1
|
Henrot C, Petit M. Signals triggering prophage induction in the gut microbiota. Mol Microbiol 2022; 118:494-502. [PMID: 36164818 PMCID: PMC9827884 DOI: 10.1111/mmi.14983] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 01/12/2023]
Abstract
Compared to bacteria of the gut microbiota, bacteriophages are still poorly characterised, and their physiological importance is far less known. Temperate phages are probably a major actor in the gut, as it is estimated that 80% of intestinal bacteria are lysogens, meaning that they are carrying prophages. In addition, prophage induction rates are higher in the gut than in vitro. However, studies on the signals leading to prophage induction have essentially focused on genotoxic agents with poor relevance for this environment. In this review, we sum up recent findings about signals able to trigger prophage induction in the gut. Three categories of signals are at play: those originating from interactions between intestinal microbes, those from the human or animal host physiology and those from external intakes. These recent results highlight the diversity of factors influencing prophage induction in the gut, and start to unveil ways by which microbiota composition may be modulated.
Collapse
Affiliation(s)
- Caroline Henrot
- Université Paris‐Saclay, INRAEAgroParisTech, Micalis InstituteJouy‐en‐JosasFrance,Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1Université de LyonLyonFrance
| | - Marie‐Agnès Petit
- Université Paris‐Saclay, INRAEAgroParisTech, Micalis InstituteJouy‐en‐JosasFrance
| |
Collapse
|
2
|
Tsai BY, Chien CC, Huang SH, Zheng JY, Hsu CY, Tsai YS, Hung YP, Ko WC, Tsai PJ. The emergence of Clostridioides difficile PCR ribotype 127 at a hospital in northeastern Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:896-909. [PMID: 35042668 DOI: 10.1016/j.jmii.2021.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/27/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Several studies have highlighted the incidence of Clostridioides difficile infections (CDIs) in Taiwan and certain ribotypes have been related to severe clinical diseases. A study was conducted to investigate the polymerase chain reaction (PCR) ribotypes and genetic relatedness of clinical C. difficile strains collected from January 2009 to December 2015 at a hospital in northeastern Taiwan. MATERIAL AND METHODS A modified two-step typing algorithm for C. difficile was used by combining a modified 8-plex and 3'-truncated tcdA screening PCR. In addition, MLVA typing was adopted for investigation of bacterial clonality and transmission. RESULTS Among a total of 86 strains, 24 (28%) were nontoxigenic and 62 (72%) had both tcdA and tcdB (A + B+). No tcdA-negative and tcdB-positive (A-B+) strains were identified. Binary toxin (CDT)-producing (cdtA+/cdtB+) strains were started to be identified in 2013. The 21 (34%) A+B+ clinical strains with binary toxin and tcdC deletion were identified as RT127 strains, which contained both RT078-lineage markers and fluoroquinolone (FQ)-resistant mutations (Thr82Ile in gyrA). Multiple loci variable-number tandem repeat analysis (MLVA) for phylogenetic relatedness of RT127 strains indicated that 20 of 21 strains belonged to a clonal complex that was identical to a clinical strain collected from southern Taiwan in 2011, suggestive of a clonal expansion in Taiwan. CONCLUSION A two-step typing method could rapidly confirm species identification and define the toxin gene profile of C. difficile isolates. The clonal expansion of RT127 strains in Taiwan indicates monitoring and surveillance of toxigenic C. difficile isolates from human, animal, and environment are critical to develop One Health prevention strategies.
Collapse
Affiliation(s)
- Bo-Yang Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Chun-Chih Chien
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan.
| | - Shu-Huan Huang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Kee-Lung, Keelung, Taiwan.
| | - Jun-Yuan Zheng
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital at Kee-Lung, Kee-Lung, Taiwan.
| | - Chih-Yu Hsu
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yuan-Pin Hung
- Departments of Internal Medicine, Tainan Hospital, Ministry of Health & Welfare, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Pei-Jane Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan; Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
3
|
Taha AE. Raw Animal Meats as Potential Sources of Clostridium difficile in Al-Jouf, Saudi Arabia. Food Sci Anim Resour 2021; 41:883-893. [PMID: 34632406 PMCID: PMC8460330 DOI: 10.5851/kosfa.2021.e44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
Clostridium difficile present in feces of food animals may
contaminate their meats and act as a potential source of C.
difficile infection (CDI) to humans. C. difficile
resistance to antibiotics, its production of toxins and spores play major roles
in the pathogenesis of CDI. This is the first study to evaluate C.
difficile prevalence in retail raw animal meats, its antibiotics
susceptibilities and toxigenic activities in Al-Jouf, Saudi Arabia. Totally, 240
meat samples were tested. C. difficile was identified by
standard microbiological and biochemical methods. Vitek-2 compact system
confirmed C. difficile isolates were 15/240 (6.3%).
Toxins A/B were not detected by Xpect C. difficile toxin A/B
tests. Although all isolates were susceptible to vancomycin and metronidazole,
variable degrees of reduced susceptibilities to moxifloxacin, clindamycin or
tetracycline antibiotics were detected by Epsilon tests. C.
difficile strains with reduced susceptibility to antibiotics should
be investigated. Variability between the worldwide reported C.
difficile contamination levels could be due to absence of a gold
standard procedure for its isolation. Establishment of a unified testing
algorithm for C. difficile detection in food products is
definitely essential to evaluate the inter-regional variation in its prevalence
on national and international levels. Proper use of antimicrobials during animal
husbandry is crucial to control the selective drug pressure on C.
difficile strains associated with food animals. Investigating the
protective or pathogenic potential of non-toxigenic C.
difficile strains and the possibility of gene transfer from certain
toxigenic/ antibiotics-resistant to non-toxigenic/antibiotics-sensitive strains,
respectively, should be worthy of attention.
Collapse
Affiliation(s)
- Ahmed E Taha
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Al-Jouf, Saudi Arabia.,Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Dawson LF, Peltier J, Hall CL, Harrison MA, Derakhshan M, Shaw HA, Fairweather NF, Wren BW. Extracellular DNA, cell surface proteins and c-di-GMP promote biofilm formation in Clostridioides difficile. Sci Rep 2021; 11:3244. [PMID: 33547340 PMCID: PMC7865049 DOI: 10.1038/s41598-020-78437-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Clostridioides difficile is the leading cause of nosocomial antibiotic-associated diarrhoea worldwide, yet there is little insight into intestinal tract colonisation and relapse. In many bacterial species, the secondary messenger cyclic-di-GMP mediates switching between planktonic phase, sessile growth and biofilm formation. We demonstrate that c-di-GMP promotes early biofilm formation in C. difficile and that four cell surface proteins contribute to biofilm formation, including two c-di-GMP regulated; CD2831 and CD3246, and two c-di-GMP-independent; CD3392 and CD0183. We demonstrate that C. difficile biofilms are composed of extracellular DNA (eDNA), cell surface and intracellular proteins, which form a protective matrix around C. difficile vegetative cells and spores, as shown by a protective effect against the antibiotic vancomycin. We demonstrate a positive correlation between biofilm biomass, sporulation frequency and eDNA abundance in all five C. difficile lineages. Strains 630 (RT012), CD305 (RT023) and M120 (RT078) contain significantly more eDNA in their biofilm matrix than strains R20291 (RT027) and M68 (RT017). DNase has a profound effect on biofilm integrity, resulting in complete disassembly of the biofilm matrix, inhibition of biofilm formation and reduced spore germination. The addition of exogenous DNase could be exploited in treatment of C. difficile infection and relapse, to improve antibiotic efficacy.
Collapse
Affiliation(s)
- Lisa F Dawson
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| | - Johann Peltier
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Catherine L Hall
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Mark A Harrison
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Maria Derakhshan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Helen A Shaw
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
- National Institute for Biological Standards and Control, Potters Bar, UK
| | - Neil F Fairweather
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
5
|
Bamber AI, Fitzsimmons K, Cunniffe JG, Beasor CC, Mackintosh CA, Hobbs G. Diagnosis ofClostridium difficile-associated disease: examination of multiple algorithms using toxin EIA, glutamate dehydrogenase EIA and loop-mediated isothermal amplification. Br J Biomed Sci 2019. [DOI: 10.1080/09674845.2012.12069136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- A. I. Bamber
- Medical Microbiology, Wirral University Teaching Hospitals, Clatterbridge Hospital, Bebington, Wirral
| | - K. Fitzsimmons
- Medical Microbiology, Wirral University Teaching Hospitals, Clatterbridge Hospital, Bebington, Wirral
| | - J. G. Cunniffe
- Medical Microbiology, Wirral University Teaching Hospitals, Clatterbridge Hospital, Bebington, Wirral
| | - C. C. Beasor
- Medical Microbiology, Wirral University Teaching Hospitals, Clatterbridge Hospital, Bebington, Wirral
| | - C. A. Mackintosh
- Medical Microbiology, Wirral University Teaching Hospitals, Clatterbridge Hospital, Bebington, Wirral
| | - G. Hobbs
- Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, UK
| |
Collapse
|
6
|
Mihajlov K, Andreska A, Ristovska N, Grdanoska T, Trajkovska-Dokic E. Distribution of Clostridium Difficile Ribotypes in Macedonian Patients and their Antimicrobial Susceptibility. Open Access Maced J Med Sci 2019; 7:1896-1899. [PMID: 31406525 PMCID: PMC6684425 DOI: 10.3889/oamjms.2019.482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND: Clostridium difficile is a major nosocomial pathogen. In Europe, this bacterium is mostly characterised by PCR ribotyping. Most of the Clostridium difficile infections (CDI) are treated with vancomycin or metronidazole, although prolonged antibiotic use is considered as one of the main risk factors for CDI. AIM: This study aimed to detect the presence of various C. difficile ribotypes in hospitalised patients and to investigate their toxigenicity and antibiotic susceptibility. MATERIAL AND METHODS: All stool samples obtained from each patient were inoculated on Columbia blood agar and cycloserine cefoxitine fructose agar (CCFA) for isolation of C. difficile. Glutamate dehydrogenase and toxins A and B were investigated by immunochromatographic tests. Final confirmation of the isolates was performed by Vitek 2 and MALDI-TOF. A total of 21 isolates were collected for further investigation. PCR ribotyping was performed as described by Janezic and Rupnik. PCR ribotype profiles were analysed using software (Bionumerics, Applied Maths). Antibiotic susceptibility was determined by E-tests for metronidazole, vancomycin, tetracycline, clindamycin, erythromycin, imipenem, ciprofloxacin and moxifloxacin. RESULTS: About 48% of C. difficile isolates belonged to ribotype 001/072. So, this ribotype was the most common ribotype in this study. The remaining 52% of C. difficile isolates consisted of 10 different ribotypes: 017, SLO 160, SLO 187, SLO 120, 255/258, 014/020, 046, 002, 070 and 027. Furthermore, 20 (95.2 %) out of 21 isolates of C. difficile were toxigenic. Toxins A and B were detected simultaneously in 90.5 % of C. difficile isolates. Two isolates from the ribotype 017 were toxin B positive only. Treatments with any of the following antimicrobials: clindamycin, erythromycin, ciprofloxacin and moxifloxacin (as well as many other antibiotics), could be a risk factor for CDI due to the high resistance of the strains in this study. About 90% of the strains from the most common ribotype 001/072 have MICs for clindamycin and erythromycin > 256 µg/ml. CONCLUSION: All strains isolated are highly resistant to ciprofloxacin. All strains were susceptible to vancomycin (median MIC was 0.63 µg/ml) and metronidazole (median MIC was 0.084 µg/ml), so these two antimicrobials remain optimal treatment option for CDI.
Collapse
Affiliation(s)
- Kiril Mihajlov
- Institute of Microbiology and Parasitology, Medical Faculty, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Aneta Andreska
- Institute of Microbiology and Parasitology, Medical Faculty, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Nadica Ristovska
- Institute of Microbiology and Parasitology, Medical Faculty, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Tatjana Grdanoska
- Institute of Microbiology and Parasitology, Medical Faculty, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Elena Trajkovska-Dokic
- Institute of Microbiology and Parasitology, Medical Faculty, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| |
Collapse
|
7
|
Kleinnijenhuis AJ. Visualization of Genetic Drift Processes Using the Conserved Collagen 1α1 GXY Domain. J Mol Evol 2019; 87:106-130. [PMID: 30863881 DOI: 10.1007/s00239-019-09890-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/06/2019] [Indexed: 11/30/2022]
Abstract
Speciation proceeds by the accumulation of DNA differences in time. The genetic code changes as a result of genetic drift and by selective pressure. In variable domains, exposure to high selective pressure obscures the view on background mutations. Therefore, we characterized and visualized background mutations using the highly conserved collagen 1α1 GXY domain. Typical change routes were identified and the data set showed several indications that changes in the collagen 1α1 GXY domain have taken place randomly within a functionally restricted space. The types of nucleotide and codon group differences are similar across the vertebrate subphylum and gradually become less functionally neutral with increasing distance between species, which offers the opportunity for rapid visualization of evolutionary relations using a single domain. It was concluded that the findings and approach of the study could be important for analytical method development in authenticity research, especially when conserved domains are targeted.
Collapse
|
8
|
Ersöz ŞŞ, Coşansu S. Prevalence of Clostridium difficile Isolated from Beef and Chicken Meat Products in Turkey. Korean J Food Sci Anim Resour 2018; 38:759-767. [PMID: 30206435 PMCID: PMC6131381 DOI: 10.5851/kosfa.2018.e14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 11/25/2022] Open
Abstract
The concern about the possibility of food can be a vehicle for the transmission
of Clostridium difficile to humans has been raised recently due
to the similarities among the strains isolated from patients, foods and food
animals. In this study, therefore, the prevalence of C.
difficile was investigated in beef and chicken meat products
collected from 57 different butcher shops, markets and fast food restaurants in
Sakarya province of Turkey. Two out of 101 samples (1.98%) was positive for
C. difficile indicating a very low prevalence. The pathogen
was isolated from an uncooked meatball sample and a cooked meat döner
sample, whereas not detected in chicken meat samples. The meatball isolate was
resistant to vancomycin and tetracycline, while the cooked meat döner
isolate was resistant to vancomycin and metronidazole. Both isolates were
sensitive to moxifloxacin and clindamycin. Toxins A and B were not detected.
This study reveals the presence of C. difficile in further
processed beef products in Turkey.
Collapse
Affiliation(s)
- Şeyma Şeniz Ersöz
- Food Engineering Department, Engineering Faculty, Sakarya University, Esentepe Campus, 54187, Sakarya, Turkey
| | - Serap Coşansu
- Food Engineering Department, Engineering Faculty, Sakarya University, Esentepe Campus, 54187, Sakarya, Turkey
| |
Collapse
|
9
|
Almonacid DE, Kraal L, Ossandon FJ, Budovskaya YV, Cardenas JP, Bik EM, Goddard AD, Richman J, Apte ZS. 16S rRNA gene sequencing and healthy reference ranges for 28 clinically relevant microbial taxa from the human gut microbiome. PLoS One 2017; 12:e0176555. [PMID: 28467461 PMCID: PMC5414997 DOI: 10.1371/journal.pone.0176555] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/12/2017] [Indexed: 12/12/2022] Open
Abstract
Changes in the relative abundances of many intestinal microorganisms, both those that naturally occur in the human gut microbiome and those that are considered pathogens, have been associated with a range of diseases. To more accurately diagnose health conditions, medical practitioners could benefit from a molecular, culture-independent assay for the quantification of these microorganisms in the context of a healthy reference range. Here we present the targeted sequencing of the microbial 16S rRNA gene of clinically relevant gut microorganisms as a method to provide a gut screening test that could assist in the clinical diagnosis of certain health conditions. We evaluated the possibility of detecting 46 clinical prokaryotic targets in the human gut, 28 of which could be identified with high precision and sensitivity by a bioinformatics pipeline that includes sequence analysis and taxonomic annotation. These targets included 20 commensal, 3 beneficial (probiotic), and 5 pathogenic intestinal microbial taxa. Using stool microbiome samples from a cohort of 897 healthy individuals, we established a reference range defining clinically relevant relative levels for each of the 28 targets. Our assay quantifies 28 targets in the context of a healthy reference range and correctly reflected 38/38 verification samples of real and synthetic stool material containing known gut pathogens. Thus, we have established a method to determine microbiome composition with a focus on clinically relevant taxa, which has the potential to contribute to patient diagnosis, treatment, and monitoring. More broadly, our method can facilitate epidemiological studies of the microbiome as it relates to overall human health and disease.
Collapse
Affiliation(s)
| | - Laurens Kraal
- uBiome, Inc., San Francisco, California, United States of America
| | | | | | | | - Elisabeth M Bik
- uBiome, Inc., San Francisco, California, United States of America
| | - Audrey D Goddard
- uBiome, Inc., San Francisco, California, United States of America
| | - Jessica Richman
- uBiome, Inc., San Francisco, California, United States of America
| | - Zachary S Apte
- uBiome, Inc., San Francisco, California, United States of America.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
10
|
Lynch M, Walsh TA, Marszalowska I, Webb AE, Mac Aogain M, Rogers TR, Windle H, Kelleher D, O'Connell MJ, Loscher CE. Surface layer proteins from virulent Clostridium difficile ribotypes exhibit signatures of positive selection with consequences for innate immune response. BMC Evol Biol 2017; 17:90. [PMID: 28335725 PMCID: PMC5364705 DOI: 10.1186/s12862-017-0937-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Clostridium difficile is a nosocomial pathogen prevalent in hospitals worldwide and increasingly common in the community. Sequence differences have been shown to be present in the Surface Layer Proteins (SLPs) from different C. difficile ribotypes (RT) however whether these differences influence severity of infection is still not clear. RESULTS We used a molecular evolutionary approach to analyse SLPs from twenty-six C. difficile RTs representing different slpA sequences. We demonstrate that SLPs from RT 027 and 078 exhibit evidence of positive selection (PS). We compared the effect of these SLPs to those purified from RT 001 and 014, which did not exhibit PS, and demonstrate that the presence of sites under positive selection correlates with ability to activate macrophages. SLPs from RTs 027 and 078 induced a more potent response in macrophages, with increased levels of IL-6, IL-12p40, IL-10, MIP-1α, MIP-2 production relative to RT 001 and 014. Furthermore, RTs 027 and 078 induced higher expression of CD40, CD80 and MHC II on macrophages with decreased ability to phagocytose relative to LPS. CONCLUSIONS These results tightly link sequence differences in C. difficile SLPs to disease susceptibility and severity, and suggest that positively selected sites in the SLPs may play a role in driving the emergence of hyper-virulent strains.
Collapse
Affiliation(s)
- Mark Lynch
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Thomas A Walsh
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Izabela Marszalowska
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Andrew E Webb
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Micheál Mac Aogain
- Department of Clinical Microbiology, Trinity College Dublin, St James Hospital Dublin, Dublin, Ireland
| | - Thomas R Rogers
- Department of Clinical Microbiology, Trinity College Dublin, St James Hospital Dublin, Dublin, Ireland
| | - Henry Windle
- Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Dermot Kelleher
- Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Mary J O'Connell
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland. .,Computational and Molecular Evolutionary Biology Research Group, School of Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT, UK.
| | - Christine E Loscher
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
11
|
Lianou A, Panagou EZ, Nychas GJE. Meat Safety—I Foodborne Pathogens and Other Biological Issues. LAWRIE´S MEAT SCIENCE 2017. [PMCID: PMC7152306 DOI: 10.1016/b978-0-08-100694-8.00017-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This chapter presents information pertinent to foodborne pathogens (bacteria and bacterial toxins, viruses, parasites) and other biological issues (prions) with importance to the safety of meat and meat products. Aspects covered refer mainly to the characteristics of the most important pathogenic organisms, their distribution in the environment, their transmission routes to humans, as well as their epidemiology and association with sporadic or epidemic foodborne illness. Current and emerging challenges to meat safety management also are discussed.
Collapse
|
12
|
The housefly Musca domestica as a mechanical vector of Clostridium difficile. J Hosp Infect 2016; 94:263-267. [DOI: 10.1016/j.jhin.2016.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/23/2016] [Indexed: 01/01/2023]
|
13
|
Wu X, Paskaleva EE, Mehta KK, Dordick JS, Kane RS. Wall Teichoic Acids Are Involved in the Medium-Induced Loss of Function of the Autolysin CD11 against Clostridium difficile. Sci Rep 2016; 6:35616. [PMID: 27759081 PMCID: PMC5069495 DOI: 10.1038/srep35616] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/23/2016] [Indexed: 01/05/2023] Open
Abstract
Bacterial lysins are potent antibacterial enzymes with potential applications in the treatment of bacterial infections. Some lysins lose activity in the growth media of target bacteria, and the underlying mechanism remains unclear. Here we use CD11, an autolysin of Clostridium difficile, as a model lysin to demonstrate that the inability of this enzyme to kill C. difficile in growth medium is not associated with inhibition of the enzyme activity by medium, or the modification of the cell wall peptidoglycan. Rather, wall teichoic acids (WTAs) appear to prevent the enzyme from binding to the cells and cleaving the cell wall peptidoglycan. By partially blocking the biosynthetic pathway of WTAs with tunicamycin, cell binding improved and the lytic efficacy of CD11 was significantly enhanced. This is the first report of the mechanism of lysin inactivation in growth medium, and provides insights into understanding the behavior of lysins in complex environments, including the gastrointestinal tract.
Collapse
Affiliation(s)
- Xia Wu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, US.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, US
| | - Elena E Paskaleva
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, US
| | - Krunal K Mehta
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, US.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, US
| | - Jonathan S Dordick
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, US.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, US
| | - Ravi S Kane
- School of Chemical &Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, US
| |
Collapse
|
14
|
Bloomfield LE, Riley TV. Epidemiology and Risk Factors for Community-Associated Clostridium difficile Infection: A Narrative Review. Infect Dis Ther 2016; 5:231-51. [PMID: 27370914 PMCID: PMC5019973 DOI: 10.1007/s40121-016-0117-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 12/13/2022] Open
Abstract
Clostridium difficile infection (CDI) was once considered a primarily nosocomial concern. Emerging evidence from the last 20 years has highlighted a drastic shift in the known epidemiology of CDI, with disease outside of hospitals apparently occurring more frequently and causing severe disease in populations that were thought to be at low risk. This narrative review summarises potential pathways for infection outside of the hospital environment and highlights likely routes of transmission. Further, evidence is presented on potential risk factors for development of disease. Understanding the epidemiology of CDI outside of hospitals is essential to the ability to prevent and control disease in vulnerable populations.
Collapse
Affiliation(s)
- Lauren E Bloomfield
- School of Health Sciences, Flinders University, Bedford Park, SA, Australia
- Western Australian Department of Health, Communicable Diseases Control Directorate, Shenton Park, WA, Australia
| | - Thomas V Riley
- Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup Drive, Joondalup, 6027, WA, Australia.
- School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, 6150, WA, Australia.
| |
Collapse
|
15
|
Zhang X, Wang X, Yang J, Liu X, Cai L, Zong Z. Colonization of toxigenic Clostridium difficile among ICU patients: a prospective study. BMC Infect Dis 2016; 16:397. [PMID: 27506470 PMCID: PMC4977703 DOI: 10.1186/s12879-016-1729-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/20/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND A prospective study was performed to investigate the prevalence of colonization among ICU patients and to examine whether asymptomatic carriers were the source of subsequent C. difficile infection (CDI) and acquisition of toxigenic C. difficile. METHODS Rectal swabs were collected from adult patients on admission to and at discharge from a 50-bed medical ICU of a major referral hospital in western China, from August to November 2014. Stools were collected from patients who developed ICU-onset diarrhea. Both swabs and stools were screened for tcdB (toxin B gene) by PCR. Samples positive to tcdB were cultured for C. difficile and isolates recovered were screened for tcdB and the binary toxin genes by PCR. Strain typing was performed using multilocus sequence typing and isolates belonging to the same sequence type (ST) were further typed using multiple-locus variable number tandem repeat analysis (MLVA). RESULTS During the 4-month period, rectal swabs were collected from 360 (90.9 %) out of 396 patients who were admitted to the ICU. Among the 360 patients, 314 had stayed in the ICU more than 3 days, of which 213 (73.6 %) had a rectal swab collected within the 3 days prior to discharge from ICU. The prevalence of toxigenic C. difficile colonization was 1.7 % (6 cases) and 4.3 % (10 cases) on admission and discharge, respectively. Only four (1.1 %) out of 360 patients had CDI, corresponding to 10.7 cases per 10,000 ICU days. None of the four cases had toxigenic C. difficile either on admission or at discharge. Toxigenic C. difficile isolates were recovered from all swabs and stool samples positive for tcdB by PCR and belonged to 7 STs (ST2, 3, 6, 37, 54, 103 and 129). None of the isolates belonging to the same ST had identical MLVA patterns. Binary toxin genes were detected in one ST103 isolate that caused colonization. CONCLUSION The prevalence of colonization with toxigenic C. difficile among patients on admission to ICU was low in our setting. ICU-acquired toxigenic C. difficile were not linked to those detected on admission. Active screening for toxigenic C. difficile may not be a resource-efficient measure in settings with a low prevalence of colonization.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Xiaohui Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Jingyu Yang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Xiaohua Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China.,Department of Clinical Microbiology, Xindu District Hospital, Chengdu, China
| | - Lin Cai
- Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China. .,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China. .,Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Janoir C. Virulence factors of Clostridium difficile and their role during infection. Anaerobe 2016; 37:13-24. [DOI: 10.1016/j.anaerobe.2015.10.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 02/08/2023]
|
17
|
Heinsen FA, Knecht H, Neulinger SC, Schmitz RA, Knecht C, Kühbacher T, Rosenstiel PC, Schreiber S, Friedrichs AK, Ott SJ. Dynamic changes of the luminal and mucosa-associated gut microbiota during and after antibiotic therapy with paromomycin. Gut Microbes 2015; 6:243-54. [PMID: 26178862 PMCID: PMC4615565 DOI: 10.1080/19490976.2015.1062959] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota play a key role in the host's health system. Broad antibiotic therapy is known to disrupt the microbial balance affecting pathogenic as well as host-associated microbes. The aim of the present study was to investigate the influence of antibiotic paromomycin on the luminal and mucosa-associated microbiota at the DNA (abundance) and RNA (potential activity) level as well as to identify possible differences. The influence of antibiotic treatment on intestinal microbiota was investigated in 5 healthy individuals (age range: 20-22 years). All participants received the antibiotic paromomycin for 3 d. Fecal samples as well as sigmoidal biopsies were collected before and immediately after cessation of antibiotic treatment as well as after a recovery phase of 42 d. Compartment- and treatment status-specific indicator operational taxonomic units (OTUs) as well as abundance- and activity-specific patterns were identified by 16S rRNA and 16S rRNA gene amplicon libraries and high-throughput pyrosequencing. Microbial composition of lumen and mucosa were significantly different at the DNA compared to the RNA level. Antibiotic treatment resulted in changes of the microbiota, affecting the luminal and mucosal bacteria in a similar way. Several OTUs were identified as compartment- and/or treatment status-specific. Abundance and activity patterns of some indicator OTUs differed considerably. The study shows fundamental changes in composition of gut microbiota under antibiotic therapy at both the potential activity and the abundance level at different treatment status. It may help to understand the complex processes of gut microbiota changes involved in resilience mechanisms and on development of antibiotic-associated clinical diseases.
Collapse
Affiliation(s)
- Femke-Anouska Heinsen
- Institute of Clinical Molecular Biology (ICMB); Christian-Albrechts-University (CAU) Kiel; Kiel, Germany
| | - Henrik Knecht
- Institute of Clinical Molecular Biology (ICMB); Christian-Albrechts-University (CAU) Kiel; Kiel, Germany
| | - Sven C Neulinger
- Institute for General Microbiology (IFAM); CAU Kiel; Kiel, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology (IFAM); CAU Kiel; Kiel, Germany
| | - Carolin Knecht
- Institute of Medical Informatics and Statistics (IMIS); CAU Kiel; Kiel, Germany
| | - Tanja Kühbacher
- Institute of Clinical Molecular Biology (ICMB); Christian-Albrechts-University (CAU) Kiel; Kiel, Germany,Department of Internal Medicine I; University Hospital Schleswig-Holstein (UKSH); Campus Kiel; Kiel, Germany
| | - Philip C Rosenstiel
- Institute of Clinical Molecular Biology (ICMB); Christian-Albrechts-University (CAU) Kiel; Kiel, Germany,Department of Internal Medicine I; University Hospital Schleswig-Holstein (UKSH); Campus Kiel; Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology (ICMB); Christian-Albrechts-University (CAU) Kiel; Kiel, Germany,Department of Internal Medicine I; University Hospital Schleswig-Holstein (UKSH); Campus Kiel; Kiel, Germany
| | - Anette K Friedrichs
- Institute of Clinical Molecular Biology (ICMB); Christian-Albrechts-University (CAU) Kiel; Kiel, Germany,Department of Internal Medicine I; University Hospital Schleswig-Holstein (UKSH); Campus Kiel; Kiel, Germany
| | - Stephan J Ott
- Institute of Clinical Molecular Biology (ICMB); Christian-Albrechts-University (CAU) Kiel; Kiel, Germany,Department of Internal Medicine I; University Hospital Schleswig-Holstein (UKSH); Campus Kiel; Kiel, Germany,Corresponding author: Stephan J Ott; E-mail:
| |
Collapse
|
18
|
Clostridium difficile ribotype 126 in southern Taiwan: A cluster of three symptomatic cases. Anaerobe 2014; 30:188-92. [DOI: 10.1016/j.anaerobe.2014.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 06/05/2014] [Indexed: 11/18/2022]
|
19
|
Surface layer proteins isolated from Clostridium difficile induce clearance responses in macrophages. Microbes Infect 2014; 16:391-400. [DOI: 10.1016/j.micinf.2014.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/20/2013] [Accepted: 02/09/2014] [Indexed: 12/18/2022]
|
20
|
Diagnosis of Clostridium difficile infection: an ongoing conundrum for clinicians and for clinical laboratories. Clin Microbiol Rev 2014; 26:604-30. [PMID: 23824374 DOI: 10.1128/cmr.00016-13] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Clostridium difficile is a formidable nosocomial and community-acquired pathogen, causing clinical presentations ranging from asymptomatic colonization to self-limiting diarrhea to toxic megacolon and fulminant colitis. Since the early 2000s, the incidence of C. difficile disease has increased dramatically, and this is thought to be due to the emergence of new strain types. For many years, the mainstay of C. difficile disease diagnosis was enzyme immunoassays for detection of the C. difficile toxin(s), although it is now generally accepted that these assays lack sensitivity. A number of molecular assays are commercially available for the detection of C. difficile. This review covers the history and biology of C. difficile and provides an in-depth discussion of the laboratory methods used for the diagnosis of C. difficile infection (CDI). In addition, strain typing methods for C. difficile and the evolving epidemiology of colonization and infection with this organism are discussed. Finally, considerations for diagnosing C. difficile disease in special patient populations, such as children, oncology patients, transplant patients, and patients with inflammatory bowel disease, are described. As detection of C. difficile in clinical specimens does not always equate with disease, the diagnosis of C. difficile infection continues to be a challenge for both laboratories and clinicians.
Collapse
|
21
|
Tait E, Hill KA, Perry JD, Stanforth SP, Dean JR. Development of a novel method for detection of Clostridium difficile using HS-SPME-GC-MS. J Appl Microbiol 2014; 116:1010-9. [PMID: 24320174 DOI: 10.1111/jam.12418] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 12/14/2022]
Abstract
AIMS A novel method has been developed that allows successful differentiation between Clostridium difficile culture-positive and culture-negative stool samples based on volatile organic compound (VOC) evolution and detection by headspace solid-phase microextraction coupled with gas chromatography mass spectrometry (HS-SPME-GC-MS). METHODS AND RESULTS The method is based on the activation of p-hydroxyphenylacetate decarboxylase produced by Cl. difficile and the detection of a specific VOC, that is 2-fluoro-4-methylphenol from an enzyme substrate. In addition, other VOCs were good indicators for Cl. difficile, that is isocaproic acid and p-cresol, although they could not be used alone for identification purposes. One hundred stool samples were tested, of which 77 were positive by culture. Detection using HS-SPME-GC-MS allowed confirmation of the presence of Cl. difficile within 18 h with a sensitivity and specificity of 83·1 and 100%, respectively. CONCLUSIONS It is recommended that this new approach could be used alongside conventional methods for Cl. difficile detection, including toxin detection methods, which would allow any false-negative results to be eliminated. SIGNIFICANCE AND IMPACT OF THE STUDY The ability to identify Cl. difficile-positive stool samples by the analysis of VOCs could allow the development of a VOC detection device which could allow rapid diagnosis of disease and hence prompt treatment with appropriate antibiotics.
Collapse
Affiliation(s)
- E Tait
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
22
|
Abstract
This article presents information related to emerging pathogens that are foodborne or have the potential to be foodborne including bacteria, viruses, and parasites. The phenotypic characteristics of these pathogens, their epidemiology, prevalence in foods, and transmission routes to humans as well as means for their control are also discussed.
Collapse
|
23
|
Abhyankar W, Hossain AH, Djajasaputra A, Permpoonpattana P, Ter Beek A, Dekker HL, Cutting SM, Brul S, de Koning LJ, de Koster CG. In Pursuit of Protein Targets: Proteomic Characterization of Bacterial Spore Outer Layers. J Proteome Res 2013; 12:4507-21. [DOI: 10.1021/pr4005629] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Patima Permpoonpattana
- School
of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| | | | | | - Simon M. Cutting
- School
of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| | | | | | | |
Collapse
|
24
|
Gürtler V, Grando D. Reprint of New opportunities for improved ribotyping of C. difficile clinical isolates by exploring their genomes. METHODS IN MICROBIOLOGY 2013; 95:425-40. [PMID: 24050948 DOI: 10.1016/j.mimet.2013.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 11/24/2022]
Abstract
Clostridium difficile causes outbreaks of infectious diarrhoea, most commonly occurring in healthcare institutions. Recently, concern has been raised with reports of C. difficile disease in those traditionally thought to be at low risk i.e. community acquired rather than healthcare acquired. This has increased awareness for the need to track outbreaks and PCR-ribotyping has found widespread use to elucidate epidemiologically linked isolates. PCR-ribotyping uses conserved regions of the 16S rRNA gene and 23S rRNA gene as primer binding sites to produce varying PCR products due to the intergenic spacer (ITS1) regions of the multiple operons. With the explosion of whole genome sequence data it became possible to analyse the start of the 23S rRNA gene for a more accurate selection of regions closer to the end of the ITS1. However the following questions must still be asked: (i) Does the chromosomal organisation of the rrn operon vary between C. difficile strains? and (ii) just how conserved are the primer binding regions? Eight published C. difficile genomes have been aligned to produce a detailed database of indels of the ITS1's from the rrn operon sets. An iPad Filemaker Go App has been constructed and named RiboTyping (RT). It contains detail such as sequences, ribotypes, strain numbers, GenBank numbers and genome position numbers. Access to various levels of the database is provided so that details can be printed. There are three main regions of the rrn operon that have been analysed by the database and related to each other by strain, ribotype and operon: (1) 16S gene (2) ITS1 indels (3) 23S gene. This has enabled direct intra- and inter-genomic comparisons at the strain, ribotype and operon (allele) levels in each of the three genomic regions. This is the first time that such an analysis has been done. By using the RT App with search criteria it will be possible to select probe combinations for specific strains/ribotypes/rrn operons for experiments to do with diagnostics, typing and recombination of operons. Many more incomplete C. difficile whole genome sequencing projects are recorded in GenBank as underway and the rrn operon information from these can also be added to the RT App when available. The RT App will help simplify probe selection because of the complexity of the ITS1 in C. difficile even in a single genome and because other allele-specific regions (16S and 23S genes) of variability can be relationally compared to design extra probes to increase sensitivity.
Collapse
Affiliation(s)
- Volker Gürtler
- School of Applied Sciences, Building 223, Level 1, Bundoora Campus RMIT University, PO Box 71, Bundoora 3083, Australia.
| | | |
Collapse
|
25
|
Rodríguez-Pardo D, Mirelis B, Navarro F. Infecciones producidas por Clostridium difficile. Enferm Infecc Microbiol Clin 2013; 31:254-63. [DOI: 10.1016/j.eimc.2012.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/13/2012] [Indexed: 01/05/2023]
|
26
|
Gürtler V, Grando D. New opportunities for improved ribotyping of C. difficile clinical isolates by exploring their genomes. J Microbiol Methods 2013; 93:257-72. [PMID: 23545446 DOI: 10.1016/j.mimet.2013.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
Abstract
Clostridium difficile causes outbreaks of infectious diarrhoea, most commonly occurring in healthcare institutions. Recently, concern has been raised with reports of C. difficile disease in those traditionally thought to be at low risk i.e. community acquired rather than healthcare acquired. This has increased awareness for the need to track outbreaks and PCR-ribotyping has found widespread use to elucidate epidemiologically linked isolates. PCR-ribotyping uses conserved regions of the 16S rRNA gene and 23S rRNA gene as primer binding sites to produce varying PCR products due to the intergenic spacer (ITS1) regions of the multiple operons. With the explosion of whole genome sequence data it became possible to analyse the start of the 23S rRNA gene for a more accurate selection of regions closer to the end of the ITS1. However the following questions must still be asked: (i) Does the chromosomal organisation of the rrn operon vary between C. difficile strains? and (ii) just how conserved are the primer binding regions? Eight published C. difficile genomes have been aligned to produce a detailed database of indels of the ITS1's from the rrn operon sets. An iPad Filemaker Go App has been constructed and named RiboTyping (RT). It contains detail such as sequences, ribotypes, strain numbers, GenBank numbers and genome position numbers. Access to various levels of the database is provided so that details can be printed. There are three main regions of the rrn operon that have been analysed by the database and related to each other by strain, ribotype and operon: (1) 16S gene (2) ITS1 indels (3) 23S gene. This has enabled direct intra- and inter-genomic comparisons at the strain, ribotype and operon (allele) levels in each of the three genomic regions. This is the first time that such an analysis has been done. By using the RT App with search criteria it will be possible to select probe combinations for specific strains/ribotypes/rrn operons for experiments to do with diagnostics, typing and recombination of operons. Many more incomplete C. difficile whole genome sequencing projects are recorded in GenBank as underway and the rrn operon information from these can also be added to the RT App when available. The RT App will help simplify probe selection because of the complexity of the ITS1 in C. difficile even in a single genome and because other allele-specific regions (16S and 23S genes) of variability can be relationally compared to design extra probes to increase sensitivity.
Collapse
Affiliation(s)
- Volker Gürtler
- School of Applied Sciences, Building 223, Level 1, Bundoora Campus RMIT University, PO Box 71, Bundoora 3083, Australia.
| | | |
Collapse
|
27
|
Dawson LF, Valiente E, Faulds-Pain A, Donahue EH, Wren BW. Characterisation of Clostridium difficile biofilm formation, a role for Spo0A. PLoS One 2012; 7:e50527. [PMID: 23236376 PMCID: PMC3517584 DOI: 10.1371/journal.pone.0050527] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/25/2012] [Indexed: 01/22/2023] Open
Abstract
Clostridium difficile is a Gram-positive anaerobic, spore-forming bacillus that is the leading cause of nosocomial diarrhoea worldwide. We demonstrate that C. difficile aggregates and forms biofilms in vitro on abiotic surfaces. These polymicrobial aggregates are attached to each other and to an abiotic surface by an extracellular polymeric substance (EPS). The EPS matrix provides the scaffold bonding together vegetative cells and spores, as well as forming a protective barrier for vegetative cells against oxygen stress. The master regulator of sporulation, Spo0A, may play a key role in biofilm formation, as genetic inactivation of spo0A in strain R20291 exhibits decreased biofilm formation. Our findings highlight an important attribute of C. difficile pathogenesis, which may have significant implications for infection, treatment and relapse.
Collapse
Affiliation(s)
| | | | | | | | - Brendan W. Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Occurrence of toxigenic Clostridium difficile in edible bivalve molluscs. Food Microbiol 2012; 31:309-12. [DOI: 10.1016/j.fm.2012.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/22/2012] [Accepted: 03/01/2012] [Indexed: 12/25/2022]
|
29
|
Irinotecan (CPT-11) chemotherapy alters intestinal microbiota in tumour bearing rats. PLoS One 2012; 7:e39764. [PMID: 22844397 PMCID: PMC3406026 DOI: 10.1371/journal.pone.0039764] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/26/2012] [Indexed: 01/14/2023] Open
Abstract
Intestinal microbiota mediate toxicity of irinotecan (CPT-11) cancer therapies and cause systemic infection after CPT-11-induced loss of barrier function. The intestinal microbiota and their functions are thus potential targets for treatment to mitigate CPT-11 toxicity. However, microbiota changes during CPT-11 therapy remain poorly described. This study analysed changes in intestinal microbiota induced by CPT-11 chemotherapy. Qualitative and quantitative taxonomic analyses, and functional analyses were combined to characterize intestinal microbiota during CPT-11-based chemotherapy, and in presence or absence of oral glutamine, a treatment known to reduce CPT-11 toxicity. In the first set of experiments tumour-bearing rats received a dose-intensive CPT-11 regimen (125 mg kg−1×3 days), with or without oral glutamine bolus (0.75 g kg−1). In a subsequent more clinically-oriented chemotherapy regimen, rats received two cycles of CPT-11 (50 mg kg−1) followed by 5-flurouracil (50 mg kg−1). The analysis of fecal samples over time demonstrated that tumours changed the composition of intestinal microbiota, increasing the abundance of clostrridial clusters I, XI, and Enterobacteriaceae. CPT-11 chemotherapy increased cecal Clostridium cluster XI and Enterobacteriaceae, particularly after the dose-intensive therapy. Glutamine treatment prevented the reduced abundance of major bacterial groups after CPT-11 administration; i.e. total bacteria, Clostridium cluster VI, and the Bacteroides-group. Virulence factor/toxin genes of pathogenic Escherichia coli and Clostridium difficile were not detected in the cecal microbiota. In conclusion, both colon cancer implantation and CPT-11-based chemotherapies disrupted the intestinal microbiota. Oral glutamine partially mitigated CPT-11 toxicity and induced temporary changes of the intestinal microbiota.
Collapse
|
30
|
Garcia-Mazcorro JF, Suchodolski JS, Jones KR, Clark-Price SC, Dowd SE, Minamoto Y, Markel M, Steiner JM, Dossin O. Effect of the proton pump inhibitor omeprazole on the gastrointestinal bacterial microbiota of healthy dogs. FEMS Microbiol Ecol 2012; 80:624-36. [PMID: 22324305 DOI: 10.1111/j.1574-6941.2012.01331.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 02/02/2012] [Accepted: 02/06/2012] [Indexed: 12/14/2022] Open
Abstract
The effect of a proton pump inhibitor on gastrointestinal (GI) microbiota was evaluated. Eight healthy 9-month-old dogs (four males and four females) received omeprazole (1.1 mg kg(-1) ) orally twice a day for 15 days. Fecal samples and endoscopic biopsies from the stomach and duodenum were obtained on days 30 and 15 before omeprazole administration, on day 15 (last day of administration), and 15 days after administration. The microbiota was evaluated using 16S rRNA gene 454-pyrosequencing, fluorescence in situ hybridization, and qPCR. In the stomach, pyrosequencing revealed a decrease in Helicobacter spp. during omeprazole (median 92% of sequences during administration compared to > 98% before and after administration; P = 0.0336), which was accompanied by higher proportions of Firmicutes and Fusobacteria. FISH confirmed this decrease in gastric Helicobacter (P < 0.0001) and showed an increase in total bacteria in the duodenum (P = 0.0033) during omeprazole. However, Unifrac analysis showed that omeprazole administration did not significantly alter the overall phylogenetic composition of the gastric and duodenal microbiota. In feces, qPCR showed an increase in Lactobacillus spp. during omeprazole (P < 0.0001), which was accompanied by a lower abundance of Faecalibacterium spp. and Bacteroides-Prevotella-Porphyromonas in the male dogs. This study suggests that omeprazole administration leads to quantitative changes in GI microbiota of healthy dogs.
Collapse
Affiliation(s)
- Jose F Garcia-Mazcorro
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Carroll KC, Bartlett JG. Biology of Clostridium difficile: implications for epidemiology and diagnosis. Annu Rev Microbiol 2012; 65:501-21. [PMID: 21682645 DOI: 10.1146/annurev-micro-090110-102824] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Clostridium difficile is an anaerobic, spore-forming, gram-positive rod that causes a spectrum of antibiotic-associated colitis through the elaboration of two large clostridial toxins and other virulence factors. Since its discovery in 1978 as the agent responsible for pseudomembranous colitis, the organism has continued to evolve into an adaptable, aggressive, hypervirulent strain. Advances in molecular methods and improved animal models have facilitated an understanding of how this organism survives in the environment, adapts to the gastrointestinal tract of animals and humans, and accomplishes its unique pathogenesis. The advances in microbiology have been accompanied by some important clinical observations including increased rates of C. difficile infection, increased virulence, and multiple outbreaks. The major new risk is fluoroquinolone use; there is also an association with proton pump inhibitors and increased recognition of cases in outpatients, pediatric patients, and patients without recent antibiotic use. The combination of more aggressive strains with mobile genomes in a setting of an expanded pool of individuals at risk has refocused attention on and challenged assumptions regarding diagnostic gold standards. Future research is likely to build upon the advancements in phylogenetics to create novel strategies for diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Karen C Carroll
- Division of Medical Microbiology, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
32
|
Carter GP, Douce GR, Govind R, Howarth PM, Mackin KE, Spencer J, Buckley AM, Antunes A, Kotsanas D, Jenkin GA, Dupuy B, Rood JI, Lyras D. The anti-sigma factor TcdC modulates hypervirulence in an epidemic BI/NAP1/027 clinical isolate of Clostridium difficile. PLoS Pathog 2011; 7:e1002317. [PMID: 22022270 PMCID: PMC3192846 DOI: 10.1371/journal.ppat.1002317] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 08/30/2011] [Indexed: 12/18/2022] Open
Abstract
Nosocomial infections are increasingly being recognised as a major patient safety issue. The modern hospital environment and associated health care practices have provided a niche for the rapid evolution of microbial pathogens that are well adapted to surviving and proliferating in this setting, after which they can infect susceptible patients. This is clearly the case for bacterial pathogens such as Methicillin Resistant Staphylococcus aureus (MRSA) and Vancomycin Resistant Enterococcus (VRE) species, both of which have acquired resistance to antimicrobial agents as well as enhanced survival and virulence properties that present serious therapeutic dilemmas for treating physicians. It has recently become apparent that the spore-forming bacterium Clostridium difficile also falls within this category. Since 2000, there has been a striking increase in C. difficile nosocomial infections worldwide, predominantly due to the emergence of epidemic or hypervirulent isolates that appear to possess extended antibiotic resistance and virulence properties. Various hypotheses have been proposed for the emergence of these strains, and for their persistence and increased virulence, but supportive experimental data are lacking. Here we describe a genetic approach using isogenic strains to identify a factor linked to the development of hypervirulence in C. difficile. This study provides evidence that a naturally occurring mutation in a negative regulator of toxin production, the anti-sigma factor TcdC, is an important factor in the development of hypervirulence in epidemic C. difficile isolates, presumably because the mutation leads to significantly increased toxin production, a contentious hypothesis until now. These results have important implications for C. difficile pathogenesis and virulence since they suggest that strains carrying a similar mutation have the inherent potential to develop a hypervirulent phenotype.
Collapse
Affiliation(s)
- Glen P. Carter
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Gillian R. Douce
- Division of Infection and Immunity, FBLS Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Revathi Govind
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Pauline M. Howarth
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Kate E. Mackin
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Janice Spencer
- Division of Infection and Immunity, FBLS Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Anthony M. Buckley
- Division of Infection and Immunity, FBLS Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Ana Antunes
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Despina Kotsanas
- Department of Infectious Diseases, Southern Health, Monash Medical Centre, Clayton, Victoria, Australia
| | - Grant A. Jenkin
- Department of Infectious Diseases, Southern Health, Monash Medical Centre, Clayton, Victoria, Australia
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Julian I. Rood
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Dena Lyras
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
33
|
Wei HL, Kao CW, Wei SH, Tzen JTC, Chiou CS. Comparison of PCR ribotyping and multilocus variable-number tandem-repeat analysis (MLVA) for improved detection of Clostridium difficile. BMC Microbiol 2011; 11:217. [PMID: 21961456 PMCID: PMC3191483 DOI: 10.1186/1471-2180-11-217] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 09/30/2011] [Indexed: 11/21/2022] Open
Abstract
Background Polymerase chain reaction (PCR) ribotyping is one of the globally accepted techniques for defining epidemic clones of Clostridium difficile and tracing virulence-related strains. However, the ambiguous data generated by this technique makes it difficult to compare data attained from different laboratories; therefore, a portable technique that could supersede or supplement PCR ribotyping should be developed. The current study attempted to use a new multilocus variable-number tandem-repeat analysis (MLVA) panel to detect PCR-ribotype groups. In addition, various MLVA panels using different numbers of variable-number tandem-repeat (VNTR) loci were evaluated for their power to discriminate C. difficile clinical isolates. Results At first, 40 VNTR loci from the C. difficile genome were used to screen for the most suitable MLVA panel. MLVA and PCR ribotyping were implemented to identify 142 C. difficile isolates. Groupings of serial MLVA panels with different allelic diversity were compared with 47 PCR-ribotype groups. A MLVA panel using ten VNTR loci with limited allelic diversity (0.54-0.83), designated MLVA10, generated groups highly congruent (98%) with the PCR-ribotype groups. For comparison of discriminatory power, a MLVA panel using only four highly variable VNTR loci (allelic diversity: 0.94-0.96), designated MLVA4, was found to be the simplest MLVA panel that retained high discriminatory power. The MLVA10 and MLVA4 were combined and used to detect genetically closely related C. difficile strains. Conclusions For the epidemiological investigations of C. difficile, we recommend that MLVA10 be used in coordination with the PCR-ribotype groups to detect epidemic clones, and that the MLVA4 could be used to detect outbreak strains. MLVA10 and MLVA4 could be combined in four multiplex PCR reactions to save time and obtain distinguishable data.
Collapse
Affiliation(s)
- Hsiao L Wei
- The Central Region Laboratory, Center for Research and Diagnostics, Centers for Disease Control, Taichung City 40855, Taiwan
| | | | | | | | | |
Collapse
|
34
|
Roberts AP, Mullany P. Tn916-like genetic elements: a diverse group of modular mobile elements conferring antibiotic resistance. FEMS Microbiol Rev 2011; 35:856-71. [PMID: 21658082 DOI: 10.1111/j.1574-6976.2011.00283.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Antibiotic-resistant Gram-positive bacteria are responsible for morbidity and mortality in healthcare environments. Enterococcus faecium, Enterococcus faecalis, Staphylococcus aureus and Streptococcus pneumoniae can all exhibit clinically relevant multidrug resistance phenotypes due to acquired resistance genes on mobile genetic elements. It is possible that clinically relevant multidrug-resistant Clostridium difficile strains will appear in the future, as the organism is adept at acquiring mobile genetic elements (plasmids and transposons). Conjugative transposons of the Tn916/Tn1545 family, which carry major antibiotic resistance determinants, are transmissible between these different bacteria by a conjugative mechanism during which the elements are excised by a staggered cut from donor cells, converted to a circular form, transferred by cell-cell contact and inserted into recipient cells by a site-specific recombinase. The ability of these conjugative transposons to acquire additional, clinically relevant antibiotic resistance genes importantly contributes to the emergence of multidrug resistance.
Collapse
Affiliation(s)
- Adam P Roberts
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK
| | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW This review summarizes the most recent epidemiological data and advances in research into the pathogenesis, diagnosis and treatment of Clostridium difficile infection (CDI). RECENT FINDINGS The epidemiology of CDI has changed with the emergence of hypervirulent strains. CDI rates have increased in the community, in children and in patients with inflammatory bowel disease. Although the North American pulsed-field gel electrophoresis type 1, restriction endonuclease analysis group BI, PCR ribotype 027 (NAP1/BI/027) strain remains prevalent in North America, surveillance suggests that it is decreasing in Europe. A similar strain, PCR ribotype 078, is emerging which is associated with community-associated CDI and has been isolated in animals and food products. The Society for Healthcare Epidemiology of America and the Infectious Diseases Society of America have published new guidelines on the epidemiology, diagnosis, treatment, infection control and environmental management of C. difficile. Several novel therapies for CDI are at different stages of development. There have been promising trial results with fidaxomicin, a novel antibiotic for the treatment of CDI and monoclonal antibodies against toxins A and B, which have been shown to significantly reduce CDI recurrence rates. SUMMARY Major advances have been made in our understanding of the spread and pathogenesis of C. difficile and new treatment options are becoming available.
Collapse
|
36
|
Abstract
Germination of Clostridium difficile spores is the first required step in establishing C. difficile-associated disease (CDAD). Taurocholate (a bile salt) and glycine (an amino acid) have been shown to be important germinants of C. difficile spores. In the present study, we tested a series of glycine and taurocholate analogs for the ability to induce or inhibit C. difficile spore germination. Testing of glycine analogs revealed that both the carboxy and amino groups are important epitopes for recognition and that the glycine binding site can accommodate compounds with more widely separated termini. The C. difficile germination machinery also recognizes other hydrophobic amino acids. In general, linear alkyl side chains are better activators of spore germination than their branched analogs. However, L-phenylalanine and L-arginine are also good germinants and are probably recognized by distinct binding sites. Testing of taurocholate analogs revealed that the 12-hydroxyl group of taurocholate is necessary, but not sufficient, to activate spore germination. In contrast, the 6- and 7-hydroxyl groups are required for inhibition of C. difficile spore germination. Similarly, C. difficile spores are able to detect taurocholate analogs with shorter, but not longer, alkyl amino sulfonic acid side chains. Furthermore, the sulfonic acid group can be partially substituted with other acidic groups. Finally, a taurocholate analog with an m-aminobenzenesulfonic acid side chain is a strong inhibitor of C. difficile spore germination. In conclusion, C. difficile spores recognize both amino acids and taurocholate through multiple interactions that are required to bind the germinants and/or activate the germination machinery.
Collapse
|
37
|
Burns DA, Heap JT, Minton NP. The diverse sporulation characteristics of Clostridium difficile clinical isolates are not associated with type. Anaerobe 2010; 16:618-22. [PMID: 20950700 DOI: 10.1016/j.anaerobe.2010.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 10/01/2010] [Indexed: 11/19/2022]
Abstract
Clostridium difficile causes diarrhoeal diseases ranging from asymptomatic carriage to a fulminant, relapsing, and potentially fatal colitis. Endospore production plays a vital role in transmission of infection, and in order to cause disease these spores must then germinate and return to vegetative cell growth. Type BI/NAP1/027 strains of C. difficile have recently become highly represented among clinical isolates and are associated with increased disease severity. It has also been suggested that these 'epidemic' types generally sporulate more prolifically than 'non-epidemic' strains, although the few existing reports are inconclusive and encompass only a small number of isolates. In order to better understand any differences in sporulation rates between epidemic and non-epidemic C. difficile types, we analysed these characteristics using 14 C. difficile clinical isolates of a variety of types. Sporulation rates varied greatly between individual BI/NAP1/027 isolates, but this variation did not appear to be type-associated. Furthermore, a number of BI/NAP1/027 spores appeared to form colonies with a lower frequency than specific non-BI/NAP1/027 strains. The data suggest that (i) careful experimental design is required in order to accurately quantify sporulation; and (ii) current evidence cannot link differences in sporulation rates with the disease severity of the BI/NAP1/027 type.
Collapse
Affiliation(s)
- David A Burns
- Nottingham Digestive Diseases Centre NIHR Biomedical Research Unit, Centre for Biomolecular Sciences, University of Nottingham, University Park, UK.
| | | | | |
Collapse
|
38
|
Burns DA, Heap JT, Minton NP. Clostridium difficile spore germination: an update. Res Microbiol 2010; 161:730-4. [PMID: 20863888 DOI: 10.1016/j.resmic.2010.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 08/11/2010] [Indexed: 01/06/2023]
Abstract
Endospore production is vital for the spread of Clostridium difficile infection. However, in order to cause disease, these spores must germinate and return to vegetative cell growth. Knowledge of germination is therefore important, with potential practical implications for routine cleaning, outbreak management and potentially in the design of new therapeutics. Germination has been well studied in Bacillus, but until recently there had been few studies reported in C. difficile. The role of bile salts as germinants for C. difficile spores has now been described in some detail, which improves our understanding of how C. difficile spores interact with their environment following ingestion by susceptible individuals. Furthermore, with the aid of novel genetic tools, it has now become possible to study the germination of C. difficile spores using both a forward and reverse genetics approach. Significant progress is beginning to be made in the study of this important aspect of C. difficile disease.
Collapse
Affiliation(s)
- David A Burns
- Nottingham Digestive Diseases Centre NIHR Biomedical Research Unit (NDDC BRU), School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | | | |
Collapse
|
39
|
The safety of drugs used in acid-related disorders and functional gastrointestinal disorders. Gastroenterol Clin North Am 2010; 39:529-42. [PMID: 20951916 PMCID: PMC3117659 DOI: 10.1016/j.gtc.2010.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Medicines are frequently used in the management of acid-related disorders and functional gastrointestinal disorders. With the exception of complicated peptic ulcer disease, these disorders are not associated with appreciable mortality. Drug treatments have consequently been held to the highest standards of safety. Some medicines have been withdrawn or restricted based on assessments and perceptions of risk. However, the risk of serious toxicity is low for most of the agents discussed in this article. Assessments are made of the safety and adverse-event profiles of certain drug classes and, where appropriate, individual medicines. For conditions with a low risk of mortality or serious morbidity, clinicians need to balance the risks of potential adverse events with the anticipated benefits of a successful outcome of specific drug treatment.
Collapse
|
40
|
Coexistence of multiple multilocus variable-number tandem-repeat analysis subtypes of Clostridium difficile PCR ribotype 027 strains within fecal specimens. J Clin Microbiol 2010; 48:985-7. [PMID: 20071546 DOI: 10.1128/jcm.02012-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We investigated whether multilocus variable-number tandem-repeat analysis (MLVA) typing could identify different subtypes of Clostridium difficile ribotype 027 within the same feces specimen. Five of 39 specimens yielded at least one isolate with an MLVA profile different (more than five summed tandem repeat differences) from that of other isolates in the same specimen, thereby potentially obscuring epidemiological links between C. difficile infection cases.
Collapse
|
41
|
SleC is essential for germination of Clostridium difficile spores in nutrient-rich medium supplemented with the bile salt taurocholate. J Bacteriol 2009; 192:657-64. [PMID: 19933358 DOI: 10.1128/jb.01209-09] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is the major cause of infectious diarrhea and a major burden to health care services. The ability of this organism to form endospores plays a pivotal role in infection and disease transmission. Spores are highly resistant to many forms of disinfection and thus are able to persist on hospital surfaces and disseminate infection. In order to cause disease, the spores must germinate and the organism must grow vegetatively. Spore germination in Bacillus is well understood, and genes important for this process have recently been identified in Clostridium perfringens; however, little is known about C. difficile. Apparent homologues of the spore cortex lytic enzyme genes cwlJ and sleB (Bacillus subtilis) and sleC (C. perfringens) are present in the C. difficile genome, and we describe inactivation of these homologues in C. difficile 630Delta erm and a B1/NAP1/027 clinical isolate. Spores of a sleC mutant were unable to form colonies when germination was induced with taurocholate, although decoated sleC spores formed the same number of heat-resistant colonies as the parental control, even in the absence of germinants. This suggests that sleC is absolutely required for conversion of spores to vegetative cells, in contrast to CD3563 (a cwlJ/sleB homologue), inactivation of which had no effect on germination and outgrowth of C. difficile spores under the same conditions. The B1/NAP1/027 strain R20291 was found to sporulate more slowly and produce fewer spores than 630Delta erm. Furthermore, fewer R20291 spores germinated, indicating that there are differences in both sporulation and germination between these epidemic and nonepidemic C. difficile isolates.
Collapse
|