 3 to 7 wk after hatching under ad libitum feeding conditions. Then animals were prepared for overfeeding with a 3-week period of restricted feeding, and overfed during 12 d before slaughter. The RFI was significantly lower in the low RFI line than in the high RFI line (−5.4 g/d, P = 0.0005) and daily feed intake was reduced both over the entire test period (−5 g/d, P = 0.049) and on a weekly basis (P = 0.006). Weekly and total feed conversion ratios were also significantly lower (−0.08, P = 0.03 and −0.06, P = 0.01, respectively). Low RFI ducks had more frequent meals, spent as much time eating as high RFI ducks, and their feeding rate was lower when analyzed at the wk level only. Additionally no significant correlation between feed efficiency and feeding behavior traits was evidenced, indicating only limited relationships between RFI and feeding patterns. Some differences in behavioral responses to stressors (open field test combined with a test measuring the response to human presence) suggested that a lower RFI is associated with less fearfulness. Selection for RFI had no effect on liver weight and quality and a slightly deleterious impact on meat quality (decreased drip loss and L*). Finally, low RFI animals had higher body weights after restricted feeding from wk 10 to wk 12 and after overfeeding than high RFI ducks. This suggests that selection for reduced RFI until 7 wk of age increases the feed efficiency up to slaughter.
Collapse
Affiliation(s)
- L Drouilhet
- GenPhySE, University of Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - R Monteville
- GenPhySE, University of Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - C Molette
- GenPhySE, University of Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - M Lague
- INRA, Duck experimental unit, UE89, Benquet, France
| | - A Cornuez
- INRA, Duck experimental unit, UE89, Benquet, France
| | - L Canario
- GenPhySE, University of Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - E Ricard
- GenPhySE, University of Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - H Gilbert
- GenPhySE, University of Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| |
Collapse
|
38
|
Arkfeld EK, Young JM, Johnson RC, Fedler CA, Prusa K, Patience JF, Dekkers JCM, Gabler NK, Lonergan SM, Huff-Lonergan E. Composition and quality characteristics of carcasses from pigs divergently selected for residual feed intake on high- or low-energy diets. J Anim Sci 2016; 93:2530-45. [PMID: 26020348 DOI: 10.2527/jas.2014-8546] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective was to determine the extent to which feeding low-energy, high-fiber (LEHF) and high-energy, low-fiber (HELF) diets impacts meat quality and carcass composition of pigs divergently selected for residual feed intake (RFI). Two experiments were conducted in the divergently selected Iowa State University RFI lines: Exp. 1 evaluated carcasses of generation (G) 8 pigs fed on commercial feeders; Exp. 2 evaluated composition, pork quality, sensory, and postmortem proteolysis of pigs fed on electronic single-space feeders in G 8 and 9. Pigs (N = 177) in Exp. 1 were randomly assigned a pen (mixed sex and line; N = 8). Groups (n = 3) of pigs were slaughtered at a mean BW of 121.5 kg. Pigs in Exp. 2 (G8: n = 158; G9: n = 157) were randomly assigned to 1 of 6 pens of each diet per G. Pigs from G8 were slaughtered at a mean BW of 122.5 kg and G9 at a mean of 128.4 kg. Data were analyzed using the mixed procedure of SAS. Fixed effects were line, diet, sex, and all appropriate interactions. Random effects were group, pen, litter, and sire and covariate of off-test BW. For Exp. 2, G was added as a fixed effect and sensory day was added as a random effect when applicable. In Exp. 1, carcasses from low RFI (LRFI) pigs were leaner and had less fat depth (P < 0.01). Carcasses from pigs fed the LEHF diet had a lighter HCW and greater estimated percent lean than pigs fed HELF diet (P < 0.01). In Exp. 2, LRFI pigs on the HELF diet had the greatest loin depth (P < 0.01). Chops from HRFI pigs had greater drip loss, color scores, lean tissue a*, and percent lipid and lesser percent moisture than LRFI ( P< 0.05). Chops from pigs on the LEHF diet had lesser muscle L* values and greater percent moisture than chops from pigs fed the HELF diet (P < 0.05). Chops from LRFI pigs were juicer than those from HRFI pigs (P < 0.05). Protein extracted at d 2 postmortem from LRFI pigs on the LEHF diet had a greater 38 kDa desmin degradation product than protein from LRFI pigs fed the HELF diet (P < 0.05). Day 5 postmortem extracted protein from HRFI pigs had greater 38 kDa desmin degradation product than LRFI (P = 0.05). Pigs fed LEHF (P < 0.01) had adipose with a greater iodine value than adipose from HELF fed pigs. Pork sensory quality from pigs differentially selected for residual feed intake was not influenced by energy content of the diet the pigs were fed.
Collapse
|
39
|
Vincent A, Louveau I, Gondret F, Tréfeu C, Gilbert H, Lefaucheur L. Divergent selection for residual feed intake affects the transcriptomic and proteomic profiles of pig skeletal muscle. J Anim Sci 2016; 93:2745-58. [PMID: 26115262 DOI: 10.2527/jas.2015-8928] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Improving feed efficiency is a relevant strategy to reduce feed cost and environmental waste in livestock production. Selection experiments on residual feed intake (RFI), a measure of feed efficiency, previously indicated that low RFI was associated with lower feed intake, similar growth rate, and greater lean meat content compared with high RFI. To gain insights into the molecular mechanisms underlying these differences, 24 Large White females from 2 lines divergently selected for RFI were examined. Pigs from a low-RFI ("efficient") and high-RFI ("inefficient") line were individually fed ad libitum from 67 d of age (27 kg BW) to slaughter at 115 kg BW (n = 8 per group). Additional pigs of the high-RFI line were feed restricted to the daily feed intake of the ad libitum low-RFI pigs (n = 8) to investigate the impact of selection independently of feed intake. Global gene and protein expression profiles were assessed in the LM collected at slaughter. The analyses involved a porcine commercial microarray and 2-dimensional gel electrophoresis. About 1,000 probes were differentially expressed (P < 0.01) between RFI lines. Only 10% of those probes were also affected by feed restriction. Gene functional classification indicated a greater expression of genes involved in protein synthesis and a lower expression of genes associated with mitochondrial energy metabolism in the low-RFI pigs compared with the high-RFI pigs. At the protein level, 11 unique identified proteins exhibited a differential abundance (P < 0.05) between RFI lines. Differentially expressed proteins were generally not significantly affected by feed restriction. Mitochondrial oxidative proteins such as aconitase hydratase, ATP synthase subunit α, and creatine kinase S-type had a lower abundance in the low-RFI pigs, whereas fructose-biphosphate aldolase A and glyceraldehyde-3-phosphate dehydrogenase, 2 proteins involved in glycolysis, had a greater abundance in those pigs compared with high-RFI pigs. Antioxidant proteins such as superoxide dismutase and glutathione peroxidase 3 at the mRNA level and peroxiredoxin-6 at the protein level were also less expressed in LM of the most efficient pigs, likely related to lower oxidative molecule production. Collectively, both the transcriptomic and proteomic approaches revealed a lower oxidative metabolism in muscle of the low-RFI pigs and all these modifications were largely independent of differences in feed intake.
Collapse
|
40
|
Whole Blood Transcriptomics Is Relevant to Identify Molecular Changes in Response to Genetic Selection for Feed Efficiency and Nutritional Status in the Pig. PLoS One 2016; 11:e0146550. [PMID: 26752050 PMCID: PMC4709134 DOI: 10.1371/journal.pone.0146550] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/19/2015] [Indexed: 11/24/2022] Open
Abstract
The molecular mechanisms underlying feed efficiency need to be better understood to improve animal efficiency, a research priority to support a competitive and sustainable livestock production. This study was undertaken to determine whether pig blood transcriptome was affected by differences in feed efficiency and by ingested nutrients. Growing pigs from two lines divergently selected for residual feed intake (RFI) and fed isoproteic and isocaloric diets contrasted in energy source and nutrients were considered. Between 74 and 132 days of age, pigs (n = 12 by diet and by line) received a regular diet rich in cereals and low in fat (LF) or a diet where cereals where partially substituted by lipids and fibers (HF). At the end of the feeding trial, the total number of white blood cells was not affected by the line or by the diet, whereas the red blood cell number was higher (P<0.001) in low RFI than in high RFI pigs. Analysis of the whole blood transcriptome using a porcine microarray reveals a higher number of probes differentially expressed (DE) between RFI lines than between diets (2,154 versus 92 probes DE, P<0.01). This corresponds to 528 overexpressed genes and 477 underexpressed genes in low RFI pigs compared with high RFI pigs, respectively. Overexpressed genes were predominantly associated with translational elongation. Underexpressed genes were mainly involved in the immune response, regulation of inflammatory response, anti-apoptosis process, and cell organization. These findings suggest that selection for RFI has affected the immune status and defense mechanisms of pigs. Genes DE between diets were mainly related to the immune system and lipid metabolism. Altogether, this study demonstrates the usefulness of the blood transcriptome to identify the main biological processes affected by genetic selection and feeding strategies.
Collapse
|
41
|
Molette C, Gilbert H, Larzul C, Balmisse E, Ruesche J, Manse H, Tircazes A, Theau-Clément M, Joly T, Gidenne T, Garreau H, Drouilhet L. Direct and correlated responses to selection in two lines of rabbits selected for feed efficiency under ad libitum and restricted feeding: II. Carcass and meat quality1. J Anim Sci 2016; 94:49-57. [DOI: 10.2527/jas.2015-9403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
A review of feed efficiency in swine: biology and application. J Anim Sci Biotechnol 2015; 6:33. [PMID: 26251721 PMCID: PMC4527244 DOI: 10.1186/s40104-015-0031-2] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 06/23/2015] [Indexed: 11/28/2022] Open
Abstract
Feed efficiency represents the cumulative efficiency with which the pig utilizes dietary nutrients for maintenance, lean gain and lipid accretion. It is closely linked with energy metabolism, as the oxidation of carbon-containing components in the feed drive all metabolic processes. While much is known about nutrient utilization and tissue metabolism, blending these subjects into a discussion on feed efficiency has proven to be difficult. For example, while increasing dietary energy concentration will almost certainly increase feed efficiency, the correlation between dietary energy concentration and feed efficiency is surprisingly low. This is likely due to the plethora of non-dietary factors that impact feed efficiency, such as the environment and health as well as individual variation in maintenance requirements, body composition and body weight. Nonetheless, a deeper understanding of feed efficiency is critical at many levels. To individual farms, it impacts profitability. To the pork industry, it represents its competitive position against other protein sources. To food economists, it means less demand on global feed resources. There are environmental and other societal implications as well. Interestingly, feed efficiency is not always reported simply as a ratio of body weight gain to feed consumed. This review will explain why this arithmetic calculation, as simple as it initially seems, and as universally applied as it is in science and commerce, can often be misleading due to errors inherent in recording of both weight gain and feed intake. This review discusses the importance of feed efficiency, the manner in which it can be measured and reported, its basis in biology and approaches to its improvement. It concludes with a summary of findings and recommendations for future efforts.
Collapse
|
43
|
Divergent selection for residual feed intake in group-housed growing pigs: characteristics of physical and behavioural activity according to line and sex. Animal 2015; 8:1898-906. [PMID: 25322792 DOI: 10.1017/s1751731114001839] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aim of the study was to assess the impact of selection for residual feed intake (RFI) on the behavioural activity of lines divergently selected for RFI during seven generations. In all, six successive batches from the seventh generation of selection were raised in collective pens equipped with a single-place electronic feeder (SEF) from 10 weeks of age to 100 kg BW. Each batch included four groups of 12 pigs: high RFI (RFI+) castrated males, RFI+ females, low RFI (RFI-) castrated males, RFI- females. At 17 weeks of age, health criteria were evaluated using a gradient scale for increased severity of lameness, body lesions, bursae and tail biting. Individual behavioural activities were recorded by 24-h video tape on the day after health evaluation. The investigative motivation towards unfamiliar objects was quantified at 18 weeks of age. The daily individual feeding patterns were computed from SEF records during the 4 weeks surrounding 12, 17 and 22 weeks of age. All pigs spent significantly most of their time lying in diurnal (80% of total scan) and nocturnal (>89%) periods. The RFI- pigs showed a lower proportion of health problems (P<0.01) than RFI+ pigs. The RFI- pigs used the SEF less than the RFI+ pigs, in diurnal (5.3% v. 6.4% of video scans, P<0.05) and nocturnal periods (3.6% v. 4.5% of video scans, P<0.05). This was confirmed by a significantly lower daily number and duration of visits to the SEF computed from the SEF data. The feeding activity measured from the video recording was significantly correlated (R>0.34; P<0.05) with feeding patterns computed from the SEF. The RFI- pigs spent less time standing over the 24-h period (9.7% v. 12.2% of scans, i.e. 35 min/day, P<0.05). In terms of energy costs, this amounted to 14% of the line difference in terms of daily metabolizable energy intake. The castrated males used the SEF more than females, especially at night (4.7% v. 3.4% of total scans, P<0.05), whereas females displayed greater investigation of their environment (7.7±0.3% v. 6.6±0.2% of total scans, P<0.05) and the novel objects (10.7% v. 4.9% of total scans, P<0.05). In conclusion, the lower physical activity associated with reduced energy expenditure in RFI- pigs compared with RFI+ pigs contributed significantly to their improved efficiency and was not related to worsened health scores.
Collapse
|
44
|
Animal and management factors influencing grower and finisher pig performance and efficiency in European systems: a meta-analysis. Animal 2015; 9:1210-20. [PMID: 25737212 DOI: 10.1017/s1751731115000269] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A meta-analysis on the effects of management and animal-based factors on the performance and feed efficiency of growing pigs can provide information on single factor and interaction effects absent in individual studies. This study analysed the effects of such factors on average daily gain (ADG), feed intake (FI) and feed conversion ratio (FCR) of grower and finisher pigs. The multivariate models identified significant effects of: (1) bedding (P<0.01), stage of growth (P<0.001) and the interaction bedding×lysine (P<0.001) on ADG. ADG was higher on straw compared with no bedding (710 v. 605 g/day). (2) FI was significantly affected by stage of growth (P<0.01), bedding (P<0.01), group composition (P<0.05), group size (P<0.01), feed CP content (P<0.01), ambient temperature (P<0.01) and the interaction between floor space and feed energy content (P<0.001). Pigs housed on straw had a lower FI in comparison with those without (1.44 v. 2.04 kg/day); a higher FI was seen for pigs separated by gender in comparison with mixed groups (2.05 v. 1.65 kg/day); FI had a negative linear relationship with group size, the CP content of the feed and ambient temperature. (3) Stage of growth (P<0.001), feed CP (P<0.001) and lysine content (P<0.001), ambient temperature (P<0.001) and feed crude fibre (CF) content (P<0.01) significantly affected FCR; there were no significant interactions between any factors on this trait. There was an improvement in FCR at higher ambient temperatures, increased feed CP and lysine content, but a deterioration of FCR at higher CF contents. For ADG, the interaction of bedding×lysine was caused by pigs housed without bedding (straw) having higher ADG when on a feed lower in lysine, whereas those with bedding had a higher ADG when on a feed higher in lysine. Interaction effects on FI were caused by animals with the least amount of floor space having a higher FI when given a feed with a low metabolisable energy (ME) content, in contrast to all other pigs, which showed a higher FI with increased ME content. The meta-analysis confirmed the significant effect of several well-known factors on the performance and efficiency of grower and finisher pigs, the effects of some less established ones and, importantly, the interactions between such factors.
Collapse
|
45
|
Mialon MM, Renand G, Ortigues-Marty I, Bauchart D, Hocquette JF, Mounier L, Noël T, Micol D, Doreau M. Fattening performance, metabolic indicators, and muscle composition of bulls fed fiber-rich versus starch-plus-lipid-rich concentrate diets1. J Anim Sci 2015; 93:319-33. [DOI: 10.2527/jas.2014-7845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
46
|
Drouilhet L, Basso B, Bernadet MD, Cornuez A, Bodin L, David I, Gilbert H, Marie-Etancelin C. Improving residual feed intake of mule progeny of Muscovy ducks: Genetic parameters and responses to selection with emphasis on carcass composition and fatty liver quality1. J Anim Sci 2014; 92:4287-96. [DOI: 10.2527/jas.2014-8064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- L. Drouilhet
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326 Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326 Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31076 Toulouse, France
| | - B. Basso
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326 Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326 Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31076 Toulouse, France
| | - M.-D. Bernadet
- INRA, UE89 Unité expérimentale sur les Palmipèdes à Foie Gras, Artiguères, F-40280 Benquet, France
| | - A. Cornuez
- INRA, UE89 Unité expérimentale sur les Palmipèdes à Foie Gras, Artiguères, F-40280 Benquet, France
| | - L. Bodin
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326 Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326 Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31076 Toulouse, France
| | - I. David
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326 Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326 Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31076 Toulouse, France
| | - H. Gilbert
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326 Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326 Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31076 Toulouse, France
| | - C. Marie-Etancelin
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326 Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326 Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31076 Toulouse, France
| |
Collapse
|
47
|
Gondret F, Louveau I, Mourot J, Duclos MJ, Lagarrigue S, Gilbert H, van Milgen J. Dietary energy sources affect the partition of body lipids and the hierarchy of energy metabolic pathways in growing pigs differing in feed efficiency. J Anim Sci 2014; 92:4865-77. [PMID: 25253805 DOI: 10.2527/jas.2014-7995] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The use and partition of feed energy are key elements in productive efficiency of pigs. This study aimed to determine whether dietary energy sources affect the partition of body lipids and tissue biochemical pathways of energy use between pigs differing in feed efficiency. Forty-eight barrows (pure Large White) from two divergent lines selected for residual feed intake (RFI), a measure of feed efficiency, were compared. From 74 d to 132 ± 0.5 d of age, pigs (n = 12 by line and by diet) were offered diets with equal protein and ME contents. A low fat, low fiber diet (LF) based on cereals and a high fat, high fiber diet (HF) where vegetal oils and wheat straw were used to partially substitute cereals, were compared. Irrespective of diet, gain to feed was 10% better (P < 0.001), and carcass yield was greater (+2.3%; P < 0.001) in the low RFI compared with the high RFI line; the most-efficient line was also leaner (+3.2% for loin proportion in the carcass, P < 0.001). In both lines, ADFI and ADG were lower when pigs were fed the HF diet (-12.3% and -15%, respectively, relatively to LF diet; P < 0.001). Feeding the HF diet reduced the perirenal fat weight and backfat proportion in the carcass to the same extent in both lines (-27% on average; P < 0.05). Lipid contents in backfat and LM also declined (-5% and -19%, respectively; P < 0.05) in pigs offered the HF diet. The proportion of saturated fatty acids (FA) was lower, but the percentage of PUFA, especially the EFA C18:2 and C18:3, was greater (P < 0.001) in backfat of HF-fed pigs. In both lines, these changes were associated with a marked decrease (P < 0.001) in the activities of two lipogenic enzymes, the fatty acid synthase (FASN) and the malic enzyme, in backfat. For the high RFI line, the hepatic lipid content was greater (P < 0.05) in pigs fed the HF diet than in pigs fed the LF diet, despite a reduced FASN activity (-32%; P < 0.001). In both lines, the HF diet also led to lower glycogen content (-70%) and lower glucokinase activity (-15%; P < 0.05) in the liver. These results show that dietary energy sources modified the partition of energy between liver, adipose tissue, and muscle in a way that was partly dependent of the genetics for feed efficiency, and changed the activity levels of biochemical pathways involved in lipid and glucose storage in tissues.
Collapse
Affiliation(s)
- F Gondret
- INRA, UMR1348 Pegase, F-35590 Saint-Gilles, France Agrocampus-Ouest, UMR1348 Pegase, F-35000 Rennes, France
| | - I Louveau
- INRA, UMR1348 Pegase, F-35590 Saint-Gilles, France Agrocampus-Ouest, UMR1348 Pegase, F-35000 Rennes, France
| | - J Mourot
- INRA, UMR1348 Pegase, F-35590 Saint-Gilles, France Agrocampus-Ouest, UMR1348 Pegase, F-35000 Rennes, France
| | - M J Duclos
- INRA, UR83 Recherches Avicoles, F-37380 Nouzilly, France
| | - S Lagarrigue
- INRA, UMR1348 Pegase, F-35590 Saint-Gilles, France Agrocampus-Ouest, UMR1348 Pegase, F-35000 Rennes, France
| | - H Gilbert
- INRA, UMR1388 GenPhySE, F-31326 Castanet-Tolosan cedex, France
| | - J van Milgen
- INRA, UMR1348 Pegase, F-35590 Saint-Gilles, France Agrocampus-Ouest, UMR1348 Pegase, F-35000 Rennes, France
| |
Collapse
|
48
|
Phenotypic and genetic relationships between growth and feed intake curves and feed efficiency and amino acid requirements in the growing pig. Animal 2014; 9:18-27. [PMID: 25192352 DOI: 10.1017/s1751731114002171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Improvement of feed efficiency in pigs has been achieved essentially by increasing lean growth rate, which resulted in lower feed intake (FI). The objective was to evaluate the impact of strategies for improving feed efficiency on the dynamics of FI and growth in growing pigs to revisit nutrient recommendations and strategies for feed efficiency improvement. In 2010, three BWs, at 35±2, 63±9 and 107±7 kg, and daily FI during this period were recorded in three French test stations on 379 Large White and 327 French Landrace from maternal pig populations and 215 Large White from a sire population. Individual growth and FI model parameters were obtained with the InraPorc® software and individual nutrient requirements were computed. The model parameters were explored according to feed efficiency as measured by residual feed intake (RFI) or feed conversion ratio (FCR). Animals were separated in groups of better feed efficiency (RFI- or FCR-), medium feed efficiency and poor feed efficiency. Second, genetic relationships between feed efficiency and model parameters were estimated. Despite similar average daily gains (ADG) during the test for all RFI groups, RFI- pigs had a lower initial growth rate and a higher final growth rate compared with other pigs. The same initial growth rate was found for all FCR groups, but FCR- pigs had significantly higher final growth rates than other pigs, resulting in significantly different ADG. Dynamic of FI also differed between RFI or FCR groups. The calculated digestible lysine requirements, expressed in g/MJ net energy (NE), showed the same trends for RFI or FCR groups: the average requirements for the 25% most efficient animals were 13% higher than that of the 25% least efficient animals during the whole test, reaching 0.90 to 0.95 g/MJ NE at the beginning of the test, which is slightly greater than usual feed recommendations for growing pigs. Model parameters were moderately heritable (0.30±0.13 to 0.56±0.13), except for the precocity of growth (0.06±0.08). The parameter representing the quantity of feed at 50 kg BW showed a relatively high genetic correlation with RFI (0.49±0.14), and average protein deposition between 35 and 110 kg had the highest correlation with FCR (-0.76±0.08). Thus, growth and FI dynamics may be envisaged as breeding tools to improve feed efficiency. Furthermore, improvement of feed efficiency should be envisaged jointly with new feeding strategies.
Collapse
|
49
|
Hao Y, Feng Y, Yang P, Feng J, Lin H, Gu X. Nutritional and physiological responses of finishing pigs exposed to a permanent heat exposure during three weeks. Arch Anim Nutr 2014; 68:296-308. [PMID: 24979614 DOI: 10.1080/1745039x.2014.931522] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The aim of the current study was to investigate the effect of a permanent heat exposure during 21 days on pig performance, nutrient digestibility, physiological response and key enzyme of skeletal muscle energy metabolism. Twenty-four male finishing pigs (crossbreed castrates, 79.0 ± 1.50 kg body weight) were allocated to three groups (n = 8): (1) Control (ambient temperature (AT) 22°C, ad libitum feeding), (2) Group HE (AT 30°C, ad libitum feeding) and (3) Group PF (AT 22°C, pair-fed to Group HE). The permanent heat exposure decreased feed intake (p < 0.01), daily body weight gain (p < 0.05) and the digestibility of gross energy, dry matter, crude protein and ash (p < 0.05); rectal temperature and respiration rate were significantly increased (p < 0.01). The levels of plasma cortisol, creatine kinase and lactate dehydrogenase were also significantly increased in Group HE (p < 0.05). Furthermore, the heat exposure changed intracellular energy metabolism, where the AMP-activated protein kinase was activated (p = 0.02). This was combined with changes in parameters of glycolysis such as an accumulation of lactic acid (p = 0.02) and a drop of pH24 h (p = 0.02), an increase of hexokinase and pyruvate kinase activity (p < 0.01) and, finally, the maturation process of post mortem muscle was influenced. Due to pair-feeding it was possible to evaluate the effects of heat exposure, which were not dependent on reduced feed intake. Such effects were, e.g., reduced nutrient digestibility and changed activities of several enzymes in muscle and blood serum.
Collapse
Affiliation(s)
- Yue Hao
- a State Key Laboratory of Animal Nutrition, Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , Beijing , P. R. China
| | | | | | | | | | | |
Collapse
|
50
|
Montagne L, Loisel F, Le Naou T, Gondret F, Gilbert H, Le Gall M. Difference in short-term responses to a high-fiber diet in pigs divergently selected for residual feed intake1. J Anim Sci 2014; 92:1512-23. [DOI: 10.2527/jas.2013-6623] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- L. Montagne
- INRA, UMR1348 Pegase, F-35590 Saint-Gilles, France
- Agrocampus Ouest, UMR1348 Pegase, F-35000 Rennes, France
- Université européenne de Bretagne, France
| | - F. Loisel
- INRA, UMR1348 Pegase, F-35590 Saint-Gilles, France
- Agrocampus Ouest, UMR1348 Pegase, F-35000 Rennes, France
| | - T. Le Naou
- INRA, UMR1348 Pegase, F-35590 Saint-Gilles, France
- Agrocampus Ouest, UMR1348 Pegase, F-35000 Rennes, France
| | - F. Gondret
- INRA, UMR1348 Pegase, F-35590 Saint-Gilles, France
- Agrocampus Ouest, UMR1348 Pegase, F-35000 Rennes, France
| | - H. Gilbert
- INRA, UMR1313 GABI, F-78352 Jouy-en-Josas Cedex, France
- INRA, UMR444 LGC, F-31326 Castanet-Tolosan Cedex, France
| | - M. Le Gall
- INRA, UMR1348 Pegase, F-35590 Saint-Gilles, France
- Agrocampus Ouest, UMR1348 Pegase, F-35000 Rennes, France
| |
Collapse
|