1
|
Lieber CM, Kang HJ, Sobolik EB, Sticher ZM, Ngo VL, Gewirtz AT, Kolykhalov AA, Natchus MG, Greninger AL, Suthar MS, Plemper RK. Efficacy of late-onset antiviral treatment in immunocompromised hosts with persistent SARS-CoV-2 infection. J Virol 2024; 98:e0090524. [PMID: 39207133 PMCID: PMC11406939 DOI: 10.1128/jvi.00905-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Immunocompromised people are at high risk of prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and progression to severe coronavirus disease 2019 (COVID-19). However, the efficacy of late-onset direct-acting antiviral (DAA) therapy with therapeutics in clinical use and experimental drugs to mitigate persistent viral replication is unclear. In this study, we employed an immunocompromised mouse model, which supports prolonged replication of SARS-CoV-2 to explore late-onset treatment options. Tandem immuno-depletion of CD4+ and CD8+ T cells in C57BL/6 mice followed by infection with SARS-CoV-2 variant of concern (VOC) beta B.1.351 resulted in prolonged infection with virus replication for 5 weeks after inoculation. Early-onset treatment with nirmatrelvir/ritonavir (paxlovid) or molnupiravir was only moderately efficacious, whereas the experimental therapeutic 4'-fluorouridine (4'-FlU, EIDD-2749) significantly reduced virus load in the upper and lower respiratory compartments 4 days postinfection (dpi). All antivirals significantly lowered virus burden in a 7-day treatment regimen initiated 14 dpi, but paxlovid-treated animals experienced rebound virus replication in the upper respiratory tract 7 days after treatment end. Viral RNA was detectable 28 dpi in paxlovid-treated animals, albeit not in the molnupiravir or 4'-FlU groups, when treatment was initiated 14 dpi and continued for 14 days. Low-level virus replication continued 35 dpi in animals receiving vehicle but had ceased in all treatment groups. These data indicate that late-onset DAA therapy significantly shortens the duration of persistent virus replication in an immunocompromised host, which may have implications for clinical use of antiviral therapeutics to alleviate the risk of progression to severe disease in highly vulnerable patients. IMPORTANCE Four years after the onset of the global coronavirus disease 2019 (COVID-19) pandemic, the immunocompromised are at greatest risk of developing life-threatening severe disease. However, specific treatment plans for this most vulnerable patient group have not yet been developed. Employing a CD4+ and CD8+ T cell-depleted immunocompromised mouse model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we explored therapeutic options of persistent infections with standard-of-care paxlovid, molnupiravir, and the experimental therapeutic 4'-fluorouridine (4'-FlU). Late-onset treatment initiated 14 days after infection was efficacious, but only 4'-FlU was rapidly sterilizing. No treatment-experienced viral variants with reduced susceptibility to the drugs emerged, albeit virus replication rebounded in animals of the paxlovid group after treatment end. This study supports the use of direct-acting antivirals (DAAs) for late-onset management of persistent SARS-CoV-2 infection in immunocompromised hosts. However, treatment courses likely require to be extended for maximal therapeutic benefit, calling for appropriately powered clinical trials to meet the specific needs of this patient group.
Collapse
Affiliation(s)
- Carolin M. Lieber
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Hae-Ji Kang
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Elizabeth B. Sobolik
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | - Zachary M. Sticher
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, USA
| | - Vu L. Ngo
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Andrew T. Gewirtz
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | | | - Michael G. Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, USA
| | - Alexander L. Greninger
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | - Mehul S. Suthar
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Richard K. Plemper
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Lieber CM, Kang HJ, Sobolik EB, Sticher ZM, Ngo VL, Gewirtz AT, Kolykhalov AA, Natchus MG, Greninger AL, Suthar MS, Plemper RK. Efficacy of late-onset antiviral treatment in immune-compromised hosts with persistent SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595478. [PMID: 38826222 PMCID: PMC11142196 DOI: 10.1101/2024.05.23.595478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The immunocompromised are at high risk of prolonged SARS-CoV-2 infection and progression to severe COVID-19. However, efficacy of late-onset direct-acting antiviral (DAA) therapy with therapeutics in clinical use and experimental drugs to mitigate persistent viral replication is unclear. In this study, we employed an immunocompromised mouse model, which supports prolonged replication of SARS-CoV-2 to explore late-onset treatment options. Tandem immuno-depletion of CD4 + and CD8 + T cells in C57BL/6 mice followed by infection with SARS-CoV-2 variant of concern (VOC) beta B.1.351 resulted in prolonged infection with virus replication for five weeks after inoculation. Early-onset treatment with nirmatrelvir/ritonavir (paxlovid) or molnupiravir was only moderately efficacious, whereas the experimental therapeutic 4'-fluorourdine (4'-FlU, EIDD-2749) significantly reduced virus load in upper and lower respiratory compartments four days post infection (dpi). All antivirals significantly lowered virus burden in a 7-day treatment regimen initiated 14 dpi, but paxlovid-treated animals experienced rebound virus replication in the upper respiratory tract seven days after treatment end. Viral RNA was detectable 28 dpi in paxlovid-treated animals, albeit not in the molnupiravir or 4'-FlU groups, when treatment was initiated 14 dpi and continued for 14 days. Low-level virus replication continued 35 dpi in animals receiving vehicle but had ceased in all treatment groups. These data indicate that late-onset DAA therapy significantly shortens the duration of persistent virus replication in an immunocompromised host, which may have implications for clinical use of antiviral therapeutics to alleviate the risk of progression to severe disease in highly vulnerable patients. Importance Four years after the onset of the global COVID-19 pandemic, the immunocompromised are at greatest risk of developing life-threatening severe disease. However, specific treatment plans for this most vulnerable patient group have not yet been developed. Employing a CD4 + and CD8 + T cell-depleted immunocompromised mouse model of SARS-CoV-2 infection, we explored therapeutic options of persistent infections with standard-of-care paxlovid, molnupiravir, and the experimental therapeutic 4'-FlU. Late-onset treatment initiated 14 days after infection was efficacious, but only 4'-FlU was rapidly sterilizing. No treatment-experienced viral variants with reduced susceptibility to the drugs emerged, albeit virus replication rebounded in animals of the paxlovid group after treatment end. This study supports the use of direct-acting antivirals for late-onset management of persistent SARS-CoV-2 infection in immunocompromised hosts. However, treatment courses likely require to be extended for maximal therapeutic benefit, calling for appropriately powered clinical trials to meet the specific needs of this patient group.
Collapse
|
3
|
Dong J, Ismail N, Fitts E, Walker DH. Molecular testing in emerging infectious diseases. DIAGNOSTIC MOLECULAR PATHOLOGY 2024:175-198. [DOI: 10.1016/b978-0-12-822824-1.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
4
|
Amira Dahmani C, Azzoune A, Boudjema A. In silico analysis for SARS-CoV-2 detection in the context of genetic variability of the Algerian omicron variant. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2024; 13:223-234. [PMID: 39315285 PMCID: PMC11416851 DOI: 10.22099/mbrc.2024.50192.1985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The risk to public health conferred by the Omicron variant is still not completely clear, although its numerous gene mutations have raised concerns regarding its potential for increased transmissibility and immune escape. In this study, we test the compatibility of the different primers and probes available in different commercial kits sold internationally with all the sequences of SARS-CoV-2 analyzed in Algeria until March 2023. The Algerian SARS-CoV-2 Omicron variant sequences were aligned with the Muscle tool using Genious software. We also used primers and probes sequences of seven international RT-qPCR kits; CDC China, Charite Germany, HKU Hong Kong, NIH Thailand, NIID Japan, CDC US, and Pasteur Institute. We used the primer check v2.0 developed by VIROSCIENCE LAB, To identify the different mutations located at the level of primers and probes about the Algerian sequences of SARS-CoV2. Statistical tests were carried out by calculating thex 2 test. We found regarding the Forward primer sequences that the two Thailand and Japan kits are less specific to the Algerian version of the SARS-CoV-2 Omicron variant genome compared to the other kits (p=10-6). Furthermore, regarding the Reverse primers and fluorescent Probes, the three kits; Thailand, Japan, and CDC US; are less effective (p=10-6). Regarding all primers and probes, this work allowed us to conclude that the four RT-qPCR kits: CDC China, Charite Germany, NHD Hong Kong, and Pasteur Institute seem to be more specific for the Algerian omicron genome detection and therefore for diagnosis of COVID-19 in Algeria.
Collapse
Affiliation(s)
- Chahinez Amira Dahmani
- Biology Department, Faculty of Natural and Life Sciences, University of Mostaganem, Algeria
- Laboratory of Molecular and Cellular Genetics (LGMC), University of Sciences and Technology of Oran, Algeria
| | - Asmaa Azzoune
- Laboratory of Molecular and Cellular Genetics (LGMC), University of Sciences and Technology of Oran, Algeria
- High School of Biological Sciences, Oran, Algeria
| | - Abdallah Boudjema
- Laboratory of Molecular and Cellular Genetics (LGMC), University of Sciences and Technology of Oran, Algeria
| |
Collapse
|
5
|
Xu X, Deng Y, Ding J, Shi X, Zheng X, Wang D, Yang Y, Liu L, Wang C, Li S, Gu H, Poon LLM, Zhang T. Refining detection methods for emerging SARS-CoV-2 mutants in wastewater: A case study on the Omicron variants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166215. [PMID: 37591380 DOI: 10.1016/j.scitotenv.2023.166215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
COVID-19 is an ongoing public health threat worldwide driven by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Wastewater surveillance has emerged as a complementary tool to clinical surveillance to control the COVID-19 pandemic. With the emergence of new variants of SARS-CoV-2, accumulated mutations that occurred in the SARS-CoV-2 genome raise new challenges for RT-qPCR diagnosis used in wastewater surveillance. There is a pressing need to develop refined methods for modifying primer/probes to better detect these emerging variants in wastewater. Here, we exemplified this process by focusing on the Omicron variants, for which we have developed and validated a modified detection method. We first modified the primers/probe mismatches of three assays commonly used in wastewater surveillance according to in silico analysis results for the mutations of 882 sequences collected during the fifth-wave outbreak in Hong Kong, and then evaluated them alongside the seven original assays. The results showed that five of seven original assays had better sensitivity for detecting Omicron variants, with the limits of detection (LoDs) ranging from 1.53 to 2.76 copies/μL. UCDC-N1 and Charité-E sets had poor performances, having LoDs higher than 10 copies/μL and false-positive/false-negative results in wastewater testing, probably due to the mismatch and demonstrating the need for modification of primer/probe sequences. The modified assays exhibited higher sensitivity and specificity, along with better reproducibility in detecting 81 wastewater samples. In addition, the sequencing results of six wastewater samples by Illumina also validated the presence of mismatches in the primer/probe binding sites of the three assays. This study highlights the importance of re-configuration of the primer-probe sets and refinements for the sequences to ensure the diagnostic effectiveness of RT-qPCR detection.
Collapse
Affiliation(s)
- Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jiahui Ding
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xianghui Shi
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dou Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yu Yang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chunxiao Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shuxian Li
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Haogao Gu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China
| | - Leo L M Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; HKU-Pasteur Research Pole, The University of Hong Kong, Sassoon Road, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
6
|
Kami W, Kinjo T, Hashioka H, Arakaki W, Uechi K, Takahashi A, Oki H, Tanaka K, Motooka D, Nakamura S, Nakamatsu M, Maeda S, Yamamoto K, Fujita J. Impact of G29179T mutation on two commercial PCR assays for SARS-CoV-2 detection. J Virol Methods 2023; 314:114692. [PMID: 36796678 PMCID: PMC9930255 DOI: 10.1016/j.jviromet.2023.114692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Nucleic acid amplification test (NAAT) is the gold standard for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. However, genetic mutations in the virus can affect the result. Cycle threshold (Ct) values of N genes and their association with mutations using SARS-CoV-2 positive specimens diagnosed by the Xpert Xpress SARS-CoV-2 were examined in this study. In total, 196 nasopharyngeal swab specimens were tested for SARS-CoV-2 infection using the Xpert Xpress SARS-CoV-2, and 34 were positive. WGS was performed for four outlier samples with increased ΔCt identified by Scatterplot analysis as well as seven control samples without increased ΔCt in the Xpert Xpress SARS-CoV-2. The presence of the G29179T mutation was identified as a cause of increased ΔCt. PCR using the Allplex™ SARS-CoV-2 Assay did not show a similar increase in ΔCt. Previous reports focusing on N-gene mutations and their effects on SARS-CoV-2 testing including the Xpert Xpress SARS-CoV-2 were also summarized. While a single mutation that impacts one target of a multiplex NAAT is not a true detection failure, mutation compromising NAAT target region can cause confusion of the results and render the assay susceptible to diagnostic failure.
Collapse
Affiliation(s)
- Wakaki Kami
- First Department of Internal Medicine, Division of Infectious, Respiratory, and Digestive Medicine, University of the Ryukyus Graduate School of Medicine, 207 Uehara Nishihara, Okinawa 903-0215, Japan
| | - Takeshi Kinjo
- First Department of Internal Medicine, Division of Infectious, Respiratory, and Digestive Medicine, University of the Ryukyus Graduate School of Medicine, 207 Uehara Nishihara, Okinawa 903-0215, Japan.
| | - Hiroe Hashioka
- First Department of Internal Medicine, Division of Infectious, Respiratory, and Digestive Medicine, University of the Ryukyus Graduate School of Medicine, 207 Uehara Nishihara, Okinawa 903-0215, Japan
| | - Wakako Arakaki
- First Department of Internal Medicine, Division of Infectious, Respiratory, and Digestive Medicine, University of the Ryukyus Graduate School of Medicine, 207 Uehara Nishihara, Okinawa 903-0215, Japan
| | - Kohei Uechi
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, 207 Uehara Nishihara, Okinawa 903-0215, Japan
| | - Ami Takahashi
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, 207 Uehara Nishihara, Okinawa 903-0215, Japan
| | - Hiroya Oki
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kentaro Tanaka
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masashi Nakamatsu
- Infection Control Center, University of the Ryukyus Hospital, 207 Uehara Nishihara, Okinawa 903-0215, Japan
| | - Shiro Maeda
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, 207 Uehara Nishihara, Okinawa 903-0215, Japan
| | - Kazuko Yamamoto
- First Department of Internal Medicine, Division of Infectious, Respiratory, and Digestive Medicine, University of the Ryukyus Graduate School of Medicine, 207 Uehara Nishihara, Okinawa 903-0215, Japan
| | - Jiro Fujita
- First Department of Internal Medicine, Division of Infectious, Respiratory, and Digestive Medicine, University of the Ryukyus Graduate School of Medicine, 207 Uehara Nishihara, Okinawa 903-0215, Japan
| |
Collapse
|
7
|
Xie L, Li J, Ai Y, He H, Chen X, Yin M, Li W, Huang W, Luo MY, He J. Current strategies for SARS-CoV-2 molecular detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4625-4642. [PMID: 36349688 DOI: 10.1039/d2ay01313d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The molecular detection of SARS-CoV-2 is extremely important for the discovery and prevention of pandemic dissemination. Because SARS-CoV-2 is not always present in the samples that can be collected, the sample chosen for testing has inevitably become the key to the SARS-CoV-2 positive cases screening. The nucleotide amplification strategy mainly includes Q-PCR assays and isothermal amplification assays. The Q-PCR assay is the most used SARS-CoV-2 detection assay. Due to heavy expenditures and other drawbacks, isothermal amplification cannot replace the dominant position of the Q-PCR assay. The antibody-based detection combined with Q-PCR can help to find more positive cases than only using nucleotide amplification-based assays. Pooled testing based on Q-PCR significantly increases efficiency and reduces the cost of massive-scale screening. The endless stream of variants emerging across the world poses a great challenge to SARS-CoV-2 molecular detection. The multi-target assays and several other strategies have proved to be efficient in the detection of mutated SARS-CoV-2 variants. Further research work should concentrate on: (1) identifying more ideal sample plucking strategies, (2) ameliorating the Q-PCR primer and probes targeted toward mutated SARS-CoV-2 variants, (3) exploring more economical and precise isothermal amplification assays, and (4) developing more advanced strategies for antibody/antigen or engineered antibodies to ameliorate the antibody/antigen-based strategy.
Collapse
Affiliation(s)
- Lei Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Junlin Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Ying Ai
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Haolan He
- Guangzhou Eighth People's Hospital, Guangzhou 510080, China
| | - Xiuyun Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Mingyu Yin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Wanxi Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Wenguan Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Min-Yi Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Jinyang He
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| |
Collapse
|
8
|
Bello-Lemus Y, Anaya-Romero M, Gómez-Montoya J, Árquez M, González-Torres HJ, Navarro-Quiroz E, Pacheco-Londoño L, Pacheco-Lugo L, Acosta-Hoyos AJ. Comparative Analysis of In-House RT-qPCR Detection of SARS-CoV-2 for Resource-Constrained Settings. Diagnostics (Basel) 2022; 12:2883. [PMID: 36428942 PMCID: PMC9689939 DOI: 10.3390/diagnostics12112883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022] Open
Abstract
We developed and standardized an efficient and cost-effective in-house RT-PCR method to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We evaluated sensitivity, specificity, and other statistical parameters by different RT-qPCR methods including triplex, duplex, and simplex assays adapted from the initial World Health Organization- (WHO) recommended protocol. This protocol included the identification of the E envelope gene (E gene; specific to the Sarvecovirus genus), RdRp gene of the RNA-dependent RNA polymerase (specific for SARS-CoV-2), and RNase P gene as endogenous control. The detection limit of the E and the RdRp genes were 3.8 copies and 33.8 copies per 1 µL of RNA, respectively, in both triplex and duplex reactions. The sensitivity for the RdRp gene in the triplex and duplex RT-qPCR tests were 98.3% and 83.1%, respectively. We showed a decrease in sensitivity for the RdRp gene by 60% when the E gene acquired Ct values > 31 in the diagnostic tests. This is associated with the specific detection limit of each gene and possible interferences in the protocol. Hence, developing efficient and cost-effective methodologies that can be adapted to various health emergency scenarios is important, especially in developing countries or settings where resources are limited.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Antonio J. Acosta-Hoyos
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| |
Collapse
|
9
|
Identification of mutations in SARS-CoV-2 PCR primer regions. Sci Rep 2022; 12:18651. [PMID: 36333366 PMCID: PMC9636223 DOI: 10.1038/s41598-022-21953-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Due to the constantly increasing number of mutations in the SARS-CoV-2 genome, concerns have emerged over the possibility of decreased diagnostic accuracy of reverse transcription-polymerase chain reaction (RT-PCR), the gold standard diagnostic test for SARS-CoV-2. We propose an analysis pipeline to discover genomic variations overlapping the target regions of commonly used PCR primer sets. We provide the list of these mutations in a publicly available format based on a dataset of more than 1.2 million SARS-CoV-2 samples. Our approach distinguishes among mutations possibly having a damaging impact on PCR efficiency and ones anticipated to be neutral in this sense. Samples are categorized as "prone to misclassification" vs. "likely to be correctly detected" by a given PCR primer set based on the estimated effect of mutations present. Samples susceptible to misclassification are generally present at a daily rate of 2% or lower, although particular primer sets seem to have compromised performance when detecting Omicron samples. As different variant strains may temporarily gain dominance in the worldwide SARS-CoV-2 viral population, the efficiency of a particular PCR primer set may change over time, therefore constant monitoring of variations in primer target regions is highly recommended.
Collapse
|
10
|
Inmunohistochemical detection of pandemic SARSCoV- 2 antigens in lung tissue. BIOMÉDICA 2022; 42:9-13. [DOI: 10.7705/biomedica.6132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 11/06/2022]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus has generated globally more than 110.7 million infections and 2.4 million deaths. The severity of this infection can range from asymptomatic, mild to severe.To know the possible associations between the presence of the virus and histopathological alterations found in tissues of fatal cases of COVID-19, the presence of the virus in the lung tissue of a patient with a clinical history of SARS-CoV-2 infection was evaluated.Lung tissue was histologically processed for immunohistochemical detection of SARSCoV-2. In the histopathological study, morphological changes associated with pneumonitis of viral origin were observed. Likewise, the location of the SARS-CoV-2 virus was observed mainly in the cytoplasm of the cells of the inflammatory infiltrate.
Collapse
|
11
|
Li Z, Wang M, Xu T, Zhan Y, Chen F, Lin Y, Li S, Cheng J, Ye F. Development and clinical implications of a novel CRISPR-based diagnostic test for pulmonary Aspergillus fumigatus infection. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:749-756. [PMID: 34969623 DOI: 10.1016/j.jmii.2021.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Rapid and reliable diagnostic methods for Aspergillus fumigatus infection are urgently needed. Clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 13a (Cas13a) has high sensitivity and specificity in the diagnosis of viral infection. However, its potential use in detecting A. fumigatus remains unexplored. A highly sensitive and specific method using the CRISPR/Cas13a system was developed for the reliable and rapid detection of A. fumigatus. METHODS The conserved internal transcribed spacer (ITS) region of A. fumigatus was used to design CRISPR-derived RNA (crRNA) and the corresponding recombinase polymerase amplification (RPA) primer sequence with the T7 promoter for the CRISPR assay. Twenty-five clinical isolates and 43 bronchoalveolar lavage fluid (BALF) remaining from routine examinations of patients with confirmed pulmonary aspergillosis were collected to further validate the CRISPR assay. RESULTS No amplification signal was observed when genomic DNA from closely clinically related Aspergillus species, such as Aspergillus flavus, Aspergillus niger, and Aspergillus terreus, as well as Monascus purpureus Went and Escherichia coli, was tested by this assay, and the detection limit for A. fumigatus was 3 copies in a single reaction system. Validation experiments using the 25 clinical isolates demonstrated 91.7% specificity for the A. fumigatus section, and the sensitivity was 100% when first-generation sequencing was used as the standard. There was no significant difference between the PCR and CRISPR methods (P = 1.0), and the diagnosis results of the two methods were consistent (Kappa = 0.459, P = 0.003). CONCLUSION The study offers a new validated CRISPR/Cas13a technique for A. fumigatus detection, providing a simple, rapid and affordable test that is ready for application in the diagnosis of A. fumigatus infection.
Collapse
Affiliation(s)
- Zhengtu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou 510120, China
| | - Mingdie Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou 510120, China
| | - Teng Xu
- Vision Medicals Co. Ltd., Guangzhou 510663, China
| | - Yangqing Zhan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou 510120, China
| | - Fengyi Chen
- Vision Medicals Co. Ltd., Guangzhou 510663, China
| | - Ye Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou 510120, China
| | - Shaoqiang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou 510120, China
| | - Jing Cheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou 510120, China
| | - Feng Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou 510120, China.
| |
Collapse
|
12
|
Lee CG, Lee D. Comparison of Laboratory Tests Applied for Diagnosing the SARS-CoV-2 Infection. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2022. [DOI: 10.15324/kjcls.2022.54.2.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Chang-Gun Lee
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Korea
| | - Dongsup Lee
- Department of Clinical Laboratory Science, Hyejeon College, Hongseong, Korea
| |
Collapse
|
13
|
Validation of a duplex PCR technique using the gen E and RNase P for the diagnosis of SARS-CoV-2. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2022; 40:428-435. [PMID: 35643923 PMCID: PMC9117263 DOI: 10.1016/j.eimce.2022.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 11/24/2022]
Abstract
Introduction Reverse transcriptase - polymerase chain reaction (RT-PCR) is the standard technique for SARS-CoV-2 diagnosis. The World Health Organization recommends the Charité-Berlin protocol for COVID-19 diagnosis, which requires triple PCR, limiting the process capability of laboratories and delaying the results. In order to reduce these limitations, a duplex PCR is validated for the detection of the E and ribonuclease P genes. Methods We compared the limit of detection, sensitivity and specificity of the duplex PCR technique (E gene and Rnasa P) against the monoplex standard (E gene) in RNA samples from a SARS-CoV-2 isolate and 88 clinical specimens with previously known results. The repeatability and reproducibility of the threshold cycle values (Ct) were determined in two independent laboratories of the Faculty of Medicine of the Universidad de Antioquia, using different reagents and real time instruments. Results There were no significant differences in the Ct results between both techniques (P = .84). Using the monoplex PCR of E gene as a reference, the interrater reliability analysis showed similarity between the two techniques, with a kappa coefficient of 0.89, the sensitivity and the specificity of duplex PCR were 90% and 87%, respectively. Conclusions Duplex PCR does not affect the sensitivity and specificity reported by the Charité, Berlin protocol, being a useful tool for SARS-CoV-2 screening in clinical samples.
Collapse
|
14
|
Cha H, Kim H, Joung Y, Kang H, Moon J, Jang H, Park S, Kwon HJ, Lee IC, Kim S, Yong D, Yoon SW, Park SG, Guk K, Lim EK, Park HG, Choo J, Jung J, Kang T. Surface-enhanced Raman scattering-based immunoassay for severe acute respiratory syndrome coronavirus 2. Biosens Bioelectron 2022; 202:114008. [PMID: 35086030 PMCID: PMC8770391 DOI: 10.1016/j.bios.2022.114008] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected humans worldwide for over a year now. Although various tests have been developed for the detection of SARS-CoV-2, advanced sensing methods are required for the diagnosis, screening, and surveillance of coronavirus disease 2019 (COVID-19). Here, we report a surface-enhanced Raman scattering (SERS)-based immunoassay involving an antibody pair, SERS-active hollow Au nanoparticles (NPs), and magnetic beads for the detection of SARS-CoV-2. The selected antibody pair against the SARS-CoV-2 antigen, along with the magnetic beads, facilitates the accurate direct detection of the virus. The hollow Au NPs exhibit strong, reproducible SERS signals, allowing sensitive quantitative detection of SARS-CoV-2. This assay had detection limits of 2.56 fg/mL for the SARS-CoV-2 antigen and 3.4 plaque-forming units/mL for the SARS-CoV-2 lysates. Furthermore, it facilitated the identification of SARS-CoV-2 in human nasopharyngeal aspirates and diagnosis of COVID-19 within 30 min using a portable Raman device. Thus, this assay can be potentially used for the diagnosis and prevention of COVID-19.
Collapse
Affiliation(s)
- Hyunjung Cha
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hyeran Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyunju Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jeong Moon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyowon Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sohyun Park
- Department of Chemistry, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
| | - In-Chul Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
| | - Sunjoo Kim
- Department of Laboratory Medicine, Gyeongsang National University College of Medicine, Jinju, 52828, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sun-Woo Yoon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sung-Gyu Park
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Kyeonghye Guk
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
15
|
End-point RT-PCR based on a conservation landscape for SARS-COV-2 detection. Sci Rep 2022; 12:4759. [PMID: 35306521 PMCID: PMC8933765 DOI: 10.1038/s41598-022-07756-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
End-point RT-PCR is a suitable alternative diagnostic technique since it is cheaper than RT-qPCR tests and can be implemented on a massive scale in low- and middle-income countries. In this work, a bioinformatic approach to guide the design of PCR primers was developed, and an alternative diagnostic test based on end-point PCR was designed. End-point PCR primers were designed through conservation analysis based on kmer frequency in SARS-CoV-2 and human respiratory pathogen genomes. Highly conserved regions were identified for primer design, and the resulting PCR primers were used to amplify 871 nasopharyngeal human samples with a previous RT-qPCR based SARS-CoV-2 diagnosis. The diagnostic test showed high accuracy in identifying SARS-CoV-2-positive samples including B.1.1.7, P.1, B.1.427/B.1.429 and B.1.617.2/ AY samples with a detection limit of 7.2 viral copies/µL. In addition, this test could discern SARS-CoV-2 infection from other viral infections with COVID-19-like symptomatology. The designed end-point PCR diagnostic test to detect SARS-CoV-2 is a suitable alternative to RT-qPCR. Since the proposed bioinformatic approach can be easily applied in thousands of viral genomes and over highly divergent strains, it can be used as a PCR design tool as new SARS-CoV-2 variants emerge. Therefore, this end-point PCR test could be employed in epidemiological surveillance to detect new SARS-CoV-2 variants as they emerge and propagate.
Collapse
|
16
|
Tao Y, Yue Y, Qiu G, Ji Z, Spillman M, Gai Z, Chen Q, Bielecki M, Huber M, Trkola A, Wang Q, Cao J, Wang J. Comparison of analytical sensitivity and efficiency for SARS-CoV-2 primer sets by TaqMan-based and SYBR Green-based RT-qPCR. Appl Microbiol Biotechnol 2022; 106:2207-2218. [PMID: 35218386 PMCID: PMC8881549 DOI: 10.1007/s00253-022-11822-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022]
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) continues to threaten public health. For developing countries where vaccines are still in shortage, cheaper alternative molecular methods for SARS-CoV-2 identification can be crucial to prevent the next wave. Therefore, 14 primer sets recommended by the World Health Organization (WHO) was evaluated on testing both clinical patient and environmental samples with the gold standard diagnosis method, TaqMan-based RT-qPCR, and a cheaper alternative method, SYBR Green-based RT-qPCR. Using suitable primer sets, such as ORF1ab, 2019_nCoV_N1 and 2019_nCoV_N3, the performance of the SYBR Green approach was comparable or better than the TaqMan approach, even when considering the newly dominating or emerging variants, including Delta, Eta, Kappa, Lambda, Mu, and Omicron. ORF1ab and 2019_nCoV_N3 were the best combination for sensitive and reliable SARS-CoV-2 molecular diagnostics due to their high sensitivity, specificity, and broad accessibility. KEY POINTS: • With suitable primer sets, the SYBR Green method performs better than the TaqMan one. • With suitable primer sets, both methods should still detect the new variants well. • ORF1ab and 2019_nCoV_N3 were the best combination for SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Yile Tao
- Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Yang Yue
- Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Guangyu Qiu
- Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Zheng Ji
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Martin Spillman
- Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Qingfa Chen
- Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University, Liaocheng, 252000, China
| | - Michel Bielecki
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, 8091, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland
| | - Qiyuan Wang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland.
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland.
| |
Collapse
|
17
|
Tombuloglu H, Sabit H, Al-Khallaf H, Kabanja JH, Alsaeed M, Al-Saleh N, Al-Suhaimi E. Multiplex real-time RT-PCR method for the diagnosis of SARS-CoV-2 by targeting viral N, RdRP and human RP genes. Sci Rep 2022; 12:2853. [PMID: 35181721 PMCID: PMC8857243 DOI: 10.1038/s41598-022-06977-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 02/03/2022] [Indexed: 12/13/2022] Open
Abstract
Corona Virus Disease 2019 (COVID-19) is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pandemic has brought the world to a standstill and threatened human lives. Many methods are known to date to detect this virus. Due to their relative sensitivity, polymerase chain reaction (PCR)-based assays are the most frequently applied and considered the gold standard. However, due to the rapid mutation rate of the viral genome and the emergence of new variants, existing protocols need to be updated and improved. Designing a fast and accurate PCR-based assay is of great importance for the early detection of this virus and more efficient control of the spread of this disease. This study describes a fast, reliable, easy-to-use, and high-throughput multiplex SARS-CoV-2 RT-PCR detection method. The assay was designed to detect two viral genes (N and RdRP) and a human gene (RP) simultaneously. The performance and the sensitivity of the assay were tested in 28 SARS-CoV-2 positive samples and compared with commercial kits, which showed 100% positive percent agreement with a limit of detection (LOD) value of 1.40 and 0.81 copies/µL or 35.13 and 20.31 copies/reaction for RdRP and N genes, respectively. The current assay is found accurate, reliable, simple, sensitive, and specific. It can be used as an optimized SARS-CoV-2 diagnostic assay in hospitals, medical centers, and diagnostic laboratories as well as for research purposes.
Collapse
Affiliation(s)
- Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Hussein Sabit
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Hamoud Al-Khallaf
- Department of Pathology and Laboratory Medicine, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Juma H Kabanja
- Department of Pathology and Laboratory Medicine, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Moneerah Alsaeed
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Najat Al-Saleh
- Department of Family and Community Medicine, King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Ebtesam Al-Suhaimi
- Department of Biology, College of Science and Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| |
Collapse
|
18
|
Lopez D, Roberts J, Bourgeois M, Kootstra J, Minnick S, Black A, Mauss J, Flores N. Infection clusters can elevate risk of diagnostic target failure for detection of SARS-CoV-2. PLoS One 2022; 17:e0264008. [PMID: 35171960 PMCID: PMC8849547 DOI: 10.1371/journal.pone.0264008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/31/2022] [Indexed: 12/31/2022] Open
Abstract
The C29197T mutation is one of 4 point mutations known to cause N-gene target failure (NGTF) in the Xpert Xpress SARS-CoV-2 and Xpert Omni SARS-CoV-2 assays from Cepheid (Sunnyvale, CA). We describe a high local prevalence in January of 8.5% (CI 4.9-14.2%) for the C29197T mutation, which was over 3-fold higher than the prevalence estimated statewide in California during the same time frame, 2.5% (CI 2.1-2.8%). Using phylogenetic analysis, we discovered that this increase in prevalence was due, at least in part, to a disproportionately large infection cluster of unknown origin. This study emphasizes the importance of sequencing at the local jurisdictional level and demonstrates the impact that regional variation can have when assessing risk due to point mutations that impact clinical test performance. It also reinforces the need for diligent reporting of abnormal test results by clinical laboratories, especially during Emergency Use Authorization (EUA) periods, as additional information is gathered about the target organism and the performance of EUA-authorized tests over time.
Collapse
Affiliation(s)
- Denise Lopez
- College of Public Health, University of South Florida, Tampa, FL, United States of America
- Public Health Branch, County of Tulare, Tulare, CA, United States of America
| | - Jill Roberts
- College of Public Health, University of South Florida, Tampa, FL, United States of America
| | - Marie Bourgeois
- College of Public Health, University of South Florida, Tampa, FL, United States of America
| | - Joshua Kootstra
- Public Health Branch, County of Tulare, Tulare, CA, United States of America
| | - Sharon Minnick
- Public Health Branch, County of Tulare, Tulare, CA, United States of America
| | - Allison Black
- CZBiohub, San Francisco, CA, United States of America
| | - Joshua Mauss
- Public Health Branch, County of Tulare, Tulare, CA, United States of America
| | - Nick Flores
- Public Health Branch, County of Tulare, Tulare, CA, United States of America
| |
Collapse
|
19
|
Hong KH, In JW, Lee J, Kim SY, Lee KA, Kim S, An Y, Lee D, Sung H, Kim JS, Lee H. Prevalence of a Single-Nucleotide Variant of SARS-CoV-2 in Korea and Its Impact on the Diagnostic Sensitivity of the Xpert Xpress SARS-CoV-2 Assay. Ann Lab Med 2022; 42:96-99. [PMID: 34374354 PMCID: PMC8368233 DOI: 10.3343/alm.2022.42.1.96] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/20/2021] [Accepted: 07/16/2021] [Indexed: 12/31/2022] Open
Abstract
The sensitivity of molecular diagnostics could be affected by nucleotide variants in pathogen genes, and the sites affected by such variants should be monitored. We report a single-nucleotide variant (SNV) in the nucleocapsid (N) gene of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), i.e., G29179T, which impairs the diagnostic sensitivity of the Xpert Xpress SARS-CoV-2 assay (Cepheid, Sunnyvale, CA, USA). We observed significant differences between the threshold cycle (Ct) values for envelope (E) and N genes and confirmed the SNV as the cause of the differences using Sanger sequencing. This SNV, G29179T, is the most prevalent in Korea and is associated with the B.1.497 virus lineage, which is dominant in Korea. Clinical laboratories should be aware of the various SNVs in the SARS-CoV-2 genome and consider their potential effects on the diagnosis of coronavirus disease 2019.
Collapse
Affiliation(s)
- Ki Ho Hong
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Won In
- Department of Laboratory Medicine, Seoul Medical Center, Seoul, Korea
| | - Jaehyeon Lee
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - So Yeon Kim
- Department of Laboratory Medicine, National Medical Center, Seoul, Korea
| | - Kyoung Ah Lee
- Department of Laboratory Medicine, Seoul Medical Center, Seoul, Korea
| | - Seunghyun Kim
- Department of Laboratory Medicine, Seoul Medical Center, Seoul, Korea
| | - Yeoungim An
- Department of Laboratory Medicine, Seoul Medical Center, Seoul, Korea
| | - Donggeun Lee
- Department of Laboratory Medicine, Seoul Medical Center, Seoul, Korea
| | - Heungsup Sung
- University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Hyukmin Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Bui LM, Thi Thu Phung H, Ho Thi TT, Singh V, Maurya R, Khambhati K, Wu CC, Uddin MJ, Trung DM, Chu DT. Recent findings and applications of biomedical engineering for COVID-19 diagnosis: a critical review. Bioengineered 2021; 12:8594-8613. [PMID: 34607509 PMCID: PMC8806999 DOI: 10.1080/21655979.2021.1987821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19 is one of the most severe global health crises that humanity has ever faced. Researchers have restlessly focused on developing solutions for monitoring and tracing the viral culprit, SARS-CoV-2, as vital steps to break the chain of infection. Even though biomedical engineering (BME) is considered a rising field of medical sciences, it has demonstrated its pivotal role in nurturing the maturation of COVID-19 diagnostic technologies. Within a very short period of time, BME research applied to COVID-19 diagnosis has advanced with ever-increasing knowledge and inventions, especially in adapting available virus detection technologies into clinical practice and exploiting the power of interdisciplinary research to design novel diagnostic tools or improve the detection efficiency. To assist the development of BME in COVID-19 diagnosis, this review highlights the most recent diagnostic approaches and evaluates the potential of each research direction in the context of the pandemic.
Collapse
Affiliation(s)
- Le Minh Bui
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Huong Thi Thu Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Thuy-Tien Ho Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Mehsana, Gujarat, India
| | - Rupesh Maurya
- Department of Biosciences, School of Science, Indrashil University, Mehsana, Gujarat, India
| | - Khushal Khambhati
- Department of Biosciences, School of Science, Indrashil University, Mehsana, Gujarat, India
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka, Bangladesh
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Do Minh Trung
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Dinh Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
21
|
Jaroszewski L, Iyer M, Alisoltani A, Sedova M, Godzik A. The interplay of SARS-CoV-2 evolution and constraints imposed by the structure and functionality of its proteins. PLoS Comput Biol 2021; 17:e1009147. [PMID: 34237054 PMCID: PMC8291704 DOI: 10.1371/journal.pcbi.1009147] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 07/20/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022] Open
Abstract
The unprecedented pace of the sequencing of the SARS-CoV-2 virus genomes provides us with unique information about the genetic changes in a single pathogen during ongoing pandemic. By the analysis of close to 200,000 genomes we show that the patterns of the SARS-CoV-2 virus mutations along its genome are closely correlated with the structural and functional features of the encoded proteins. Requirements of foldability of proteins' 3D structures and the conservation of their key functional regions, such as protein-protein interaction interfaces, are the dominant factors driving evolutionary selection in protein-coding genes. At the same time, avoidance of the host immunity leads to the abundance of mutations in other regions, resulting in high variability of the missense mutation rate along the genome. "Unexplained" peaks and valleys in the mutation rate provide hints on function for yet uncharacterized genomic regions and specific protein structural and functional features they code for. Some of these observations have immediate practical implications for the selection of target regions for PCR-based COVID-19 tests and for evaluating the risk of mutations in epitopes targeted by specific antibodies and vaccine design strategies.
Collapse
Affiliation(s)
- Lukasz Jaroszewski
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, United States of America
| | - Mallika Iyer
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Arghavan Alisoltani
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, United States of America
| | - Mayya Sedova
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, United States of America
| | - Adam Godzik
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, United States of America
| |
Collapse
|
22
|
Gómez-Grosso LA, Mercado M, Ospina ML. In the grip of SARS-CoV-2: The scientific leadership of the Colombian Instituto Nacional de Salud. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2021; 41:195-200. [PMID: 34214259 PMCID: PMC8341952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Luis Alberto Gómez-Grosso
- Grupo de Fisiología Molecular, Instituto Nacional de Salud, Bogotá, D.C., ColombiaInstituto Nacional de SaludBogotáD.C.Colombia
| | - Marcela Mercado
- Directora de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., ColombiaInstituto Nacional de SaludBogotáD.C.Colombia
| | - Martha Lucía Ospina
- Directora General, Instituto Nacional de Salud, Bogotá, D.C., ColombiaInstituto Nacional de SaludBogotáD.C.Colombia
| |
Collapse
|
23
|
SeyedAlinaghi S, Mirzapour P, Dadras O, Pashaei Z, Karimi A, MohsseniPour M, Soleymanzadeh M, Barzegary A, Afsahi AM, Vahedi F, Shamsabadi A, Behnezhad F, Saeidi S, Mehraeen E, Shayesteh Jahanfar. Characterization of SARS-CoV-2 different variants and related morbidity and mortality: a systematic review. Eur J Med Res 2021; 26:51. [PMID: 34103090 PMCID: PMC8185313 DOI: 10.1186/s40001-021-00524-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/28/2021] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Coronavirus Disease-2019 (SARS-CoV-2) started its devastating trajectory into a global pandemic in Wuhan, China, in December 2019. Ever since, several variants of SARS-CoV-2 have been identified. In the present review, we aimed to characterize the different variants of SARS-CoV-2 and explore the related morbidity and mortality. METHODS A systematic review including the current evidence related to different variants of SARS-CoV-2 and the related morbidity and mortality was conducted through a systematic search utilizing the keywords in the online databases including Scopus, PubMed, Web of Science, and Science Direct; we retrieved all related papers and reports published in English from December 2019 to September 2020. RESULTS A review of identified articles has shown three main genomic variants, including type A, type B, and type C. we also identified three clades including S, V, and G. Studies have demonstrated that the C14408T and A23403G alterations in the Nsp12 and S proteins are the most prominent alterations in the world, leading to life-threatening mutations.The spike D614G amino acid change has become the most common variant since December 2019. From missense mutations found from Gujarat SARS-CoV-2 genomes, C28854T, deleterious mutation in the nucleocapsid (N) gene was significantly associated with patients' mortality. The other significant deleterious variant (G25563T) is found in patients located in Orf3a and has a potential role in viral pathogenesis. CONCLUSION Overall, researchers identified several SARS-CoV-2 variants changing clinical manifestations and increasing the transmissibility, morbidity, and mortality of COVID-19. This should be considered in current practice and interventions to combat the pandemic and prevent related morbidity and mortality.
Collapse
Affiliation(s)
- SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Mirzapour
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Dadras
- Department of Global Health and Socioepidemiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Zahra Pashaei
- Chronic Respiratory Disease Research Center, Masih Daneshvari Hospital, Tehran, Iran
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrzad MohsseniPour
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Soleymanzadeh
- Ophthalmology Resident at Farabi Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amir Masoud Afsahi
- Department of Radiology, School of Medicine, University of California, San Diego, CA USA
| | - Farzin Vahedi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Shamsabadi
- Department of Health Information Technology, Esfarayen Faculty of Medical Sciences, Esfarayen, Iran
| | - Farzane Behnezhad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Saeidi
- Department of Nursing, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Esmaeil Mehraeen
- Department of Health Information Technology, Khalkhal University of Medical Sciences, 1419733141 Khalkhal, Iran
| | - Shayesteh Jahanfar
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA USA
| |
Collapse
|
24
|
Keaney D, Whelan S, Finn K, Lucey B. Misdiagnosis of SARS-CoV-2: A Critical Review of the Influence of Sampling and Clinical Detection Methods. Med Sci (Basel) 2021; 9:36. [PMID: 34070530 PMCID: PMC8162574 DOI: 10.3390/medsci9020036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 infection has generated the biggest pandemic since the influenza outbreak of 1918-1919. One clear difference between these pandemics has been the ability to test for the presence of the virus or for evidence of infection. This review examined the performance characteristics of sample types via PCR detection of the virus, of antibody testing, of rapid viral antigen detection kits and computerised tomography (CT) scanning. It was found that combined detection approaches, such as the incorporation of CT scans, may reduce the levels of false negatives obtained by PCR detection in both symptomatic and asymptomatic patients, while sputum and oral throat washing sample types should take precedence over swabbing when available. Rt-PCR assays for detection of the virus remain the gold-standard method for SARS-CoV-2 diagnosis and can be used effectively on pooled samples for widespread screening. The novel Oxford antibody assay was found to have the highest sensitivity and specificity of four currently available commercial antibody kits but should only be used during a specific timeframe post-symptom onset. Further research into transmission modes between symptomatic and asymptomatic patients is needed. Analysis of the performance characteristics of different sampling and detection methods for SARS-CoV-2 showed that timing of sampling and testing methods used can greatly influence the rate of false-positive and false-negative test results, thereby influencing viral spread.
Collapse
Affiliation(s)
- Daniel Keaney
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland; (D.K.); (S.W.); (B.L.)
| | - Shane Whelan
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland; (D.K.); (S.W.); (B.L.)
| | - Karen Finn
- Department of Biopharmaceutical and Medical Science, Galway-Mayo Institute of Technology, Old Dublin Road, H91 DCH9 Galway, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland; (D.K.); (S.W.); (B.L.)
| |
Collapse
|
25
|
Evaluation of RT-qPCR and Loop-Mediated Isothermal Amplification (LAMP) Assays for the Detection of SARS-CoV-2 in Argentina. Genes (Basel) 2021; 12:genes12050659. [PMID: 33924826 PMCID: PMC8146092 DOI: 10.3390/genes12050659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Our aim was to evaluate the analytical and clinical performance of the SARS-CoV-2 molecular detection kits used in Argentina. Nine real-time reverse-transcription polymerase chain reaction (RT-qPCR) and three reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assays were evaluated using the World Health Organization (WHO) recommended test as reference method. A secondary standard calibrated for the E, N and RdRp genes against the Pan American Health Organization—World Health Organization—International Standard was used to calculate the limit of detection (LoD). A panel of artificial clinical samples, 32 positive and 30 negative for SARS-CoV-2, were analyzed to estimate the kappa concordance (κ) and the diagnostic performance. Differences among the LoD values for the target genes amplified by each kit were >1 log copies/reaction. The κ for the RT-qPCR kits was greater than 0.9, whereas that for the RT-LAMP assays ranged from 0.75 to 0.93. The clinical performance of RT-qPCR kits showed 100% specificity and high sensitivity, although with variations according to the gene analyzed. The E and N genes provided greater clinical sensitivity, whereas the RdRp gene increased the clinical specificity. The RT-LAMP assays revealed a variable diagnostic performance. The information provided can be useful to choose the most appropriate diagnostic test and may contribute to the establishment of a consensus in the diagnosis of SARS-CoV-2 in Argentina and the region.
Collapse
|
26
|
MacLeod IJ, Rowley CF, Essex M. PANDAA intentionally violates conventional qPCR design to enable durable, mismatch-agnostic detection of highly polymorphic pathogens. Commun Biol 2021; 4:227. [PMID: 33603155 PMCID: PMC7892852 DOI: 10.1038/s42003-021-01751-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Sensitive and reproducible diagnostics are fundamental to containing the spread of existing and emerging pathogens. Despite the reliance of clinical virology on qPCR, technical challenges persist that compromise their reliability for sustainable epidemic containment as sequence instability in probe-binding regions produces false-negative results. We systematically violated canonical qPCR design principles to develop a Pan-Degenerate Amplification and Adaptation (PANDAA), a point mutation assay that mitigates the impact of sequence variation on probe-based qPCR performance. Using HIV-1 as a model system, we optimized and validated PANDAA to detect HIV drug resistance mutations (DRMs). Ultra-degenerate primers with 3' termini overlapping the probe-binding site adapt the target through site-directed mutagenesis during qPCR to replace DRM-proximal sequence variation. PANDAA-quantified DRMs present at frequency ≥5% (2 h from nucleic acid to result) with a sensitivity and specificity of 96.9% and 97.5%, respectively. PANDAA is an innovative advancement with applicability to any pathogen where target-proximal genetic variability hinders diagnostic development.
Collapse
Affiliation(s)
- Iain J MacLeod
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA.
- Botswana-Harvard AIDS Institute Partnership, Private Bag, Gaborone, Botswana.
| | - Christopher F Rowley
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
- Botswana-Harvard AIDS Institute Partnership, Private Bag, Gaborone, Botswana
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - M Essex
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
- Botswana-Harvard AIDS Institute Partnership, Private Bag, Gaborone, Botswana
| |
Collapse
|
27
|
Jing R, Kudinha T, Zhou ML, Xiao M, Wang H, Yang WH, Xu YC, Hsueh PR. Laboratory diagnosis of COVID-19 in China: A review of challenging cases and analysis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:17-26. [PMID: 33153907 PMCID: PMC7568515 DOI: 10.1016/j.jmii.2020.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/03/2020] [Accepted: 10/10/2020] [Indexed: 12/24/2022]
Abstract
Since the initial emergence of coronavirus disease 2019 (COVID-19) in Wuhan, Hubei province, China, a rapid spread of the disease occurred around the world, rising to become an international global health concern at pandemic level. In the face of this medical challenge threatening humans, the development of rapid and accurate methods for early screening and diagnosis of COVID-19 became crucial to containing the emerging public health threat, and prevent further spread within the population. Despite the large number of COVID-19 confirmed cases in China, some problematic cases with inconsistent laboratory testing results, were reported. Specifically, a high false-negative rate of 41% on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection by real-time reverse transcription-polymerase chain reaction (qRT-PCR) assays was observed in China. Although serological testing has been applied worldwide as a complementary method to help identify SARS-CoV-2, several limitations on its use have been reported in China. Therefore, the use of both qRT-PCR and serological testing in the diagnosis of COVID-19 in China and elsewhere, presented considerable challenges, but when used in combination, can be valuable tools in the fight against COVID-19. In this review, we give an overview of the advantages and disadvantages of different molecular techniques for SARS-CoV-2 detection that are currently used in several labs, including qRT-PCR, gene sequencing, loop-mediated isothermal amplification (LAMP), nucleic acid mass spectrometry (MS), and gene editing technique based on clustered regularly interspaced short palindromic repeats (CRISPR/Cas13) system. Then we mainly review and analyze some causes of false-negative qRT-PCR results, and how to resolve some of the diagnostic dilemma.
Collapse
Affiliation(s)
- Ran Jing
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, China
| | - Timothy Kudinha
- School of Biomedical Sciences, Charles Sturt University, Leeds Parade, Orange, NSW, 2800, Australia; NSW Health Pathology, Orange Pathology Lab, Orange, NSW, 2800, Australia.
| | - Meng-Lan Zhou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, China
| | - Meng Xiao
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, China
| | - He Wang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, China
| | - Wen-Hang Yang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, China
| | - Ying-Chun Xu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, China.
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
28
|
Arena F, Pollini S, Rossolini GM, Margaglione M. Summary of the Available Molecular Methods for Detection of SARS-CoV-2 during the Ongoing Pandemic. Int J Mol Sci 2021; 22:ijms22031298. [PMID: 33525651 PMCID: PMC7865767 DOI: 10.3390/ijms22031298] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Since early 2020, the COVID-19 pandemic has caused an excess in morbidity and mortality rates worldwide. Containment strategies rely firstly on rapid and sensitive laboratory diagnosis, with molecular detection of the viral genome in respiratory samples being the gold standard. The reliability of diagnostic protocols could be affected by SARS-CoV-2 genetic variability. In fact, mutations occurring during SARS-CoV-2 genomic evolution can involve the regions targeted by the diagnostic probes. Following a review of the literature and an in silico analysis of the most recently described virus variants (including the UK B 1.1.7 and the South Africa 501Y.V2 variants), we conclude that the described genetic variability should have minimal or no effect on the sensitivity of existing diagnostic protocols for SARS-CoV-2 genome detection. However, given the continuous emergence of new variants, the situation should be monitored in the future, and protocols including multiple targets should be preferred.
Collapse
Affiliation(s)
- Fabio Arena
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
- IRCCS Don Carlo Gnocchi Foundation, 50143 Florence, Italy
- Correspondence: ; Tel.: +39-0881-588064
| | - Simona Pollini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.P.); (G.M.R.)
- Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, 50134 Florence, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.P.); (G.M.R.)
- Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, 50134 Florence, Italy
| | - Maurizio Margaglione
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
29
|
Ellis P, Somogyvári F, Virok DP, Noseda M, McLean GR. Decoding Covid-19 with the SARS-CoV-2 Genome. CURRENT GENETIC MEDICINE REPORTS 2021; 9:1-12. [PMID: 33457109 PMCID: PMC7794078 DOI: 10.1007/s40142-020-00197-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 02/06/2023]
Abstract
Purpose of Review SARS-CoV-2, the recently emerged coronavirus (CoV) that is responsible for the current global pandemic Covid-19, first appeared in late 2019 in Wuhan, China. Here, we summarise details of the SARS-CoV-2 genome to assist understanding of the emergence, evolution and diagnosis of this deadly new virus. Recent Findings Based on high similarities in the genome sequences, the virus is thought to have arisen from SARS-like CoVs in bats but the lack of an intermediate species containing a CoV with even greater similarity has so far eluded discovery. The critical determinant of the SARS-CoV-2 genome is the spike (S) gene encoding the viral structural protein that interacts with the host cell entry receptor ACE2. The S protein is sufficiently adapted to bind human ACE2 much more readily than SARS-CoV, the most closely related human CoV. Summary Although the SARS-CoV-2 genome is undergoing subtle evolution in humans through mutation that may enhance transmission, there is limited evidence for attenuation that might weaken the virus. It is also still unclear as to the events that led to the virus’ emergence from bats. Importantly, current diagnosis requires specific recognition and amplification of the SARS-CoV-2 RNA genome by qPCR, despite these ongoing viral genome changes. Alternative diagnostic procedures relying on immunoassay are becoming more prevalent.
Collapse
Affiliation(s)
- Phoebe Ellis
- School of Human Sciences, London Metropolitan University, London, UK
| | - Ferenc Somogyvári
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | - Dezső P Virok
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Gary R McLean
- School of Human Sciences, London Metropolitan University, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK.,Cellular and Molecular Immunology Research Centre, London Metropolitan University, London, UK
| |
Collapse
|
30
|
Nidom RV, Indrasari S, Normalina I, Nidom AN, Afifah B, Dewi L, Putra AK, Ansori ANM, Kusala MKJ, Alamudi MY, Nidom CA. Phylogenetic and full-length genome mutation analysis of SARS-CoV-2 in Indonesia prior to COVID-19 vaccination program in 2021. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2021; 45:200. [PMID: 34840498 PMCID: PMC8606223 DOI: 10.1186/s42269-021-00657-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 11/07/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Indonesia has started the big project of COVID-19 vaccination program since 13 January 2021 by employing the first shot of vaccine to the President of Indonesia as the outbreak and rapid transmission of COVID-19 have endangered not only Indonesian but the global health and economy. This study aimed to investigate the full-length genome mutation analysis of 166 Indonesian SARS-CoV-2 isolates as of 12 January 2021. RESULTS All data of the isolates were extracted from the Global Initiative on Sharing All Influenza Data (GISAID) EpiCoV database. CoVsurver platform was employed to investigate the full-length genome mutation analysis of all isolates. This study also focused on the phylogeny analysis in unlocking the mutation of S protein in Indonesian SARS-CoV-2 isolates. WIV04 isolate that was originated from Wuhan, China was used as the virus reference according to the CoVsurver default. The result showed that a full-length genome mutation analysis of 166 Indonesian SARS-CoV-2 isolates was successfully generated. Every single mutation in S protein was described and then visualized by utilizing BioRender platform. Furthermore, it also found that D614G mutation appeared in 103 Indonesian SARS-CoV-2 isolates. CONCLUSIONS To sum up, this study helped to observe the spread of COVID-19 transmission. However, it also proposed that the epidemiological surveillance and genomics studies might be improved on COVID-19 pandemic in Indonesia. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s42269-021-00657-0.
Collapse
Affiliation(s)
- Reviany V. Nidom
- Coronavirus and Vaccine Formulation Research Group, Professor Nidom Foundation, Surabaya, Indonesia
- Riset AIRC Indonesia, Surabaya, Indonesia
| | - Setyarina Indrasari
- Coronavirus and Vaccine Formulation Research Group, Professor Nidom Foundation, Surabaya, Indonesia
- Riset AIRC Indonesia, Surabaya, Indonesia
| | - Irine Normalina
- Coronavirus and Vaccine Formulation Research Group, Professor Nidom Foundation, Surabaya, Indonesia
- Riset AIRC Indonesia, Surabaya, Indonesia
| | - Astria N. Nidom
- Coronavirus and Vaccine Formulation Research Group, Professor Nidom Foundation, Surabaya, Indonesia
| | - Balqis Afifah
- Coronavirus and Vaccine Formulation Research Group, Professor Nidom Foundation, Surabaya, Indonesia
| | - Lestari Dewi
- Faculty of Medicine, Universitas Hang Tuah, Surabaya, Indonesia
| | | | - Arif N. M. Ansori
- Coronavirus and Vaccine Formulation Research Group, Professor Nidom Foundation, Surabaya, Indonesia
- Program Pendidikan Magister Menuju Doktor Untuk Sarjana Unggul (PMDSU) Program - Batch III, Ministry of Education, Culture, Research, and Technology, Jakarta, Indonesia
| | - Muhammad K. J. Kusala
- Coronavirus and Vaccine Formulation Research Group, Professor Nidom Foundation, Surabaya, Indonesia
- Program Pendidikan Magister Menuju Doktor Untuk Sarjana Unggul (PMDSU) Program - Batch III, Ministry of Education, Culture, Research, and Technology, Jakarta, Indonesia
| | - Mohammad Y. Alamudi
- Coronavirus and Vaccine Formulation Research Group, Professor Nidom Foundation, Surabaya, Indonesia
| | - Chairul A. Nidom
- Coronavirus and Vaccine Formulation Research Group, Professor Nidom Foundation, Surabaya, Indonesia
- Riset AIRC Indonesia, Surabaya, Indonesia
- Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
31
|
Bezier C, Anthoine G, Charki A. Reliability of RT-PCR tests to detect SARS-CoV-2: risk analysis. INTERNATIONAL JOURNAL OF METROLOGY AND QUALITY ENGINEERING 2020. [DOI: 10.1051/ijmqe/2020009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The rapid escalation of the number of COVID-19 (Coronavirus Disease 2019) cases has forced countries around the world to implement systems for the widest possible testing of their populations. The World Health Organization (WHO) has in fact urged all countries to carry out as many tests as they can. Clinical laboratories have had to respond urgently to numerous and rising demands for diagnostic tests for SARS-CoV-2. The majority of laboratories have had to implement the RT-PCR (Reverse Transcriptase − Polymerase Chain Reaction) test method without the benefit of adequate experimental feedback. It is hoped that this article will make a useful contribution in the form of a methodology for the risk analysis of SARS-CoV-2 testing by RT-PCR and at the same time result reliability analysis of diagnostic tests, via an approach based on a combination of Fishbone Diagram and FMECA (Failure Mode, Effects, and Criticality Analysis) methods. The risk analysis is based on lessons learned from the actual experience of a real laboratory, which enabled the authors to pinpoint the principal risks that impact the reliability of RT-PCR test results. The probability of obtaining erroneous results (false positives or negatives) is implicit in the criticality assessment obtained via FMECA. In other words, the higher the criticality, the higher the risk of obtaining an erroneous result. These risks must therefore be controlled as a priority. The principal risks are studied for the following process stages: nucleic acid extraction, preparation of the mix and validation of results. For the extraction of nucleic acids, highly critical risks (exceeding the threshold set from experimentation) are the risk of error when depositing samples on the extraction plate and sample non-conformity. For the preparation of the mix the highest risks are a non-homogenous mix and, predominantly, errors when depositing samples on the amplification plate. For the validation of results, criticality can reach the maximum severity rating: here, the risks that require particular attention concern the interpretation of raw test data, poor IQC (Internal Quality Control) management and the manual entry of results and/or file numbers. Recommendations are therefore made with regard to human factor influences, internal contamination within the laboratory, management of reagents, other consumables and critical equipment, and the effect of sample quality. This article demonstrates the necessity to monitor, both internally and externally, the performance of the test process within a clinical laboratory in terms of quality and reliability.
Collapse
|
32
|
Bezier C, Anthoine G, Charki A. Reliability of real-time RT-PCR tests to detect SARS-Cov-2: A literature review. INTERNATIONAL JOURNAL OF METROLOGY AND QUALITY ENGINEERING 2020. [DOI: 10.1051/ijmqe/2020014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the face of the COVID-19 (Coronavirus Disease 2019) pandemic, the World Health Organization (WHO) has urged countries to test the population more widely. Clinical laboratories have been confronted with a huge demand for testing and have had to make urgent preparations for staff training, to establish new analytical processes, reorganize the workspace, and stock up on specific equipment and diagnostic test kits. The reliability of SARS-Cov-2 test results is of critical importance, given the impact it has on patient care and the management of the health crisis. A review of the literature available for the period leading up to and including June 2020 on the reliability of SARS-Cov-2 (Severe Acute Respiratory Syndrome Coronavirus) detection methods using real-time RT PCR (Reverse Transcription - Polymerase Chain Reaction) brings together the primary factors teams of scientists claim or demonstrate to affect the reliability of results. A description is given of the RT-PCR testing method, followed by a presentation of the characteristics and validation techniques used. A summary of data from the literature on the reliability of tests and commercial kits for SARS-Cov-2 detection, including current uncertainties with regard to the molecular targets selected and genetic diversity of SARS-Cov-2 is provided. The limitations and perspectives are then discussed in detail in the light of the bibliographic data available. Many questions have been asked that still remain unanswered. The lack of knowledge about this novel virus, which appeared at the end of 2019, has a significant impact on the technical capacity to develop reliable, rapid and practical tools for its detection.
Collapse
|
33
|
COVID-19 Infection Detection and Prevention by SARS-CoV-2 Active Antigens: A Synthetic Vaccine Approach. Vaccines (Basel) 2020; 8:vaccines8040692. [PMID: 33217916 PMCID: PMC7712209 DOI: 10.3390/vaccines8040692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 11/18/2022] Open
Abstract
COVID-19, a global pandemic causing to date more than 50 million cases and more than a million deaths, has to be controlled. SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) was identified as the causative agent. Controversy about this virus origin and infectious mechanism for adapting to humans remains a matter for discussion. Among all strategies for obtaining safe and potent vaccines, approaches based on attenuated-killed virus and non-replicating RNA viral vectors are demonstrating promising results. However, specificity of viral components targeted by human antibodies so far has not been demonstrated. A consistent strategy for obtaining functional-active antigens from SARS-CoV-2 specific ligands lead us to propose and test a number of synthetic components. From hundreds of starting sequences only fifteen fulfilled the design requirements and were produced as monomer and polymer forms and immuno-chemically tested. The design was based on worldwide representative reported virus genomes. A bioinformatics scheme by conventional methods and knowledge on MHC-I and II antigen processing mechanisms and HLA haplotype-restriction was performed including sensitive and resistant human populations to virus infection. Covid-19 patients’ sera reactivity for synthetic SARS-CoV-2-designed components have proven a high recognition of specific molecules, as well as some evidence for a long-lasting humoral immune response.
Collapse
|
34
|
Franco-Muñoz C, Álvarez-Díaz DA, Laiton-Donato K, Wiesner M, Escandón P, Usme-Ciro JA, Franco-Sierra ND, Flórez-Sánchez AC, Gómez-Rangel S, Rodríguez-Calderon LD, Barbosa-Ramirez J, Ospitia-Baez E, Walteros DM, Ospina-Martinez ML, Mercado-Reyes M. Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104557. [PMID: 32950697 PMCID: PMC7497549 DOI: 10.1016/j.meegid.2020.104557] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 is a new member of the genus Betacoronavirus, responsible for the COVID-19 pandemic. The virus crossed the species barrier and established in the human population taking advantage of the spike protein high affinity for the ACE receptor to infect the lower respiratory tract. The Nucleocapsid (N) and Spike (S) are highly immunogenic structural proteins and most commercial COVID-19 diagnostic assays target these proteins. In an unpredictable epidemic, it is essential to know about their genetic variability. The objective of this study was to describe the substitution frequency of the S and N proteins of SARS-CoV-2 in South America. A total of 504 amino acid and nucleotide sequences of the S and N proteins of SARS-CoV-2 from seven South American countries (Argentina, Brazil, Chile, Ecuador, Peru, Uruguay, and Colombia), reported as of June 3, and corresponding to samples collected between March and April 2020, were compared through substitution matrices using the Muscle algorithm. Forty-three sequences from 13 Colombian departments were obtained in this study using the Oxford Nanopore and Illumina MiSeq technologies, following the amplicon-based ARTIC network protocol. The substitutions D614G in S and R203K/G204R in N were the most frequent in South America, observed in 83% and 34% of the sequences respectively. Strikingly, genomes with the conserved position D614 were almost completely replaced by genomes with the G614 substitution between March to April 2020. A similar replacement pattern was observed with R203K/G204R although more marked in Chile, Argentina and Brazil, suggesting similar introduction history and/or control strategies of SARS-CoV-2 in these countries. It is necessary to continue with the genomic surveillance of S and N proteins during the SARS-CoV-2 pandemic as this information can be useful for developing vaccines, therapeutics and diagnostic tests.
Collapse
Affiliation(s)
- Carlos Franco-Muñoz
- Unidad de Secuenciación y Genómica, Grupo de Investigación Básica y Aplicada en Enfermedades Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; Grupo de Parasitología, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia.
| | - Diego A Álvarez-Díaz
- Unidad de Secuenciación y Genómica, Grupo de Investigación Básica y Aplicada en Enfermedades Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Katherine Laiton-Donato
- Unidad de Secuenciación y Genómica, Grupo de Investigación Básica y Aplicada en Enfermedades Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Magdalena Wiesner
- Grupo de Microbiología, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, Colombia
| | - Patricia Escandón
- Grupo de Microbiología, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, Colombia
| | - José A Usme-Ciro
- Unidad de Secuenciación y Genómica, Grupo de Investigación Básica y Aplicada en Enfermedades Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; Centro de Investigación en Salud para el Trópico-CIST, Universidad Cooperativa de Colombia, Santa Marta, 470003, Colombia
| | - Nicolás D Franco-Sierra
- Programa Ciencias de la Biodiversidad, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá 111311, Colombia
| | | | - Sergio Gómez-Rangel
- Grupo de Virología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Luz D Rodríguez-Calderon
- Grupo de Virología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Juliana Barbosa-Ramirez
- Grupo de Virología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Erika Ospitia-Baez
- Grupo de Virología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Diana M Walteros
- Dirección de Vigilancia en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | | | - Marcela Mercado-Reyes
- Unidad de Secuenciación y Genómica, Grupo de Investigación Básica y Aplicada en Enfermedades Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| |
Collapse
|
35
|
Álvarez-Díaz DA, Laiton-Donato K, Franco-Muñoz C, Mercado-Reyes M. SARS-CoV-2 sequencing: The technological initiative to strengthen early warning systems for public health emergencies in Latin America and the Caribbean. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2020; 40:188-197. [PMID: 33152203 PMCID: PMC7676827 DOI: 10.7705/biomedica.5841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 is a public health problem on a scale unprecedented in the last 100 years, as has been the response focused on the rapid genomic characterization of SARS-CoV-2 in virtually all regions of the planet. This pandemic emerged during the era of genomic epidemiology, a science fueled by continued advances in next-generation sequencing. Since its recent appearance, genomic epidemiology included the precise identification of new lineages or species of pathogens and the reconstruction of their genetic variability in real time, evidenced in past outbreaks of influenza H1N1, MERS, and SARS. However, the global and uncontrolled scale of this pandemic created a scenario where genomic epidemiology was put into practice en masse, from the rapid identification of SARS-CoV-2 to the registration of new lineages and their active surveillance throughout the world. Prior to the COVID-19 pandemic, the availability of genomic data on circulating pathogens in several Latin America and the Caribbean countries was scarce or nil. With the arrival of SARS-CoV-2, this scenario changed significantly, although the amount of available information remains scarce and, in countries such as Colombia, Brazil, Argentina, and Chile, the genomic information of SARS-CoV-2 was obtained mainly by research groups in genomic epidemiology rather than the product of a public health surveillance policy or program. This indicates the need to establish public health policies aimed at implementing genomic epidemiology as a tool to strengthen surveillance and early warning systems against threats to public health in the region.
Collapse
Affiliation(s)
- Diego A Álvarez-Díaz
- Unidad de Secuenciación y Genómica, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia; Grupo de Salud Materna y Perinatal, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia.
| | - Katherine Laiton-Donato
- Unidad de Secuenciación y Genómica, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D. C., Colombia.
| | - Carlos Franco-Muñoz
- Grupo de Parasitología, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D. C., Colombia.
| | - Marcela Mercado-Reyes
- Grupo de Salud Materna y Perinatal, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, Colombia; Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia.
| |
Collapse
|
36
|
Young BE, Fong SW, Chan YH, Mak TM, Ang LW, Anderson DE, Lee CYP, Amrun SN, Lee B, Goh YS, Su YCF, Wei WE, Kalimuddin S, Chai LYA, Pada S, Tan SY, Sun L, Parthasarathy P, Chen YYC, Barkham T, Lin RTP, Maurer-Stroh S, Leo YS, Wang LF, Renia L, Lee VJ, Smith GJD, Lye DC, Ng LFP. Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: an observational cohort study. Lancet 2020; 396:603-611. [PMID: 32822564 PMCID: PMC7434477 DOI: 10.1016/s0140-6736(20)31757-8] [Citation(s) in RCA: 336] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with a 382-nucleotide deletion (∆382) in the open reading frame 8 (ORF8) region of the genome have been detected in Singapore and other countries. We investigated the effect of this deletion on the clinical features of infection. METHODS We retrospectively identified patients who had been screened for the ∆382 variant and recruited to the PROTECT study-a prospective observational cohort study conducted at seven public hospitals in Singapore. We collected clinical, laboratory, and radiological data from patients' electronic medical records and serial blood and respiratory samples taken during hospitalisation and after discharge. Individuals infected with the ∆382 variant were compared with those infected with wild-type SARS-CoV-2. Exact logistic regression was used to examine the association between the infection groups and the development of hypoxia requiring supplemental oxygen (an indicator of severe COVID-19, the primary endpoint). Follow-up for the study's primary endpoint is completed. FINDINGS Between Jan 22 and March 21, 2020, 278 patients with PCR-confirmed SARS-CoV-2 infection were screened for the ∆382 deletion and 131 were enrolled onto the study, of whom 92 (70%) were infected with the wild-type virus, ten (8%) had a mix of wild-type and ∆382-variant viruses, and 29 (22%) had only the ∆382 variant. Development of hypoxia requiring supplemental oxygen was less frequent in the ∆382 variant group (0 [0%] of 29 patients) than in the wild-type only group (26 [28%] of 92; absolute difference 28% [95% CI 14-28]). After adjusting for age and presence of comorbidities, infection with the ∆382 variant only was associated with lower odds of developing hypoxia requiring supplemental oxygen (adjusted odds ratio 0·07 [95% CI 0·00-0·48]) compared with infection with wild-type virus only. INTERPRETATION The ∆382 variant of SARS-CoV-2 seems to be associated with a milder infection. The observed clinical effects of deletions in ORF8 could have implications for the development of treatments and vaccines. FUNDING National Medical Research Council Singapore.
Collapse
Affiliation(s)
- Barnaby E Young
- National Centre for Infectious Diseases, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Siew-Wai Fong
- Infectious Diseases Horizontal Technology Centre, Agency for Science, Technology, and Research, Singapore; Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore; Department of Biological Sciences, National University of Singapore, Singapore
| | - Yi-Hao Chan
- Infectious Diseases Horizontal Technology Centre, Agency for Science, Technology, and Research, Singapore; Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | | | - Li Wei Ang
- National Public Health and Epidemiology Unit, National Centre for Infectious Diseases, Singapore
| | | | - Cheryl Yi-Pin Lee
- Infectious Diseases Horizontal Technology Centre, Agency for Science, Technology, and Research, Singapore; Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Siti Naqiah Amrun
- Infectious Diseases Horizontal Technology Centre, Agency for Science, Technology, and Research, Singapore; Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Yun Shan Goh
- Infectious Diseases Horizontal Technology Centre, Agency for Science, Technology, and Research, Singapore; Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Yvonne C F Su
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Wycliffe E Wei
- National Public Health and Epidemiology Unit, National Centre for Infectious Diseases, Singapore
| | - Shirin Kalimuddin
- Duke-NUS Medical School, National University of Singapore, Singapore; Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Louis Yi Ann Chai
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Medicine, National University Health System, Singapore
| | - Surinder Pada
- Department of Medicine, Infectious Diseases Service, Ng Teng Fong General Hospital, Singapore
| | - Seow Yen Tan
- Department of Infectious Diseases, Changi General Hospital, Singapore
| | | | | | | | - Timothy Barkham
- Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Sebastian Maurer-Stroh
- National Centre for Infectious Diseases, Singapore; Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore; Department of Biological Sciences, National University of Singapore, Singapore; Global Initiative on Sharing All Influenza Data, Munich, Germany
| | - Yee-Sin Leo
- National Centre for Infectious Diseases, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Lin-Fa Wang
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Laurent Renia
- Infectious Diseases Horizontal Technology Centre, Agency for Science, Technology, and Research, Singapore; Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Vernon J Lee
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Ministry of Health, Singapore
| | - Gavin J D Smith
- Duke-NUS Medical School, National University of Singapore, Singapore.
| | - David Chien Lye
- National Centre for Infectious Diseases, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lisa F P Ng
- Infectious Diseases Horizontal Technology Centre, Agency for Science, Technology, and Research, Singapore; Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore.
| |
Collapse
|
37
|
Yuan X, Yang C, He Q, Chen J, Yu D, Li J, Zhai S, Qin Z, Du K, Chu Z, Qin P. Current and Perspective Diagnostic Techniques for COVID-19. ACS Infect Dis 2020; 6:1998-2016. [PMID: 32677821 PMCID: PMC7409380 DOI: 10.1021/acsinfecdis.0c00365] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 02/08/2023]
Abstract
Since late December 2019, the coronavirus pandemic (COVID-19; previously known as 2019-nCoV) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been surging rapidly around the world. With more than 1,700,000 confirmed cases, the world faces an unprecedented economic, social, and health impact. The early, rapid, sensitive, and accurate diagnosis of viral infection provides rapid responses for public health surveillance, prevention, and control of contagious diffusion. More than 30% of the confirmed cases are asymptomatic, and the high false-negative rate (FNR) of a single assay requires the development of novel diagnostic techniques, combinative approaches, sampling from different locations, and consecutive detection. The recurrence of discharged patients indicates the need for long-term monitoring and tracking. Diagnostic and therapeutic methods are evolving with a deeper understanding of virus pathology and the potential for relapse. In this Review, a comprehensive summary and comparison of different SARS-CoV-2 diagnostic methods are provided for researchers and clinicians to develop appropriate strategies for the timely and effective detection of SARS-CoV-2. The survey of current biosensors and diagnostic devices for viral nucleic acids, proteins, and particles and chest tomography will provide insight into the development of novel perspective techniques for the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Xi Yuan
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
| | - Chengming Yang
- Southern
University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China
| | - Qian He
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
| | - Junhu Chen
- National
Institute of Parasitic Diseases, Chinese
Center for Disease Control and Prevention, Shanghai 200025, China
| | - Dongmei Yu
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
- Department
of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jie Li
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
- Kunming
Dog Base of Police Security, Ministry of Public Security, Kunming, Yunnan 650204, China
| | - Shiyao Zhai
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
| | - Zhifeng Qin
- Animal &
Plant Inspection and Quarantine Technology Center, Shenzhen Customs District People’s Republic of China, Shenzhen, Guangdong 518045, China
| | - Ke Du
- Department
of Mechanical Engineering, Rochester Institute
of Technology, Rochester, New York 14623, United States
| | - Zhenhai Chu
- Southern
University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China
| | - Peiwu Qin
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
| |
Collapse
|
38
|
Jaroszewski L, Iyer M, Alisoltani A, Sedova M, Godzik A. The interplay of SARS-CoV-2 evolution and constraints imposed by the structure and functionality of its proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.10.244756. [PMID: 32817947 PMCID: PMC7430578 DOI: 10.1101/2020.08.10.244756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fast evolution of the SARS-CoV-2 virus provides us with unique information about the patterns of genetic changes in a single pathogen in the timescale of months. This data is used extensively to track the phylodynamic of the pandemic's spread and its split into distinct clades. Here we show that the patterns of SARS-CoV-2 virus mutations along its genome are closely correlated with the structural features of the coded proteins. We show that the foldability of proteins' 3D structures and conservation of their functions are the universal factors driving evolutionary selection in protein-coding genes. Insights from the analysis of mutation distribution in the context of the SARS-CoV-2 proteins' structures and functions have practical implications including evaluating potential antigen epitopes or selection of primers for PCR-based COVID-19 tests.
Collapse
Affiliation(s)
- Lukasz Jaroszewski
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA 92521
| | - Mallika Iyer
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Arghavan Alisoltani
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA 92521
| | - Mayya Sedova
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA 92521
| | - Adam Godzik
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA 92521
| |
Collapse
|