1
|
Subekti DT, Fong S, Kurniawati DA, Jannah N, Yuniarto I, Suwanti LT, Sunarno S, Mufasirin M, Rohman A. Nucleic acid amplification-lateral flow immunoassay (NAA-LFIA) for the rapid differentiation of Trypanosoma evansi and Trypanosoma equiperdum. Vet J 2025; 310:106306. [PMID: 39892853 DOI: 10.1016/j.tvjl.2025.106306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
Trypanosoma evansi and Trypanosoma equiperdum are very difficult to distinguish morphologically. However, molecular identification algorithms sequentially using Mini and Maxi primers can distinguish the two species. Duplex polymerase chain reaction (dPCR) facilitates simultaneous amplification but is difficult to visualize with gel electrophoresis because it produces overlapping amplicons. Meanwhile, recombinase polymerase amplification (RPA) samples using two pairs of primers must be incubated separately due to differences in incubation temperature. This study aimed to evaluate the initial use of duplex lateral flow immunoassay (dLFIA) to distinguish T. evansi and T. equiperdum. The dPCR was performed by mixing two pairs of primers with the DNA template in one master mix tube, while for RPA, the Mini primer was incubated at 40 °C for 30 minutes and the Maxi at 42 °C for 60 minutes. The dPCR product was diluted and dropped onto the sample pad of dLFIA, while the RPA products were diluted and mixed before being dropped onto the sample pad. The results showed that dPCR had a limit of detection for nucleic acids of 102 trypanosomes/mL, while that of RPA was only 103 trypanosomes/mL. The highest agreement coefficient for trypanosome detection between dPCR-dLFIA and RPA-dLFIA was 0.875, while that for trypanosome identification and differentiation was 0.571. dLFIA revealed separate bands of the two amplicons from dPCR using Mini and Maxi primers, unlike agarose gel electrophoresis. Thus, dPCR-dLFIA successfully identified T. evansi and T. equiperdum. On the other hand, RPA-dLFIA needs further improvement to reduce species misidentification and increase its agreement with dPCR-dLFIA.
Collapse
Affiliation(s)
- Didik T Subekti
- Veterinary Science Program, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java 60115, Indonesia; Center for Biomedical Research, National Research and Innovation Agency, Cibinong Science Center, Bogor, West Jawa 16911, Indonesia.
| | - Sulinawati Fong
- Animal Disease Investigation Center of Lampung, Directorate of Animal Health, Indonesian Ministry of Agriculture, Bandar Lampung, Lampung 35142, Indonesia
| | - Dyah A Kurniawati
- Center for Veterinary Instrument Standard Testing (CVIST), Agency for Standardization of Agricultural Instruments, Indonesian Ministry of Agriculture, Bogor, West Jawa 16114, Indonesia
| | - Nur Jannah
- Animal Disease Investigation Center of Banjarbaru, Directorate of Animal Health, Indonesian Ministry of Agriculture, Banjarbaru, South Kalimantan 70712, Indonesia
| | - Ichwan Yuniarto
- Animal Disease Investigation Center of Banjarbaru, Directorate of Animal Health, Indonesian Ministry of Agriculture, Banjarbaru, South Kalimantan 70712, Indonesia
| | - Lucia T Suwanti
- Division of Parasitology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java 60115, Indonesia
| | - Sunarno Sunarno
- Center for Biomedical Research, National Research and Innovation Agency, Cibinong Science Center, Bogor, West Jawa 16911, Indonesia
| | - Mufasirin Mufasirin
- Division of Parasitology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java 60115, Indonesia
| | - Ali Rohman
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Surabaya, East Java 60115, Indonesia
| |
Collapse
|
2
|
Jhaiaun P, Rudeekiatthamrong A, Chimnoi W, Nguyen GT, Ngasaman R, Phasuk J, Kamyingkird K. Molecular Detection of Hemoparasites in Hematophagous Insects Collected from Livestock Farms in Northeastern Thailand. INSECTS 2025; 16:207. [PMID: 40003837 PMCID: PMC11856380 DOI: 10.3390/insects16020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Vector-borne parasitic diseases (VBPDs) are diseases that have a major impact on the health and productivity of livestock. VBPDs, including trypanosomosis, theileriosis, and anaplasmosis, are caused by blood parasites and Rickettsiales infections that can be transmitted by biting insects. The control and elimination of VBPDs is difficult and challenging. This study contributed to better understanding the impact of hematophagous insects on carrying pathogens to livestock by investigating the detection of Trypanosoma evansi, Theileria spp. and Anaplasma spp. in hematophagous insects collected from five livestock farms in Northeastern Thailand using polymerase chain reaction (PCR). The Stomoxys and Tabanus samples were collected using Nzi and Vavoua traps. Morphological and molecular identifications of hematophagous insects were performed. The Stomoxys samples were dissected into head and abdomen parts, while the Tabanus samples were dissected into head, salivary glands, and abdomen parts before DNA extraction individually. The host blood meal in the DNA of each part of the hematophagous insects was identified using PCR targeting the prepronociceptin (PNOC) gene. PCR detection of T. evansi, Theileria spp., and Anaplasma spp. were performed by targeting the ITS2, 18s rRNA, and msp4 genes, respectively. In total, 131 insect samples were collected, with Stomoxys calcitrans being the most common species at 40 (30.53%), followed by Tabanus spp. at 14 (10.69%) and the other Stomoxys spp. at 7 (5.34%), respectively. The hemoparasite detection results identified Theileria spp. in the abdomen (21.43%; 3/14) of three Tabanus samples. Neither Anaplasma spp. nor T. evansi were detected in this study. Additionally, host blood meal DNA was found in the abdomen of Stomoxys calcitrans (4.17%; 1/24) and Stomoxys spp. (20%; 1/5). For the Tabanus spp., host blood meal DNA was detected in the head (7.14%; 1/14), salivary glands (7.14%; 1/14), and abdomen (14.29%; 2/14). These results highlighted that Tabanus spp. might play an important role in Theileria transmission.
Collapse
Affiliation(s)
- Pairpailin Jhaiaun
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok 10900, Thailand; (P.J.); (W.C.); (G.T.N.)
| | - Apiraya Rudeekiatthamrong
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok 10900, Thailand; (P.J.); (W.C.); (G.T.N.)
| | - Wissanuwat Chimnoi
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok 10900, Thailand; (P.J.); (W.C.); (G.T.N.)
| | - Giang Thi Nguyen
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok 10900, Thailand; (P.J.); (W.C.); (G.T.N.)
| | - Ruttayaporn Ngasaman
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Jumnongjit Phasuk
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok 10900, Thailand; (P.J.); (W.C.); (G.T.N.)
| | - Ketsarin Kamyingkird
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok 10900, Thailand; (P.J.); (W.C.); (G.T.N.)
| |
Collapse
|
3
|
Kengradomkij C, Jhaiaun P, Chimnoi W, Piliean N, Inpankaew T, Kamyingkird AK. Prevalence of Trypanosoma evansi infection in Thai and imported beef cattle on the Thai-Myanmar border using parasitological and molecular methods. Vet World 2025; 18:500-507. [PMID: 40182818 PMCID: PMC11963574 DOI: 10.14202/vetworld.2025.500-507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/23/2025] [Indexed: 04/05/2025] Open
Abstract
Background and Aim Animal trypanosomiasis caused by Trypanosoma evansi is a major vector-borne disease affecting livestock productivity, especially in tropical regions. The disease has been documented in Thailand in cattle, buffaloes, and other livestock. This study aimed to estimate the prevalence of T. evansi infections in Thai and imported beef cattle along the Thai-Myanmar border using parasitological and molecular diagnostic methods. Materials and Methods A cross-sectional study was conducted on 347 cattle, comprising 120 Thai cattle and 227 imported cattle, during December 2022 and January 2023. Blood samples were collected and tested using hematocrit centrifugation technique (HCT), buffy coat smear microscopic examination (BMIC), and polymerase chain reaction (PCR) targeting the internal transcribed spacer-2 region. Statistical analysis was performed to assess the sensitivity and specificity of diagnostic methods and evaluate risk factors such as sex, age, and breed. Results Trypanosomes were detected in 2.59% of samples using HCT and 0.58% using BMIC, while T. evansi was confirmed in 2.02% of samples using PCR. Among Thai cattle, T. evansi prevalence was 2.5%, compared to 1.8% in imported cattle (p = 0.64). Male cattle showed significantly higher infection rates (3.2%) compared to females (0%, p = 0.04). Younger cattle (<2 years) exhibited slightly higher prevalence than older groups. Sensitivity and specificity of HCT and BMIC were 14.28% and 97.65%, and 14.28% and 99.70%, respectively, compared to PCR. Conclusion The study highlights the importance of routine laboratory diagnostics, particularly PCR, to confirm T. evansi infections in livestock, especially in high-risk areas like the Thai-Myanmar border. Findings emphasize the need for integrated diagnostic approaches to improve detection and control measures. Collaborative efforts between government agencies and veterinary experts are recommended to manage trypanosomiasis and reduce its impact on livestock productivity and livelihoods.
Collapse
Affiliation(s)
- Chanya Kengradomkij
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok, 10900, Thailand
| | - Pairpailin Jhaiaun
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok, 10900, Thailand
| | - Wissanuwat Chimnoi
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok, 10900, Thailand
| | - Narisorn Piliean
- Department of Livestock Development, Sa Kaeo Animal Quarantine Station, Sa Kaeo Province, Thailand
| | - Tawin Inpankaew
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok, 10900, Thailand
| | - and Ketsarin Kamyingkird
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
4
|
AMER MM, SOLIMAN AM, DO T, HEGAB AA, EL-KELESH EA, LI Y, JAROSZEWSKI J, MOHANTA UK, XUAN X. Parasitological and molecular investigation of Trypanosoma evansi in dromedaries from Greater Cairo, Egypt. J Vet Med Sci 2024; 86:1177-1184. [PMID: 39358244 PMCID: PMC11569872 DOI: 10.1292/jvms.24-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
In Egypt, camel trypanosomiasis is widespread. From October 2021 to March 2022, we collected 181 blood samples from apparently healthy one-humped camels (Camelus dromedarius) in Cairo and Giza Governates. The objective of this study was to assess infection rates of trypanosomes using blood smear examination and PCR-sequencing assays. Trypanosomes were detected in 8.3% (15/181) of camels by blood smear and in 23.8% (43/181) by PCR targeting the internal transcribed spacer (ITS). Based on blood smear and ITS-PCR results, and the absence of tsetse flies in the study area, we hypothesized that the Trypanosoma species was likely T. evansi. Validation using PCR based on the variant surface glycoprotein (VSG) of T. evansi Rode Trypanozoon antigen type (RoTat) 1.2 (RoTat 1.2 VSG gene) on ITS-PCR-positive samples (n=43) confirmed that 88.4% (38/43) were RoTat 1.2 T. evansi, while 11.6% (5/43) were non-RoTat 1.2 T. evansi. This marks the second report of non-RoTat 1.2 T. evansi in dromedary camels in Egypt. Considering the underestimated zoonotic risk of T. evansi in Egypt, there is a potential threat to humans, underscoring the need for a "One Health" approach to safeguard animal and human health.
Collapse
Affiliation(s)
- Moaz M AMER
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
- Department of Biotechnology, Animal Health Research Institute, Dokki, Egypt
| | - Ahmed M SOLIMAN
- Department of Biotechnology, Animal Health Research Institute, Dokki, Egypt
| | - Thom DO
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | | | | | - Yongchang LI
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Jerzy JAROSZEWSKI
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Uday Kumar MOHANTA
- Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Xuenan XUAN
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| |
Collapse
|
5
|
Subekti DT, Suwanti LT, Kurniawati DA, Mufasirin M, Sunarno S. Molecular identification of new Trypanosoma evansi type non-A/B isolates from buffaloes and cattle in Indonesia. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2024; 33:e001324. [PMID: 38958293 PMCID: PMC11253823 DOI: 10.1590/s1984-29612024033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/22/2024] [Indexed: 07/04/2024]
Abstract
Trypanosoma evansi is reportedly divided into two genotypes: types A and B. The type B is uncommon and reportedly limited to Africa: Kenya Sudan, and Ethiopia. In contrast, type A has been widely reported in Africa, South America, and Asia. However, Trypanosoma evansi type non-A/B has never been reported. Therefore, this study aims to determine the species and genotype of the Trypanozoon subgenus using a robust identification algorithm. Forty-three trypanosoma isolates from Indonesia were identified as Trypanosoma evansi using a molecular identification algorithm. Further identification showed that 39 isolates were type A and 4 isolates were possibly non-A/B types. The PML, AMN-SB1, and STENT3 isolates were likely non-A/B type Trypanosoma evansi isolated from buffalo, while the PDE isolates were isolated from cattle. Cladistic analysis revealed that Indonesian Trypanosoma evansi was divided into seven clusters based on the gRNA-kDNA minicircle gene. Clusters 6 and 7 are each divided into two sub-clusters. The areas with the highest genetic diversity are the provinces of Banten, Central Java (included Yogyakarta), and East Nusa Tenggara. The Central Java (including Yogyakarta) and East Nusa Tenggara provinces, each have four sub-clusters, while Banten has three.
Collapse
Affiliation(s)
- Didik Tulus Subekti
- Veterinary Science Doctoral Program, Faculty of Veterinary Medicine, Airlangga University, Kampus C Mulyorejo, Surabaya, East Java, Indonesia
- Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency, Cibinong Science Center, Bogor West Jawa Province, Indonesia
| | - Lucia Tri Suwanti
- Division of Parasitology, Faculty of Veterinary Medicine, Airlangga University, Kampus C Mulyorejo, Surabaya, East Java, Indonesia
| | - Dyah Ayu Kurniawati
- Center for Veterinary Instrument Standard Testing – CVIST, Agency for Standardization of Agricultural Instruments, Indonesian Ministry of Agriculture, Bogor, West Jawa Province, Indonesia
| | - Mufasirin Mufasirin
- Division of Parasitology, Faculty of Veterinary Medicine, Airlangga University, Kampus C Mulyorejo, Surabaya, East Java, Indonesia
| | - Sunarno Sunarno
- Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency, Cibinong Science Center, Bogor West Jawa Province, Indonesia
| |
Collapse
|
6
|
Verma R, Punia V, Das G, Kumar S, Nath S, Swamy M. Assessment of genetic diversity of Trypanosoma evansi in the domestic animal populations through ITS-1 gene sequence analysis. Parasitol Res 2023; 123:2. [PMID: 38047956 DOI: 10.1007/s00436-023-08024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023]
Abstract
Trypanosoma evansi infects domestic animals, causing a debilitating and occasionally fatal disease. The disease leads to significant economic losses to farmers and poses a substantial impediment to the growth of livestock production in developing nations, including India. Considering the challenges associated with managing this infection, there is an urgent need to enhance our understanding of the molecular and genetic diversity of T. evansi. Therefore, this study was planned to analyze the genetic diversity of T. evansi using available internal transcribed spacer-1 (ITS-1) gene sequences from India and compare them with sequences from around the globe. Blood samples used in this study were collected from naturally infected animals including dogs, cattle, and buffaloes in the Indian state of Madhya Pradesh. Using the ITS-1 gene, we amplified a 540 base pairs (bp) segment using polymerase chain reaction (PCR), sequenced it, and identified intra-specific variations. Phylogenetic analysis of 90 sequences, including 27 from India, revealed three distinct clusters with high bootstrap support values. A haplotype network analysis identified 34 haplotypes, with H7 being the most prevalent, indicating a complex evolutionary history involving multiple countries. The genetic analysis of the Indian population revealed distinct characteristics. Despite low nucleotide diversity, there was high haplotype diversity in comparison to other populations. Tajima's D, Fu and Li's D, and Fu and Li's F exhibited non-significant negative values, indicating potential stability. Additionally, the slightly positive values in Fu's Fs, Raggedness (r), and Ramos-Onsins and Rozas (R2) statistics suggested a lack of recent significant selective pressures or population expansions. Furthermore, the presence of genetic differentiation and gene flow among T. evansi populations highlighted ongoing evolutionary processes. These findings collectively depicted a complex genetic landscape, suggesting both stability and ongoing evolutionary dynamics within the Indian population of T. evansi. The findings of this study are important for understanding the evolutionary history and population dynamics of T. evansi, and they may help us develop effective control strategies.
Collapse
Affiliation(s)
- Rupesh Verma
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Nanaji Deshmukh Veterinary Science University, South Civil Lines, Jabalpur, MP, 482001, India.
| | - Vikram Punia
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Nanaji Deshmukh Veterinary Science University, South Civil Lines, Jabalpur, MP, 482001, India
| | - Giridhari Das
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Nanaji Deshmukh Veterinary Science University, South Civil Lines, Jabalpur, MP, 482001, India
| | - Suman Kumar
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Nanaji Deshmukh Veterinary Science University, South Civil Lines, Jabalpur, MP, 482001, India
| | - Subhradal Nath
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Nanaji Deshmukh Veterinary Science University, South Civil Lines, Jabalpur, MP, 482001, India
| | - Madhu Swamy
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Nanaji Deshmukh Veterinary Science University, South Civil Lines, Jabalpur, MP, 482001, India
| |
Collapse
|
7
|
Zhang P, Liu J, Yin XM, Zhou JY, Lukeš J, Lun ZR, Lai DH. Towards disentangling the classification of freshwater fish trypanosomes. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:551-563. [PMID: 38045545 PMCID: PMC10689643 DOI: 10.1007/s42995-023-00191-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 07/15/2023] [Indexed: 12/05/2023]
Abstract
Currently, new species of freshwater fish trypanosomes, which are economically important parasites, are being described based on subjectively selected features, i.e., their cell morphology and the host species. We have performed detailed phylogenetic and haplotype diversity analyses of all 18S rRNA genes available for freshwater fish trypanosomes, including the newly obtained sequences of Trypanosoma carassii and Trypanosoma danilewskyi. Based on a sequence similarity of 99.5%, we divide these trypanosomes into 15 operational taxonomic units, and propose three nominal scenarios for distinguishing T. carassii and other aquatic trypanosomes. We find evidences for the existence of a low number of freshwater fish trypanosomes, with T. carassii having the widest geographic and host ranges. Our analyses support the existence of an umbrella complex composed of T. carassii and two sister species. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00191-0.
Collapse
Affiliation(s)
- Peng Zhang
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Jie Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Xiao-Ming Yin
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Jun-Yu Zhou
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), 37005 Czech Republic
| | - Zhao-Rong Lun
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
- Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT UK
| | - De-Hua Lai
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| |
Collapse
|
8
|
Wen YZ, Tang HT, Cai XL, Wu N, Xu JZ, Su BX, Hide G, Lun ZR, Lai DH. PAG3 promotes the differentiation of bloodstream forms in Trypanosoma brucei and reveals the evolutionary relationship among the Trypanozoon trypanosomes. Front Cell Infect Microbiol 2022. [DOI: 10.3389/fcimb.2022.1021332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
IntroductionTrypanosoma brucei, T. evansi and T. equiperdum are members of the subgenus Trypanozoon and are highly similar morphologically and genetically. The main differences between these three species are their differentiation patterns in the hosts and the role of vectors in their life cycles. However, the mechanisms causing these differences are still controversial.MethodsPAG3 gene was accessed by PCR amplification in 26 strains of Trypanozoon and sequences were then analyzed by BLAST accompanied with T. evansitype B group. RNA interference and CRISPR/Cas9 were used for revealing possible role of PAG3 in slender to stumpy transformation.ResultsThe procyclin associated gene 3 (PAG3) can be found in the pleomorphicspecies, T.brucei, which undergoes differentiation of slender forms to the stumpy form. This differentiation process is crucial for transmission to the tsetse fly vector. However, a homologue of PAG3 was not detected in either T. evansi or in the majority of T. equiperdum strains which are allmonomorphic. Furthere xperiments in T. brucei demonstrated that, when PAG3 was down-regulated or absent, there was a significant reduction in the differentiation from slender to stumpy forms.ConclusionTherefore, we conclude that PAG3 is a key nuclear gene involved in the slender to stumpy differentiation pathway of T.brucei in the mammalian host. Loss of this gene might also offer a simple evolutionary mechanism explaining why T. evansi and some T. equiperdum have lost the ability to differentiate and have been driven to adapt to transmission cycles that by pass the tsetse vector or mechanical contact.
Collapse
|
9
|
Tagg AS, Sperlea T, Labrenz M, Harrison JP, Ojeda JJ, Sapp M. Year-Long Microbial Succession on Microplastics in Wastewater: Chaotic Dynamics Outweigh Preferential Growth. Microorganisms 2022; 10:microorganisms10091775. [PMID: 36144377 PMCID: PMC9506493 DOI: 10.3390/microorganisms10091775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Microplastics are a globally-ubiquitous aquatic pollutant and have been heavily studied over the last decade. Of particular interest are the interactions between microplastics and microorganisms, especially the pursuit to discover a plastic-specific biome, the so-called plastisphere. To follow this up, a year-long microcosm experimental setup was deployed to expose five different microplastic types (and silica beads control) to activated aerobic wastewater in controlled conditions, with microbial communities being measured four times over the course of the year using 16S rDNA (bacterial) and ITS (fungal) amplicon sequencing. The biofilm community shows no evidence of a specific plastisphere, even after a year of incubation. Indeed, the microbial communities (particularly bacterial) show a clear trend of increasing dissimilarity between plastic types as time increases. Despite little evidence for a plastic-specific community, there was a slight grouping observed for polyolefins (PE and PP) in 6–12-month biofilms. Additionally, an OTU assigned to the genus Devosia was identified on many plastics, increasing over time while showing no growth on silicate (natural particle) controls, suggesting this could be either a slow-growing plastic-specific taxon or a symbiont to such. Both substrate-associated findings were only possible to observe in samples incubated for 6–12 months, which highlights the importance of studying long-term microbial community dynamics on plastic surfaces.
Collapse
Affiliation(s)
- Alexander S. Tagg
- Leibniz-Institut für Ostseeforschung Warnemünde, Seestraße 15, 18119 Rostock, Germany
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
- Correspondence:
| | - Theodor Sperlea
- Leibniz-Institut für Ostseeforschung Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Matthias Labrenz
- Leibniz-Institut für Ostseeforschung Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Jesse P. Harrison
- CSC—IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | - Jesús J. Ojeda
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - Melanie Sapp
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| |
Collapse
|
10
|
A novel metabarcoded deep amplicon sequencing tool for disease surveillance and determining the species composition of Trypanosoma in cattle and other farm animals. Acta Trop 2022; 230:106416. [PMID: 35317999 DOI: 10.1016/j.actatropica.2022.106416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022]
Abstract
The World Health Organization (WHO) and the Food and Agriculture Organization (FAO) have developed strategies to control trypanosomiasis in humans and livestock in endemic areas. These require a better understanding of the distribution of different Trypanosoma species and improved predictions of where they might appear in the future, based on accurate diagnosis and robust surveillance systems. Here, we describe a metabarcoding deep amplicon sequencing method to identify and determine the Trypanosoma species in co-infecting communities. First, four morphological verified Trypanosoma species (T. brucei, T. congolense, T. vivax and T. theileri) were used to prepare test DNA pools derived from different numbers of parasites to evaluate the method's detection threshold for each of the four species and to assess the accuracy of their proportional quantification. Having demonstrated the accurate determination of species composition in Trypanosoma communities, the method was applied to determine its detection threshold using blood samples collected from cattle with confirmed Trypanosoma infections based on a PCR assay. Each sample showed a different Trypanosoma species composition based on the proportion of MiSeq reads. Finally, we applied the assay to field samples to develop new insight into the species composition of Trypanosoma communities in cattle, camels, buffalo, horses, sheep, and goat in endemically infected regions of Pakistan. We confirmed that Trypanosoma evansi is the major species in Pakistan and for the first time showed the presence of Trypanosoma theileri. The metabarcoding deep amplicon sequencing method and bioinformatics pathway have several potential applications in animal and human research, including evaluation of drug treatment responses, understanding of the emergence and spread of drug resistance, and description of species interactions during co-infections and determination of host and geographic distribution of trypanosomiasis in humans and livestock.
Collapse
|
11
|
Al-Kharusi A, Elshafie EI, Baqir S, Faraz A, Al-Ansari A, Burger P, Mahgoub O, Al-Kharousi K, Al-Duhli H, Al-Sinani M, Al-Hatali R, Roberts D. Detection of Trypanosoma Infection in Dromedary Camels by Using Different Diagnostic Techniques in Northern Oman. Animals (Basel) 2022; 12:1348. [PMID: 35681813 PMCID: PMC9179285 DOI: 10.3390/ani12111348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Camel trypanosomoses is considered a devastating disease with severe health consequences that can be caused by different hemoprotozoan parasites. Camel samples (388) from the five regions in Northern Oman were assessed using a thin blood film. In addition, 95 seropositive samples were analyzed using various primers of mechanically transmitted trypanosomes. Out of the 388 blood smears examined, 0.8% (CI 95%, 2/388) were found to be positive for Trypanosoma sp. using a microscope. The parasitologically positive cases were detected in samples from females. The overall molecular prevalences were as follows: TBR was 78/95, 77% (CI 73.1-89.2%); ITS was 30/95, 31.6% (CI 73.1-89.2%); and T. evansi type A (RoTat 1.2) was 8/95, 8.4% (CI 4.0-16.0%). There were two species of trypanosomes that were observed in the camels.
Collapse
Affiliation(s)
- Amal Al-Kharusi
- Ministry of Agriculture, Fisheries Wealth and Water Resources, Muscat 100, Oman; (H.A.-D.); (M.A.-S.); (R.A.-H.)
| | - Elshafie Ibrahim Elshafie
- Department of Animal and Veterinary Sciences, College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat 100, Oman; (E.I.E.); (O.M.); (K.A.-K.)
- Central Veterinary Research Laboratory, Al Amarat 8076, Sudan
| | - Senan Baqir
- Department of Biology, College of Sciences, Sultan Qaboos University, Muscat 100, Oman; (S.B.); (A.A.-A.); (D.R.)
| | - Asim Faraz
- Department of Livestock and Poultry Production, Bahauddin Zakariya University, Multan 60000, Pakistan;
| | - Aliya Al-Ansari
- Department of Biology, College of Sciences, Sultan Qaboos University, Muscat 100, Oman; (S.B.); (A.A.-A.); (D.R.)
| | - Pamela Burger
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, 1160 Vienna, Austria;
| | - Osman Mahgoub
- Department of Animal and Veterinary Sciences, College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat 100, Oman; (E.I.E.); (O.M.); (K.A.-K.)
| | - Kaadhia Al-Kharousi
- Department of Animal and Veterinary Sciences, College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat 100, Oman; (E.I.E.); (O.M.); (K.A.-K.)
| | - Halima Al-Duhli
- Ministry of Agriculture, Fisheries Wealth and Water Resources, Muscat 100, Oman; (H.A.-D.); (M.A.-S.); (R.A.-H.)
| | - Mohammed Al-Sinani
- Ministry of Agriculture, Fisheries Wealth and Water Resources, Muscat 100, Oman; (H.A.-D.); (M.A.-S.); (R.A.-H.)
| | - Raqiya Al-Hatali
- Ministry of Agriculture, Fisheries Wealth and Water Resources, Muscat 100, Oman; (H.A.-D.); (M.A.-S.); (R.A.-H.)
| | - Derek Roberts
- Department of Biology, College of Sciences, Sultan Qaboos University, Muscat 100, Oman; (S.B.); (A.A.-A.); (D.R.)
| |
Collapse
|
12
|
Kimenyi NN, Kimenyi KM, Amugune NO, Getahun MN. Genetic connectivity of trypanosomes between tsetse-infested and tsetse-free areas of Kenya. Parasitology 2022; 149:285-297. [PMID: 35264263 PMCID: PMC11010566 DOI: 10.1017/s0031182021001815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/24/2021] [Accepted: 10/17/2021] [Indexed: 11/05/2022]
Abstract
The prevalence rates of trypanosomes, including those that require cyclical transmission by tsetse flies, are widely distributed in Africa. Trypanosoma brucei and Trypanosoma congolense are actively maintained in regions where there are no tsetse flies although at low frequencies. Whether this could be due to an independent evolutionary origin or multiple introduction of trypanosomes due to continuous movement of livestock between tsetse-free and -infested areas is not known. Thus, the aim of the study was to carry out microsatellite genotyping to explore intra-specific genetic diversity between T. (Trypanozoon), T. congolense and Trypanosoma vivax from the two regions: tsetse infested and tsetse free. Microsatellite genotyping showed geographical origin-based structuring among T. (Trypanozoon) isolates. There was a clear separation between isolates from the two regions signalling the potential of microsatellite markers as diagnostic markers for T. brucei and Trypanosoma evansi isolates. Trypanosoma vivax isolates also clustered largely based on the sampling location with a significant differentiation between the two locations. However, our results revealed that T. congolense isolates from Northern Kenya are not genetically separated from those from Coastal Kenya. Therefore, these isolates are likely introduced in the region through animal movement. Our results demonstrate the occurrence of both genetic connectivity as well as independent evolutionary origin, depending on the trypanosome species between the two ecologies.
Collapse
Affiliation(s)
- Naomi N. Kimenyi
- International Center for Insect Physiology and Ecology (icipe), P. O. Box 30772, Nairobi00100, Kenya
- School of Biological Sciences, The University of Nairobi, Nairobi, Kenya
| | - Kelvin M. Kimenyi
- Center for Biotechnology and Bioinformatics (CEBIB), The University of Nairobi, Nairobi, Kenya
| | - Nelson O. Amugune
- School of Biological Sciences, The University of Nairobi, Nairobi, Kenya
| | - Merid N. Getahun
- International Center for Insect Physiology and Ecology (icipe), P. O. Box 30772, Nairobi00100, Kenya
| |
Collapse
|
13
|
Cai XL, Li SJ, Zhang P, Li Z, Hide G, Lai DH, Lun ZR. The Occurrence of Malignancy in Trypanosoma brucei brucei by Rapid Passage in Mice. Front Microbiol 2022; 12:806626. [PMID: 35087505 PMCID: PMC8789148 DOI: 10.3389/fmicb.2021.806626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/17/2021] [Indexed: 11/15/2022] Open
Abstract
Pleomorphic Trypanosoma brucei are best known for their tightly controlled cell growth and developmental program, which ensures their transmissibility and host fitness between the mammalian host and insect vector. However, after long-term adaptation in the laboratory or by natural evolution, monomorphic parasites can be derived. The origin of these monomorphic forms is currently unclear. Here, we produced a series of monomorphic trypanosome stocks by artificially syringe-passage in mice, creating snapshots of the transition from pleomorphism to monomorphism. We then compared these artificial monomorphic trypanosomes, alongside several naturally monomorphic T. evansi and T. equiperdum strains, with the pleomorphic T. brucei. In addition to failing to generate stumpy forms in animal bloodstream, we found that monomorphic trypanosomes from laboratory and nature exhibited distinct differentiation patterns, which are reflected by their distinct differentiation potential and transcriptional changes. Lab-adapted monomorphic trypanosomes could still be induced to differentiate, and showed only minor transcriptional differences to that of the pleomorphic slender forms but some accumulated differences were observed as the passages progress. All naturally monomorphic strains completely fail to differentiate, corresponding to their impaired differentiation regulation. We propose that the natural phenomenon of trypanosomal monomorphism is actually a malignant manifestation of protozoal cells. From a disease epidemiological and evolutionary perspective, our results provide evidence for a new way of thinking about the origin of these naturally monomorphic strains, the malignant evolution of trypanosomes may raise some concerns. Additionally, these monomorphic trypanosomes may reflect the quantitative and qualitative changes in the malignant evolution of T. brucei, suggesting that single-celled protozoa may also provide the most primitive model of cellular malignancy, which could be a primitive and inherent biological phenomenon of eukaryotic organisms from protozoans to mammals.
Collapse
Affiliation(s)
- Xiao-Li Cai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Su-Jin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peng Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Geoff Hide
- Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
| | - De-Hua Lai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhao-Rong Lun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Magri A, Galuppi R, Fioravanti M. Autochthonous Trypanosoma spp. in European Mammals: A Brief Journey amongst the Neglected Trypanosomes. Pathogens 2021; 10:334. [PMID: 33805748 PMCID: PMC8000865 DOI: 10.3390/pathogens10030334] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
The genus Trypanosoma includes flagellated protozoa belonging to the family Trypanosomatidae (Euglenozoa, Kinetoplastida) that can infect humans and several animal species. The most studied species are those causing severe human pathology, such as Chagas disease in South and Central America, and the human African trypanosomiasis (HAT), or infections highly affecting animal health, such as nagana in Africa and surra with a wider geographical distribution. The presence of these Trypanosoma species in Europe has been thus far linked only to travel/immigration history of the human patients or introduction of infected animals. On the contrary, little is known about the epidemiological status of trypanosomes endemically infecting mammals in Europe, such as Trypanosomatheileri in ruminants and Trypanosomalewisi in rodents and other sporadically reported species. This brief review provides an updated collection of scientific data on the presence of autochthonous Trypanosoma spp. in mammals on the European territory, in order to support epidemiological and diagnostic studies on Trypanosomatid parasites.
Collapse
Affiliation(s)
| | - Roberta Galuppi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (A.M.); (M.F.)
| | | |
Collapse
|
15
|
Stuen S. Haemoparasites-Challenging and Wasting Infections in Small Ruminants: A Review. Animals (Basel) 2020; 10:E2179. [PMID: 33266365 PMCID: PMC7700527 DOI: 10.3390/ani10112179] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
Haemoparasites include bacteria, mycoplasma, protozoa and flagellates inhabiting the bloodstream of living hosts. These infections occur worldwide and are transmitted by vectors, especially ticks and tsetse flies. Geographical distribution varies due to movements of animals and vectors between geographical areas, and even between countries and continents. These changes may be caused by climate change, directly and indirectly, and have a huge effect on the epidemiology of these microbes. Active and ongoing surveillance is necessary to obtain reliable maps concerning the distribution of these infections in order to do proper risk assessment and efficient prophylactic treatment. Genera Anaplasma, Ehrlichia, Mycoplasma, Babesia, Theileria and Trypanosoma include common haemoparasite species in small ruminants causing a variety of clinical manifestations from high fatality rates to more subclinical infections, depending on the species or strain involved. These infections may also cause ill-thift or long-lasting wasting conditions. Life-long infections are a common feature of these pathogens. The present review will focus on haemoparasites in small ruminants, especially related to challenging and wasting infections.
Collapse
Affiliation(s)
- Snorre Stuen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, N-4325 Sandnes, Norway
| |
Collapse
|
16
|
Nuryady MM, Widayanti R, Nurcahyo RW, Fadjrinatha B, Fahrurrozi Z S A. Characterization and phylogenetic analysis of multidrug-resistant protein - encoding genes in Trypanosoma evansi isolated from buffaloes in Ngawi district, Indonesia. Vet World 2019; 12:1573-1577. [PMID: 31849418 PMCID: PMC6868250 DOI: 10.14202/vetworld.2019.1573-1577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/03/2019] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Excessive use of trypanocidal drugs can lead to cases of drug resistance. Multiple cases of resistance have been widely reported for drugs such as isometamidium chloride and diminazene aceturate. These cases deserve serious attention, especially in Indonesia, where the first case was recorded and where the molecular basis of trypanocidal drug resistance has never been evaluated. This study aimed to analyze the multidrug resistance protein (MRP) gene in Trypanosoma evansi isolates, sampled from Indonesia, by focusing on the phylogenetic relationship between these isolates and other Trypanosoma spp. Materials and Methods: A total of 88 blood samples were drawn from buffaloes in the Ngawi district, Indonesia. Animals infected with T. evansi were detected through the microhematocrit technique and Giemsa blood smear methods. Positive blood samples were used to inoculate in male mice (Mus musculus BALB-C strain) as an animal model for culturing the T. evansi. The genomic DNA of the blood taken from the T. evansi- infected mice was used for polymerase chain reaction amplification, sequencing, and phylogenetic analysis. Results: Two genes were analyzed; the first gene detected for T. evansi corresponded to Trypanosomabrucei with a homology of 99% and the second gene to Trypanosoma brucei gambiense, with a homology of 100%. These two genes of the MRP from T. evansi showed clear similarity to the MRPE and MRPA genes of the T. brucei ssp. Conclusion: The MRP gene is conserved on the subspecies level of T. brucei. Only few point mutations were found between various sequences, which mean that the proteins have the same structure. This is important to treat the parasite with the appropriate drugs in the future.
Collapse
Affiliation(s)
- Mohammad Mirza Nuryady
- Department of Biology Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Malang, Malang, Indonesia
| | - Rini Widayanti
- Department of Biochemistry, Veterinary Medicine Faculty, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Raden Wisnu Nurcahyo
- Department of Parasitology, Veterinary Medicine Faculty, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Brilyantika Fadjrinatha
- Department of Parasitology, Veterinary Medicine Faculty, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ahmad Fahrurrozi Z S
- Department of Tropical Medicine, Medicine Faculty, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
17
|
FIRST REPORT OF TRYPANOSOMA EVANSI INFECTION (SURRA) IN A PUMA (FELIS CONCOLOR) OF LAHORE ZOO, PAKISTAN. J Zoo Wildl Med 2019; 48:918-921. [PMID: 28920778 DOI: 10.1638/2016-0210.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The blood protozoan Trypanosoma evansi, which is transmitted by biting flies, is frequently neglected due to subclinical infections. This report describes a case of trypanosomiasis due to T. evansi in a 9-yr-old male puma (Felis concolor) housed at the Lahore Zoo in Pakistan. Early in January 2015, this male puma presented with chronic lethargy, weight loss, incoordination, hyperthermia, anorexia, sunken eyes, and unthriftiness. Microscopic examination of Giemsa-stained blood smears showed numerous Trypanosoma parasites. The puma was treated with diminazene aceturate subcutaneously twice. A few days later, a blood smear examination showed absence of trypanosomes. Five months later the cat presented with acute epistaxis and died. Postmortem examination showed emaciation, pale liver and kidneys, and hemorrhages on the spleen. Examination of a blood smear taken at the time of death showed numerous Trypanosoma parasites. PCR testing confirmed the presence of Trypanosoma DNA. DNA sequencing of two amplicons confirmed the presence of Trypanosoma in the blood smears with a 98-99% identity with the previously identified GenBank sequences. A phylogenetic tree was then constructed. Further studies are needed to improve our knowledge about the epidemiology and pathogenesis of T. evansi infection in wild animal species.
Collapse
|
18
|
Jaimes-Dueñez J, Zapata-Zapata C, Triana-Chávez O, Mejía-Jaramillo AM. Evaluation of an alternative indirect-ELISA test using in vitro-propagated Trypanosoma brucei brucei whole cell lysate as antigen for the detection of anti-Trypanosoma evansi IgG in Colombian livestock. Prev Vet Med 2019; 169:104712. [PMID: 31311647 DOI: 10.1016/j.prevetmed.2019.104712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 11/25/2022]
Abstract
Surra is a zoonotic disease caused by Trypanosoma evansi, affecting the health and production of the livestock significantly. There are several methods to diagnose this disease, which have different principles, sensitivity, and specificity. Among them, the serological techniques using T. evansi as antigen are powerful tools for its epidemiological surveillance. However, they are poorly used due to inefficient in vitro propagation of T. evansi, which requires the use of laboratory animals for antigen production. In the present study, whole cell lysate of T. brucei brucei propagated in vitro was used as an antigen for the detection of anti-T. evansi immunoglobulin G in cattle through an indirect-ELISA. Based on a total of 45 samples from non-infected and 45 samples from T. evansi infected cattle, the sensitivity and specificity were estimated as 100% and 97.7%, respectively. After the validation, serological and molecular surveys were carried out in 710 cattle samples from two endemic Colombian regions (Antioquia and Arauca departments) for T. evansi where molecular prevalences of ˜7.0% were detected through the year and sporadic outbreaks of T. vivax infections have been associated to low prevalence of this species (<1%). A total of 424 (59.7%) samples were positive by indirect-ELISA T. b. brucei, while PCR test for T. evansi and T. vivax, showed 49 (6.9%) and no positive samples, respectively. Interestingly, categories of animals aged>1 year, Bos taurus breed, and those raised under intensive farming system exhibited a higher seroprevalence to T. evansi (P < 0.05). The results displayed a new alternative for antibody detection anti-T. evansi in livestock, using parasites propagated in vitro as antigen, which presents the advantage of higher standardization potential, and avoid the use of live animal for antigen production. A larger availability of this ELISA will generate useful information for a better understanding of the epidemiologic aspects, as well as for the management and control of these diseases in Colombia. However, the ability of the test to detect and/or cross react with T. vivax infections remains to be investigated.
Collapse
Affiliation(s)
- Jeiczon Jaimes-Dueñez
- Grupo BCEI, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Grupo GRICA, Universidad Cooperativa de Colombia UCC, Calle 30 No. 33-51, Bucaramanga, Colombia
| | | | - Omar Triana-Chávez
- Grupo BCEI, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | | |
Collapse
|
19
|
Büscher P, Gonzatti MI, Hébert L, Inoue N, Pascucci I, Schnaufer A, Suganuma K, Touratier L, Van Reet N. Equine trypanosomosis: enigmas and diagnostic challenges. Parasit Vectors 2019; 12:234. [PMID: 31092285 PMCID: PMC6518633 DOI: 10.1186/s13071-019-3484-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/06/2019] [Indexed: 11/10/2022] Open
Abstract
Equine trypanosomosis is a complex of infectious diseases called dourine, nagana and surra. It is caused by several species of the genus Trypanosoma that are transmitted cyclically by tsetse flies, mechanically by other haematophagous flies, or sexually. Trypanosoma congolense (subgenus Nannomonas) and T. vivax (subgenus Dutonella) are genetically and morphologically distinct from T. brucei, T. equiperdum and T. evansi (subgenus Trypanozoon). It remains controversial whether the three latter taxa should be considered distinct species. Recent outbreaks of surra and dourine in Europe illustrate the risk and consequences of importation of equine trypanosomosis with infected animals into non-endemic countries. Knowledge on the epidemiological situation is fragmentary since many endemic countries do not report the diseases to the World Organisation for Animal Health, OIE. Other major obstacles to the control of equine trypanosomosis are the lack of vaccines, the inability of drugs to cure the neurological stage of the disease, the inconsistent case definition and the limitations of current diagnostics. Especially in view of the ever-increasing movement of horses around the globe, there is not only the obvious need for reliable curative and prophylactic drugs but also for accurate diagnostic tests and algorithms. Unfortunately, clinical signs are not pathognomonic, parasitological tests are not sufficiently sensitive, serological tests miss sensitivity or specificity, and molecular tests cannot distinguish the taxa within the Trypanozoon subgenus. To address the limitations of the current diagnostics for equine trypanosomosis, we recommend studies into improved molecular and serological tests with the highest possible sensitivity and specificity. We realise that this is an ambitious goal, but it is dictated by needs at the point of care. However, depending on available treatment options, it may not always be necessary to identify which trypanosome taxon is responsible for a given infection.
Collapse
Affiliation(s)
- Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium.
| | - Mary Isabel Gonzatti
- Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, 1080, Venezuela
| | - Laurent Hébert
- PhEED Unit, Animal Health Laboratory in Normandy, ANSES, 14430, Goustranville, France
| | - Noboru Inoue
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Ilaria Pascucci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G.Caporale", Campo Boario, 64100, Teramo, Italy
| | - Achim Schnaufer
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Keisuke Suganuma
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Louis Touratier
- Consultant member of the OIE Non-Tsetse Transmitted Animal Trypanosomoses Network, Bordeaux, France
| | - Nick Van Reet
- Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium
| |
Collapse
|
20
|
Filgueiras A, Barros JHDS, Xavier SC, de Souza SF, Medeiros LDS, Ribeiro VMF, Jansen AM, Roque ALR. Natural Trypanosoma (Trypanozoon) evansi (Steel, 1885) infection among mammals from Brazilian Amazon. Acta Trop 2019; 190:92-98. [PMID: 30439346 DOI: 10.1016/j.actatropica.2018.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/17/2018] [Accepted: 11/11/2018] [Indexed: 11/27/2022]
Abstract
Trypanosoma evansi (Kinetoplastea Trypanosomatidae) is the Trypanosoma species that infects the greatest variety of mammals worldwide. In 2014, a dog from Rio Branco/AC, in the Brazilian Amazon region, presented flagellates without evident kinetoplasts in blood and symptoms of T. evansi infection. Our aim was to investigate the occurrence of T. evansi in dogs, bats and capybaras from Rio Branco. Blood was collected from 78 dogs from residential areas near the Zoobotanical Park (PZ). The serological diagnosis by IFAT detected the presence of anti-T. evansi antibodies in 21.9% of the evaluated dogs. T. evansi DNA was detected in one dog using a higly specific target of a repeated monomer of the satellite DNA of Trypanosoma (Trypanozoon) sp. Molecular diagnosis was also performed on 182 bat spleen samples collected inside PZ, and one Carollia perspicillata was positive. The DNA sequences obtained from these two samples showed similarities with T. brucei satellite DNA. Anti-T. evansi IFAT was carried out in 46 capybaras from rural and urban areas and the infection detected in 17.4% of them. We confirmed for the first time the presence of T. evansi in Acre State and describe three putative host species involved in the parasite transmission in that Amazon region. Moreover, this is the first study that confirms the infection by T. evansi through DNA sequence analysis in the Brazilian Amazon Region.
Collapse
|
21
|
T P, P M A, A M, P H, M G, N P. Comparison of infectivity and virulence of clones of Trypanosoma evansi and Ttrypanosoma equiperdum Venezuelan strains in mice. Vet Parasitol 2018; 253:60-64. [PMID: 29605005 DOI: 10.1016/j.vetpar.2018.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 10/18/2022]
Abstract
Livestock trypanosomoses, caused by three species of the Trypanozoon subgenus, Trypanosoma brucei brucei, T. evansi and T. equiperdum are widely distributed and limit animal production throughout the world. The infectivity and virulence of clones derived from Trypanosoma evansi and Trypanosoma equiperdum Venezuelan strains were compared in an in vivo mouse model. Primary infectivity and virulence determinants such as survival rates, parasitemia levels, PCV, and changes in body weight and survival rates were monitored for up to 32 days. The T. equiperdum strain was the most virulent, with 100% mortality in mice, with the highest parasitemia levels (7.0 × 107 Tryps/ml) and loss of physical condition. The T. evansi strains induced 100% and 20% fatality in mice. Our results show that the homogeneous parasite populations maintain the virulent phenotype of the original T. equiperdum and T. evansi stocks. This is the first comparative study of infectivity and virulence determinants among clonal populations of T. equiperdum and T. evansi.
Collapse
Affiliation(s)
- Perrone T
- Laboratorio de Fisiología de Parásitos, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Altos de Pipe, 1020A, Venezuela; Grupo de Bioquímica e Inmunología de Hemoparásitos, Departamento de Biología Celular, Universidad Simón Bolívar, Caracas 1080, Venezuela
| | - Aso P M
- Grupo de Bioquímica e Inmunología de Hemoparásitos, Departamento de Biología Celular, Universidad Simón Bolívar, Caracas 1080, Venezuela
| | - Mijares A
- Laboratorio de Fisiología de Parásitos, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Altos de Pipe, 1020A, Venezuela
| | - Holzmuller P
- CIRAD, UMR CIRAD-INRA CMAEE, UMR CIRAD-IRD INTERTRYP, Montpellier, France
| | - Gonzatti M
- Grupo de Bioquímica e Inmunología de Hemoparásitos, Departamento de Biología Celular, Universidad Simón Bolívar, Caracas 1080, Venezuela
| | - Parra N
- Laboratorio de Fisiología de Parásitos, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Altos de Pipe, 1020A, Venezuela.
| |
Collapse
|
22
|
Molinari J, Moreno SA. Trypanosoma brucei Plimmer & Bradford, 1899 is a synonym of T. evansi (Steel, 1885) according to current knowledge and by application of nomenclature rules. Syst Parasitol 2018; 95:249-256. [PMID: 29411297 DOI: 10.1007/s11230-018-9779-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/19/2018] [Indexed: 12/11/2022]
Abstract
Proper application of the principles of biological nomenclature is fundamental for scientific and technical communication about organisms. As other scientific disciplines, taxonomy inherently is open to change, thus species names cannot be final and immutable. Nevertheless, altering the names of organisms of high economical, medical, or veterinary importance can become a complex challenge between the scientific need to have correct classifications, and the practical ideal of having fixed classifications. Trypanosoma evansi (Steel, 1885), T. brucei Plimmer & Bradford, 1899 and T. equiperdum Doflein, 1901 are important parasites of mammals. According to current knowledge, the three names are synonyms of a single trypanosome species, the valid name of which should be T. evansi by the mandatory application of the Principle of Priority of zoological nomenclature. Subspecies known as T. brucei brucei Plimmer & Bradford, 1899, T. b. gambiense Dutton, 1902 and T. b. rhodesiense Stephens & Fantham, 1910 should be referred to respectively as T. evansi evansi (Steel, 1885), T. e. gambiense and T. e. rhodesiense. The polyphyletic groupings so far known as T. evansi and T. equiperdum should be referred respectively to as surra- and dourine-causing strains of T. e. evansi. Likewise, trypanosomes so far known as T. b. brucei should be referred to as nagana-causing strains of T. e. evansi. Though it modifies the scientific names of flagship human and animal parasites, the amended nomenclature proposed herein should be adopted because it reflects phylogenetic and biological advancements, fixes errors, and is simpler than the existing classificatory system.
Collapse
Affiliation(s)
- Jesús Molinari
- Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 05101, Venezuela.
| | - S Andrea Moreno
- Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 05101, Venezuela
| |
Collapse
|
23
|
Moreno SA, Cantos GV. The kinetic properties of hexokinases in African trypanosomes of the subgenus Trypanozoon match the blood glucose levels of mammal hosts. Comp Biochem Physiol B Biochem Mol Biol 2017; 217:51-59. [PMID: 29277605 DOI: 10.1016/j.cbpb.2017.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/08/2017] [Accepted: 12/15/2017] [Indexed: 11/29/2022]
Abstract
We hypothesize that the hexokinases of trypanosomes of the subgenus Trypanozoon match the blood glucose levels of hosts. We studied the kinetic properties of purified hexokinase in T. equiperdum (specific activity=302U/mg), and compare with other members of Trypanozoon. With ATP (Km=104.7μM) as phosphate donor, hexokinase catalyzes the phosphorylation of glucose (Km=24.9μM) and mannose (Km=8.8μM). With respect to glucose, mannose and inorganic pyrophosphate respectively are a competitive, and a mixed inhibitor of hexokinase. With respect to ATP, both are mixed inhibitors of this enzyme. In T. equiperdum, hexokinase shows a high affinity for glucose. Pleomorphism-transformation of trypanosomes from a multiplicative to a non-multiplicative form-results in a self-limited growth stabilizing glucose consumption. It delays the death of the host, thus prolonging its exposure to tsetse flies. When glucose levels descend, top-down regulation allows trypanosomes to survive through the expression of alternative metabolic pathways. It accelerates the death of the host, but helps trypanosome density to increase enough to ensure transmission without tsetse flies. Pleomorphism, and a hexokinase with a high affinity for glucose, are two main adaptive traits of T. b. brucei. The latter trait, and a strong top-down regulation, are two main adaptive traits of T. equiperdum. For trypanosomes living in glucose-rich blood, a hexokinase with a high affinity for glucose would unnecessarily harm hosts. This may explain why the human parasites, T. b. gambiense and T. b. rhodesiense, possess hexokinases with a low affinity for glucose.
Collapse
Affiliation(s)
- S Andrea Moreno
- Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 05101, Venezuela.
| | | |
Collapse
|
24
|
Jaimes-Dueñez J, Triana-Chávez O, Mejía-Jaramillo AM. Spatial-temporal and phylogeographic characterization of Trypanosoma spp. in cattle (Bos taurus) and buffaloes (Bubalus bubalis) reveals transmission dynamics of these parasites in Colombia. Vet Parasitol 2017; 249:30-42. [PMID: 29279084 DOI: 10.1016/j.vetpar.2017.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 11/28/2022]
Abstract
Animal Trypanosomiasis (AT) is one of the most important problems in the Colombian livestock industry reducing its production around 30%. Caribbean and Orinoquia regions play a significant role in the development of this industry, having about 6.9 million cattle and 113,000 buffaloes. Considering the paucity in studies to understand the epidemiological features and control of AT in Colombia, the present study reports the seasonal transmission patterns and phylogeographic traits of the causal agents of AT in cattle and buffaloes from these regions. Between 2014 and 2016, a three-point longitudinal survey was designed to evaluate the mentioned characteristics. Molecular analysis in cattle showed an AT prevalence of 39.2% (T. theileri 38.6%, T. evansi 6.7% and T. vivax 0.2%), with higher values during wet and late wet seasons, while in buffaloes the prevalence was 28.2% (T. theileri 28.2% and T. evansi 1.3%), with higher values during the dry season. Additionally, variables such as tabanid abundance, vector control, breeding system, age and anemia signs were significantly associated with AT prevalence (P<0.05). Only T. theileri infection was higher in cattle with anemia signs than those with normal packed cell volume. Finally, phylogeographic analysis revealed that Colombian T. theileri isolates were associated to specific host genotypes IA and IIB, described worldwide; T. vivax isolates were related to the genotype from West Africa; while T. evansi isolates are related to the South American genotypes and to new genotypes. This is the first longitudinal survey that evaluates through molecular methods, the infection of Trypanosoma spp. in two important livestock regions from Colombia, showing that the clinical effects and prevalence of these trypanosomes in cattle and buffaloes are modulated by seasonal variations, host factors, and parasite traits. The results suggest that these factors have to be taken into account to successfully control AT in these regions.
Collapse
Affiliation(s)
| | - Omar Triana-Chávez
- Grupo BCEI, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | | |
Collapse
|
25
|
Kamidi CM, Saarman NP, Dion K, Mireji PO, Ouma C, Murilla G, Aksoy S, Schnaufer A, Caccone A. Multiple evolutionary origins of Trypanosoma evansi in Kenya. PLoS Negl Trop Dis 2017; 11:e0005895. [PMID: 28880965 PMCID: PMC5605091 DOI: 10.1371/journal.pntd.0005895] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 09/19/2017] [Accepted: 08/22/2017] [Indexed: 11/19/2022] Open
Abstract
Trypanosoma evansi is the parasite causing surra, a form of trypanosomiasis in camels and other livestock, and a serious economic burden in Kenya and many other parts of the world. Trypanosoma evansi transmission can be sustained mechanically by tabanid and Stomoxys biting flies, whereas the closely related African trypanosomes T. brucei brucei and T. b. rhodesiense require cyclical development in tsetse flies (genus Glossina) for transmission. In this study, we investigated the evolutionary origins of T. evansi. We used 15 polymorphic microsatellites to quantify levels and patterns of genetic diversity among 41 T. evansi isolates and 66 isolates of T. b. brucei (n = 51) and T. b. rhodesiense (n = 15), including many from Kenya, a region where T. evansi may have evolved from T. brucei. We found that T. evansi strains belong to at least two distinct T. brucei genetic units and contain genetic diversity that is similar to that in T. brucei strains. Results indicated that the 41 T. evansi isolates originated from multiple T. brucei strains from different genetic backgrounds, implying independent origins of T. evansi from T. brucei strains. This surprising finding further suggested that the acquisition of the ability of T. evansi to be transmitted mechanically, and thus the ability to escape the obligate link with the African tsetse fly vector, has occurred repeatedly. These findings, if confirmed, have epidemiological implications, as T. brucei strains from different genetic backgrounds can become either causative agents of a dangerous, cosmopolitan livestock disease or of a lethal human disease, like for T. b. rhodesiense.
Collapse
Affiliation(s)
- Christine M. Kamidi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, United States of America
| | - Norah P. Saarman
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Kirstin Dion
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Paul O. Mireji
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, United States of America
- Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Grace Murilla
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Serap Aksoy
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, United States of America
| | - Achim Schnaufer
- Centre for Immunity, Infection & Evolution, and Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Adalgisa Caccone
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, United States of America
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, United States of America
| |
Collapse
|
26
|
Jaimes-Dueñez J, Triana-Chávez O, Valencia-Hernández A, Sánchez-Arévalo D, Poche-Ceballos A, Ortíz-Álvarez J, Mejía-Jaramillo AM. Molecular diagnosis and phylogeographic analysis of Trypanosoma evansi in dogs ( Canis lupus familiaris ) suggest an epidemiological importance of this species in Colombia. Prev Vet Med 2017; 139:82-89. [DOI: 10.1016/j.prevetmed.2017.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/29/2017] [Accepted: 02/16/2017] [Indexed: 11/16/2022]
|