1
|
Louca S. The rates of global bacterial and archaeal dispersal. THE ISME JOURNAL 2022; 16:159-167. [PMID: 34282284 PMCID: PMC8692594 DOI: 10.1038/s41396-021-01069-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
The phylogenetic resolution at which microorganisms display geographic endemism, the rates at which they disperse at global scales, and the role of humans on global microbial dispersal are largely unknown. Answering these questions is necessary for interpreting microbial biogeography, ecology, and macroevolution and for predicting the spread of emerging pathogenic strains. To resolve these questions, I analyzed the geographic and evolutionary relationships between 36,795 bacterial and archaeal ("prokaryotic") genomes from ∼7000 locations around the world. I find clear signs of continental-scale endemism, including strong correlations between phylogenetic divergence and geographic distance. However, the phylogenetic scale at which endemism generally occurs is extremely small, and most "species" (defined by an average nucleotide identity ≥ 95%) and even closely related strains (average nucleotide identity ≥ 99.9%) are globally distributed. Human-associated lineages display faster dispersal rates than other terrestrial lineages; the average net distance between any two human-associated cell lineages diverging 50 years ago is roughly 580 km. These results suggest that many previously reported global-scale microbial biogeographical patterns are likely the result of recent or current environmental filtering rather than geographic endemism. For human-associated lineages, estimated transition rates between Europe and North America are particularly high, and much higher than for non-human associated terrestrial lineages, highlighting the role that human movement plays in global microbial dispersal. Dispersal was slowest for hot spring- and terrestrial subsurface-associated lineages, indicating that these environments may act as "isolated islands" of microbial evolution.
Collapse
Affiliation(s)
- Stilianos Louca
- Department of Biology, University of Oregon, Eugene, OR, USA.
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
2
|
Nduva GM, Nazziwa J, Hassan AS, Sanders EJ, Esbjörnsson J. The Role of Phylogenetics in Discerning HIV-1 Mixing among Vulnerable Populations and Geographic Regions in Sub-Saharan Africa: A Systematic Review. Viruses 2021; 13:1174. [PMID: 34205246 PMCID: PMC8235305 DOI: 10.3390/v13061174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022] Open
Abstract
To reduce global HIV-1 incidence, there is a need to understand and disentangle HIV-1 transmission dynamics and to determine the geographic areas and populations that act as hubs or drivers of HIV-1 spread. In Sub-Saharan Africa (sSA), the region with the highest HIV-1 burden, information about such transmission dynamics is sparse. Phylogenetic inference is a powerful method for the study of HIV-1 transmission networks and source attribution. In this review, we assessed available phylogenetic data on mixing between HIV-1 hotspots (geographic areas and populations with high HIV-1 incidence and prevalence) and areas or populations with lower HIV-1 burden in sSA. We searched PubMed and identified and reviewed 64 studies on HIV-1 transmission dynamics within and between risk groups and geographic locations in sSA (published 1995-2021). We describe HIV-1 transmission from both a geographic and a risk group perspective in sSA. Finally, we discuss the challenges facing phylogenetic inference in mixed epidemics in sSA and offer our perspectives and potential solutions to the identified challenges.
Collapse
Affiliation(s)
- George M. Nduva
- Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden; (G.M.N.); (J.N.); (A.S.H.)
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi 80108, Kenya;
| | - Jamirah Nazziwa
- Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden; (G.M.N.); (J.N.); (A.S.H.)
| | - Amin S. Hassan
- Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden; (G.M.N.); (J.N.); (A.S.H.)
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi 80108, Kenya;
| | - Eduard J. Sanders
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi 80108, Kenya;
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, The University of Oxford, Oxford OX1 2JD, UK
| | - Joakim Esbjörnsson
- Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden; (G.M.N.); (J.N.); (A.S.H.)
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, The University of Oxford, Oxford OX1 2JD, UK
| |
Collapse
|
3
|
Tongo M, Martin DP, Dorfman JR. Elucidation of Early Evolution of HIV-1 Group M in the Congo Basin Using Computational Methods. Genes (Basel) 2021; 12:genes12040517. [PMID: 33918115 PMCID: PMC8065694 DOI: 10.3390/genes12040517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
The Congo Basin region is believed to be the site of the cross-species transmission event that yielded HIV-1 group M (HIV-1M). It is thus likely that the virus has been present and evolving in the region since that cross-species transmission. As HIV-1M was only discovered in the early 1980s, our directly observed record of the epidemic is largely limited to the past four decades. Nevertheless, by exploiting the genetic relatedness of contemporary HIV-1M sequences, phylogenetic methods provide a powerful framework for investigating simultaneously the evolutionary and epidemiologic history of the virus. Such an approach has been taken to find that the currently classified HIV-1 M subtypes and Circulating Recombinant Forms (CRFs) do not give a complete view of HIV-1 diversity. In addition, the currently identified major HIV-1M subtypes were likely genetically predisposed to becoming a major component of the present epidemic, even before the events that resulted in the global epidemic. Further efforts have identified statistically significant hot- and cold-spots of HIV-1M subtypes sequence inheritance in genomic regions of recombinant forms. In this review we provide ours and others recent findings on the emergence and spread of HIV-1M variants in the region, which have provided insights into the early evolution of this virus.
Collapse
Affiliation(s)
- Marcel Tongo
- Center for Research on Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
- Correspondence:
| | - Darren P. Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa;
| | - Jeffrey R. Dorfman
- Division of Medical Virology, School of Pathology, Faculty of Health Sciences, Stellenbosch University, Cape Town 7505, South Africa;
| |
Collapse
|
4
|
Morozova OV, Sashina TF, Novikova NA. [Phylodynamic characteristics of the Russian population of rotavirus А (Reoviridae: Sedoreovirinae: Rotavirus) based on the VP6 gene]. Vopr Virusol 2021; 65:364-372. [PMID: 33533232 DOI: 10.36233/0507-4088-2020-65-6-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Rotavirus A is one of the leading causes of acute gastroenteritis in children in the first years of life. Rotavirus infection is currently classified as a preventable infection. The most abundant rotavirion protein is VP6. MATERIAL AND METHODS Phylogenetic analysis and calculation of phylodynamic characteristics were carried out for 262 nucleotide sequences of the VP6 gene of rotavirus species A, isolated in Russia, using the BEAST v.1.10.4 software package. The derivation and analysis of amino acid sequences was performed using the MEGAX program. RESULTS This study provides phylodynamic characteristics of the rotaviruses in Russia based on the sequences coding VP6 protein. Bayesian analysis showed the circulation of rotaviruses of three sublineages of genotype I1 and three sublineages of genotype I2 in Russia. The level of accumulation of mutations was established, which turned out to be similar for genotypes I1 and I2 and amounted to 7.732E-4 and 1.008E-3 nucleotides/site/year, respectively. The effective population sizes based on nucleotide sequences of the VP6 I1 and I2 genotypes are relatively stable while after the 2000s there is a tendency of its decreasing. Comparative analysis of the amino acid sequences in the region of the intracellular neutralization sites A (231-260 aa) and B (265-292 aa) made it possible to reveal a mutation in position V252I in a proportion of Russian strains of genotype I1 some strains of genotypes I1 and I2 had mutation I281V. These substitutions were not associated with any sublineages to which the strains belong. The analysis of three T-cell epitopes revealed four amino acid differences (in aa positions 305, 315, 342, 348) that were associated with the first or second genogroup. CONCLUSION Based on the phylodynamic characteristics and amino acid composition of antigenic determinants, it was concluded that the VP6 protein is highly stable and could potentially be a good model for development of a rotavirus vaccine.
Collapse
Affiliation(s)
- O V Morozova
- FSBI «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare
| | - T F Sashina
- FSBI «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare
| | - N A Novikova
- FSBI «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare
| |
Collapse
|
5
|
Kalkauskas A, Perron U, Sun Y, Goldman N, Baele G, Guindon S, De Maio N. Sampling bias and model choice in continuous phylogeography: Getting lost on a random walk. PLoS Comput Biol 2021; 17:e1008561. [PMID: 33406072 PMCID: PMC7815209 DOI: 10.1371/journal.pcbi.1008561] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 01/19/2021] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
Phylogeographic inference allows reconstruction of past geographical spread of pathogens or living organisms by integrating genetic and geographic data. A popular model in continuous phylogeography—with location data provided in the form of latitude and longitude coordinates—describes spread as a Brownian motion (Brownian Motion Phylogeography, BMP) in continuous space and time, akin to similar models of continuous trait evolution. Here, we show that reconstructions using this model can be strongly affected by sampling biases, such as the lack of sampling from certain areas. As an attempt to reduce the effects of sampling bias on BMP, we consider the addition of sequence-free samples from under-sampled areas. While this approach alleviates the effects of sampling bias, in most scenarios this will not be a viable option due to the need for prior knowledge of an outbreak’s spatial distribution. We therefore consider an alternative model, the spatial Λ-Fleming-Viot process (ΛFV), which has recently gained popularity in population genetics. Despite the ΛFV’s robustness to sampling biases, we find that the different assumptions of the ΛFV and BMP models result in different applicabilities, with the ΛFV being more appropriate for scenarios of endemic spread, and BMP being more appropriate for recent outbreaks or colonizations. Phylogeography studies past location and migration using information from current geographic locations of genetic sequences. For example, phylogeography can be used to reconstruct the history of geographical spread of an outbreak using the genetic sequences of the pathogen collected at different times and locations. Here, we investigate the effects of different model assumptions on phylogeographic inference. In particular, we examine the effects of the strategy used to collect samples. We show that sample collection biases can have a strong impact on the quality of phylogeographic reconstruction: geographically biased sampling scheme can be very detrimental for popular continuous phylogeography models. We consider different ways to counter these effects, from utilising alternative phylogeographic models, to the inclusion of partially informative samples (known cases without genetic sequences). While these strategies do alleviate the effects of sampling biases, they also lead to considerable additional computational burden. We also investigate the intrinsic differences of different phylogeographic models, and their effects on reconstructed patterns in different scenarios.
Collapse
Affiliation(s)
- Antanas Kalkauskas
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Umberto Perron
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Yuxuan Sun
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Nick Goldman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Stephane Guindon
- Department of Computer Science, LIRMM, CNRS and Université de Montpellier, Montpellier, France
| | - Nicola De Maio
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Paraskevis D, Kostaki EG. An evolving genetic tapestry of HIV-1 recombinants. Lancet HIV 2020; 7:e733-e734. [PMID: 33128900 DOI: 10.1016/s2352-3018(20)30272-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Dimitrios Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece.
| | - Evangelia-Georgia Kostaki
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
7
|
Hill SC, de Souza R, Thézé J, Claro I, Aguiar RS, Abade L, Santos FCP, Cunha MS, Nogueira JS, Salles FCS, Rocco IM, Maeda AY, Vasami FGS, du Plessis L, Silveira PP, de Jesus JG, Quick J, Fernandes NCCA, Guerra JM, Réssio RA, Giovanetti M, Alcantara LCJ, Cirqueira CS, Díaz-Delgado J, Macedo FLL, Timenetsky MDCST, de Paula R, Spinola R, Telles de Deus J, Mucci LF, Tubaki RM, de Menezes RMT, Ramos PL, de Abreu AL, Cruz LN, Loman N, Dellicour S, Pybus OG, Sabino EC, Faria NR. Genomic Surveillance of Yellow Fever Virus Epizootic in São Paulo, Brazil, 2016 - 2018. PLoS Pathog 2020; 16:e1008699. [PMID: 32764827 PMCID: PMC7437926 DOI: 10.1371/journal.ppat.1008699] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/19/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
São Paulo, a densely inhabited state in southeast Brazil that contains the fourth most populated city in the world, recently experienced its largest yellow fever virus (YFV) outbreak in decades. YFV does not normally circulate extensively in São Paulo, so most people were unvaccinated when the outbreak began. Surveillance in non-human primates (NHPs) is important for determining the magnitude and geographic extent of an epizootic, thereby helping to evaluate the risk of YFV spillover to humans. Data from infected NHPs can give more accurate insights into YFV spread than when using data from human cases alone. To contextualise human cases, identify epizootic foci and uncover the rate and direction of YFV spread in São Paulo, we generated and analysed virus genomic data and epizootic case data from NHPs in São Paulo. We report the occurrence of three spatiotemporally distinct phases of the outbreak in São Paulo prior to February 2018. We generated 51 new virus genomes from YFV positive cases identified in 23 different municipalities in São Paulo, mostly sampled from NHPs between October 2016 and January 2018. Although we observe substantial heterogeneity in lineage dispersal velocities between phylogenetic branches, continuous phylogeographic analyses of generated YFV genomes suggest that YFV lineages spread in São Paulo at a mean rate of approximately 1km per day during all phases of the outbreak. Viral lineages from the first epizootic phase in northern São Paulo subsequently dispersed towards the south of the state to cause the second and third epizootic phases there. This alters our understanding of how YFV was introduced into the densely populated south of São Paulo state. Our results shed light on the sylvatic transmission of YFV in highly fragmented forested regions in São Paulo state and highlight the importance of continued surveillance of zoonotic pathogens in sentinel species.
Collapse
Affiliation(s)
- Sarah C. Hill
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead, United Kingdom
| | | | - Julien Thézé
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint-Genès-Champanelle, France
| | - Ingra Claro
- Instituto de Medicina Tropical, Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina e, Universidade de São Paulo, São Paulo, Brazil
| | - Renato S. Aguiar
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Rio de Janeiro, Brazil
| | - Leandro Abade
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | | | | | - Flavia C. S. Salles
- Instituto de Medicina Tropical, Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina e, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Louis du Plessis
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Paola P. Silveira
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Rio de Janeiro, Brazil
| | - Jaqueline G. de Jesus
- Instituto de Medicina Tropical, Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina e, Universidade de São Paulo, São Paulo, Brazil
| | - Joshua Quick
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | - Marta Giovanetti
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Luiz C. J. Alcantara
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | | | - Regiane de Paula
- Centro de Vigilância Epidemiológica "Prof. Alexandre Vranjac", São Paulo, Brazil
| | - Roberta Spinola
- Centro de Vigilância Epidemiológica "Prof. Alexandre Vranjac", São Paulo, Brazil
| | | | - Luís F. Mucci
- Superintendência do Controle de Endemias, São Paulo, Brazil
| | | | | | | | - Andre L. de Abreu
- Secretaria de Vigilância em Saúde, Ministério da Saúde (SVS/MS), Brasília-DF, Brazil
| | | | - Nick Loman
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12 50, Bruxelles, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Oliver G. Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead, United Kingdom
| | - Ester C. Sabino
- Instituto de Medicina Tropical, Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina e, Universidade de São Paulo, São Paulo, Brazil
| | - Nuno R. Faria
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Louca S. Phylogeographic Estimation and Simulation of Global Diffusive Dispersal. Syst Biol 2020; 70:340-359. [PMID: 32726450 DOI: 10.1093/sysbio/syaa061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 11/14/2022] Open
Abstract
The analysis of time-resolved phylogenies (timetrees) and geographic location data allows estimation of dispersal rates, for example, for invasive species and infectious diseases. Many estimation methods are based on the Brownian Motion model for diffusive dispersal on a 2D plane; however, the accuracy of these methods deteriorates substantially when dispersal occurs at global scales because spherical Brownian motion (SBM) differs from planar Brownian motion. No statistical method exists for estimating SBM diffusion coefficients from a given timetree and tip coordinates, and no method exists for simulating SBM along a given timetree. Here, I present new methods for simulating SBM along a given timetree, and for estimating SBM diffusivity from a given timetree and tip coordinates using a modification of Felsenstein's independent contrasts and maximum likelihood. My simulation and fitting methods can accommodate arbitrary time-dependent diffusivities and scale efficiently to trees with millions of tips, thus enabling new analyses even in cases where planar BM would be a sufficient approximation. I demonstrate these methods using a timetree of marine and terrestrial Cyanobacterial genomes, as well as timetrees of two globally circulating Influenza B clades. My methods are implemented in the R package "castor." [Independent contrasts; phylogenetic; random walk; simulation; spherical Brownian motion.].
Collapse
Affiliation(s)
- Stilianos Louca
- Department of Biology, University of Oregon, USA.,Institute of Ecology and Evolution, University of Oregon, USA
| |
Collapse
|
9
|
Edoul G, Chia JE, Vidal N, Guichet E, Montavon C, Delaporte E, Mpoudi Ngole E, Ayouba A, Peeters M. High HIV burden and recent transmission chains in rural forest areas in southern Cameroon, where ancestors of HIV-1 have been identified in ape populations. INFECTION GENETICS AND EVOLUTION 2020; 84:104358. [PMID: 32439500 DOI: 10.1016/j.meegid.2020.104358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 11/18/2022]
Abstract
We studied HIV prevalence and genetic diversity in rural forest areas in Cameroon, where chimpanzee and gorilla populations infected with the ancestors of the different HIV-1 groups have been identified and transmitted to humans during the 20th century. A total of 2812 individuals were studied, 924 from south-central, 1116 from south-east and 772 from south-west Cameroon. Of 208 (7.4%) samples that were confirmed for HIV-1 infection all belong to HIV-1 group M. In all sites and in all age categories, HIV-1 prevalence was higher in women (160/1599 (10.0%)) as compared to men (48/1213 (4.0%)) with the highest prevalence in women aged between 25 and 34 years (>17%). For 188/208 (92.3%) HIV-1 positive individuals, a fragment of the pol gene was successfully amplified and sequenced. Phylogenetic analysis showed predominance of CRF02_AG (58%), a large diversity of subtypes (A, D, F2 and G), nine different CRFs and more than 12% URFs. Interestingly, 35/188 (18.6%) HIV-1 strains form 12 recent transmission chains. The majority of the clusters are composed of two (n = 8) or three (n = 3) sequences but one cluster included ten HIV-1 strains from women living in four different villages on a major road for logging concessions in the south-east (60 km distance). In the three regions of Cameroon where the ancestors of the four HIV-1 groups have been transmitted to humans, we observed a high HIV prevalence, especially in the southeast where HIV-1 M originated. Many factors allowing rapid establishment in the human population and subsequent rapid spread to urban areas of a new retrovirus or other pathogens of zoonotic origin are now present. Our study shows clearly that some rural areas should also be considered as hot-spots for HIV infection. Prevention efforts together with growing access to HIV diagnosis and antiretroviral treatment are urgently needed in these remote areas.
Collapse
Affiliation(s)
- Ginette Edoul
- Centre de Recherche sur les Maladies Emergentes et Reemergentes (CREMER), Virology Laboratory IMPM-IRD, IMPM, Yaoundé, Cameroon
| | - Julius Ebua Chia
- Centre de Recherche sur les Maladies Emergentes et Reemergentes (CREMER), Virology Laboratory IMPM-IRD, IMPM, Yaoundé, Cameroon
| | - Nicole Vidal
- TransVIHMI, Institut de Recherche pour le Développement (IRD), INSERM, Université de Montpellier, Montpellier, France
| | - Emilande Guichet
- Centre de Recherche sur les Maladies Emergentes et Reemergentes (CREMER), Virology Laboratory IMPM-IRD, IMPM, Yaoundé, Cameroon
| | - Celine Montavon
- TransVIHMI, Institut de Recherche pour le Développement (IRD), INSERM, Université de Montpellier, Montpellier, France
| | - Eric Delaporte
- TransVIHMI, Institut de Recherche pour le Développement (IRD), INSERM, Université de Montpellier, Montpellier, France
| | - Eitel Mpoudi Ngole
- Centre de Recherche sur les Maladies Emergentes et Reemergentes (CREMER), Virology Laboratory IMPM-IRD, IMPM, Yaoundé, Cameroon
| | - Ahidjo Ayouba
- TransVIHMI, Institut de Recherche pour le Développement (IRD), INSERM, Université de Montpellier, Montpellier, France
| | - Martine Peeters
- TransVIHMI, Institut de Recherche pour le Développement (IRD), INSERM, Université de Montpellier, Montpellier, France.
| |
Collapse
|
10
|
Nduva GM, Hassan AS, Nazziwa J, Graham SM, Esbjörnsson J, Sanders EJ. HIV-1 Transmission Patterns Within and Between Risk Groups in Coastal Kenya. Sci Rep 2020; 10:6775. [PMID: 32317722 PMCID: PMC7174422 DOI: 10.1038/s41598-020-63731-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/30/2020] [Indexed: 11/09/2022] Open
Abstract
HIV-1 transmission patterns within and between populations at different risk of HIV-1 acquisition in Kenya are not well understood. We investigated HIV-1 transmission networks in men who have sex with men (MSM), injecting drug users (IDU), female sex workers (FSW) and heterosexuals (HET) in coastal Kenya. We used maximum-likelihood and Bayesian phylogenetics to analyse new (N = 163) and previously published (N = 495) HIV-1 polymerase sequences collected during 2005-2019. Of the 658 sequences, 131 (20%) were from MSM, 58 (9%) IDU, 109 (17%) FSW, and 360 (55%) HET. Overall, 206 (31%) sequences formed 61 clusters. Most clusters (85%) consisted of sequences from the same risk group, suggesting frequent within-group transmission. The remaining clusters were mixed between HET/MSM (7%), HET/FSW (5%), and MSM/FSW (3%) sequences. One large IDU-exclusive cluster was found, indicating an independent sub-epidemic among this group. Phylodynamic analysis of this cluster revealed a steady increase in HIV-1 infections among IDU since the estimated origin of the cluster in 1987. Our results suggest mixing between high-risk groups and heterosexual populations and could be relevant for the development of targeted HIV-1 prevention programmes in coastal Kenya.
Collapse
Affiliation(s)
- George M Nduva
- Lund University, Lund, Sweden
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Amin S Hassan
- Lund University, Lund, Sweden
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Susan M Graham
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
- University of Washington, Seattle, WA, USA
| | - Joakim Esbjörnsson
- Lund University, Lund, Sweden.
- The University of Oxford, Oxford, United Kingdom.
| | - Eduard J Sanders
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
- The University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Nazziwa J, Faria NR, Chaplin B, Rawizza H, Kanki P, Dakum P, Abimiku A, Charurat M, Ndembi N, Esbjörnsson J. Characterisation of HIV-1 Molecular Epidemiology in Nigeria: Origin, Diversity, Demography and Geographic Spread. Sci Rep 2020; 10:3468. [PMID: 32103028 PMCID: PMC7044301 DOI: 10.1038/s41598-020-59944-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/05/2020] [Indexed: 11/23/2022] Open
Abstract
Nigeria has the highest number of AIDS-related deaths in the world. In this study, we characterised the HIV-1 molecular epidemiology by analysing 1442 HIV-1 pol sequences collected 1999-2014 from four geopolitical zones in Nigeria using state-of-the-art maximum-likelihood and Bayesian phylogenetic analyses. The main circulating forms were the circulating recombinant form (CRF) 02_AG (44% of the analysed sequences), CRF43_02G (16%), and subtype G (8%). Twenty-three percent of the sequences represented unique recombinant forms (URFs), whereof 37 (11%) could be grouped into seven potentially novel CRFs. Bayesian phylodynamic analysis suggested that five major Nigerian HIV-1 sub-epidemics were introduced in the 1960s and 1970s, close to the Nigerian Civil War. The analysis also indicated that the number of effective infections decreased in Nigeria after the introduction of free antiretroviral treatment in 2006. Finally, Bayesian phylogeographic analysis suggested gravity-like dynamics in which virus lineages first emerge and expand within large urban centers such as Abuja and Lagos, before migrating towards smaller rural areas. This study provides novel insight into the Nigerian HIV-1 epidemic and may have implications for future HIV-1 prevention strategies in Nigeria and other severely affected countries.
Collapse
Affiliation(s)
- Jamirah Nazziwa
- Department of Translational Medicine, Lund University, Lund, Sweden
| | | | - Beth Chaplin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Holly Rawizza
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Phyllis Kanki
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Patrick Dakum
- Institute of Human Virology Nigeria, Abuja, Nigeria
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Alash'le Abimiku
- Institute of Human Virology Nigeria, Abuja, Nigeria
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Man Charurat
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Nicaise Ndembi
- Institute of Human Virology Nigeria, Abuja, Nigeria
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Joakim Esbjörnsson
- Department of Translational Medicine, Lund University, Lund, Sweden.
- Nuffield Department Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
12
|
Distinct rates and patterns of spread of the major HIV-1 subtypes in Central and East Africa. PLoS Pathog 2019; 15:e1007976. [PMID: 31809523 PMCID: PMC6897401 DOI: 10.1371/journal.ppat.1007976] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/11/2019] [Indexed: 12/21/2022] Open
Abstract
Since the ignition of the HIV-1 group M pandemic in the beginning of the 20th century, group M lineages have spread heterogeneously throughout the world. Subtype C spread rapidly through sub-Saharan Africa and is currently the dominant HIV lineage worldwide. Yet the epidemiological and evolutionary circumstances that contributed to its epidemiological expansion remain poorly understood. Here, we analyse 346 novel pol sequences from the DRC to compare the evolutionary dynamics of the main HIV-1 lineages, subtypes A1, C and D. Our results place the origins of subtype C in the 1950s in Mbuji-Mayi, the mining city of southern DRC, while subtypes A1 and D emerged in the capital city of Kinshasa, and subtypes H and J in the less accessible port city of Matadi. Following a 15-year period of local transmission in southern DRC, we find that subtype C spread at least three-fold faster than other subtypes circulating in Central and East Africa. In conclusion, our results shed light on the origins of HIV-1 main lineages and suggest that socio-historical rather than evolutionary factors may have determined the epidemiological fate of subtype C in sub-Saharan Africa.
Collapse
|
13
|
Rakotomalala M, Vrancken B, Pinel-Galzi A, Ramavovololona P, Hébrard E, Randrianangaly JS, Dellicour S, Lemey P, Fargette D. Comparing patterns and scales of plant virus phylogeography: Rice yellow mottle virus in Madagascar and in continental Africa. Virus Evol 2019; 5:vez023. [PMID: 31384483 PMCID: PMC6671560 DOI: 10.1093/ve/vez023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Rice yellow mottle virus (RYMV) in Madagascar Island provides an opportunity to study the spread of a plant virus disease after a relatively recent introduction in a large and isolated country with a heterogeneous host landscape ecology. Here, we take advantage of field survey data on the occurrence of RYMV disease throughout Madagascar dating back to the 1970s, and of virus genetic data from ninety-four isolates collected since 1989 in most regions of the country to reconstruct the epidemic history. We find that the Malagasy isolates belong to a unique recombinant strain that most likely entered Madagascar through a long-distance introduction from the most eastern part of mainland Africa. We infer the spread of RYMV as a continuous process using a Bayesian statistical framework. In order to calibrate the time scale in calendar time units in this analysis, we pool the information about the RYMV evolutionary rate from several geographical partitions. Whereas the field surveys and the phylogeographic reconstructions both point to a rapid southward invasion across hundreds of kilometers throughout Madagascar within three to four decades, they differ on the inferred origin location and time of the epidemic. The phylogeographic reconstructions suggest a lineage displacement and unveil a re-invasion of the northern regions that may have remained unnoticed otherwise. Despite ecological differences that could affect the transmission potential of RYMV in Madagascar and in mainland Africa, we estimate similar invasion and dispersal rates. We could not identify environmental factors that have a relevant impact on the lineage dispersal velocity of RYMV in Madagascar. This study highlights the value and complementarity of (historical) nongenetic and (more contemporaneous) genetic surveillance data for reconstructing the history of spread of plant viruses.
Collapse
Affiliation(s)
- Mbolarinosy Rakotomalala
- Centre Régional de Recherche du Nord-Ouest du FOFIFA, BP 289, Mahavoky Avaratra, Mahajanga 401, Madagascar
| | - Bram Vrancken
- Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Herestraat 49 box 1040, 3000 Leuven, Belgium
| | - Agnès Pinel-Galzi
- IRD, Cirad, Université Montpellier, IPME, 911 avenue Agropolis, BP 64501 34934 Montpellier cedex 5, France
| | - Perle Ramavovololona
- Département de Biologie et d’Ecologie Végétales, Faculté des Sciences, Université d’Antananarivo, BP 906
| | - Eugénie Hébrard
- IRD, Cirad, Université Montpellier, IPME, 911 avenue Agropolis, BP 64501 34934 Montpellier cedex 5, France
| | | | - Simon Dellicour
- Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Herestraat 49 box 1040, 3000 Leuven, Belgium
- Spatial Epidemiology Lab, Université Libre de Bruxelles, CP 264 / 3,50 av FD Roosevelt, B-1050 Brussels, Belgium
| | - Philippe Lemey
- Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Herestraat 49 box 1040, 3000 Leuven, Belgium
| | - Denis Fargette
- IRD, Cirad, Université Montpellier, IPME, 911 avenue Agropolis, BP 64501 34934 Montpellier cedex 5, France
| |
Collapse
|
14
|
Rhee SY, Shafer RW. Geographically-stratified HIV-1 group M pol subtype and circulating recombinant form sequences. Sci Data 2018; 5:180148. [PMID: 30063225 PMCID: PMC6067049 DOI: 10.1038/sdata.2018.148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Accurate classification of HIV-1 group M lineages, henceforth referred to as subtyping, is essential for understanding global HIV-1 molecular epidemiology. Because most HIV-1 sequencing is done for genotypic resistance testing pol gene, we sought to develop a set of geographically-stratified pol sequences that represent HIV-1 group M sequence diversity. Representative pol sequences differ from representative complete genome sequences because not all CRFs have pol recombination points and because complete genome sequences may not faithfully reflect HIV-1 pol diversity. We developed a software pipeline that compiled 6,034 one-per-person complete HIV-1 pol sequences annotated by country and year belonging to 11 pure subtypes and 70 CRFs and selected a set of sequences whose average distance to the remaining sequences is minimized for each subtype/CRF and country to generate a Geographically-Stratified set of 716 Pol Subtype/CRF (GSPS) reference sequences. We provide extensive data on pol diversity within each subtype/CRF and country combination. The GSPS reference set will also be useful for HIV-1 pol subtyping.
Collapse
Affiliation(s)
- Soo-Yon Rhee
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA 94301, USA
| | - Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA 94301, USA
| |
Collapse
|
15
|
Zehender G, Veo C, Ebranati E, Carta V, Rovida F, Percivalle E, Moreno A, Lelli D, Calzolari M, Lavazza A, Chiapponi C, Baioni L, Capelli G, Ravagnan S, Da Rold G, Lavezzo E, Palù G, Baldanti F, Barzon L, Galli M. Reconstructing the recent West Nile virus lineage 2 epidemic in Europe and Italy using discrete and continuous phylogeography. PLoS One 2017; 12:e0179679. [PMID: 28678837 PMCID: PMC5497961 DOI: 10.1371/journal.pone.0179679] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/04/2017] [Indexed: 11/24/2022] Open
Abstract
West Nile virus lineage 2 (WNV-2) was mainly confined to sub-Saharan Africa until the early 2000s, when it was identified for the first time in Central Europe causing outbreaks of human and animal infection. The aim of this study was to reconstruct the origin and dispersion of WNV-2 in Central Europe and Italy on a phylodynamic and phylogeographical basis. To this aim, discrete and continuous space phylogeographical models were applied to a total of 33 newly characterised full-length viral genomes obtained from mosquitoes, birds and humans in Northern Italy in the years 2013–2015 aligned with 64 complete sequences isolated mainly in Europe. The European isolates segregated into two highly significant clades: a small one including three sequences and a large clade including the majority of isolates obtained in Central Europe since 2004. Discrete phylogeographical analysis showed that the most probable location of the root of the largest European clade was in Hungary a mean 12.78 years ago. The European clade bifurcated into two highly supported subclades: one including most of the Central/East European isolates and the other encompassing all of the isolates obtained in Greece. The continuous space phylogeographical analysis of the Italian clade showed that WNV-2 entered Italy in about 2008, probably by crossing the Adriatic sea and reaching a central area of the Po Valley. The epidemic then spread simultaneously eastward, to reach the region of the Po delta in 2013, and westward to the border area between Lombardy and Piedmont in 2014; later, the western strain changed direction southward, and reached the central area of the Po valley once again in 2015. Over a period of about seven years, the virus spread all over an area of northern Italy by following the Po river and its main tributaries.
Collapse
Affiliation(s)
- Gianguglielmo Zehender
- Department of Biomedical and Clinical Sciences "L.Sacco", University of Milan, Milano, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, Milano, Italy
- * E-mail:
| | - Carla Veo
- Department of Biomedical and Clinical Sciences "L.Sacco", University of Milan, Milano, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, Milano, Italy
| | - Erika Ebranati
- Department of Biomedical and Clinical Sciences "L.Sacco", University of Milan, Milano, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, Milano, Italy
| | - Valentina Carta
- Department of Biomedical and Clinical Sciences "L.Sacco", University of Milan, Milano, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, Milano, Italy
| | - Francesca Rovida
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ana Moreno
- Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna (IZSLER), Brescia, Italy
| | - Davide Lelli
- Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna (IZSLER), Brescia, Italy
| | - Mattia Calzolari
- Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna (IZSLER), Reggio Emilia, Italy
| | - Antonio Lavazza
- Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna (IZSLER), Brescia, Italy
| | - Chiara Chiapponi
- Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna (IZSLER), Parma, Italy
| | - Laura Baioni
- Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna (IZSLER), Parma, Italy
| | - Gioia Capelli
- Experimental Zooprophylactic Institute of Venice, Legnaro, Padua, Italy
| | - Silvia Ravagnan
- Experimental Zooprophylactic Institute of Venice, Legnaro, Padua, Italy
| | - Graziana Da Rold
- Experimental Zooprophylactic Institute of Venice, Legnaro, Padua, Italy
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Massimo Galli
- Department of Biomedical and Clinical Sciences "L.Sacco", University of Milan, Milano, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, Milano, Italy
| |
Collapse
|
16
|
Sallam M, Şahin GÖ, Ingman M, Widell A, Esbjörnsson J, Medstrand P. Genetic characterization of human immunodeficiency virus type 1 transmission in the Middle East and North Africa. Heliyon 2017; 3:e00352. [PMID: 28725873 PMCID: PMC5506879 DOI: 10.1016/j.heliyon.2017.e00352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The HIV-1 spread in the Middle East and North Africa (MENA) has not been previously characterised using the phylogenetic approach. The aim of the current study was to investigate the genetic diversity and domestic transmission of HIV-1 in the MENA. METHODS A total of 2036 HIV-1 sequences available in Genbank and collected in the MENA during 1988-2016 were used together with 715 HIV-1 reference sequences that were retrieved from Genbank based on genetic similarity with the MENA sequences. The REGA and COMET tools were used to determine HIV-1 subtypes and circulating recombinant forms. Maximum Likelihood and Bayesian phylogenetic analyses were used to identify and date HIV-1 transmission clusters. RESULTS At least 21 HIV-1 subtypes and recombinant forms were prevalent in the MENA. Subtype B was the most common variant (39%), followed by CRF35_AD (19%) and CRF02_AG (14%). The most common genetic region was pol, and 675 partial pol sequences (average of 1005 bp) were eligible for detailed phylogenetic analysis. Fifty-four percent of the MENA sequences formed HIV-1 transmission clusters. Whereas numerous clusters were country-specific, some clusters indicated transmission links between countries for subtypes B, C and CRF02_AG. This was more common in North Africa compared with the Middle East (p < 0.001). Recombinant forms had a larger proportion of clustering compared to pure subtypes (p < 0.001). The largest MENA clusters dated back to 1991 (an Algerian CRF06_cpx cluster of 43 sequences) and 2002 (a Tunisian CRF02_AG cluster of 48 sequences). CONCLUSIONS We found an extensive HIV-1 diversity in the MENA and a high proportion of sequences in transmission clusters. This study highlights the need for preventive measures in the MENA to limit HIV-1 spread in this region.
Collapse
Affiliation(s)
- Malik Sallam
- Lund University, Faculty of Medicine, Department of Translational Medicine, Malmö, Sweden
| | - Gülşen Özkaya Şahin
- Lund University, Faculty of Medicine, Department of Translational Medicine, Malmö, Sweden
- Laboratory Medicine Skåne, Lund, Sweden
| | - Mikael Ingman
- Lund University, Faculty of Medicine, Department of Translational Medicine, Malmö, Sweden
| | - Anders Widell
- Lund University, Faculty of Medicine, Department of Translational Medicine, Malmö, Sweden
| | - Joakim Esbjörnsson
- Lund University, Faculty of Medicine, Department of Laboratory Medicine, Lund, Sweden
| | - Patrik Medstrand
- Lund University, Faculty of Medicine, Department of Translational Medicine, Malmö, Sweden
| |
Collapse
|
17
|
Rife BD, Mavian C, Chen X, Ciccozzi M, Salemi M, Min J, Prosperi MCF. Phylodynamic applications in 21 st century global infectious disease research. Glob Health Res Policy 2017; 2:13. [PMID: 29202081 PMCID: PMC5683535 DOI: 10.1186/s41256-017-0034-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/31/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Phylodynamics, the study of the interaction between epidemiological and pathogen evolutionary processes within and among populations, was originally defined in the context of rapidly evolving viruses and used to characterize transmission dynamics. The concept of phylodynamics has evolved since the early 21st century, extending its reach to slower-evolving pathogens, including bacteria and fungi, and to the identification of influential factors in disease spread and pathogen population dynamics. RESULTS The phylodynamic approach has now become a fundamental building block for the development of comparative phylogenetic tools capable of incorporating epidemiological surveillance data with molecular sequences into a single statistical framework. These innovative tools have greatly enhanced scientific investigations of the temporal and geographical origins, evolutionary history, and ecological risk factors associated with the growth and spread of viruses such as human immunodeficiency virus (HIV), Zika, and dengue and bacteria such as Methicillin-resistant Staphylococcus aureus. CONCLUSIONS Capitalizing on an extensive review of the literature, we discuss the evolution of the field of infectious disease epidemiology and recent accomplishments, highlighting the advancements in phylodynamics, as well as the challenges and limitations currently facing researchers studying emerging pathogen epidemics across the globe.
Collapse
Affiliation(s)
- Brittany D Rife
- Emerging Pathogens Institute and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL USA
| | - Carla Mavian
- Emerging Pathogens Institute and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL USA
| | - Xinguang Chen
- Department of Epidemiology, University of Florida, Gainesville, FL USA
| | - Massimo Ciccozzi
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
- Unit of Clinical Pathology and Microbiology, University Campus Biomedico of Rome, Rome, Italy
| | - Marco Salemi
- Emerging Pathogens Institute and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL USA
| | - Jae Min
- Department of Epidemiology, University of Florida, Gainesville, FL USA
| | | |
Collapse
|
18
|
Al-Qahtani AA, Baele G, Khalaf N, Suchard MA, Al-Anazi MR, Abdo AA, Sanai FM, Al-Ashgar HI, Khan MQ, Al-Ahdal MN, Lemey P, Vrancken B. The epidemic dynamics of hepatitis C virus subtypes 4a and 4d in Saudi Arabia. Sci Rep 2017; 7:44947. [PMID: 28322313 PMCID: PMC5359580 DOI: 10.1038/srep44947] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/15/2017] [Indexed: 02/06/2023] Open
Abstract
The relatedness between viral variants sampled at different locations through time can provide information pertinent to public health that cannot readily be obtained through standard surveillance methods. Here, we use virus genetic data to identify the transmission dynamics that drive the hepatitis C virus subtypes 4a (HCV4a) and 4d (HCV4d) epidemics in Saudi Arabia. We use a comprehensive dataset of newly generated and publicly available sequence data to infer the HCV4a and HCV4d evolutionary histories in a Bayesian statistical framework. We also introduce a novel analytical method for an objective assessment of the migration intensity between locations. We find that international host mobility patterns dominate over within country spread in shaping the Saudi Arabia HCV4a epidemic, while this may be different for the HCV4d epidemic. This indicates that the subtypes 4a and 4d burden can be most effectively reduced by combining the prioritized screening and treatment of Egyptian immigrants with domestic prevention campaigns. Our results highlight that the joint investigation of evolutionary and epidemiological processes can provide valuable public health information, even in the absence of extensive metadata information.
Collapse
Affiliation(s)
- Ahmed A Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital &Research Center, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| | - Guy Baele
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, B-3000 Leuven, Belgium
| | - Nisreen Khalaf
- Department of Infection and Immunity, King Faisal Specialist Hospital &Research Center, Riyadh, Saudi Arabia
| | - Marc A Suchard
- Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, USA.,Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, USA
| | - Mashael R Al-Anazi
- Department of Infection and Immunity, King Faisal Specialist Hospital &Research Center, Riyadh, Saudi Arabia
| | - Ayman A Abdo
- Section of Gastroenterology, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Faisal M Sanai
- Gastroenterology Unit, Department of Medicine, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Hamad I Al-Ashgar
- Gastroenterology Unit, Department of Medicine, King Faisal Specialist Hospital &Research Center, Riyadh, Saudi Arabia
| | - Mohammed Q Khan
- Gastroenterology Unit, Department of Medicine, King Faisal Specialist Hospital &Research Center, Riyadh, Saudi Arabia
| | - Mohammed N Al-Ahdal
- Department of Infection and Immunity, King Faisal Specialist Hospital &Research Center, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| | - Philippe Lemey
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, B-3000 Leuven, Belgium
| | - Bram Vrancken
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, B-3000 Leuven, Belgium
| |
Collapse
|
19
|
Baele G, Suchard MA, Rambaut A, Lemey P. Emerging Concepts of Data Integration in Pathogen Phylodynamics. Syst Biol 2017; 66:e47-e65. [PMID: 28173504 PMCID: PMC5837209 DOI: 10.1093/sysbio/syw054] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 06/02/2016] [Indexed: 12/24/2022] Open
Abstract
Phylodynamics has become an increasingly popular statistical framework to extract evolutionary and epidemiological information from pathogen genomes. By harnessing such information, epidemiologists aim to shed light on the spatio-temporal patterns of spread and to test hypotheses about the underlying interaction of evolutionary and ecological dynamics in pathogen populations. Although the field has witnessed a rich development of statistical inference tools with increasing levels of sophistication, these tools initially focused on sequences as their sole primary data source. Integrating various sources of information, however, promises to deliver more precise insights in infectious diseases and to increase opportunities for statistical hypothesis testing. Here, we review how the emerging concept of data integration is stimulating new advances in Bayesian evolutionary inference methodology which formalize a marriage of statistical thinking and evolutionary biology. These approaches include connecting sequence to trait evolution, such as for host, phenotypic and geographic sampling information, but also the incorporation of covariates of evolutionary and epidemic processes in the reconstruction procedures. We highlight how a full Bayesian approach to covariate modeling and testing can generate further insights into sequence evolution, trait evolution, and population dynamics in pathogen populations. Specific examples demonstrate how such approaches can be used to test the impact of host on rabies and HIV evolutionary rates, to identify the drivers of influenza dispersal as well as the determinants of rabies cross-species transmissions, and to quantify the evolutionary dynamics of influenza antigenicity. Finally, we briefly discuss how data integration is now also permeating through the inference of transmission dynamics, leading to novel insights into tree-generative processes and detailed reconstructions of transmission trees. [Bayesian inference; birth–death models; coalescent models; continuous trait evolution; covariates; data integration; discrete trait evolution; pathogen phylodynamics.
Collapse
Affiliation(s)
- Guy Baele
- Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Marc A. Suchard
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, CA 90095, USA
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3FL, UK
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Kings Buildings, Edinburgh EH9 3FL, UK
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Pérez-Parra S, Chueca N, Álvarez M, Pasquau J, Omar M, Collado A, Vinuesa D, Lozano AB, Yebra G, García F. Phylodynamic and Phylogeographic Profiles of Subtype B HIV-1 Epidemics in South Spain. PLoS One 2016; 11:e0168099. [PMID: 28002469 PMCID: PMC5176287 DOI: 10.1371/journal.pone.0168099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 11/23/2016] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Since 1982, HIV-1 epidemics have evolved to different scenarios in terms of transmission routes, subtype distribution and characteristics of transmission clusters. We investigated the evolutionary history of HIV-1 subtype B in south Spain. PATIENTS & METHODS We studied all newly diagnosed HIV-1 subtype B patients in East Andalusia during the 2005-2012 period. For the analysis, we used the reverse transcriptase and protease sequences from baseline resistance, and the Trugene® HIV Genotyping kit (Siemens, Barcelona, Spain). Subtyping was done with REGA v3.0. The maximum likelihood trees constructed with RAxML were used to study HIV-1 clustering. Phylogeographic and phylodynamic profiles were studied by Bayesian inference methods with BEAST v1.7.5 and SPREAD v1.0.6. RESULTS Of the 493 patients infected with HIV-1 subtype B, 234 grouped into 55 clusters, most of which were small (44 clusters ≤ 5 patients, 31 with 2 patients, 13 with 3). The rest (133/234) were grouped into 11 clusters with ≥ 5 patients, and most (82%, 109/133) were men who have sex with men (MSM) grouped into 8 clusters. The association with clusters was more frequent in Spanish (p = 0.02) men (p< 0.001), MSM (p<0.001) younger than 35 years (p = 0.001) and with a CD4+ T-cell count above 350 cells/ul (p<0.001). We estimated the date of HIV-1 subtype B regional epidemic diversification around 1970 (95% CI: 1965-1987), with an evolutionary rate of 2.4 (95%CI: 1.7-3.1) x 10-3 substitutions/site/year. Most clusters originated in the 1990s in MSMs. We observed exponential subtype B HIV-1 growth in 1980-1990 and 2005-2008. The most significant migration routes for subtype B went from inland cities to seaside locations. CONCLUSIONS We provide the first data on the phylodynamic and phylogeographic profiles of HIV-1 subtype B in south Spain. Our findings of transmission clustering among MSMs should alert healthcare managers to enhance preventive measures in this risk group in order to prevent future outbreaks.
Collapse
Affiliation(s)
- Santiago Pérez-Parra
- Servicio de Microbiología Clínica, Hospital Universitario San Cecilio, Complejo Hospitalario e Instituto de Investigación IBS, Granada, Spain
| | - Natalia Chueca
- Servicio de Microbiología Clínica, Hospital Universitario San Cecilio, Complejo Hospitalario e Instituto de Investigación IBS, Granada, Spain
| | - Marta Álvarez
- Servicio de Microbiología Clínica, Hospital Universitario San Cecilio, Complejo Hospitalario e Instituto de Investigación IBS, Granada, Spain
| | - Juan Pasquau
- Servicio de Infecciosas, Hospital Virgen de las Nieves, Granada, Spain
| | - Mohamed Omar
- Servicio de Infecciosas, Hospital Ciudad de Jaén, Jaén, Spain
| | - Antonio Collado
- Servicio de Medicina Interna, Hospital de Torrecárdenas, Almería, Spain
| | - David Vinuesa
- Servicio de Infecciosas, Hospital Universitario San Cecilio, Granada, Spain
| | - Ana B. Lozano
- Servicio de Infecciosas, Hospital de Poniente, Almería, Spain
| | - Gonzalo Yebra
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Federico García
- Servicio de Microbiología Clínica, Hospital Universitario San Cecilio, Complejo Hospitalario e Instituto de Investigación IBS, Granada, Spain
| |
Collapse
|
21
|
Delatorre E, Bello G. Time-scale of minor HIV-1 complex circulating recombinant forms from Central and West Africa. BMC Evol Biol 2016; 16:249. [PMID: 27852214 PMCID: PMC5112642 DOI: 10.1186/s12862-016-0824-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/08/2016] [Indexed: 11/29/2022] Open
Abstract
Background Several HIV-1 circulating recombinant forms with a complex mosaic structure (CRFs_cpx) circulate in central and western African regions. Here we reconstruct the evolutionary history of some of these complex CRFs (09_cpx, 11_cpx, 13_cpx and 45_cpx) and further investigate the dissemination dynamic of the CRF11_cpx clade by using a Bayesian coalescent-based method. Results The analysis of two HIV-1 datasets comprising 181 pol (36 CRF09_cpx, 116 CRF11_cpx, 20 CRF13_cpx and 9 CRF45_cpx) and 125 env (12 CRF09_cpx, 67 CRF11_cpx, 17 CRF13_cpx and 29 CRF45_cpx) sequences pointed to quite consistent onset dates for CRF09_cpx (~1966: 1958–1979), CRF11_cpx (~1957: 1950–1966) and CRF13_cpx (~1965: 1958–1973) clades; while some divergence was found for the estimated date of origin of CRF45_cpx clade [pol = 1970 (1964–1976); env = 1960 (1952–1969)]. Phylogeographic reconstructions indicate that the HIV-1 CRF11_cpx clade most probably emerged in Cameroon and from there it was first disseminated to the Central Africa Republic and Chad in the early 1970s and to other central and western African countries from the early 1980s onwards. Demographic reconstructions suggest that the CRF11_cpx epidemic grew between 1960 and 1990 with a median exponential growth rate of 0.27 year−1, and stabilized after. Conclusions These results reveal that HIV-1 CRFs_cpx clades have been circulating in Central Africa for a period comparable to other much more prevalent HIV-1 group M lineages. Cameroon was probably the epicenter of dissemination of the CRF11_cpx clade that seems to have experienced a long epidemic growth phase before stabilization. The epidemic growth of the CRF11_cpx clade was roughly comparable to other HIV-1 group M lineages circulating in Central Africa. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0824-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edson Delatorre
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz - FIOCRUZ, Av. Brasil 4365, 21040-360, Rio de Janeiro, RJ, Brazil.
| | - Gonzalo Bello
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz - FIOCRUZ, Av. Brasil 4365, 21040-360, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
22
|
Gill MS, Lemey P, Bennett SN, Biek R, Suchard MA. Understanding Past Population Dynamics: Bayesian Coalescent-Based Modeling with Covariates. Syst Biol 2016; 65:1041-1056. [PMID: 27368344 DOI: 10.1093/sysbio/syw050] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 12/12/2022] Open
Abstract
Effective population size characterizes the genetic variability in a population and is a parameter of paramount importance in population genetics and evolutionary biology. Kingman's coalescent process enables inference of past population dynamics directly from molecular sequence data, and researchers have developed a number of flexible coalescent-based models for Bayesian nonparametric estimation of the effective population size as a function of time. Major goals of demographic reconstruction include identifying driving factors of effective population size, and understanding the association between the effective population size and such factors. Building upon Bayesian nonparametric coalescent-based approaches, we introduce a flexible framework that incorporates time-varying covariates that exploit Gaussian Markov random fields to achieve temporal smoothing of effective population size trajectories. To approximate the posterior distribution, we adapt efficient Markov chain Monte Carlo algorithms designed for highly structured Gaussian models. Incorporating covariates into the demographic inference framework enables the modeling of associations between the effective population size and covariates while accounting for uncertainty in population histories. Furthermore, it can lead to more precise estimates of population dynamics. We apply our model to four examples. We reconstruct the demographic history of raccoon rabies in North America and find a significant association with the spatiotemporal spread of the outbreak. Next, we examine the effective population size trajectory of the DENV-4 virus in Puerto Rico along with viral isolate count data and find similar cyclic patterns. We compare the population history of the HIV-1 CRF02_AG clade in Cameroon with HIV incidence and prevalence data and find that the effective population size is more reflective of incidence rate. Finally, we explore the hypothesis that the population dynamics of musk ox during the Late Quaternary period were related to climate change. [Coalescent; effective population size; Gaussian Markov random fields; phylodynamics; phylogenetics; population genetics.
Collapse
Affiliation(s)
- Mandev S Gill
- Department of Statistics, Columbia University, New York, NY 10027, USA
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Minderbroederstaat 10, 3000 Leuven, Belgium
| | - Shannon N Bennett
- Department of Microbiology, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Roman Biek
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Marc A Suchard
- Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA.,Department of Human Genetics, David Geffen School of Medicine at UCLA, Universtiy of California, Los Angeles, CA 90095, USA.,Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Eybpoosh S, Bahrampour A, Karamouzian M, Azadmanesh K, Jahanbakhsh F, Mostafavi E, Zolala F, Haghdoost AA. Spatio-Temporal History of HIV-1 CRF35_AD in Afghanistan and Iran. PLoS One 2016; 11:e0156499. [PMID: 27280293 PMCID: PMC4900578 DOI: 10.1371/journal.pone.0156499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/16/2016] [Indexed: 01/28/2023] Open
Abstract
HIV-1 Circulating Recombinant Form 35_AD (CRF35_AD) has an important position in the epidemiological profile of Afghanistan and Iran. Despite the presence of this clade in Afghanistan and Iran for over a decade, our understanding of its origin and dissemination patterns is limited. In this study, we performed a Bayesian phylogeographic analysis to reconstruct the spatio-temporal dispersion pattern of this clade using eligible CRF35_AD gag and pol sequences available in the Los Alamos HIV database (432 sequences available from Iran, 16 sequences available from Afghanistan, and a single CRF35_AD-like pol sequence available from USA). Bayesian Markov Chain Monte Carlo algorithm was implemented in BEAST v1.8.1. Between-country dispersion rates were tested with Bayesian stochastic search variable selection method and were considered significant where Bayes factor values were greater than three. The findings suggested that CRF35_AD sequences were genetically similar to parental sequences from Kenya and Uganda, and to a set of subtype A1 sequences available from Afghan refugees living in Pakistan. Our results also showed that across all phylogenies, Afghan and Iranian CRF35_AD sequences formed a monophyletic cluster (posterior clade credibility> 0.7). The divergence date of this cluster was estimated to be between 1990 and 1992. Within this cluster, a bidirectional dispersion of the virus was observed across Afghanistan and Iran. We could not clearly identify if Afghanistan or Iran first established or received this epidemic, as the root location of this cluster could not be robustly estimated. Three CRF35_AD sequences from Afghan refugees living in Pakistan nested among Afghan and Iranian CRF35_AD branches. However, the CRF35_AD-like sequence available from USA diverged independently from Kenyan subtype A1 sequences, suggesting it not to be a true CRF35_AD lineage. Potential factors contributing to viral exchange between Afghanistan and Iran could be injection drug networks and mass migration of Afghan refugees and labours to Iran, which calls for extensive preventive efforts.
Collapse
Affiliation(s)
- Sana Eybpoosh
- Regional Knowledge Hub, and WHO Collaborating Centre for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Bahrampour
- Modeling in Health Research Centre, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Karamouzian
- Regional Knowledge Hub, and WHO Collaborating Centre for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
- School of Population and Public Health, Faculty of Medicine, University of British Colombia, Vancouver, BC, Canada
| | | | | | - Ehsan Mostafavi
- Epidemiology Department, Pasteur Institute of Iran, Tehran, Iran
- Emerging and Reemerging Infectious Diseases Research Centre, Pasteur Institute of Iran, Akanlu, Kabudar Ahang, Hamadan, Iran
| | - Farzaneh Zolala
- Modeling in Health Research Centre, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Akbar Haghdoost
- Regional Knowledge Hub, and WHO Collaborating Centre for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
- * E-mail:
| |
Collapse
|
24
|
Li QH, Wang FX, Yue C, Wang JY, Jin G, Zhang CL, Song B, Lin YL, Li HN, Feng SY, Liu SL. Molecular Genotyping of HIV-1 Strains from Newly Infected Men Who Have Sex with Men in Harbin, China. AIDS Res Hum Retroviruses 2016; 32:595-600. [PMID: 26892477 DOI: 10.1089/aid.2016.0028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
In this study, blood samples from newly HIV-1 infected men who have sex with men (MSM) were collected, and HIV-1 genotypes were identified based on gag p17-p24 and nef gene regions. We found that participants aged from 20 to 40 years old were the major infection group in Harbin. CRF01_AE was the predominant genotype, contributing to 84.7% of HIV-1 infections, followed by subtype B (4.7%), CRF07_BC (3.5%), and subtype B' (Thai B, 1.2%). Moreover, five unique recombinant forms (5.9%) were also identified, including genotypes 01B, 01C, and 01/02. The recombinant CRF01_AE/CRF02_AG was first reported in China. These results suggested that current HIV-1 genotype epidemic among MSM in Harbin is more complicated and that intersubtype recombinants have emerged. Therefore, timely regional epidemiological surveillance of HIV-1 genotype and development of prevention measures for new HIV-1 infections among MSM are quite important.
Collapse
Affiliation(s)
- Qing-Hai Li
- Genomics Research Center (One of the State-Province Key Laboratory of Biopharmaceutical Engineering), Harbin Medical University, Harbin, China
| | - Fu-Xiang Wang
- Department of Infectious Diseases, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chao Yue
- Genomics Research Center (One of the State-Province Key Laboratory of Biopharmaceutical Engineering), Harbin Medical University, Harbin, China
| | - Jia-Ye Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Gang Jin
- Genomics Research Center (One of the State-Province Key Laboratory of Biopharmaceutical Engineering), Harbin Medical University, Harbin, China
| | | | - Bo Song
- Department of Infectious Diseases, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuan-Long Lin
- Department of Infectious Diseases, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hai-Ning Li
- Genomics Research Center (One of the State-Province Key Laboratory of Biopharmaceutical Engineering), Harbin Medical University, Harbin, China
| | - Shi-Yan Feng
- Department of Infectious Diseases, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shu-Lin Liu
- Genomics Research Center (One of the State-Province Key Laboratory of Biopharmaceutical Engineering), Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Mir D, Jung M, Delatorre E, Vidal N, Peeters M, Bello G. Phylodynamics of the major HIV-1 CRF02_AG African lineages and its global dissemination. INFECTION GENETICS AND EVOLUTION 2016; 46:190-199. [PMID: 27180893 DOI: 10.1016/j.meegid.2016.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 12/16/2022]
Abstract
The HIV-1 CRF02_AG clade is the most prevalent HIV variant in West and West-Central Africa and its detection outside Africa is increasingly common. Little is known, however, about the number and phylodynamics of major CRF02_AG lineages circulating worldwide. To this end, a total of 3170 HIV-1 CRF02_AG-like pol sequences isolated around the world, over a period of 25years (1989 to 2013), were analyzed using Maximum Likelihood and Bayesian coalescent-based methods. Our results suggest that most of the current CRF02_AG diversity comes from the dissemination of a few founder strains out of Central Africa into West Africa and Cameroon between the late 1960s and the middle 1980s. The CRF02_AG strain introduced into West Africa established a large regional epidemic with low phylogeographic structure. This strain was also successfully disseminated out of the West African region and originated at least three large secondary outbreaks in Cameroon at around the late 1970s, in the former Soviet Union (FSU) countries at around the late 1990s, and in Bulgaria/Germany at around the early 2000s. The CRF02_AG African lineages introduced into Cameroon remained mostly restricted to this country and its neighbors. Demographic reconstructions indicate that major CRF02_AG clades circulating in Africa exhibited a decline in growth rate since the middle 1980s/1990s, whereas CRF02_AG clades in Europe and the FSU countries continue to grow exponentially until the middle to late 2000s. Substantial differences in the median estimated growth rate of the same CRF02_AG clade circulating in different regions (0.63-2.00year-1), and of different CRF02_AG clades circulating in the same country (0.41-0.75year-1) were observed. Thus, the cause of the epidemic outcome of the different HIV-1 CRF02_AG lineages is probably multifactorial.
Collapse
Affiliation(s)
- Daiana Mir
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Matthieu Jung
- Unité Mixte Internationale 233, Institut de Recherche pour le Développement, INSERM U1175, and Université Montpellier, Montpellier, France; Institut de Biologie Computationnelle, LIRMM, UMR 5506 CNRS - Université Montpellier, Montpellier, France
| | - Edson Delatorre
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Nicole Vidal
- Unité Mixte Internationale 233, Institut de Recherche pour le Développement, INSERM U1175, and Université Montpellier, Montpellier, France
| | - Martine Peeters
- Unité Mixte Internationale 233, Institut de Recherche pour le Développement, INSERM U1175, and Université Montpellier, Montpellier, France; Institut de Biologie Computationnelle, LIRMM, UMR 5506 CNRS - Université Montpellier, Montpellier, France
| | - Gonzalo Bello
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.
| |
Collapse
|
26
|
Yebra G, Kalish ML, Leigh Brown AJ. Reconstructing the HIV-1 CRF02_AG and CRF06_cpx epidemics in Burkina Faso and West Africa using early samples. INFECTION GENETICS AND EVOLUTION 2016; 46:209-218. [PMID: 27063411 DOI: 10.1016/j.meegid.2016.03.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND HIV-1 circulating recombinant forms (CRFs) represent viral recombinant lineages that play a significant role in the global epidemic. Two of them dominate the epidemic in Burkina Faso: CRF06_cpx (first described in this country) and CRF02_AG. We reconstructed the phylodynamics of both recombinant viruses in Burkina Faso and throughout West Africa. METHODS We analysed CRF06_cpx and CRF02_AG sequences (protease/gp41) from early samples collected in Burkina Faso in 1986 together with other GenBank sequences (1984-2013) in 4 datasets: African CRF06_cpx (210/60); down-sampled CRF06_cpx (146/45); Burkina Faso CRF02_AG (130/39) and West/Central African CRF02_AG (691/298). For each dataset, we analysed both protease and gp41 jointly using the BEAST multilocus analysis and conducted phylogeographic analysis to reconstruct the early migration routes between countries. RESULTS The time to the most recent common ancestor (tMRCA) of CRF06_cpx was 1979 (1973-1983) for protease and 1981 (1978-1983) for gp41. The gp41 analysis inferred the origin of CRF06_cpx (or at least its parental subtype G lineage) in the Democratic Republic of Congo but migrated to Burkina Faso soon after (1982). Both genes showed that CRF06_cpx radiated to the rest of West Africa predominantly after around 1990. These results were robust to the oversampling of Burkina Faso sequences as they were confirmed in the down-sampled dataset. The tMRCA of the Burkina Faso CRF02_AG lineage was 1979 (1977-1983) for protease and 1980 (1978-1981) for gp41. However, we reconstructed its presence in West Africa much earlier (mid-1960s), with an initial origin in Cameroon and/or Nigeria, and its phylogeographic analysis revealed much interconnection within the region with a lack of country-specific phylogenetic patterns, which prevents tracking its exact migration routes. CONCLUSIONS Burkina Faso presents a relatively young HIV epidemic, with the diversification of the current in-country CRF02_AG and CRF06_cpx lineages taking place around 1980. This country represents the main source of CRF06_cpx in West Africa. The CRF02_AG epidemic started at least a decade earlier and showed much interchange between West African countries (especially involving coastal countries) suggesting great population mobility and an extensive viral spread in the region.
Collapse
Affiliation(s)
- Gonzalo Yebra
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.
| | - Marcia L Kalish
- Institute for Global Health, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
27
|
Delatorre E, Velasco-De-Castro CA, Pilotto JH, Couto-Fernandez JC, Bello G, Morgado MG. Short Communication: Reassessing the Origin of the HIV-1 CRF02_AG Lineages Circulating in Brazil. AIDS Res Hum Retroviruses 2015; 31:1230-7. [PMID: 26353079 DOI: 10.1089/aid.2015.0183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
HIV-1 CRF02_AG is responsible for at least 8% of the HIV-1 infections worldwide and is distributed mainly in West Africa. CRF02_AG has recently been reported in countries where it is not native, including Brazil. In a previous study including 10 CRF02_AG Brazilian samples, we found at least four independent introductions and two autochthonous transmission networks of this clade in Brazil. As more CRF02_AG samples have been identified in Brazil, we performed a new phylogeographic analysis using a larger dataset than before. A total of 20 Brazilian (18 from Rio de Janeiro and two from São Paulo) and 1,485 African HIV-1 CRF02_AG pol sequences were analyzed using maximum likelihood (ML). The ML tree showed that the Brazilian sequences were distributed in five different lineages. The Bayesian phylogeographic analysis of the Brazilian and their most closely related African sequences (n = 212) placed the origin of all Brazilian lineages in West Africa, probably Ghana, Senegal, and Nigeria. Two monophyletic clades were identified, comprising only sequences from Rio de Janeiro, and their date of origin was estimated at around 1985 (95% highest posterior density: 1979-1992). These results support the existence of at least five independent introductions of the CRF02_AG lineage from West Africa into Brazil and further indicate that at least two of these lineages have been locally disseminated in the Rio de Janeiro state over the past 30 years.
Collapse
Affiliation(s)
- Edson Delatorre
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz–FIOCRUZ, Rio de Janeiro, Brazil
| | - Carlos A. Velasco-De-Castro
- Laboratório de Virologia, Departamento de Patologia Clínica, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–FIOCRUZ, Rio de Janeiro, Brazil
| | - José H. Pilotto
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz–FIOCRUZ, Rio de Janeiro, Brazil
- Hospital Geral de Nova Iguaçu, Rio de Janeiro, Brazil
| | | | - Gonzalo Bello
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz–FIOCRUZ, Rio de Janeiro, Brazil
| | - Mariza G. Morgado
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz–FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Leoz M, Feyertag F, Kfutwah A, Mauclère P, Lachenal G, Damond F, De Oliveira F, Lemée V, Simon F, Robertson DL, Plantier JC. The Two-Phase Emergence of Non Pandemic HIV-1 Group O in Cameroon. PLoS Pathog 2015; 11:e1005029. [PMID: 26241860 PMCID: PMC4524642 DOI: 10.1371/journal.ppat.1005029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 06/17/2015] [Indexed: 01/17/2023] Open
Abstract
Unlike the pandemic form of HIV-1 (group M), group O viruses are endemic in west central Africa, especially in Cameroon. However, little is known about group O's genetic evolution, and why this highly divergent lineage has not become pandemic. Using a unique and large set of group O sequences from samples collected from 1987 to 2012, we find that this lineage has evolved in successive slow and fast phases of diversification, with a most recent common ancestor estimated to have existed around 1930 (1914-1944). The most rapid periods of diversification occurred in the 1950s and in the 1980s, and could be linked to favourable epidemiological contexts in Cameroon. Group O genetic diversity reflects this two-phase evolution, with two distinct populations potentially having different viral properties. The currently predominant viral population emerged in the 1980s, from an ancient population which had first developed in the 1950s, and is characterized by higher growth and evolutionary rates, and the natural presence of the Y181C resistance mutation, thought to confer a phenotypic advantage. Our findings show that although this evolutionary pattern is specific to HIV-1 group O, it paralleled the early spread of HIV-1 group M in the Democratic Republic of Congo. Both viral lineages are likely to have benefited from similar epidemiological contexts. The relative role of virological and social factors in the distinct epidemic histories of HIV-1 group O and M needs to be reassessed.
Collapse
Affiliation(s)
- Marie Leoz
- Laboratoire de Virologie, CHU Charles Nicolle, Rouen, France
- EA 2656 GRAM, Université de Rouen, Rouen, France
| | - Felix Feyertag
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Anfumbom Kfutwah
- Service de Virologie, Centre Pasteur du Cameroun, Yaoundé, Cameroun
| | - Philippe Mauclère
- Service de Virologie, Centre Pasteur du Cameroun, Yaoundé, Cameroun
- Direction Interarmées du Service de Santé, Nouméa, Nouvelle Calédonie
| | - Guillaume Lachenal
- Laboratoire SPHERE, UMR 7219, Université Paris Diderot & Institut Universitaire de France, Paris, France
| | - Florence Damond
- Service de Virologie, APHP CHU Bichat Claude Bernard, Faculté de Médecine Paris Diderot, Paris, France
| | | | - Véronique Lemée
- EA 2656 GRAM, Université de Rouen, Rouen, France
- Laboratoire associé au Centre National de Référence du VIH, CHU Charles Nicolle, Rouen, France
| | - François Simon
- Service de Microbiologie, APHP CHU Saint Louis, Faculté de Médecine Paris Diderot, Paris, France
| | - David L Robertson
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Jean-Christophe Plantier
- Laboratoire de Virologie, CHU Charles Nicolle, Rouen, France
- EA 2656 GRAM, Université de Rouen, Rouen, France
- Laboratoire associé au Centre National de Référence du VIH, CHU Charles Nicolle, Rouen, France
- * E-mail:
| |
Collapse
|
29
|
Dennis AM, Herbeck JT, Brown AL, Kellam P, de Oliveira T, Pillay D, Fraser C, Cohen MS. Phylogenetic studies of transmission dynamics in generalized HIV epidemics: an essential tool where the burden is greatest? J Acquir Immune Defic Syndr 2014; 67:181-95. [PMID: 24977473 PMCID: PMC4304655 DOI: 10.1097/qai.0000000000000271] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Efficient and effective HIV prevention measures for generalized epidemics in sub-Saharan Africa have not yet been validated at the population level. Design and impact evaluation of such measures requires fine-scale understanding of local HIV transmission dynamics. The novel tools of HIV phylogenetics and molecular epidemiology may elucidate these transmission dynamics. Such methods have been incorporated into studies of concentrated HIV epidemics to identify proximate and determinant traits associated with ongoing transmission. However, applying similar phylogenetic analyses to generalized epidemics, including the design and evaluation of prevention trials, presents additional challenges. Here we review the scope of these methods and present examples of their use in concentrated epidemics in the context of prevention. Next, we describe the current uses for phylogenetics in generalized epidemics and discuss their promise for elucidating transmission patterns and informing prevention trials. Finally, we review logistic and technical challenges inherent to large-scale molecular epidemiological studies of generalized epidemics and suggest potential solutions.
Collapse
Affiliation(s)
- Ann M. Dennis
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Andrew Leigh Brown
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Paul Kellam
- Wellcome Trust Sanger Institute, Cambridge, UK
- Division of Infection and Immunity, University College London, London, UK
| | - Tulio de Oliveira
- Wellcome Trust-Africa Centre for Health and Population Studies, University of Kwazula-Natal, ZA
| | - Deenan Pillay
- Division of Infection and Immunity, University College London, London, UK
| | - Christophe Fraser
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Myron S. Cohen
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
30
|
Cabello M, Mendoza Y, Bello G. Spatiotemporal dynamics of dissemination of non-pandemic HIV-1 subtype B clades in the Caribbean region. PLoS One 2014; 9:e106045. [PMID: 25148215 PMCID: PMC4141835 DOI: 10.1371/journal.pone.0106045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/29/2014] [Indexed: 11/18/2022] Open
Abstract
The Human immunodeficiency virus type-1 (HIV-1) epidemic in the Caribbean region is mostly driven by subtype B; but information about the pattern of viral spread in this geographic region is scarce and different studies point to quite divergent models of viral dissemination. In this study, we reconstructed the spatiotemporal and population dynamics of the HIV-1 subtype B epidemic in the Caribbean. A total of 1,806 HIV-1 subtype B pol sequences collected from 17 different Caribbean islands between 1996 and 2011 were analyzed together with sequences from the United States (n = 525) and France (n = 340) included as control. Maximum Likelihood phylogenetic analyses revealed that HIV-1 subtype B infections in the Caribbean are driven by dissemination of the pandemic clade (BPANDEMIC) responsible for most subtype B infections across the world, and older non-pandemic lineages (BCAR) characteristics of the Caribbean region. The non-pandemic BCAR strains account for >40% of HIV-1 infections in most Caribbean islands; with exception of Cuba and Puerto Rico. Bayesian phylogeographic analyses indicate that BCAR strains probably arose in the island of Hispaniola (Haiti/Dominican Republic) around the middle 1960s and were later disseminated to Trinidad and Tobago and to Jamaica between the late 1960s and the early 1970s. In the following years, the BCAR strains were also disseminated from Hispaniola and Trinidad and Tobago to other Lesser Antilles islands at multiple times. The BCAR clades circulating in Hispaniola, Jamaica and Trinidad and Tobago appear to have experienced an initial phase of exponential growth, with mean estimated growth rates of 0.35-0.45 year(-1), followed by a more recent stabilization since the middle 1990s. These results demonstrate that non-pandemic subtype B lineages have been widely disseminated through the Caribbean since the late 1960s and account for an important fraction of current HIV-1 infections in the region.
Collapse
Affiliation(s)
- Marina Cabello
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Yaxelis Mendoza
- Department of Genomics and Proteomics, Gorgas Memorial Institute for Health Studies, Panama City, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur City, Andhra Pradesh, India
- Department of Genetics and Molecular Biology, University of Panama, Panama City, Panama
- INDICASAT-AIP, City of Knowledge, Clayton, Panama City, Panama
| | - Gonzalo Bello
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
31
|
Paolucci S, Piralla A, Fiorina L, Gulminetti R, Novati S, Lai A, Baldanti F. Phylogenetic analysis of HIV type 1 CRF02_AG in multiple genes in Italian and African patients living in Italy. AIDS Res Hum Retroviruses 2014; 30:812-8. [PMID: 24892582 DOI: 10.1089/aid.2014.0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) circulating recombinant form (CRF) 02_AG is a major recombinant variant in different geographic areas and is predominant in West and Central Africa. Of particular interest is the increased frequency of CRF02_AG in patients living in Italy. In the present study, phylogenetic analyses were performed on gag, pol (integrase), and env (gp120 and gp41) gene sequences from 34 CRF02_AG-infected patients living in Italy. Thirty out of 34 (89.4%) patients were from western Africa, 3/34 (8.8%) were born in Italy, and 1/34 (2.9%) was from Cuba. Phylogenetic analysis revealed the presence of a well-supported clade (aLRT score>0.75) of sequences only in gp120 and gp41 trees. Evolutionary rate estimation showed a faster evolution for the gp120 gene with respect to the gag, integrase, and gp41 genes. This finding was confirmed by the analysis of interpatient variability. Intrapatient variability was greater in gp120 gene sequences; 10/19 (52.6%; p<0.001) patients had a ratio of dN/dS>1 as compared with gag, integrase, and gp41 gene sequences with dN/dS ratios<1. In summary, phylogenetic analyses of CRF02_AG strains offer a perspective on intrapatient and interpatient variability among CRF02_AG-infected patients living in Italy. In addition, divergent phylogenetic relationships were observed among different genomic regions.
Collapse
Affiliation(s)
- Stefania Paolucci
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonio Piralla
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Loretta Fiorina
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Stefano Novati
- Institute of Infectious Diseases, University of Pavia, Pavia, Italy
| | - Alessia Lai
- Department of Biomedical and Clinical Sciences, L. Sacco Hospital, Section of Infectious Diseases and Immunopathology, University of Milan, Milan, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
32
|
Delatorre E, Mir D, Bello G. Spatiotemporal dynamics of the HIV-1 subtype G epidemic in West and Central Africa. PLoS One 2014; 9:e98908. [PMID: 24918930 PMCID: PMC4053352 DOI: 10.1371/journal.pone.0098908] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/03/2014] [Indexed: 01/25/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) subtype G is the second most prevalent HIV-1 clade in West Africa, accounting for nearly 30% of infections in the region. There is no information about the spatiotemporal dynamics of dissemination of this HIV-1 clade in Africa. To this end, we analyzed a total of 305 HIV-1 subtype G pol sequences isolated from 11 different countries from West and Central Africa over a period of 20 years (1992 to 2011). Evolutionary, phylogeographic and demographic parameters were jointly estimated from sequence data using a Bayesian coalescent-based method. Our analyses indicate that subtype G most probably emerged in Central Africa in 1968 (1956–1976). From Central Africa, the virus was disseminated to West and West Central Africa at multiple times from the middle 1970s onwards. Two subtype G strains probably introduced into Nigeria and Togo between the middle and the late 1970s were disseminated locally and to neighboring countries, leading to the origin of two major western African clades (GWA-I and GWA-II). Subtype G clades circulating in western and central African regions displayed an initial phase of exponential growth followed by a decline in growth rate since the early/middle 1990s; but the mean epidemic growth rate of GWA-I (0.75 year−1) and GWA-II (0.95 year−1) clades was about two times higher than that estimated for central African lineages (0.47 year−1). Notably, the overall evolutionary and demographic history of GWA-I and GWA-II clades was very similar to that estimated for the CRF06_cpx clade circulating in the same region. These results support the notion that the spatiotemporal dissemination dynamics of major HIV-1 clades circulating in western Africa have probably been shaped by the same ecological factors.
Collapse
Affiliation(s)
- Edson Delatorre
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Daiana Mir
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Gonzalo Bello
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
33
|
Janssen S, Huson MAM, Bélard S, Stolp S, Kapata N, Bates M, van Vugt M, Grobusch MP. TB and HIV in the Central African region: current knowledge and knowledge gaps. Infection 2014; 42:281-94. [PMID: 24311148 DOI: 10.1007/s15010-013-0568-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/27/2013] [Indexed: 12/12/2022]
Abstract
PURPOSE Reliable and comprehensive data on the HIV/AIDS and TB co-pandemics from Central Africa remain scarce. This systematic review provides a comprehensive overview on current and past research activities in the region and provides a basis for future research work to close knowledge gaps. METHODS The scientific literature was searched for publications meeting the following search terms: "tuberculosis" or "HIV" or "acquired immunodeficiency syndrome", combined with "Central Africa", or the names of individual countries within the region. Original studies, reviews and case series were included, and a selection of relevant articles was made. RESULTS Most research in the field of HIV and TB has been conducted in Cameroon, where the epidemics have been described fairly well. The Democratic Republic of Congo ranked second on the amount of publications, despite the civil wars over the past several decades. Very little has been published on HIV and TB in the other countries, possibly due to the poor infrastructure of health care systems, lack of scientific capacity building or shortage of laboratory equipment. CONCLUSIONS Despite the relatively high burden of HIV and TB in the Central African region, the amount of research activities on these topics is limited. A better understanding of the co-epidemics in this region is urgently needed. The occurrence of opportunistic infections, treatment complications and drug resistance in TB and HIV need to be better described; the failure of public health systems needs to be understood, and research infrastructure needs to be developed. Only then will it be possible to turn the tide against the HIV and TB epidemics in this region.
Collapse
Affiliation(s)
- S Janssen
- Department of Infectious Diseases, Division of Internal Medicine, Center of Tropical Medicine and Travel Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Tohma K, Saito M, Kamigaki T, Tuason LT, Demetria CS, Orbina JRC, Manalo DL, Miranda ME, Noguchi A, Inoue S, Suzuki A, Quiambao BP, Oshitani H. Phylogeographic analysis of rabies viruses in the Philippines. INFECTION GENETICS AND EVOLUTION 2014; 23:86-94. [PMID: 24512808 DOI: 10.1016/j.meegid.2014.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 01/14/2014] [Accepted: 01/22/2014] [Indexed: 01/12/2023]
Abstract
Rabies still remains a public health threat in the Philippines. A significant number of human rabies cases, about 200-300 cases annually, have been reported, and the country needs an effective strategy for rabies control. To develop an effective control strategy, it is important to understand the transmission patterns of the rabies viruses. We conducted phylogenetic analyses by considering the temporal and spatial evolution of rabies viruses to reveal the transmission dynamics in the Philippines. After evaluating the molecular clock and phylogeographic analysis, we estimated that the Philippine strains were introduced from China around the beginning of 20th century. Upon this introduction, the rabies viruses evolved within the Philippines to form three major clades, and there was no indication of introduction of other rabies viruses from any other country. However, within the Philippines, island-to-island migrations were observed. Since then, the rabies viruses have diffused and only evolved within each island group. The evolutionary pattern of these viruses was strongly shaped by geographical boundaries. The association index statistics demonstrated a strong spatial structure within the island group, indicating that the seas were a significant geographical barrier for viral dispersal. Strong spatial structure was also observed even at a regional level, and most of the viral migrations (79.7% of the total median number) in Luzon were observed between neighboring regions. Rabies viruses were genetically clustered at a regional level, and this strong spatial structure suggests a geographical clustering of transmission chains and the potential effectiveness of rabies control that targets geographical clustering. Dog vaccination campaigns have been conducted independently by local governments in the Philippines, but it could be more effective to implement a coordinated vaccination campaign among neighboring areas to eliminate geographically-clustered rabies transmission chains.
Collapse
Affiliation(s)
- Kentaro Tohma
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Mariko Saito
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Tohoku-RITM Collaborative Research Center on Emerging and Re-emerging Infectious Diseases, Muntinlupa City, Metro Manila, Philippines.
| | - Taro Kamigaki
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Tohoku-RITM Collaborative Research Center on Emerging and Re-emerging Infectious Diseases, Muntinlupa City, Metro Manila, Philippines.
| | - Laarni T Tuason
- Research Institute for Tropical Medicine (RITM), Muntinlupa City, Metro Manila, Philippines.
| | - Catalino S Demetria
- Research Institute for Tropical Medicine (RITM), Muntinlupa City, Metro Manila, Philippines.
| | - Jun Ryan C Orbina
- Research Institute for Tropical Medicine (RITM), Muntinlupa City, Metro Manila, Philippines.
| | - Daria L Manalo
- Research Institute for Tropical Medicine (RITM), Muntinlupa City, Metro Manila, Philippines.
| | - Mary E Miranda
- Research Institute for Tropical Medicine (RITM), Muntinlupa City, Metro Manila, Philippines.
| | - Akira Noguchi
- National Institute of Infectious Diseases (NIID), Tokyo, Japan.
| | - Satoshi Inoue
- National Institute of Infectious Diseases (NIID), Tokyo, Japan.
| | - Akira Suzuki
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Tohoku-RITM Collaborative Research Center on Emerging and Re-emerging Infectious Diseases, Muntinlupa City, Metro Manila, Philippines.
| | - Beatriz P Quiambao
- Research Institute for Tropical Medicine (RITM), Muntinlupa City, Metro Manila, Philippines.
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Tohoku-RITM Collaborative Research Center on Emerging and Re-emerging Infectious Diseases, Muntinlupa City, Metro Manila, Philippines.
| |
Collapse
|
35
|
Bezemer D, Faria NR, Hassan A, Hamers RL, Mutua G, Anzala O, Mandaliya K, Cane P, Berkley JA, Rinke de Wit TF, Wallis C, Graham SM, Price MA, Coutinho RA, Sanders EJ. HIV Type 1 transmission networks among men having sex with men and heterosexuals in Kenya. AIDS Res Hum Retroviruses 2014; 30:118-26. [PMID: 23947948 DOI: 10.1089/aid.2013.0171] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We performed a molecular phylogenetic study on HIV-1 polymerase sequences of men who have sex with men (MSM) and heterosexual patient samples in Kenya to characterize any observed HIV-1 transmission networks. HIV-1 polymerase sequences were obtained from samples in Nairobi and coastal Kenya from 84 MSM, 226 other men, and 364 women from 2005 to 2010. Using Bayesian phylogenetics, we tested whether sequences clustered by sexual orientation and geographic location. In addition, we used trait diffusion analyses to identify significant epidemiological links and to quantify the number of transmissions between risk groups. Finally, we compared 84 MSM sequences with all HIV-1 sequences available online at GenBank. Significant clustering of sequences from MSM at both coastal Kenya and Nairobi was found, with evidence of HIV-1 transmission between both locations. Although a transmission pair between a coastal MSM and woman was confirmed, no significant HIV-1 transmission was evident between MSM and the comparison population for the predominant subtype A (60%). However, a weak but significant link was evident when studying all subtypes together. GenBank comparison did not reveal other important transmission links. Our data suggest infrequent intermingling of MSM and heterosexual HIV-1 epidemics in Kenya.
Collapse
Affiliation(s)
| | - Nuno Rodrigues Faria
- Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Amin Hassan
- Kenya Medical Research Institute, Centre for Geographic Medicine Research–Coast, Kilifi, Kenya
| | - Raph L. Hamers
- PharmAccess Foundation, Department of Global Health, Academic Medical Center of the University of Amsterdam, Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Gaudensia Mutua
- Kenya AIDS Vaccine Initiative, University of Nairobi, Nairobi, Kenya
| | - Omu Anzala
- Kenya AIDS Vaccine Initiative, University of Nairobi, Nairobi, Kenya
| | | | | | - James A. Berkley
- Kenya Medical Research Institute, Centre for Geographic Medicine Research–Coast, Kilifi, Kenya
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Tobias F. Rinke de Wit
- PharmAccess Foundation, Department of Global Health, Academic Medical Center of the University of Amsterdam, Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | | | - Susan M. Graham
- Kenya Medical Research Institute, Centre for Geographic Medicine Research–Coast, Kilifi, Kenya
- University of Washington, Seattle, Washington
| | - Matthew A. Price
- International AIDS Vaccine Initiative, New York, New York
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, California
| | - Roel A. Coutinho
- Centre for Infectious Disease Control, RIVM, Utrecht, The Netherlands
- Julius Center for Health Science and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eduard J. Sanders
- Kenya Medical Research Institute, Centre for Geographic Medicine Research–Coast, Kilifi, Kenya
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
36
|
Yebra G, de Mulder M, Holguín Á. Description of HIV-1 group M molecular epidemiology and drug resistance prevalence in Equatorial Guinea from migrants in Spain. PLoS One 2013; 8:e64293. [PMID: 23717585 PMCID: PMC3661467 DOI: 10.1371/journal.pone.0064293] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/10/2013] [Indexed: 11/18/2022] Open
Abstract
Background The HIV epidemic is increasing in Equatorial Guinea (GQ), West Central Africa, but few studies have reported its HIV molecular epidemiology. We aimed to describe the HIV-1 group M (HIV-1M) variants and drug-resistance mutations in GQ using sequences sampled in this country and in Spain, a frequent destination of Equatoguinean migrants. Methods We collected 195 HIV-1M pol sequences from Equatoguinean subjects attending Spanish clinics during 1997-2011, and 83 additional sequences sampled in GQ in 1997 and 2008 from GenBank. All (n = 278) were re-classified using phylogeny and tested for drug-resistance mutations. To evaluate the origin of CRF02_AG in GQ, we analyzed 2,562 CRF02_AG sequences and applied Bayesian MCMC inference (BEAST program). Results Most Equatoguinean patients recruited in Spain were women (61.1%) or heterosexuals (87.7%). In the 278 sequences, the variants found were CRF02_AG (47.8%), A (13.7%), B (7.2%), C (5.8%), G (5.4%) and others (20.1%). We found 6 CRF02_AG clusters emerged from 1983.9 to 2002.5 with origin in GQ (5.5 sequences/cluster). Transmitted drug-resistance (TDR) rate among naïve patients attended in Spain (n = 144) was 4.7%: 3.4% for PI (all with M46IL), 1.8% for NRTI (all with M184V) and 0.9% for NNRTI (Y188L). Among pre-treated patients, 9/31 (29%) presented any resistance, mainly affecting NNRTI (27.8%). Conclusions We report a low (<5%) TDR rate among naïve, with PI as the most affected class. Pre-treated patients also showed a low drug-resistance prevalence (29%) maybe related to the insufficient treatment coverage in GQ. CRF02_AG was the prevalent HIV-1M variant and entered GQ through independent introductions at least since the early 1980s.
Collapse
Affiliation(s)
- Gonzalo Yebra
- HIV-1 Molecular Epidemiology Laboratory, Dept. of Microbiology, Hospital Ramón y Cajal-IRYCIS and CIBERESP, Madrid, Spain
| | - Miguel de Mulder
- HIV-1 Molecular Epidemiology Laboratory, Dept. of Microbiology, Hospital Ramón y Cajal-IRYCIS and CIBERESP, Madrid, Spain
| | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Dept. of Microbiology, Hospital Ramón y Cajal-IRYCIS and CIBERESP, Madrid, Spain
- * E-mail:
| |
Collapse
|
37
|
Abstract
OBJECTIVE To investigate the origin and spatiotemporal dynamics of dissemination of the HIV-1 CRF06_cpx clade in western Africa. DESIGN A total of 180 HIV-1 CRF06_cpx-like pol sequences isolated from 12 different countries from west and west-central Africa over a period of 16 years (1995-2010) were analyzed. METHODS Evolutionary, phylogeographic and demographic parameters were jointly estimated from sequence data using a Bayesian coalescent-based method and combined with molecular epidemiology and spatial accessibility data. RESULTS The CRF06_cpx most probably emerged in Burkina Faso in 1979 (1970-1985). From Burkina Faso, the virus was first disseminated to Mali and Nigeria during the 1980s and later to other countries from west and west-central Africa. Demographic reconstruction indicates that the CRF06_cpx epidemic grew exponentially during the 1980s, with a median growth rate of 0.82 year (0.60-1.09 year), and after stabilize. We found a negative correlation between CRF06_cpx prevalence and the geographical distance to Burkina Faso's capital. Regional accessibility information agrees with the overall geographical range of the CRF06_cpx, but not fully explains the highly heterogeneous distribution pattern of this CRF at regional level. CONCLUSION The CRF06_cpx epidemic in western Africa probably emerged at the late 1970s and grew during the 1980s at a rate comparable to the HIV-1 epidemics in the United States and Europe. Burkina Faso seems to be the most important epicenter of dissemination of the HIV-1 CRF06_cpx strain at regional level. The explanation for the current geographical distribution of CRF06_cpx is probably multifactorial.
Collapse
|
38
|
Pineda-Peña AC, Faria NR, Imbrechts S, Libin P, Abecasis AB, Deforche K, Gómez-López A, Camacho RJ, de Oliveira T, Vandamme AM. Automated subtyping of HIV-1 genetic sequences for clinical and surveillance purposes: performance evaluation of the new REGA version 3 and seven other tools. INFECTION GENETICS AND EVOLUTION 2013; 19:337-48. [PMID: 23660484 DOI: 10.1016/j.meegid.2013.04.032] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/10/2013] [Accepted: 04/28/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND To investigate differences in pathogenesis, diagnosis and resistance pathways between HIV-1 subtypes, an accurate subtyping tool for large datasets is needed. We aimed to evaluate the performance of automated subtyping tools to classify the different subtypes and circulating recombinant forms using pol, the most sequenced region in clinical practice. We also present the upgraded version 3 of the Rega HIV subtyping tool (REGAv3). METHODOLOGY HIV-1 pol sequences (PR+RT) for 4674 patients retrieved from the Portuguese HIV Drug Resistance Database, and 1872 pol sequences trimmed from full-length genomes retrieved from the Los Alamos database were classified with statistical-based tools such as COMET, jpHMM and STAR; similarity-based tools such as NCBI and Stanford; and phylogenetic-based tools such as REGA version 2 (REGAv2), REGAv3, and SCUEAL. The performance of these tools, for pol, and for PR and RT separately, was compared in terms of reproducibility, sensitivity and specificity with respect to the gold standard which was manual phylogenetic analysis of the pol region. RESULTS The sensitivity and specificity for subtypes B and C was more than 96% for seven tools, but was variable for other subtypes such as A, D, F and G. With regard to the most common circulating recombinant forms (CRFs), the sensitivity and specificity for CRF01_AE was ~99% with statistical-based tools, with phylogenetic-based tools and with Stanford, one of the similarity based tools. CRF02_AG was correctly identified for more than 96% by COMET, REGAv3, Stanford and STAR. All the tools reached a specificity of more than 97% for most of the subtypes and the two main CRFs (CRF01_AE and CRF02_AG). Other CRFs were identified only by COMET, REGAv2, REGAv3, and SCUEAL and with variable sensitivity. When analyzing sequences for PR and RT separately, the performance for PR was generally lower and variable between the tools. Similarity and statistical-based tools were 100% reproducible, but this was lower for phylogenetic-based tools such as REGA (~99%) and SCUEAL (~96%). CONCLUSIONS REGAv3 had an improved performance for subtype B and CRF02_AG compared to REGAv2 and is now able to also identify all epidemiologically relevant CRFs. In general the best performing tools, in alphabetical order, were COMET, jpHMM, REGAv3, and SCUEAL when analyzing pure subtypes in the pol region, and COMET and REGAv3 when analyzing most of the CRFs. Based on this study, we recommend to confirm subtyping with 2 well performing tools, and be cautious with the interpretation of short sequences.
Collapse
Affiliation(s)
- Andrea-Clemencia Pineda-Peña
- Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Belgium; Clinical and Molecular Infectious Diseases Group, Faculty of Sciences and Mathematics, Universidad del Rosario, Bogotá, Colombia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tongo M, Martin DP, Zembe L, Mpoudi-Ngole E, Williamson C, Burgers WA. Characterization of HIV-1 gag and nef in Cameroon: further evidence of extreme diversity at the origin of the HIV-1 group M epidemic. Virol J 2013; 10:29. [PMID: 23339631 PMCID: PMC3560183 DOI: 10.1186/1743-422x-10-29] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/14/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Cameroon, in west central Africa, has an extraordinary degree of HIV diversity, presenting a major challenge for the development of an effective HIV vaccine. Given the continuing need to closely monitor the emergence of new HIV variants in the country, we analyzed HIV-1 genetic diversity in 59 plasma samples from HIV-infected Cameroonian blood donors. Full length HIV gag and nef sequences were generated and phylogenetic analyses were performed. FINDINGS All gag and nef sequences clustered within HIV-1M. Circulating recombinant form CRF02_AG predominated, accounting for 50% of the studied infections, followed by clade G (11%), clade D and CRF37_cpx (4% each), and clades A, F, CRF01_AE and CRF36_cpx (2% each). In addition, 22% of the studied viruses apparently had nef and gag genes from viruses belonging to different clades, with the majority (8/10) having either a nef or gag gene derived from CRF02_AG. Interestingly, five gag sequences (10%) and three (5%) nef sequences were neither obviously recombinant nor easily classifiable into any of the known HIV-1M clades. CONCLUSION This suggests the widespread existence of highly divergent HIV lineages in Cameroon. While the genetic complexity of the Cameroonian HIV-1 epidemic has potentially serious implications for the design of biomedical interventions, detailed analyses of divergent Cameroonian HIV-1M lineages could be crucial for dissecting the earliest evolutionary steps in the emergence of HIV-1M.
Collapse
Affiliation(s)
- Marcel Tongo
- Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | | | | | | | | | | |
Collapse
|
40
|
de Silva TI, van Tienen C, Onyango C, Jabang A, Vincent T, Loeff MFSVD, Coutinho RA, Jaye A, Rowland-Jones S, Whittle H, Cotten M, Hué S. Population dynamics of HIV-2 in rural West Africa: comparison with HIV-1 and ongoing transmission at the heart of the epidemic. AIDS 2013; 27:125-34. [PMID: 23032414 DOI: 10.1097/qad.0b013e32835ab12c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To compare the population dynamics of HIV-2 and HIV-1, and to characterize ongoing HIV-2 transmission in rural Guinea-Bissau. DESIGN Phylogenetic and phylodynamic analyses using HIV-2 gag and env, and HIV-1 env sequences, combined with epidemiological data from a community cohort. METHODS Samples were obtained from surveys in 1989-1991, 1996-1997, 2003 and 2006-2007. Phylogenies were reconstructed using sequences from 103 HIV-2-infected and 56 HIV-1-infected patients using Bayesian Evolutionary Analysis by Sampling Trees (BEAST), a relaxed molecular clock and a Bayesian skyline coalescent model. RESULTS Bayesian skyline plots showed a strong increase in the 1990s of the HIV-1 effective population size (Ne) in the same period that the Ne of HIV-2 came into a plateau phase. The population dynamics of both viruses were remarkably similar following initial introduction. Incident infections were found more often in HIV-2 transmission clusters, with 55-58% of all individuals contributing to ongoing transmission. Some phylogenetically linked sexual partners had discordant viral loads (undetectable vs. detectable), suggesting host factors dictate the risk of disease progression in HIV-2. Multiple HIV-2 introductions into the cohort are evident, but ongoing transmission has occurred predominantly within the community. CONCLUSION Comparison of HIV-1 and HIV-2 phylodynamics in the same community suggests both viruses followed similar growth patterns following introduction, and is consistent with the hypothesis that HIV-1 may have played a role in the decline of HIV-2 via competitive exclusion. The source of ongoing HIV-2 transmission in the cohort appears to be new HIV-2 cases, rather than the pool of older infections established during the early growth of HIV-2.
Collapse
|
41
|
de Carvalho LMF, Santos LBL, Faria NR, de Castro Silveira W. Phylogeography of foot-and-mouth disease virus serotype O in Ecuador. INFECTION GENETICS AND EVOLUTION 2013; 13:76-88. [DOI: 10.1016/j.meegid.2012.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/03/2012] [Accepted: 08/20/2012] [Indexed: 01/09/2023]
|
42
|
Abstract
OBJECTIVE/DESIGN The global spread of HIV-1 main group (group M) has resulted in differential distributions of subtypes and recombinants, with the greatest diversity being found in sub-Saharan Africa. The explanations for the current subtype distribution patterns are likely multifactorial, but the promotion of human migrations and movements through transportation link availability and quality, summarized through 'accessibility', have been consistently cited as strong drivers. We sought to address the question of whether accessibility has been a significant factor in HIV-1 spread across mainland Africa through spatial analyses of molecular epidemiology, transport network and land cover data. METHODS The distribution of HIV-1 subtypes and recombinants in sub-Saharan Africa for the period 1998-2008 was mapped using molecular epidemiology data at a finer level of detail than ever before. Moreover, hypotheses on the role of distance, road network structure and accessibility in explaining the patterns seen were tested using spatial datasets representing African transport infrastructure, land cover and an accessibility model of landscape travel speed. RESULTS Coherent spatial patterns in HIV-1 subtype distributions across the continent exist, and a substantial proportion of the variance in the distribution and diversity pattern seen can be explained by variations in regional spatial accessibility. CONCLUSION The study confirms quantitatively the influence of transport infrastructure on HIV-1 spread within Africa, presents an approach for examining potential future impacts of road development projects and, more generally, highlights the importance of accessibility in the spread of communicable diseases.
Collapse
|
43
|
Gill MS, Lemey P, Faria NR, Rambaut A, Shapiro B, Suchard MA. Improving Bayesian population dynamics inference: a coalescent-based model for multiple loci. Mol Biol Evol 2012. [PMID: 23180580 DOI: 10.1093/molbev/mss265] [Citation(s) in RCA: 394] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Effective population size is fundamental in population genetics and characterizes genetic diversity. To infer past population dynamics from molecular sequence data, coalescent-based models have been developed for Bayesian nonparametric estimation of effective population size over time. Among the most successful is a Gaussian Markov random field (GMRF) model for a single gene locus. Here, we present a generalization of the GMRF model that allows for the analysis of multilocus sequence data. Using simulated data, we demonstrate the improved performance of our method to recover true population trajectories and the time to the most recent common ancestor (TMRCA). We analyze a multilocus alignment of HIV-1 CRF02_AG gene sequences sampled from Cameroon. Our results are consistent with HIV prevalence data and uncover some aspects of the population history that go undetected in Bayesian parametric estimation. Finally, we recover an older and more reconcilable TMRCA for a classic ancient DNA data set.
Collapse
Affiliation(s)
- Mandev S Gill
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, USA
| | | | | | | | | | | |
Collapse
|
44
|
Elmi Abar A, Jlizi A, Darar HY, Kacem MABH, Slim A. HIV-1 drug resistance genotyping from antiretroviral therapy (ART) naïve and first-line treatment failures in Djiboutian patients. Diagn Pathol 2012; 7:138. [PMID: 23044036 PMCID: PMC3488517 DOI: 10.1186/1746-1596-7-138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 09/18/2012] [Indexed: 11/23/2022] Open
Abstract
Abstract In this study we report the prevalence of antiretroviral drug resistant HIV-1 genotypes of virus isolated from Djiboutian patients who failed first-line antiretroviral therapy (ART) and from ART naïve patients. Patients and methods A total of 35 blood samples from 16 patients who showed first-line ART failure (>1000 viral genome copies/ml) and 19 ART-naïve patients were collected in Djibouti from October 2009 to December 2009. Both the protease (PR) and reverse transcriptase (RT) genes were amplified and sequenced using National Agency for AIDS Research (ANRS) protocols. The Stanford HIV database algorithm was used for interpretation of resistance data and genotyping. Results Among the 16 patients with first-line ART failure, nine (56.2%) showed reverse transcriptase inhibitor-resistant HIV-1 strains: two (12.5%) were resistant to nucleoside (NRTI), one (6.25%) to non-nucleoside (NNRTI) reverse transcriptase inhibitors, and six (37.5%) to both. Analysis of the DNA sequencing data indicated that the most common mutations conferring drug resistance were M184V (38%) for NRTI and K103N (25%) for NNRTI. Only NRTI primary mutations K101Q, K103N and the PI minor mutation L10V were found in ART naïve individuals. No protease inhibitor resistant strains were detected. In our study, we found no detectable resistance in ∼ 44% of all patients who experienced therapeutic failure which was explained by low compliance, co-infection with tuberculosis and malnutrition. Genotyping revealed that 65.7% of samples were infected with subtype C, 20% with CRF02_AG, 8.5% with B, 2.9% with CRF02_AG/C and 2.9% with K/C. Conclusion The results of this first study about drug resistance mutations in first-line ART failures show the importance of performing drug resistance mutation test which guides the choice of a second-line regimen. This will improve the management of HIV-infected Djiboutian patients. Virtual slides The virtual slide(s) for this article can be found here:
http://www.diagnosticpathology.diagnomx.eu/vs/2051206212753973
Collapse
Affiliation(s)
- Aden Elmi Abar
- Laboratoire de la Caisse Nationale de Sécurité Sociale, Djibouti, Republic of Djibouti.
| | | | | | | | | |
Collapse
|
45
|
Faria NR, Suchard MA, Rambaut A, Lemey P. Toward a quantitative understanding of viral phylogeography. Curr Opin Virol 2011; 1:423-9. [PMID: 22440846 DOI: 10.1016/j.coviro.2011.10.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 08/22/2011] [Accepted: 10/07/2011] [Indexed: 12/11/2022]
Abstract
Phylogeographic approaches help uncover the imprint that spatial epidemiological processes leave in the genomes of fast evolving viruses. Recent Bayesian inference methods that consider phylogenetic diffusion of discretely and continuously distributed traits offer a unique opportunity to explore genotypic and phenotypic evolution in greater detail. To provide a taste of the recent advances in viral diffusion approaches, we highlight key findings arising at the intrahost, local and global epidemiological scales. We also outline future areas of research and discuss how these may contribute to a quantitative understanding of the phylodynamics of RNA viruses.
Collapse
Affiliation(s)
- Nuno Rodrigues Faria
- Department of Microbiology and Immunology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|