1
|
Bayarri-Olmos R, Sutta A, Rosbjerg A, Mortensen MM, Helgstrand C, Nielsen PF, Pérez-Alós L, González-García B, Johnsen LB, Matthiesen F, Egebjerg T, Hansen CB, Sette A, Grifoni A, da Silva Antunes R, Garred P. Unraveling the impact of SARS-CoV-2 mutations on immunity: insights from innate immune recognition to antibody and T cell responses. Front Immunol 2024; 15:1412873. [PMID: 39720734 PMCID: PMC11666439 DOI: 10.3389/fimmu.2024.1412873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
Throughout the COVID-19 pandemic, the emergence of new viral variants has challenged public health efforts, often evading antibody responses generated by infections and vaccinations. This immune escape has led to waves of breakthrough infections, raising questions about the efficacy and durability of immune protection. Here we focus on the impact of SARS-CoV-2 Delta and Omicron spike mutations on ACE-2 receptor binding, protein stability, and immune response evasion. Delta and Omicron variants had 3-5 times higher binding affinities to ACE-2 than the ancestral strain (KDwt = 23.4 nM, KDDelta = 8.08 nM, KDBA.1 = 4.77 nM, KDBA.2 = 4.47 nM). The pattern recognition molecule mannose-binding lectin (MBL) has been shown to recognize the spike protein. Here we found that MBL binding remained largely unchanged across the variants, even after introducing mutations at single glycan sites. Although MBL binding decreased post-vaccination, it increased by 2.6-fold upon IgG depletion, suggesting a compensatory or redundant role in immune recognition. Notably, we identified two glycan sites (N717 and N801) as potentially essential for the structural integrity of the spike protein. We also evaluated the antibody and T cell responses. Neutralization by serum immunoglobulins was predominantly mediated by IgG rather than IgA and was markedly impaired against the Delta (5.8-fold decrease) and Omicron variants BA.1 (17.4-fold) and BA.2 (14.2-fold). T cell responses, initially conserved, waned rapidly within 3 months post-Omicron infection. Our data suggests that immune imprinting may have hindered antibody and T cell responses toward the variants. Overall, despite decreased antibody neutralization, MBL recognition and T cell responses were generally unaffected by the variants. These findings extend our understanding of the complex interplay between viral adaptation and immune response, underscoring the importance of considering MBL interactions, immune imprinting, and viral evolution dynamics in developing new vaccine and treatment strategies.
Collapse
Affiliation(s)
- Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital,
Rigshospitalet, Copenhagen, Denmark
| | - Adrian Sutta
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital,
Rigshospitalet, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital,
Rigshospitalet, Copenhagen, Denmark
| | | | | | | | - Laura Pérez-Alós
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Beatriz González-García
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | - Cecilie Bo Hansen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, United States
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Jayaraman A, Walachowski S, Bosmann M. The complement system: A key player in the host response to infections. Eur J Immunol 2024; 54:e2350814. [PMID: 39188171 PMCID: PMC11623386 DOI: 10.1002/eji.202350814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Infections are one of the most significant healthcare and economic burdens across the world as underscored by the recent coronavirus pandemic. Moreover, with the increasing incidence of antimicrobial resistance, there is an urgent need to better understand host-pathogen interactions to design effective treatment strategies. The complement system is a key arsenal of the host defense response to pathogens and bridges both innate and adaptive immunity. However, in the contest between pathogens and host defense mechanisms, the host is not always victorious. Pathogens have evolved several approaches, including co-opting the host complement regulators to evade complement-mediated killing. Furthermore, deficiencies in the complement proteins, both genetic and therapeutic, can lead to an inefficient complement-mediated pathogen eradication, rendering the host more susceptible to certain infections. On the other hand, overwhelming infection can provoke fulminant complement activation with uncontrolled inflammation and potentially fatal tissue and organ damage. This review presents an overview of critical aspects of the complement-pathogen interactions during infection and discusses perspectives on designing therapies to mitigate complement dysfunction and limit tissue injury.
Collapse
Affiliation(s)
- Archana Jayaraman
- Department of Medicine, Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Sarah Walachowski
- Department of Medicine, Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Markus Bosmann
- Department of Medicine, Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
3
|
Oguz R, Ciftci HS, Gokce M, Ogret Y, Karadeniz S, Pehlivan S, Ozdilli K, Karakas Z, Karaman S, Aydın F. The association of HLA-DRB1 alleles and MBL2 gene variant in pediatric acute lymphoblastic leukemia patients. Hematol Transfus Cell Ther 2024; 46:327-334. [PMID: 37117150 PMCID: PMC11451356 DOI: 10.1016/j.htct.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/08/2022] [Accepted: 02/09/2023] [Indexed: 04/30/2023] Open
Abstract
INTRODUCTION Epidemiologic studies on pediatric acute lymphoblastic leukemias (ALL) have been conducted to evaluate the possible risk factors including genetic, infectious and environmental factors with the objective of idenfying the etiology. Mannose-binding lectin 2 (MBL2) plays an important role in first-line immune defense. HLA DRB1 alleles play a role in presentation of peptides to T cells and in activation of the adaptive immune response. OBJECTIVE In our study, we aimed to investigate both the MBL2 gene variant and HLA-DRB1 alleles in pediatric ALL patients. MATERIALS In this study, 86 high-risk ALL patients and 100 controls were included. Polymerase Chain Reaction (PCR)-Restriction Fragment Length Polymorphism (PCR-RFLP) and PCR-sequence specific primer (SSP) methods were used for detection of polymorphism of the MBL2 and HLA-DRB1 alleles, respectively. RESULTS The frequency of the MBL2 AB genotype was lower in female ALL patients, compared to male ALL patients (p = 0.034). An association was found between the MBL2 BB genotype and DRB1*07 and among patients with the MBL2 BB genotype; those who also carried the DRB1*07 and *04 alleles were significantly higher than those without the DRB1*07 and *04 alleles. (p = 0.048, p = 0.022, respectively). CONCLUSION This is the first study suggesting that the MBL2 BB genotype in association with the DRB1*07 or co-inheritance of the HLA-DRB1*04 and HLA DRB1*07 may have an impact on the etiopathogenesis of the disease.
Collapse
Affiliation(s)
- Rustu Oguz
- Istanbul T.C. Demiroğlu Bilim University, Faculty of Medicine, Istanbul, Turkey.
| | | | - Muge Gokce
- Istanbul Yeni Yuzyıl University, Gaziosmanpasa Hospital, Istanbul, Turkey
| | - Yeliz Ogret
- Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Sedat Karadeniz
- Kadir Has University, Graduate School of Science and Engineering, Istanbul, Turkey
| | - Sacide Pehlivan
- Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Kursat Ozdilli
- Medipol University, Faculty of Medicine, Istanbul, Turkey
| | - Zeynep Karakas
- Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Serap Karaman
- Division of Hematology and Oncology, Department of Pediatrics, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Filiz Aydın
- Istanbul T.C. Demiroğlu Bilim University, Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
4
|
Capraz M, Tekcan A, Cihangiroglu M, Nursal AF, Capraz A, Menekse E, Dortok Demir H, Kuruca N, Yigit S. The effect of the MBL2 gene rs1800450 variant on COVID-19 development in Turkish patients. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 44:79-89. [PMID: 39210720 DOI: 10.1080/15257770.2024.2395872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The coronavirus disease 2019 (COVID-19) is a recent pandemic occurring worldwide due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, spreading mainly through large respiratory droplets or maybe through other transmission routes. The human genome has the most varied immune response genes correlated with infectious diseases. Genetic variants of mannose-binding lectin 2 (MBL2), an immunomodulatory gene, were associated with the risk, severity, and frequency of viral infections. In the present study, we hypothesized that the MBL2 gene rs1800450 variant could be associated with the development of COVID-19 disease in a Turkish population. Ninety-eight COVID-19 patients and 98 healthy, ethnically matched controls were studied. We isolated genomic DNA from whole blood and analyzed the MBL2 rs1800450 using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Associations were analyzed with the SPSS 20 statistical software. We found that MBL2 rs1800450 genotype distribution was significantly different between patients and controls. The patients had a higher MBL2 rs1800450 AA genotype than the controls had (4.94% in patients vs. 3.12% in controls, p = 0.006). The subjects carrying AA genotype had a 10.83-fold increased risk for COVID-19 disease (OR = 10.83, %95 CI = 1.359-86.349). We could not detect any significant difference between the COVID-19 patients and healthy controls in allele frequencies. Our findings demonstrated that the MBL2 rs1800450 BB genotype might increase the susceptibility to COVID-19 disease in the Turkish population. We suggest further studies with a larger sample size and other ethnic populations.
Collapse
Affiliation(s)
- Mustafa Capraz
- Department of Internal Medicine, Faculty of Medicine, Amasya University, Amasya, Turkey
| | - Akin Tekcan
- Department of Medical Biology, Faculty of Medicine, Amasya University, Amasya, Turkey
| | - Mustafa Cihangiroglu
- Department of Infectious Diseases, Faculty of Medicine, Amasya University, Amasya, Turkey
| | - Ayse Feyda Nursal
- Department of Medical Genetics, Faculty of Medicine, Hitit University, Corum, Turkey
| | - Aylin Capraz
- Department of Chest Diseases, Faculty of Medicine, Amasya University, Amasya, Turkey
| | - Elif Menekse
- Laboratory of Medical Biochemistry, Amasya University Sabuncuoglu Serefeddin Education and Research Hospital, Amasya, Turkey
| | - Hatice Dortok Demir
- Department of Medical Biochemistry, Faculty of Medicine, Amasya University, Amasya, Turkey
| | - Nilufer Kuruca
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Serbulent Yigit
- Department of Genetics, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
5
|
Fredolini C, Dodig-Crnković T, Bendes A, Dahl L, Dale M, Albrecht V, Mattsson C, Thomas CE, Torinsson Naluai Å, Gisslen M, Beck O, Roxhed N, Schwenk JM. Proteome profiling of home-sampled dried blood spots reveals proteins of SARS-CoV-2 infections. COMMUNICATIONS MEDICINE 2024; 4:55. [PMID: 38565620 PMCID: PMC10987641 DOI: 10.1038/s43856-024-00480-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Self-sampling of dried blood spots (DBS) offers new routes to gather valuable health-related information from the general population. Yet, the utility of using deep proteome profiling from home-sampled DBS to obtain clinically relevant insights about SARS-CoV-2 infections remains largely unexplored. METHODS Our study involved 228 individuals from the general Swedish population who used a volumetric DBS sampling device and completed questionnaires at home during spring 2020 and summer 2021. Using multi-analyte COVID-19 serology, we stratified the donors by their response phenotypes, divided them into three study sets, and analyzed 276 proteins by proximity extension assays (PEA). After normalizing the data to account for variances in layman-collected samples, we investigated the association of DBS proteomes with serology and self-reported information. RESULTS Our three studies display highly consistent variance of protein levels and share associations of proteins with sex (e.g., MMP3) and age (e.g., GDF-15). Studying seropositive (IgG+) and seronegative (IgG-) donors from the first pandemic wave reveals a network of proteins reflecting immunity, inflammation, coagulation, and stress response. A comparison of the early-infection phase (IgM+IgG-) with the post-infection phase (IgM-IgG+) indicates several proteins from the respiratory system. In DBS from the later pandemic wave, we find that levels of a virus receptor on B-cells differ between seropositive (IgG+) and seronegative (IgG-) donors. CONCLUSIONS Proteome analysis of volumetric self-sampled DBS facilitates precise analysis of clinically relevant proteins, including those secreted into the circulation or found on blood cells, augmenting previous COVID-19 reports with clinical blood collections. Our population surveys support the usefulness of DBS, underscoring the role of timing the sample collection to complement clinical and precision health monitoring initiatives.
Collapse
Affiliation(s)
- Claudia Fredolini
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 65, Solna, Sweden
- Affinity Proteomics Unit, SciLifeLab Infrastructure, KTH Royal Institute of Technology, 171 65, Solna, Sweden
| | - Tea Dodig-Crnković
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 65, Solna, Sweden
| | - Annika Bendes
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 65, Solna, Sweden
| | - Leo Dahl
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 65, Solna, Sweden
| | - Matilda Dale
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 65, Solna, Sweden
- Affinity Proteomics Unit, SciLifeLab Infrastructure, KTH Royal Institute of Technology, 171 65, Solna, Sweden
| | - Vincent Albrecht
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 65, Solna, Sweden
| | - Cecilia Mattsson
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 65, Solna, Sweden
- Affinity Proteomics Unit, SciLifeLab Infrastructure, KTH Royal Institute of Technology, 171 65, Solna, Sweden
| | - Cecilia E Thomas
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 65, Solna, Sweden
| | - Åsa Torinsson Naluai
- Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Magnus Gisslen
- Department of Infectious Diseases, The Sahlgrenska Academy at University of Gothenburg, 405 30, Gothenburg, Sweden
- Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
- Public Health Agency of Sweden, 171 65, Solna, Sweden
| | - Olof Beck
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Niclas Roxhed
- MedTechLabs, BioClinicum, Karolinska University Hospital, 171 64, Solna, Sweden.
- Department of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology Stockholm, 100 44, Stockholm, Sweden.
| | - Jochen M Schwenk
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 65, Solna, Sweden.
| |
Collapse
|
6
|
Bermejo-Jambrina M, van der Donk LE, van Hamme JL, Wilflingseder D, de Bree G, Prins M, de Jong M, Nieuwkerk P, van Gils MJ, Kootstra NA, Geijtenbeek TB. Control of complement-induced inflammatory responses to SARS-CoV-2 infection by anti-SARS-CoV-2 antibodies. EMBO J 2024; 43:1135-1163. [PMID: 38418557 PMCID: PMC10987522 DOI: 10.1038/s44318-024-00061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/01/2024] Open
Abstract
Dysregulated immune responses contribute to the excessive and uncontrolled inflammation observed in severe COVID-19. However, how immunity to SARS-CoV-2 is induced and regulated remains unclear. Here, we uncover the role of the complement system in the induction of innate and adaptive immunity to SARS-CoV-2. Complement rapidly opsonizes SARS-CoV-2 particles via the lectin pathway. Complement-opsonized SARS-CoV-2 efficiently induces type-I interferon and pro-inflammatory cytokine responses via activation of dendritic cells, which are inhibited by antibodies against the complement receptors (CR) 3 and 4. Serum from COVID-19 patients, or monoclonal antibodies against SARS-CoV-2, attenuate innate and adaptive immunity induced by complement-opsonized SARS-CoV-2. Blocking of CD32, the FcγRII antibody receptor of dendritic cells, restores complement-induced immunity. These results suggest that opsonization of SARS-CoV-2 by complement is involved in the induction of innate and adaptive immunity to SARS-CoV-2 in the acute phase of infection. Subsequent antibody responses limit inflammation and restore immune homeostasis. These findings suggest that dysregulation of the complement system and FcγRII signaling may contribute to severe COVID-19.
Collapse
Affiliation(s)
- Marta Bermejo-Jambrina
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands.
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Lieve Eh van der Donk
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - John L van Hamme
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Godelieve de Bree
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
- Department of Internal Medicine, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria Prins
- Department of Internal Medicine, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, The Netherlands
| | - Menno de Jong
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location AMC University of Amsterdam, Amsterdam, The Netherlands
| | - Pythia Nieuwkerk
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, The Netherlands
- Department of Medical Psychology (J3-2019-1), Amsterdam UMC location AMC University of Amsterdam, Amsterdam, The Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location AMC University of Amsterdam, Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Teunis Bh Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
de Andrade LV, de Souza Sá MV, Vasconcelos B, Vasconcelos LRS, Khouri R, de Souza CDF, Armstrong ADC, do Carmo RF. High production MBL2 polymorphisms protect against COVID-19 complications in critically ill patients: A retrospective cohort study. Heliyon 2024; 10:e23670. [PMID: 38187242 PMCID: PMC10770498 DOI: 10.1016/j.heliyon.2023.e23670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Mannose-binding lectin (MBL) binds to SARS-CoV-2, inhibits infection of susceptible cells, and activates the complement system via the lectin pathway. In this study, we investigated the association of MBL2 polymorphisms with the risk of hospitalization and clinical worsening in patients with COVID-19. A total of 550 patients with COVID-19 were included (94 non-hospitalized and 456 hospitalized). Polymorphisms in MBL2 exon 1 (codons 52, 54 and 57) and promoter region (-550, -221, and +4) were determined by real-time PCR. MBL and complement proteins were measured by Luminex. A higher frequency of the H/H genotype and the HYPA haplotype was observed in non-hospitalized patients when compared to hospitalized. In addition, critically ill patients carrying haplotypes associated with high MBL levels (HYPA/HYPA + HYPA/LYPA + HYPA/LYQA + LYPA/LYQA + LYPA/LYPA + LYQA/LYQA + LXPA/HYPA + LXPA/LYQA + LXPA/LYPA) were protected against lower oxygen saturation levels (P = 0.02), use of invasive ventilation use (P = 0.02, OR 0.38), and shock (P = 0.01, OR 0.40), independent of other potential confounders adjusted by multivariate analysis. Our results suggest that variants in MBL2 associated with high MBL levels may play a protective role in the clinical course of COVID-19.
Collapse
Affiliation(s)
- Lorena Viana de Andrade
- Programa de Pós-graduação em Biociências, Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, Brazil
| | - Mirela Vanessa de Souza Sá
- Colegiado de Ciências Farmacêuticas, Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, Brazil
| | - Beatriz Vasconcelos
- Instituto de Pesquisa Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | | | - Ricardo Khouri
- Instituto de Pesquisa Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | | | | | - Rodrigo Feliciano do Carmo
- Programa de Pós-graduação em Biociências, Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, Brazil
- Colegiado de Ciências Farmacêuticas, Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, Brazil
| |
Collapse
|
8
|
Scialò F, Cernera G, Esposito S, Pinchera B, Gentile I, Di Domenico M, Bianco A, Pastore L, Amato F, Castaldo G. The MBL2 genotype relates to COVID-19 severity and may help to select the optimal therapy. Clin Chem Lab Med 2023; 61:2143-2149. [PMID: 37313996 DOI: 10.1515/cclm-2023-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Sars-CoV-2 acute infection is clinically heterogeneous, ranging from asymptomatic cases to patients with a severe, systemic clinical course. Among the involved factors age and preexisting morbidities play a major role; genetic host susceptibility contributes to modulating the clinical expression and outcome of the disease. Mannose-binding lectin is an acute-phase protein that activates the lectin-complement pathway, promotes opsonophagocytosis and modulates inflammation, and is involved in several bacterial and viral infections in humans. Understanding its role in Sars-CoV-2 infection could help select a better therapy. METHODS We studied MBL2 haplotypes in 419 patients with acute COVID-19 in comparison to the general population and related the haplotypes to clinical and laboratory markers of severity. RESULTS We recorded an enhanced frequency of MBL2 null alleles in patients with severe acute COVID-19. The homozygous null genotypes were significantly more frequent in patients with advanced WHO score 4-7 (OR of about 4) and related to more severe inflammation, neutrophilia, and lymphopenia. CONCLUSIONS Subjects with a defective MBL2 genotype (i.e., 0/0) are predisposed to a more severe acute Sars-CoV-2 infection; they may benefit from early replacement therapy with recombinant MBL. Furthermore, a subset of subjects with the A/A MBL genotype develop a relevant increase of serum MBL during the early phases of the disease and develop a more severe pulmonary disease; in these patients, the targeting of the complement may help. Therefore, COVID-19 patients should be tested at hospitalization with serum MBL analysis and MBL2 genotype, to define the optimal therapy.
Collapse
Affiliation(s)
- Filippo Scialò
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania "L. Vanvitelli", Naples, Italy
- CEINGE-Biotecnologie Avanzate, scarl, Naples, Italy
| | - Gustavo Cernera
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate, scarl, Naples, Italy
| | | | - Biagio Pinchera
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | - Ivan Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | - Marina Di Domenico
- Dipartimento di Medicina di Precisione, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Andrea Bianco
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Lucio Pastore
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate, scarl, Naples, Italy
| | - Felice Amato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate, scarl, Naples, Italy
| | - Giuseppe Castaldo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate, scarl, Naples, Italy
| |
Collapse
|
9
|
Usui R, Koizumi A, Nitta K, Kuribara T, Totani K. Multisite Partial Glycosylation Approach for Preparation of Biologically Relevant Oligomannosyl Branches Contribute to Lectin Affinity Analysis. J Org Chem 2023; 88:14357-14367. [PMID: 37792638 DOI: 10.1021/acs.joc.3c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
High-mannose-type glycans play essential biological roles, e.g., immune response and glycoprotein quality control, and preparing a series of oligomannosyl branches of high-mannose-type glycans is critical for biological studies. However, obtaining sufficient amounts of the various oligomannosyl branches is challenging. In this study, we demonstrated a partial glycosylation strategy for the single-step synthesis of various biologically relevant oligomannosyl-branched structures. First, Manα1-6(Manα1-3)Man-type oligomannosyl branch was synthesized via double glycosylation from a 3,6-di-OH mannosyl acceptor and fluorinated mannosyl donor with perfect α-selectivity. Subsequent partial glycosylation by reducing the equivalent of the mannosyl donor enabled to obtain biologically relevant Manα1-2Manα1-6(Manα1-2Manα1-3)Man, Manα1-6(Manα1-2Manα1-3)Man, Manα1-2Manα1-6(Manα1-3)Man, and Manα1-6(Manα1-3)Man in one-pot. Each oligomannosyl branch could be easily purified by liquid chromatography. The resulting structural isomers were identified by 2D-HMBC NMR. A systematic lectin affinity assay using the prepared oligomannosyl branches showed different specificities for the Galanthus nivalis lectin between structural isomers of the oligomannosyl branches with the same number of mannose residues..
Collapse
Affiliation(s)
- Ruchio Usui
- Department of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8863, Japan
| | - Akira Koizumi
- Department of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8863, Japan
| | - Kyohei Nitta
- Department of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8863, Japan
| | - Taiki Kuribara
- Department of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8863, Japan
| | - Kiichiro Totani
- Department of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8863, Japan
| |
Collapse
|
10
|
Sharma S, Kumari B, Ali A, Patel PK, Sharma AK, Nair R, Singh PK, Hajela K. Mannose-binding lectin gene 2 variant DD (rs 5030737) is associated with susceptibility to COVID-19 infection in the urban population of Patna City (India). Mol Genet Genomics 2023; 298:955-963. [PMID: 37204457 PMCID: PMC10196310 DOI: 10.1007/s00438-023-02030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
The study aimed to measure plasma levels of Mannose-Binding Lectin (MBL) and MBL-associated serine protease-2 (MASP-2) and their polymorphisms in COVID-19 patients and controls to detect association. As MBL is a protein of immunological importance, it may contribute to the first-line host defence against SARS-CoV-2. MBL initiates the lectin pathway of complement activation with help of MASP-1 and MASP-2. Hence, appropriate serum levels of MBL and MASPs are crucial in getting protection from the disease. The polymorphisms of MBL and MASP genes affect their plasma levels, impacting their protective function and thus may manifest susceptibility, extreme variability in the clinical symptoms and progression of COVID-19 disease. The present study was conducted to find plasma levels and genetic variations in MBL and MASP-2 in COVID-19 patients and controls using PCR-RFLP and ELISA, respectively.The present study was conducted to find plasma levels and genetic variations in MBL and MASP-2 in COVID-19 patients and controls using PCR-RFLP and ELISA, respectively. Our results indicate that median serum levels of MBL and MASP-2 were significantly low in diseased cases but attained normal levels on recovery. Only genotype DD was found to be associated with COVID-19 cases in the urban population of Patna city.
Collapse
Affiliation(s)
- Sadhana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, 801507, Bihar, India.
| | - Bandana Kumari
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, 801507, Bihar, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, 801507, Bihar, India
| | - Pankaj Kumar Patel
- Department of Botany, SBN Government PG College, Barwani, 451551, MP, India
| | - Abhay Kumar Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, 801507, Bihar, India
| | - Rathish Nair
- College of Nursing, All India Institute of Medical Sciences, Patna, 801507, Bihar, India
| | | | - Krishnan Hajela
- School of Life Sciences, Devi Ahilya Vishwavidyalaya, Indore, 452014, MP, India
| |
Collapse
|
11
|
Yilmaz D, Soyoz M, Sahin A, Cerci-Alkac B, Karahan-Coven HI, Ekemen-Keles Y, Ustundag G, Kara-Aksay A, Yilmaz N, Pirim İ. Association between mannose binding lectin gene polymorphisms and clinical severity of COVID-19 in children. Mol Biol Rep 2023:10.1007/s11033-023-08524-z. [PMID: 37231213 DOI: 10.1007/s11033-023-08524-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Mannose-binding lectin (MBL) is a member of innate immunity and acts with MASP (MBL-associated serine protease) to activate the lectin pathway of the complement system. MBL gene polymorphisms are associated with susceptibility to infectious diseases. This study investigated whether MBL2 genotype, serum MBL levels, and serum MASP-2 levels affect the course of SARS-CoV-2 infection. METHODS AND RESULTS Pediatric patients diagnosed with COVID-19 by positive real-time polymerase chain reaction (PCR) were included in the study. Single nucleotide polymorphisms in the promoter and exon 1 in the MBL2 gene (rs11003125, rs7096206, rs1800450, rs1800451, rs5030737) were identified by a PCR and restriction fragment length polymorphisms analysis. Serum MBL and MASP-2 levels were measured by ELISA. COVID-19 patients were divided into asymptomatic and symptomatic. Variables were compared between these two groups. A total of 100 children were included in the study. The mean age of the patients was 130 ± 67.2 months. Of the patients, 68 (68%) were symptomatic, and 32 (32%) were asymptomatic. The polymorphisms in the - 221nt and - 550nt promoter regions did not differ between groups (p > 0.05). All codon 52 and codon 57 genotypes were determined as wild-type AA. AB genotypes were found 45.6% in symptomatic patients while 23.5% in asymptomatics. Moreover, BB genotype was detected 9.4% in symptomatic and 6.3% in asymptomatic patients (p < 0.001). B allele was more frequent in symptomatic patients (46.3%) compared to asymptomatic patients (10.9%). (p < 0.001). Serum MBL and MASP-2 levels did not differ statistically between the groups (p = 0.295, p = 0.073). CONCLUSION These findings suggest that codon 54 polymorphism in the MBL2 gene exon-1 region can be associated with the symptomatic course of COVID-19.
Collapse
Affiliation(s)
- Dilek Yilmaz
- Department of Pediatric Infectious Diseases, Health Sciences University Tepecik Training and Research Hospital, Izmir, Turkey
- Department of Pediatric Infectious Diseases, Faculty of Medicine, Izmir Katip Çelebi University, Izmir, Turkey
| | - Mustafa Soyoz
- Department of Medical Biology and Genetics, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Aslıhan Sahin
- Department of Pediatric Infectious Diseases, Health Sciences University Tepecik Training and Research Hospital, Izmir, Turkey.
| | - Burcu Cerci-Alkac
- Department of Medical Biology and Genetics, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | | | - Yıldız Ekemen-Keles
- Department of Pediatric Infectious Diseases, Health Sciences University Tepecik Training and Research Hospital, Izmir, Turkey
| | - Gulnihan Ustundag
- Department of Pediatric Infectious Diseases, Health Sciences University Tepecik Training and Research Hospital, Izmir, Turkey
| | - Ahu Kara-Aksay
- Department of Pediatric Infectious Diseases, Health Sciences University Tepecik Training and Research Hospital, Izmir, Turkey
| | - Nisel Yilmaz
- Department of Medical Microbiology, Health Sciences University Tepecik Training and Research Hospital, Izmir, Turkey
| | - İbrahim Pirim
- Department of Medical Biology and Genetics, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| |
Collapse
|
12
|
Zelek WM, Harrison RA. Complement and COVID-19: Three years on, what we know, what we don't know, and what we ought to know. Immunobiology 2023; 228:152393. [PMID: 37187043 PMCID: PMC10174470 DOI: 10.1016/j.imbio.2023.152393] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus was identified in China in 2019 as the causative agent of COVID-19, and quickly spread throughout the world, causing over 7 million deaths, of which 2 million occurred prior to the introduction of the first vaccine. In the following discussion, while recognising that complement is just one of many players in COVID-19, we focus on the relationship between complement and COVID-19 disease, with limited digression into directly-related areas such as the relationship between complement, kinin release, and coagulation. Prior to the 2019 COVID-19 outbreak, an important role for complement in coronavirus diseases had been established. Subsequently, multiple investigations of patients with COVID-19 confirmed that complement dysregulation is likely to be a major driver of disease pathology, in some, if not all, patients. These data fuelled evaluation of many complement-directed therapeutic agents in small patient cohorts, with claims of significant beneficial effect. As yet, these early results have not been reflected in larger clinical trials, posing questions such as who to treat, appropriate time to treat, duration of treatment, and optimal target for treatment. While significant control of the pandemic has been achieved through a global scientific and medical effort to comprehend the etiology of the disease, through extensive SARS-CoV-2 testing and quarantine measures, through vaccine development, and through improved therapy, possibly aided by attenuation of the dominant strains, it is not yet over. In this review, we summarise complement-relevant literature, emphasise its main conclusions, and formulate a hypothesis for complement involvement in COVID-19. Based on this we make suggestions as to how any future outbreak might be better managed in order to minimise impact on patients.
Collapse
Affiliation(s)
- Wioleta M Zelek
- Dementia Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
13
|
Hurler L, Szilágyi Á, Mescia F, Bergamaschi L, Mező B, Sinkovits G, Réti M, Müller V, Iványi Z, Gál J, Gopcsa L, Reményi P, Szathmáry B, Lakatos B, Szlávik J, Bobek I, Prohászka ZZ, Förhécz Z, Csuka D, Kajdácsi E, Cervenak L, Kiszel P, Masszi T, Vályi-Nagy I, Würzner R, Lyons PA, Toonen EJM, Prohászka Z. Complement lectin pathway activation is associated with COVID-19 disease severity, independent of MBL2 genotype subgroups. Front Immunol 2023; 14:1162171. [PMID: 37051252 PMCID: PMC10084477 DOI: 10.3389/fimmu.2023.1162171] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
IntroductionWhile complement is a contributor to disease severity in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, all three complement pathways might be activated by the virus. Lectin pathway activation occurs through different pattern recognition molecules, including mannan binding lectin (MBL), a protein shown to interact with SARS-CoV-2 proteins. However, the exact role of lectin pathway activation and its key pattern recognition molecule MBL in COVID-19 is still not fully understood.MethodsWe therefore investigated activation of the lectin pathway in two independent cohorts of SARS-CoV-2 infected patients, while also analysing MBL protein levels and potential effects of the six major single nucleotide polymorphisms (SNPs) found in the MBL2 gene on COVID-19 severity and outcome.ResultsWe show that the lectin pathway is activated in acute COVID-19, indicated by the correlation between complement activation product levels of the MASP-1/C1-INH complex (p=0.0011) and C4d (p<0.0001) and COVID-19 severity. Despite this, genetic variations in MBL2 are not associated with susceptibility to SARS-CoV-2 infection or disease outcomes such as mortality and the development of Long COVID.ConclusionIn conclusion, activation of the MBL-LP only plays a minor role in COVID-19 pathogenesis, since no clinically meaningful, consistent associations with disease outcomes were noted.
Collapse
Affiliation(s)
- Lisa Hurler
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Ágnes Szilágyi
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Federica Mescia
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Laura Bergamaschi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Blanka Mező
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
- Research Group for Immunology and Haematology, Semmelweis University - Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - György Sinkovits
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Marienn Réti
- Department of Haematology and Stem Cell Transplantation, Central Hospital of Southern Pest - Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Zsolt Iványi
- Department of Anaesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - János Gál
- Department of Anaesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - László Gopcsa
- Department of Haematology and Stem Cell Transplantation, Central Hospital of Southern Pest - Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - Péter Reményi
- Department of Haematology and Stem Cell Transplantation, Central Hospital of Southern Pest - Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - Beáta Szathmáry
- Department of Infectology, Central Hospital of Southern Pest - Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - Botond Lakatos
- Department of Infectology, Central Hospital of Southern Pest - Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - János Szlávik
- Department of Infectology, Central Hospital of Southern Pest - Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - Ilona Bobek
- Department of Anaesthesiology and Intensive Therapy, Central Hospital of Southern Pest - Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - Zita Z. Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Zsolt Förhécz
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Dorottya Csuka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Erika Kajdácsi
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - László Cervenak
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Petra Kiszel
- Research Group for Immunology and Haematology, Semmelweis University - Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Tamás Masszi
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - István Vályi-Nagy
- Department of Haematology and Stem Cell Transplantation, Central Hospital of Southern Pest - Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Paul A. Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Erik J. M. Toonen
- Research and Development Department, Hycult Biotech, Uden, Netherlands
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
- Research Group for Immunology and Haematology, Semmelweis University - Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
- *Correspondence: Zoltán Prohászka,
| |
Collapse
|
14
|
Cappadona C, Rimoldi V, Paraboschi EM, Asselta R. Genetic susceptibility to severe COVID-19. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 110:105426. [PMID: 36934789 PMCID: PMC10022467 DOI: 10.1016/j.meegid.2023.105426] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of the coronavirus disease 2019 (COVID-19) pandemic. Clinical manifestations of the disease range from an asymptomatic condition to life-threatening events and death, with more severe courses being associated with age, male sex, and comorbidities. Besides these risk factors, intrinsic characteristics of the virus as well as genetic factors of the host are expected to account for COVID-19 clinical heterogeneity. Genetic studies have long been recognized as fundamental to identify biological mechanisms underlying congenital diseases, to pinpoint genes/proteins responsible for the susceptibility to different inherited conditions, to highlight targets of therapeutic relevance, to suggest drug repurposing, and even to clarify causal relationships that make modifiable some environmental risk factors. Though these studies usually take long time to be concluded and, above all, to translate their discoveries to patients' bedside, the scientific community moved really fast to deliver genetic signals underlying different COVID-19 phenotypes. In this Review, besides a concise description of COVID-19 symptomatology and of SARS-CoV-2 mechanism of infection, we aimed to recapitulate the current literature in terms of host genetic factors that specifically associate with an increased severity of the disease.
Collapse
Affiliation(s)
- Claudio Cappadona
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan 20090, Italy
| | - Valeria Rimoldi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan 20090, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan 20090, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan 20090, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy.
| |
Collapse
|
15
|
Esen SG, Basak C, Leyla Ö, Aslıhan A, Evrim Eylem A. The effect of ACE2 receptor, IFN-γ, and TNF-α polymorphisms on the severity and prognosis of the disease in SARS-CoV-2 infection. J Investig Med 2023; 71:526-535. [PMID: 36876951 PMCID: PMC9996099 DOI: 10.1177/10815589231158379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
To investigate the effect of genetic variations in the angiotensin converting enzyme (ACE), interferon (IFNG) and tumor necrosis factor (TNF-α) genes on the severity of coronavirus disease (COVID-19). Between September and December 2021, 33 patients with COVID-19 were included in this prospective study. The patients were classified and compared according to disease severity: mild&moderate (n = 26) vs severe&critical (n = 7). These groups were evaluated to assess possible relationships with ACE, TNF-α and IFNG gene variations using univariate and multivariable analyses. The median age of the mild&moderate group was 45.5 (22-73), and that of the severe&critical group was 58 (49-80) years (p = 0.014). Seventeen (65.4%) of the mild&moderate patients and 3 (42.9%) of severe&critical patients were female (p = 0.393). According to results of univariate analysis, the percentage of patients with the c.418-70C>G variant of the ACE gene was significantly higher in the mild&moderate group (p = 0.027). The ACE gene polymorphisms, c.2312C>T, c.3490G>A, c.3801C>T, and c.731A>G, were each only seen in separate patients with critical disease. The following variants were observed more frequently in the mild&moderate group: c.582C>T, c.3836G>A, c.511+66A>G, c.1488-58T>C, c.3281+25C>T, c.1710-90G>C, c.2193A> G, c.3387T>C for ACE; c.115-3delT for IFNG; and c.27C>T for TNF. It can be expected that patients carrying the ACE gene c.418-70C>G variant may present with a mild clinical manifestation of COVID-19. Several genetic polymorphisms may be associated with pathophysiology, as they appear to help predict COVID-19 severity and enable early identification of the patients requiring aggressive treatment.
Collapse
Affiliation(s)
- Sayın Gülensoy Esen
- Department of Chest Diseases, Ufuk University Faculty of Medicine, Ankara, Turkey
| | - Celtikci Basak
- Department of Biochemistry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Özer Leyla
- Department of Medical Genetics, Yüksek İhtisas University Faculty of Medicine, Ankara, Turkey
| | - Alhan Aslıhan
- Department of Biostatistics, Ufuk University Faculty of Medicine, Ankara, Turkey
| | - Akpınar Evrim Eylem
- Department of Chest Diseases, Ufuk University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
16
|
Kashiwagi Y, Suzuki S, Takahashi R, Yamanaka G, Hirai Y, Kawashima H. Association of the Mannose-Binding Lectin 2 BB Genotype with COVID-19-Related Mortality. Life (Basel) 2023; 13:life13020382. [PMID: 36836739 PMCID: PMC9961194 DOI: 10.3390/life13020382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/22/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Mannose-binding lectin (MBL) is crucial in first-line immune defenses. There are still many unknown factors regarding the mechanisms causing variability in the clinical course of coronavirus disease 2019 (COVID-19). In Japan, there have been few reports to date regarding the association between MBL and COVID-19. It has been demonstrated that the MBL2 gene B variant at codon 54 (rs1800450) is associated with variabilities in the clinical course of COVID-19. We aimed to investigate how the level of serum MBL and the codon 54 variant of MBL (rs1800450) affect the disease severity of COVID-19. A total of 59 patients from the fourth wave and 49 patients from the fifth wave in Japan were analyzed based on serum MBL levels using ELISA and the genotype of MBL2 codon 54 using PCR reaction. There was no significant association between serum MBL levels and age. MBL2 genotype was independent of age, there was no significant difference in different COVID-19 severities, MBL genotypes, and serum MBL levels. Binary logistic regression analysis to identify predisposing factors for severe COVID-19 symptoms demonstrated that patients with the BB genotype had a higher risk of death from COVID-19. Our results quantitatively demonstrated that the BB genotype might be a factor associated with death from COVID-19.
Collapse
Affiliation(s)
- Yasuyo Kashiwagi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
- Correspondence: ; Tel.: +81-3-3342-6111; Fax: +81-3-3344-0643
| | - Shinji Suzuki
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Ryo Takahashi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Gaku Yamanaka
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Yuji Hirai
- Department of Infectious Diseases, Tokyo Medical University Hachioji Medical Center, Tokyo 160-0023, Japan
| | - Hisashi Kawashima
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
- Kohsei Chuo General Hospital, Tokyo 160-0023, Japan
| |
Collapse
|
17
|
Queiroz MAF, Santiago AM, Brito WRDS, Pereira KAS, de Brito WB, Torres MKDS, Lopes JDC, dos Santos EF, da Costa FP, de Sarges KML, Cantanhede MHD, de Brito MTFM, da Silva ALS, Leite MDM, Viana MDNDSDA, Rodrigues FBB, da Silva R, Viana GMR, Chaves TDSS, Veríssimo ADOL, Carvalho MDS, Henriques DF, dos Santos CP, Nunes JAL, Costa IB, Amoras EDSG, Lima SS, Cayres-Vallinoto IMV, Brasil-Costa I, Quaresma JAS, Falcão LFM, dos Santos EJM, Vallinoto ACR. Polymorphisms in the MBL2 gene are associated with the plasma levels of MBL and the cytokines IL-6 and TNF-α in severe COVID-19. Front Immunol 2023; 14:1151058. [PMID: 37138871 PMCID: PMC10149935 DOI: 10.3389/fimmu.2023.1151058] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Mannose-binding lectin (MBL) promotes opsonization, favoring phagocytosis and activation of the complement system in response to different microorganisms, and may influence the synthesis of inflammatory cytokines. This study investigated the association of MBL2 gene polymorphisms with the plasma levels of MBL and inflammatory cytokines in COVID-19. Methods Blood samples from 385 individuals (208 with acute COVID-19 and 117 post-COVID-19) were subjected to real-time PCR genotyping. Plasma measurements of MBL and cytokines were performed by enzyme-linked immunosorbent assay and flow cytometry, respectively. Results The frequencies of the polymorphic MBL2 genotype (OO) and allele (O) were higher in patients with severe COVID-19 (p< 0.05). The polymorphic genotypes (AO and OO) were associated with lower MBL levels (p< 0.05). IL-6 and TNF-α were higher in patients with low MBL and severe COVID-19 (p< 0.05). No association of polymorphisms, MBL levels, or cytokine levels with long COVID was observed. Discussion The results suggest that, besides MBL2 polymorphisms promoting a reduction in MBL levels and therefore in its function, they may also contribute to the development of a more intense inflammatory process responsible for the severity of COVID-19.
Collapse
Affiliation(s)
- Maria Alice Freitas Queiroz
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- *Correspondence: Maria Alice Freitas Queiroz,
| | - Angélica Menezes Santiago
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua, Brazil
| | - Wandrey Roberto dos Santos Brito
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Keise Adrielle Santos Pereira
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - William Botelho de Brito
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua, Brazil
| | - Maria Karoliny da Silva Torres
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Jeferson da Costa Lopes
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Erika Ferreira dos Santos
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Flávia Póvoa da Costa
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Kevin Matheus Lima de Sarges
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Marcos Henrique Damasceno Cantanhede
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | | | - Mauro de Meira Leite
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Maria de Nazaré do Socorro de Almeida Viana
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Fabíola Brasil Barbosa Rodrigues
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Rosilene da Silva
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Giselle Maria Rachid Viana
- Laboratory of Basic Research in Malaria, Parasitology Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
| | - Tânia do Socorro Souza Chaves
- Laboratory of Basic Research in Malaria, Parasitology Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
- School of Medicine, Institute of Medical Sciences, Federal University of Pará, Pará, Brazil
| | | | | | - Daniele Freitas Henriques
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Arbovirology and Hemorrhagic Fevers Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ananindeua, Brazil
| | - Carla Pinheiro dos Santos
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Arbovirology and Hemorrhagic Fevers Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ananindeua, Brazil
| | - Juliana Abreu Lima Nunes
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Brazilian Ministry of Health, Ananindeua, Brazil
| | - Iran Barros Costa
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua, Brazil
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Brazilian Ministry of Health, Ananindeua, Brazil
| | | | - Sandra Souza Lima
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Izaura Maria Vieira Cayres-Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Igor Brasil-Costa
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua, Brazil
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Brazilian Ministry of Health, Ananindeua, Brazil
| | | | | | - Eduardo José Melo dos Santos
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
| |
Collapse
|
18
|
Gupta K, Kaur G, Pathak T, Banerjee I. Systematic review and meta-analysis of human genetic variants contributing to COVID-19 susceptibility and severity. Gene 2022; 844:146790. [PMID: 35987511 PMCID: PMC9384365 DOI: 10.1016/j.gene.2022.146790] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic has spawned global health crisis of unprecedented magnitude, claiming millions of lives and pushing healthcare systems in many countries to the brink. Among several factors that contribute to an increased risk of COVID-19 and progression to exacerbated manifestations, host genetic landscape is increasingly being recognized as a critical determinant of susceptibility/resistance to infection and a prognosticator of clinical outcomes in infected individuals. Recently, several case-control association studies investigated the influence of human gene variants on COVID-19 susceptibility and severity to identify the culpable mutations. However, a comprehensive synthesis of the recent advances in COVID-19 host genetics research was lacking, and the inconsistent findings of the association studies required reliable evaluation of the strength of association with greater statistical power. In this study, we embarked on a systematic search of all possible reports of genetic association with COVID-19 till April 07, 2022, and performed meta-analyses of all the genetic polymorphisms that were examined in at least three studies. After identifying a total of 84 studies that investigated the association of 130 polymorphisms in 61 genes, we performed meta-analyses of all the eligible studies. Seven genetic polymorphisms involving 15,550 cases and 444,007 controls were explored for association with COVID-19 susceptibility, of which, ACE1 I/D rs4646994/rs1799752, APOE rs429358, CCR5 rs333, and IFITM3 rs12252 showed increased risk of infection. Meta-analyses of 11 gene variants involving 6702 patients with severe COVID-19 and 8640 infected individuals with non-severe manifestations revealed statistically significant association of ACE2 rs2285666, ACE2 rs2106809, ACE2 rs2074192, AGTR1 rs5186, and TNFA rs1800629 with COVID-19 severity. Overall, our study presents a synthesis of evidence on all the genetic determinants implicated in COVID-19 to date, and provides evidence of correlation between the above polymorphisms with COVID-19 susceptibility and severity.
Collapse
Affiliation(s)
| | | | | | - Indranil Banerjee
- Cellular Virology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Sector 81, S.A.S Nagar, Mohali 140306, India.
| |
Collapse
|
19
|
Gupta A, Gupta GS. Applications of mannose-binding lectins and mannan glycoconjugates in nanomedicine. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2022; 24:228. [PMID: 36373057 PMCID: PMC9638366 DOI: 10.1007/s11051-022-05594-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/12/2022] [Indexed: 06/01/2023]
Abstract
UNLABELLED Glycosylated nanoparticles (NPs) have drawn a lot of attention in the biomedical field over the past few decades, particularly in applications like targeted drug delivery. Mannosylated NPs and mannan-binding lectins/proteins (MBL/MBP) are emerging as promising tools for delivery of drugs, medicines, and enzymes to targeted tissues and cells as nanocarriers, enhancing their therapeutic benefits while avoiding the adverse effects of the drug. The occurrence of plenty of lectin receptors and their mannan ligands on cell surfaces makes them multifaceted carriers appropriate for specific delivery of bioactive drug materials to their targeted sites. Thus, the present review describes the tethering of mannose (Man) to several nanostructures, like micelles, liposomes, and other NPs, applicable for drug delivery systems. Bioadhesion through MBL-like receptors on cells has involvements applicable to additional arenas of science, for example gene delivery, tissue engineering, biomaterials, and nanotechnology. This review also focuses on the role of various aspects of drug/antigen delivery using (i) mannosylated NPs, (ii) mannosylated lectins, (iii) amphiphilic glycopolymer NPs, and (iv) natural mannan-containing polysaccharides, with most significant applications of MBL-based NPs as multivalent scaffolds, using different strategies. GRAPHICAL ABSTRACT Mannosylated NPs and/or MBL/MBP are coming up as viable and versatile tools as nanocarriers to deliver drugs and enzymes precisely to their target tissues or cells. The presence of abundant number of lectin receptors and their mannan ligands on cell surfaces makes them versatile carriers suitable for the targeted delivery of bioactive drugs.
Collapse
Affiliation(s)
- Anita Gupta
- Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - G. S. Gupta
- Department of Biophysics, Panjab University, Chandigarh, 160014 India
| |
Collapse
|
20
|
Ishak A, Mehendale M, AlRawashdeh MM, Sestacovschi C, Sharath M, Pandav K, Marzban S. The association of COVID-19 severity and susceptibility and genetic risk factors: A systematic review of the literature. Gene 2022; 836:146674. [PMID: 35714803 PMCID: PMC9195407 DOI: 10.1016/j.gene.2022.146674] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND COVID-19 is associated with several risk factors such as distinct ethnicities (genetic ancestry), races, sexes, age, pre-existing comorbidities, smoking, and genetics. The authors aim to evaluate the correlation between variability in the host genetics and the severity and susceptibility towards COVID-19 in this study. METHODS Following the PRISMA guidelines, we retrieved all the relevant articles published until September 15, 2021, from two online databases: PubMed and Scopus. FINDINGS High-risk HLA haplotypes, higher expression of ACE polymorphisms, and several genes of cellular proteases such as TMPRSS2, FURIN, TLL-1 increase the risk of susceptibility and severity of COVID-19. In addition, upregulation of several genes encoding for both innate and acquired immune systems proteins, mainly CCR5, IFNs, TLR, DPPs, and TNF, positively correlate with COVID-19 severity. However, reduced expression or polymorphisms in genes affecting TLR and IFNλ increase COVID-19 severity. CONCLUSION Higher expression, polymorphisms, mutations, and deletions of several genes are linked with the susceptibility, severity, and clinical outcomes of COVID-19. Early treatment and vaccination of individuals with genetic predisposition could help minimize the severity and mortality associated with COVID-19.
Collapse
Affiliation(s)
- Angela Ishak
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA.
| | - Meghana Mehendale
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Mousa M AlRawashdeh
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA; European University Cyprus - School of Medicine, Nicosia, Cyprus
| | - Cristina Sestacovschi
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Medha Sharath
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA; Bangalore Medical College and Research Institute, Bangalore, Karnataka, India
| | - Krunal Pandav
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Sima Marzban
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| |
Collapse
|
21
|
Gianni P, Goldin M, Ngu S, Zafeiropoulos S, Geropoulos G, Giannis D. Complement-mediated microvascular injury and thrombosis in the pathogenesis of severe COVID-19: A review. World J Exp Med 2022; 12:53-67. [PMID: 36157337 PMCID: PMC9350720 DOI: 10.5493/wjem.v12.i4.53] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) causes acute microvascular thrombosis in both venous and arterial structures which is highly associated with increased mortality. The mechanisms leading to thromboembolism are still under investigation. Current evidence suggests that excessive complement activation with severe amplification of the inflammatory response (cytokine storm) hastens disease progression and initiates complement-dependent cytotoxic tissue damage with resultant prothrombotic complications. The concept of thromboinflammation, involving overt inflammation and activation of the coagulation cascade causing thrombotic microangiopathy and end-organ damage, has emerged as one of the core components of COVID-19 pathogenesis. The complement system is a major mediator of the innate immune response and inflammation and thus an appealing treatment target. In this review, we discuss the role of complement in the development of thrombotic microangiopathy and summarize the current data on complement inhibitors as COVID-19 therapeutics.
Collapse
Affiliation(s)
- Panagiota Gianni
- Department of Internal Medicine III, Hematology, Oncology, Palliative Medicine, Rheumatology and Infectious Diseases, University Hospital Ulm, Ulm 89070, Germany
| | - Mark Goldin
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, New York, NY 11549, United States
- Feinstein Institutes for Medical Research at Northwell Health, Feinstein Institutes , New York, NY 11030, United States
| | - Sam Ngu
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, New York, NY 11549, United States
| | - Stefanos Zafeiropoulos
- Elmezzi Graduate School of Molecular Medicine, Northwell Health, New York, NY 11030, United States
| | - Georgios Geropoulos
- Department of General Surgery, University College London Hospitals, London NW12BU, United Kingdom
| | - Dimitrios Giannis
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, New York, NY 11549, United States
- North Shore/Long Island Jewish General Surgery, Northwell Health, New York, NY 11021, United States
| |
Collapse
|
22
|
Dieter C, Brondani LDA, Leitão CB, Gerchman F, Lemos NE, Crispim D. Genetic polymorphisms associated with susceptibility to COVID-19 disease and severity: A systematic review and meta-analysis. PLoS One 2022; 17:e0270627. [PMID: 35793369 PMCID: PMC9258831 DOI: 10.1371/journal.pone.0270627] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/15/2022] [Indexed: 12/17/2022] Open
Abstract
Although advanced age and presence of comorbidities significantly impact the variation observed in the clinical symptoms of COVID-19, it has been suggested that genetic variants may also be involved in the disease. Thus, the aim of this study was to perform a systematic review with meta-analysis of the literature to identify genetic polymorphisms that are likely to contribute to COVID-19 pathogenesis. Pubmed, Embase and GWAS Catalog repositories were systematically searched to retrieve articles that investigated associations between polymorphisms and COVID-19. For polymorphisms analyzed in 3 or more studies, pooled OR with 95% CI were calculated using random or fixed effect models in the Stata Software. Sixty-four eligible articles were included in this review. In total, 8 polymorphisms in 7 candidate genes and 74 alleles of the HLA loci were analyzed in 3 or more studies. The HLA-A*30 and CCR5 rs333Del alleles were associated with protection against COVID-19 infection, while the APOE rs429358C allele was associated with risk for this disease. Regarding COVID-19 severity, the HLA-A*33, ACE1 Ins, and TMPRSS2 rs12329760T alleles were associated with protection against severe forms, while the HLA-B*38, HLA-C*6, and ApoE rs429358C alleles were associated with risk for severe forms of COVID-19. In conclusion, polymorphisms in the ApoE, ACE1, TMPRSS2, CCR5, and HLA loci appear to be involved in the susceptibility to and/or severity of COVID-19.
Collapse
Affiliation(s)
- Cristine Dieter
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Letícia de Almeida Brondani
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiane Bauermann Leitão
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernando Gerchman
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Natália Emerim Lemos
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
23
|
Tukek T, Pehlivan S, Oyaci Y, Isoglu-Alkac U. Mannose-Binding Lectin 2 Gene Polymorphism during Pandemic: COVID-19 Family. Glob Med Genet 2022; 9:185-188. [PMID: 35707789 PMCID: PMC9192174 DOI: 10.1055/s-0042-1743258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/29/2021] [Indexed: 01/08/2023] Open
Abstract
Mannose-binding lectin 2 (MBL2) is a serine protease which is believed to be an important factor in the inherited immune system. In this article, we present a coronavirus disease 2019 (COVID-19) family of five patients: a 56-year-old father, a 51-year-old mother, two sons aged 23 and 21 years, and a 15-year-old daughter. According to the results of
MBL2rs1800450
variant analysis performed, the father had homozygous mutant, the mother had homozygous normal, and the three children had heterozygous mutant genotype. When we compared the clinical parameters and genotypes,
MBL2
gene polymorphism plays a very important role in COVID-19 susceptibility and severe disease. The family, which makes up our study, is the proof of this situation, and it contains important implications for host factors and COVID-19.
Collapse
Affiliation(s)
- Tufan Tukek
- Department of Internal Medicine, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sacide Pehlivan
- Department of Medical Biology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Yasemin Oyaci
- Department of Medical Biology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ummuhan Isoglu-Alkac
- Department of Physiology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
24
|
Ahmed MN, Jahan R, Nissapatorn V, Wilairatana P, Rahmatullah M. Plant lectins as prospective antiviral biomolecules in the search for COVID-19 eradication strategies. Biomed Pharmacother 2022; 146:112507. [PMID: 34891122 PMCID: PMC8648558 DOI: 10.1016/j.biopha.2021.112507] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Lectins or clusters of carbohydrate-binding proteins of non-immune origin are distributed chiefly in the Plantae. Lectins have potent anti-infectivity properties for several RNA viruses including SARS-CoV-2. The primary purpose of this review is to review the ability of lectins mediated potential biotherapeutic and bioprophylactic strategy against coronavirus causing COVID-19. Lectins have binding affinity to the glycans of SARS-COV-2 Spike glycoprotein that has N-glycosylation sites. Apart from this, the complement lectin pathway is a "first line host defense" against the viral infection that is activated by mannose-binding lectins. Mannose-binding lectins deficiency in serum influences innate immunity of the host and facilitates infectious diseases including COVID-19. Our accumulated evidence obtained from scientific databases particularly PubMed and Google Scholar databases indicate that mannose-specific/mannose-binding lectins (MBL) have potent efficacies like anti-infectivity, complement cascade induction, immunoadjuvants, DC-SIGN antagonists, or glycomimetic approach, which can prove useful in the strategy of COVID-19 combat along with the glycobiological aspects of SARS-CoV-2 infections and antiviral immunity. For example, plant-derived mannose-specific lectins BanLac, FRIL, Lentil, and GRFT from red algae can inhibit and neutralize SARS-CoV-2 infectivity, as confirmed with in-vitro, in-vivo, and in-silico assessments. Furthermore, Bangladesh has a noteworthy resource of antiviral medicinal plants as well as plant lectins. Intensifying research on the antiviral plant lectins, adopting a glyco-biotechnological approach, and with deeper insights into the "glycovirological" aspects may result in the designing of alternative and potent blueprints against the 21st century's biological pandemic of SARS-CoV-2 causing COVID-19.
Collapse
Affiliation(s)
- Md Nasir Ahmed
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh; Biotechnology & Natural Medicine Division, TechB Nutrigenomics, Dhaka, Bangladesh.
| | - Rownak Jahan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh.
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh.
| |
Collapse
|
25
|
Stravalaci M, Pagani I, Paraboschi EM, Pedotti M, Doni A, Scavello F, Mapelli SN, Sironi M, Perucchini C, Varani L, Matkovic M, Cavalli A, Cesana D, Gallina P, Pedemonte N, Capurro V, Clementi N, Mancini N, Invernizzi P, Bayarri-Olmos R, Garred P, Rappuoli R, Duga S, Bottazzi B, Uguccioni M, Asselta R, Vicenzi E, Mantovani A, Garlanda C. Recognition and inhibition of SARS-CoV-2 by humoral innate immunity pattern recognition molecules. Nat Immunol 2022; 23:275-286. [PMID: 35102342 DOI: 10.1038/s41590-021-01114-w] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022]
|
26
|
Uysalol EP, Uysalol M, Pehlivan M, Oyaci Y, Pehlivan S, Serin I. Association of mannose-binding lectin 2 (MBL2) and suppressor of cytokine signaling-1 (SOCS1) gene variants in children with febrile neutropenia. J Infect Chemother 2022; 28:657-662. [PMID: 35115241 DOI: 10.1016/j.jiac.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Febrile neutropenia (FEN) was reported in patients with solid malignancies at a rate of 5-10% and in patients with hematological malignancies at a rate of 20-25%. In our study, we aimed to investigate the effects of mannose-binding lectin 2 (MBL2) (rs1800450) and suppressor of cytokine signaling-1 (SOCS1) (rs33989964) gene variants on patients with FEN. METHODS A total of 123 patients who applied to pediatric emergency department between December 2019-12/2020 included in the study. Thirteen patients were excluded from the study due to the inability to obtain DNA. Demographic-clinical features at initial diagnosis and genotype distributions were recorded. The control group consisted of volunteers with the same ethnicity, age and gender, no active infection, and no consanguinity. RESULTS CA/CA genotype of SOCS1 was found to be significantly higher in the healthy control group (p = 0.028). AB/BB genotype of MBL2 was significantly higher in FEN patients with a MASCC score of high risk, AA genotype was found to be higher in patients with low risk (p = 0.001). While the rate of microbiologically documented infection (MDI) was significantly lower in patients with the AA genotype of MBL2, it was significantly higher in patients with AA/BB genotypes (p = 0.025). MDI rate in patients with the del/del genotype of SOCS1 was found to be significantly lower than in patients with CA/CA + CA/del genotypes (p = 0.026). CONCLUSIONS In this study, it was revealed that low expression-related MBL2 genotypes were riskier for FEN and also, gene variants associated with high SOCS1 transcription were both protective against FEN and increased the rate of culture-negativity.
Collapse
Affiliation(s)
- Ezgi Pasli Uysalol
- Basaksehir Cam and Sakura City Hospital, Department of Pediatric Hematology- Oncology, Turkey
| | - Metin Uysalol
- Istanbul University, Istanbul Faculty of Medicine, Department of Pediatrics, Division of Pediatric Emergency, Turkey
| | - Mustafa Pehlivan
- Gaziantep University, Faculty of Medicine, Department of Hematology, Turkey
| | - Yasemin Oyaci
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Biology and Genetics, Turkey
| | - Sacide Pehlivan
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Biology and Genetics, Turkey
| | - Istemi Serin
- University of Health Science, Istanbul Training and Research Hospital, Department of Department of Hematology, Turkey.
| |
Collapse
|
27
|
Feng S, Song F, Guo W, Tan J, Zhang X, Qiao F, Guo J, Zhang L, Jia X. Potential Genes Associated with COVID-19 and Comorbidity. Int J Med Sci 2022; 19:402-415. [PMID: 35165525 PMCID: PMC8795808 DOI: 10.7150/ijms.67815] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2022] Open
Abstract
Hypertension, diabetes mellitus, and coronary artery disease are common comorbidities and dangerous factors for infection and serious COVID-19. Polymorphisms in genes associated with comorbidities may help observe susceptibility and disease severity variation. However, specific genetic factors and the extent to which they can explain variation in susceptibility of severity are unclear. Therefore, we evaluated candidate genes associated with COVID-19 and hypertension, diabetes mellitus, and coronary artery disease. In particular, we performed searches against OMIM, NCBI, and other databases, protein-protein interaction network construction, and GO and KEGG pathway enrichment analyses. Results showed that the associated overlapping genes were TLR4, NLRP3, MBL2, IL6, IL1RN, IL1B, CX3CR1, CCR5, AGT, ACE, and F2. GO and KEGG analyses yielded 302 GO terms (q < 0.05) and 29 signaling pathways (q < 0.05), respectively, mainly including coronavirus disease-COVID-19 and cytokine-cytokine receptor interaction. IL6 and AGT were central in the PPI, with 8 and 5 connections, respectively. In this study, we identified 11 genes associated with both COVID-19 and three comorbidities that may contribute to infection and disease severity. The key genes IL6 and AGT are involved in regulating immune response, cytokine activity, and viral infection. Therefore, RAAS inhibitors, AGT antisense nucleotides, cytokine inhibitors, vitamin D, fenofibrate, and vaccines regulating non-immune and immune factors could be potential strategies to prevent and cure COVID-19. The study provides a basis for further investigation of genes and pathways with predictive value for the risk of infection and prognosis and could help guide drug and vaccine development to improve treatment efficacy and the development of personalised treatments, especially for COVID-19 individuals with common comorbidities.
Collapse
Affiliation(s)
- Shanshan Feng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Fuqiang Song
- Department of medical Laboratory, The General Hospital of Western Theater Command, Chengdu, China
| | | | - Jishan Tan
- Department of medical Laboratory, The General Hospital of Western Theater Command, Chengdu, China
| | - Xianqin Zhang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Fengling Qiao
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jinlin Guo
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Xu Jia
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Yesil Sayin G, Pehlivan S, Serin I, Medetalibeyoglu A, Kose M, Agacfidan A, Senkal N, Isoglu-Alkac U, Tukek T. Is There a Link between Circadian Clock Protein PERIOD 3 (PER3) (rs57875989) Variant and the Severity of COVID-19 Infection? Curr Med Sci 2021; 41:1075-1080. [PMID: 34542826 PMCID: PMC8450707 DOI: 10.1007/s11596-021-2442-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/03/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Corona Virus Disease-2019 (COVID-19) has been among the major infectious events of the century. In today's literature where COVID-19 and host factor effects are frequently examined, we aimed to examine another factor: Circadian Clock Protein PERIOD 3 (PER3). There is a significant correlation between PER3 gene polymorphism and circadian rhythm disturbances and immune system dysregulation. METHODS In our study, we recruited 200 patients diagnosed with COVID-19 in our hospital between April-June 2020, and 100 volunteers without known comorbidities to create a healthy control group. After comparing the initial gene polymorphisms of the patients with healthy controls, three separate clinical subgroups were formed. Gene polymorphism distribution and statistical significance were examined in the formed patient groups. RESULTS No significant difference was found between the patient group and the healthy controls (P>0.05, for all). When patients were divided into two separate clinical subgroups as exitus/alive according to their last condition during their 28-day follow-up, the 4R/5R genotype was significantly more common in patients with a mortal course (P=0.007). The PER3 4R/5R genotype was found at a significantly higher rate in the group of patients with the need for intensive care (P=0.034). CONCLUSION The 4R/5R genotype may be associated with the need for intensive care and mortality in COVID-19 patients. These important results will be a guide for future studies.
Collapse
Affiliation(s)
- Gozde Yesil Sayin
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34098 Turkey
| | - Sacide Pehlivan
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34098 Turkey
| | - Istemi Serin
- Department of Hematology, Istanbul Training and Research Hospital, University of Health Sciences, Istanbul, 34098 Turkey
| | - Alpay Medetalibeyoglu
- Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34098 Turkey
| | - Murat Kose
- Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34098 Turkey
| | - Ali Agacfidan
- Department of Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34098 Turkey
| | - Naci Senkal
- Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34098 Turkey
| | - Ummihan Isoglu-Alkac
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34098 Turkey
| | - Tufan Tukek
- Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34098 Turkey
| |
Collapse
|
29
|
Uysalol M, Gumus S, Yildiz R, Pasli Uysalol E, Pehlivan S, Pehlivan M, Serin I. Importance of mannose-binding lectin2 polymorphism ( rs1800450) in infections in children. Biomarkers 2021; 27:44-49. [PMID: 34747274 DOI: 10.1080/1354750x.2021.2003432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Mannose-binding lectin (MBL) is a serine protease belonging to the collectins and an important factor in the inherited immune system. We aimed to reveal the distribution of different MBL2 genotypes in patients diagnosed with acute bronchiolitis and pneumonia. MATERIAL AND METHODS A total of 147 patients who applied to Paediatric Emergency between 01.12.2019 and 31.12.2020 were included in the study. Patients were divided into two subgroups: Bronchiolitis and pneumonia. RESULTS AA genotype was found to be significantly higher in healthy controls (p = 0.039). In the pneumonia group, both AB/BB genotype was significantly higher compared to healthy controls (p = 0.001). While the AA genotype was more common in patients with acute bronchiolitis, AB/BB genotypes were more common in the pneumonia group (p = 0.001). The presence of fever, crepitation, tachypnoea, pathological x-ray finding, and high leukocyte count are significantly more common in patients with AA genotype, while more than 3 days of follow-up duration and severe clinical picture were more common in patients with AB/BB genotypes (p < 0.05, for all). CONCLUSIONS Genotypes with low MBL expression were significantly more common in patients with pneumonia and severe infection. All these results reveal the importance of MBL polymorphisms and their expression in infections.
Collapse
Affiliation(s)
- Metin Uysalol
- Istanbul Faculty of Medicine, Department of Pediatrics, Division of Pediatric Emergency, Istanbul University, Istanbul, Turkey
| | - Suheyla Gumus
- Istanbul Faculty of Medicine, Department of Pediatrics, Division of Pediatric Emergency, Istanbul University, Istanbul, Turkey
| | - Raif Yildiz
- Istanbul Faculty of Medicine, Department of Pediatrics, Division of Pediatric Emergency, Istanbul University, Istanbul, Turkey
| | - Ezgi Pasli Uysalol
- Department of Pediatric Hematology-Oncology, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Sacide Pehlivan
- Istanbul Faculty of Medicine, Department of Medical Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Mustafa Pehlivan
- Faculty of Medicine, Department of Hematology, Gaziantep University, Gaziantep, Turkey
| | - Istemi Serin
- Department of Department of Hematology, University of Health Science, Istanbul Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
30
|
Charitos P, Heijnen IAFM, Egli A, Bassetti S, Trendelenburg M, Osthoff M. Functional Activity of the Complement System in Hospitalized COVID-19 Patients: A Prospective Cohort Study. Front Immunol 2021; 12:765330. [PMID: 34777382 PMCID: PMC8581394 DOI: 10.3389/fimmu.2021.765330] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022] Open
Abstract
Aims Although the exact factors promoting disease progression in COVID-19 are not fully elucidated, unregulated activation of the complement system (CS) seems to play a crucial role in the pathogenesis of acute lung injury (ALI) induced by SARS-CoV-2. In particular, the lectin pathway (LP) has been implicated in previous autopsy studies. The primary purpose of our study is to investigate the role of the CS in hospitalized COVID-19 patients with varying degrees of disease severity. Methods In a single-center prospective observational study, 154 hospitalized patients with PCR-confirmed SARS-CoV-2 infection were included. Serum samples on admission to the COVID-19 ward were collected for analysis of CS pathway activities and concentrations of LP proteins [mannose-binding lectin (MBL) and ficolin-3 (FCN-3)] & C1 esterase inhibitor (C1IHN). The primary outcome was mechanical ventilation or in-hospital death. Results The patients were predominately male and had multiple comorbidities. ICU admission was required in 16% of the patients and death (3%) or mechanical ventilation occurred in 23 patients (15%). There was no significant difference in LP activity, MBL and FCN-3 concentrations according to different peak disease severities. The median alternative pathway (AP) activity was significantly lower (65%, IQR 50-94) in patients with death/invasive ventilation compared to patients without (87%, IQR 68-102, p=0.026). An optimal threshold of <65.5% for AP activity was derived from a ROC curve resulting in increased odds for death or mechanical ventilation (OR 4,93; 95% CI 1.70-14.33, p=0.003) even after adjustment for confounding factors. Classical pathway (CP) activity was slightly lower in patients with more severe disease (median 101% for death/mechanical ventilation vs 109%, p=0.014). C1INH concentration correlated positively with length of stay, inflammatory markers and disease severity on admission but not during follow-up. Conclusion Our results point to an overactivated AP in critically ill COVID-19 patients in vivo leading to complement consumption and consequently to a significantly reduced AP activity in vitro. The LP does not seem to play a role in the progression to severe COVID-19. Apart from its acute phase reaction the significance of C1INH in COVID-19 requires further studies.
Collapse
Affiliation(s)
| | - Ingmar A F M Heijnen
- Division of Medical Immunology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Adrian Egli
- Clinical Bacteriology and Mycology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Stefano Bassetti
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Marten Trendelenburg
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Michael Osthoff
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland
| |
Collapse
|
31
|
Pehlivan S, Köse M, Mese S, Serin I, Senkal N, Oyacı Y, Medetalibeyoglu A, Pehlivan M, Sayın GY, Isoglu-Alkac U, Tukek T. Investigation of MBL2 and NOS3 functional gene variants in suspected COVID-19 PCR (-) patients. Pathog Glob Health 2021; 116:178-184. [PMID: 34570692 PMCID: PMC8477587 DOI: 10.1080/20477724.2021.1984726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
For COVID-19 (Coronavirus Disease-2019) cases, detecting host-based factors that predispose to infection is a very important research area. In this study, the aim is to investigate the MBL2 and NOS3 gene polymorphisms in COVID-19 patients with lung involvement, whose first nasopharyngeal PCR results were negative. Seventy-nine patients diagnosed with COVID-19 between April-June 2020 who were admitted to a university hospital, and 100 healthy controls were included. In the first statistical analysis performed between PCR-positive, CT-negative and PCR-negative, CT-positive patients; the AB of MBL2 genotype was significantly higher in the first group (p = 0.049). The B allele was also significantly higher in the same subgroup (p = 0.001). The absence of the AB genotype was found to increase the risk of CT positivity by 6.9 times. The AB genotype of MBL2 was higher in healthy controls (p = 0.006). The absence of the AB genotype was found to increase the risk of CT positivity; also, it can be used for early detection and isolation of patients with typical lung involvement who had enough viral loads, but whose initial PCR results were negative.
Collapse
Affiliation(s)
- Sacide Pehlivan
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Murat Köse
- Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sevim Mese
- Department of Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Istemi Serin
- Department of Hematology, Istanbul Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Naci Senkal
- Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Yasemin Oyacı
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Alpay Medetalibeyoglu
- Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mustafa Pehlivan
- Department of Hematology, Gaziantep University, Faculty of Medicine, Istanbul, Gaziantep, Turkey
| | - Gözde Yesil Sayın
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ummihan Isoglu-Alkac
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tufan Tukek
- Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
32
|
Speletas M, Dadouli K, Syrakouli A, Gatselis N, Germanidis G, Mouchtouri VA, Koulas I, Samakidou A, Nikolaidou A, Stefos A, Mimtsoudis I, Hatzianastasiou S, Koureas M, Anagnostopoulos L, Tseroni M, Tsinti G, Metallidis S, Dalekos G, Hadjichristodoulou C. MBL deficiency-causing B allele (rs1800450) as a risk factor for severe COVID-19. Immunobiology 2021; 226:152136. [PMID: 34628288 PMCID: PMC8462051 DOI: 10.1016/j.imbio.2021.152136] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/29/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic represents one of the greatest challenges in modern medicine. The disease is characterized by a variable clinical phenotype, ranging from asymptomatic carriage to severe and/or critical disease, which bears poor prognosis and outcome because of the development of severe acute respiratory distress syndrome (SARS) requiring ICU hospitalization, multi-organ failure and death. Therefore, the determination of risk factors predisposing to disease phenotype is of outmost importance. The aim of our study was to evaluate which predisposing factors, including MBL2 genotyping, affected clinical phenotype in 264 COVID-19 patients. We demonstrated that older age along with underlying comorbidities, primarily obesity, chronic inflammatory disorders and diabetes mellitus, represent the most important risk factors related to hospitalization, the development of pneumonia and SARS. Moreover, we found that the presence of the MBL deficiency-causing B allele (rs1800450) was significantly associated with almost 2-fold increased risk for developing pneumonia and requiring hospitalization, suggesting its usage as a molecular predictor of severe disease in SARS-CoV-2 infected individuals.
Collapse
Affiliation(s)
- Matthaios Speletas
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, Larissa, Greece.
| | - Katerina Dadouli
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Argyro Syrakouli
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Nikolaos Gatselis
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
| | - Georgios Germanidis
- First Internal Medicine Department, Infectious Diseases Division, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, Greece
| | - Varvara A Mouchtouri
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Ioannis Koulas
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Anna Samakidou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
| | - Anastasia Nikolaidou
- First Internal Medicine Department, Infectious Diseases Division, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, Greece
| | - Aggelos Stefos
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
| | - Iordanis Mimtsoudis
- First Internal Medicine Department, Infectious Diseases Division, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, Greece
| | | | - Michalis Koureas
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Lemonia Anagnostopoulos
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | | - Gerasimina Tsinti
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Symeon Metallidis
- First Internal Medicine Department, Infectious Diseases Division, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, Greece
| | - George Dalekos
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
| | | |
Collapse
|
33
|
The Clinical Significance of Procalcitonin Elevation in Patients over 75 Years Old Admitted for COVID-19 Pneumonia. Mediators Inflamm 2021; 2021:5593806. [PMID: 34326704 PMCID: PMC8245241 DOI: 10.1155/2021/5593806] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/28/2021] [Accepted: 06/16/2021] [Indexed: 01/08/2023] Open
Abstract
Aim To investigate the clinical significance of procalcitonin (PCT) elevation on hospital admission for coronavirus disease-19 (COVID-19) and its association with mortality in oldest old patients (age > 75 years). Methods The clinical records of 1074 patients with chest high-resolution computed-tomography (HRCT) positive for interstitial pneumonia and symptoms compatible for COVID-19, hospitalized in medical wards during the first pandemic wave in a single academic center in Northern Italy, were retrospectively analyzed. All patients had serum PCT testing performed within six hours from admission. Information on COVID-19-related symptoms, comorbidities, drugs, autonomy in daily activities, respiratory exchanges, other routine lab tests, and outcomes were collected. Clinical characteristics were compared across different admission PCT levels and ages. The association of admission PCT with mortality was tested separately in participants aged > 75 and ≤75 years old by stepwise multivariate Cox regression model with forward selection. Results With increasing classes of PCT levels (<0.05, 0.05-0.49, 0.5-1.99, and ≥2 ng/ml), there was a significant trend (P < 0.0001) towards older age, male gender, wider extension of lung involvement on HRCT, worse respiratory exchanges, and several other laboratory abnormalities. Each incremental PCT class was associated with increased risk of hospital death at multivariate models in subjects older than 75 (hazard ratio for PCT ≥ 2 vs. <0.05 ng/ml: 30.629, 95% confidence interval 4.176-224.645, P = 0.001), but not in subjects aged 75 or younger. Conclusions In patients admitted for COVID-19, PCT elevation was associated with several clinical, radiological, and laboratory characteristics of disease severity. However, PCT elevation was strongly associated with hospital mortality only in oldest old subjects (age > 75).
Collapse
|