1
|
Amrouche T, Lammi S, Drider D. Probiotics and Prebiotics Intervention in Respiratory and Digestive Infections Linked to Covid-19. Probiotics Antimicrob Proteins 2025; 17:1356-1367. [PMID: 39614066 DOI: 10.1007/s12602-024-10404-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 12/01/2024]
Abstract
Probiotics and prebiotics have been suggested as natural agents against viral infections and dysbiosis and may encourage clinical applications. This review aims to analyze the main and recent advances related to viral infections such as Covid-19 and its gastrointestinal complications, antiviral immunity generated and possible preventive role that probiotics and/or prebiotics can play in controlling and promoting antiviral immunity. The literature search was performed through a critical analysis of relevant publications reported in PubMed and Scopus databases on clinical trials and assays conducted in vitro on colon cells and in vivo on mice. Some studies using probiotics and prebiotics for the prevention of viral infection in different age groups are discussed. Covid-19 patients have been shown to suffer from gastrointestinal complications in addition to respiratory symptoms due to interactions between the respiratory system and the gastrointestinal tract infected with SARS-CoV-2. Unfortunately, therapies used to prevent (or treat) symptoms of Covid-19 have proven to be of limited effectiveness. In addition, the lack of access to coronavirus vaccines around the world and vaccine hesitancy continue to hamper control of Covid-19. It is therefore crucial to find alternative methods that can prevent disease symptoms. Evidence-based efficacy of certain probiotics (Lactobacillus and Bifidobacterium) that may be useful in viral infections was shown with immunomodulatory properties (pro-inflammatory mediators reduction), promoting antiviral immunity (antibodies production, virus titers) and controlling inflammation (anti-inflammatory effect), as well as viral clearance and antimicrobial potential against opportunistic bacteria (anti-dysbiosis effect). But, available data about clinical application of probiotics in Covid-19 context remain limited and relevant scientific investigation is still in its early stages. Also, evidence for prebiotics potential in this field is limited, since the exact mechanism involved in systemic immune modulation by these compounds is till now unknown. Thus, further research is necessary to explore in the viral infection context the mechanism by which gut and lung interact in the presence of probiotics and prebiotics through more animal and clinical experiments.
Collapse
Affiliation(s)
- Tahar Amrouche
- Laboratoire Qualité Et Sécurité Des Aliments, Faculté Des Sciences Biologiques Et Des Sciences Agronomiques, Université Mouloud Mammeri, 15 000, Tizi Ouzou, Algeria.
| | - Sarah Lammi
- Laboratoire Qualité Et Sécurité Des Aliments, Faculté Des Sciences Biologiques Et Des Sciences Agronomiques, Université Mouloud Mammeri, 15 000, Tizi Ouzou, Algeria
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro INRAE 1158, Université de Lille (ULille), 59000, Lille, France
| |
Collapse
|
2
|
Barros de Lima G, Nencioni E, Thimoteo F, Perea C, Pinto RFA, Sasaki SD. TMPRSS2 as a Key Player in Viral Pathogenesis: Influenza and Coronaviruses. Biomolecules 2025; 15:75. [PMID: 39858469 PMCID: PMC11764435 DOI: 10.3390/biom15010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
TMPRSS2, a human transmembrane protease enzyme, plays a crucial role in the spread of certain viruses, including influenza and coronaviruses. This enzyme promotes viral infection by cleaving viral glycoproteins, which helps viruses like SARS-CoV-2 and influenza A enter cells more effectively. Genetic differences in TMPRSS2 may affect people's susceptibility to COVID-19, underscoring the need for studies that consider diverse populations. Beyond infectious diseases, TMPRSS2 has also been linked to some cancers, suggesting it could be a valuable target for drug development. This review provides a summary of TMPRSS2 inhibitors currently under study, with some already in clinical trials to test their effectiveness against viral infections. As we uncover more about TMPRSS2's role in pathogenesis, it could open new doors for therapies to combat future outbreaks.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergio Daishi Sasaki
- Graduate Program of Biosystems, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), São Bernardo do Campo, São Paulo 09606-045, Brazil; (G.B.d.L.); (E.N.); (F.T.); (C.P.); (R.F.A.P.)
| |
Collapse
|
3
|
Chen H, Wang J, Ding K, Xu J, Yang Y, Tang C, Zhou Y, Yu W, Wang H, Huang Q, Li B, Kuang D, Wu D, Luo Z, Gao J, Zhao Y, Liu J, Peng X, Lu S, Liu H. Gastrointestinal microbiota and metabolites possibly contribute to distinct pathogenicity of SARS-CoV-2 proto or its variants in rhesus monkeys. Gut Microbes 2024; 16:2334970. [PMID: 38563680 PMCID: PMC10989708 DOI: 10.1080/19490976.2024.2334970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Gastrointestinal (GI) infection is evidenced with involvement in COVID-19 pathogenesis caused by SARS-CoV-2. However, the correlation between GI microbiota and the distinct pathogenicity of SARS-CoV-2 Proto and its emerging variants remains unclear. In this study, we aimed to determine if GI microbiota impacted COVID-19 pathogenesis and if the effect varied between SARS-CoV-2 Proto and its variants. We performed an integrative analysis of histopathology, microbiomics, and transcriptomics on the GI tract fragments from rhesus monkeys infected with SARS-CoV-2 proto or its variants. Based on the degree of pathological damage and microbiota profile in the GI tract, five of SARS-CoV-2 strains were classified into two distinct clusters, namely, the clusters of Alpha, Beta and Delta (ABD), and Proto and Omicron (PO). Notably, the abundance of potentially pathogenic microorganisms increased in ABD but not in the PO-infected rhesus monkeys. Specifically, the high abundance of UCG-002, UCG-005, and Treponema in ABD virus-infected animals positively correlated with interleukin, integrins, and antiviral genes. Overall, this study revealed that infection-induced alteration of GI microbiota and metabolites could increase the systemic burdens of inflammation or pathological injury in infected animals, especially in those infected with ABD viruses. Distinct GI microbiota and metabolite profiles may be responsible for the differential pathological phenotypes of PO and ABD virus-infected animals. These findings improve our understanding the roles of the GI microbiota in SARS-CoV-2 infection and provide important information for the precise prevention, control, and treatment of COVID-19.
Collapse
Affiliation(s)
- Hongyu Chen
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Junbin Wang
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Kaiyun Ding
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Jingwen Xu
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Yun Yang
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Cong Tang
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Yanan Zhou
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Wenhai Yu
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Haixuan Wang
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Qing Huang
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Bai Li
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Dexuan Kuang
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Daoju Wu
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Zhiwu Luo
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Jiahong Gao
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Yuan Zhao
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Jiansheng Liu
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Xiaozhong Peng
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
- Institute of Laboratory Animal Sciences, IMBCAMS & PUMC, Beijing, China
- Institute of Basic Medical Sciences, IMBCAMS & PUMC, Beijing, China
| | - Shuaiyao Lu
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Hongqi Liu
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| |
Collapse
|
4
|
Marzano V, Mortera SL, Marangelo C, Piazzesi A, Rapisarda F, Pane S, Del Chierico F, Vernocchi P, Romani L, Campana A, Palma P, Putignani L. The metaproteome of the gut microbiota in pediatric patients affected by COVID-19. Front Cell Infect Microbiol 2023; 13:1327889. [PMID: 38188629 PMCID: PMC10766818 DOI: 10.3389/fcimb.2023.1327889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction The gut microbiota (GM) play a significant role in the infectivity and severity of COVID-19 infection. However, the available literature primarily focuses on adult patients and it is known that the microbiota undergoes changes throughout the lifespan, with significant alterations occurring during infancy and subsequently stabilizing during adulthood. Moreover, children have exhibited milder symptoms of COVID-19 disease, which has been associated with the abundance of certain protective bacteria. Here, we examine the metaproteome of pediatric patients to uncover the biological mechanisms that underlie this protective effect of the GM. Methods We performed nanoliquid chromatography coupled with tandem mass spectrometry on a high resolution analytical platform, resulting in label free quantification of bacterial protein groups (PGs), along with functional annotations via COG and KEGG databases by MetaLab-MAG. Additionally, taxonomic assignment was possible through the use of the lowest common ancestor algorithm provided by Unipept software. Results A COVID-19 GM functional dissimilarity respect to healthy subjects was identified by univariate analysis. The alteration in COVID-19 GM function is primarily based on bacterial pathways that predominantly involve metabolic processes, such as those related to tryptophan, butanoate, fatty acid, and bile acid biosynthesis, as well as antibiotic resistance and virulence. Discussion These findings highlight the mechanisms by which the pediatric GM could contribute to protection against the more severe manifestations of the disease in children. Uncovering these mechanisms can, therefore, have important implications in the discovery of novel adjuvant therapies for severe COVID-19.
Collapse
Affiliation(s)
- Valeria Marzano
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Chiara Marangelo
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonia Piazzesi
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Federica Rapisarda
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefania Pane
- Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Federica Del Chierico
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Pamela Vernocchi
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Romani
- Unit of Infectious Disease, Bambino Gesu’ Children’s Hospital, IRCCS, Rome, Italy
| | - Andrea Campana
- Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | |
Collapse
|
5
|
Lerner A, Benzvi C, Vojdani A. HLA-DQ2/8 and COVID-19 in Celiac Disease: Boon or Bane. Microorganisms 2023; 11:2977. [PMID: 38138121 PMCID: PMC10745744 DOI: 10.3390/microorganisms11122977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The SARS-CoV-2 pandemic continues to pose a global threat. While its virulence has subsided, it has persisted due to the continual emergence of new mutations. Although many high-risk conditions related to COVID-19 have been identified, the understanding of protective factors remains limited. Intriguingly, epidemiological evidence suggests a low incidence of COVID-19-infected CD patients. The present study explores whether their genetic background, namely, the associated HLA-DQs, offers protection against severe COVID-19 outcomes. We hypothesize that the HLA-DQ2/8 alleles may shield CD patients from SARS-CoV-2 and its subsequent effects, possibly due to memory CD4 T cells primed by previous exposure to human-associated common cold coronaviruses (CCC) and higher affinity to those allele's groove. In this context, we examined potential cross-reactivity between SARS-CoV-2 epitopes and human-associated CCC and assessed the binding affinity (BA) of these epitopes to HLA-DQ2/8. Using computational methods, we analyzed sequence similarity between SARS-CoV-2 and four distinct CCC. Of 924 unique immunodominant 15-mer epitopes with at least 67% identity, 37 exhibited significant BA to HLA-DQ2/8, suggesting a protective effect. We present various mechanisms that might explain the protective role of HLA-DQ2/8 in COVID-19-afflicted CD patients. If substantiated, these insights could enhance our understanding of the gene-environment enigma and viral-host relationship, guiding potential therapeutic innovations against the ongoing SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Aaron Lerner
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Ramat Gan 5262160, Israel;
- Research Department, Ariel University, Ariel 4077625, Israel
| | - Carina Benzvi
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Ramat Gan 5262160, Israel;
| | | |
Collapse
|
6
|
Poeta M, Cioffi V, Tarallo A, Damiano C, Lo Vecchio A, Bruzzese E, Parenti G, Guarino A. Postbiotic Preparation of Lacticaseibacillus rhamnosus GG against Diarrhea and Oxidative Stress Induced by Spike Protein of SARS-CoV-2 in Human Enterocytes. Antioxidants (Basel) 2023; 12:1878. [PMID: 37891957 PMCID: PMC10604595 DOI: 10.3390/antiox12101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The Spike protein of SARS-CoV-2 acts as an enterotoxin able to induce chloride secretion and production of reactive oxygen species (ROS), involved in diarrhea pathogenesis. L. rhamnosus GG (LGG) is recommended in pediatric acute gastroenteritis guidelines as a therapy independent of infectious etiology. We tested a postbiotic preparation of LGG (mLGG) in an in vitro model of COVID-associated diarrhea. Caco-2 cell monolayers mounted in Ussing chambers were exposed to Spike protein, and electrical parameters of secretory effect (Isc and TEER) were recorded in the Ussing chambers system. Oxidative stress was analyzed by measuring ROS production (DCFH-DA), GSH levels (DNTB), and lipid peroxidation (TBARS). Experiments were repeated after mLGG pretreatment of cells. The Isc increase induced by Spike was consistent with the secretory diarrhea pattern, which was dependent on oxidative stress defined by a 2-fold increase in ROS production and lipid peroxidation and variation in glutathione levels. mLGG pretreatment significantly reduced the secretory effect (p = 0.002) and oxidative stress, namely ROS (p < 0.001), lipid peroxidation (p < 0.001), and glutathione level changes (p < 0.001). LGG counteracts Spike-induced diarrhea by inhibiting the enterotoxic effect and oxidative stress. The LGG efficacy in the form of a postbiotic depends on metabolites secreted in the medium with antioxidant properties similar to NAC. Because SARS-CoV-2 is an enteric pathogen, the efficacy of LGG independent of etiology in the treatment of acute gastroenteritis is confirmed by our data.
Collapse
Affiliation(s)
- Marco Poeta
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples Federico II, 80138 Naples, Italy
| | - Valentina Cioffi
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples Federico II, 80138 Naples, Italy
| | - Antonietta Tarallo
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples Federico II, 80138 Naples, Italy
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Carla Damiano
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples Federico II, 80138 Naples, Italy
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Andrea Lo Vecchio
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples Federico II, 80138 Naples, Italy
| | - Eugenia Bruzzese
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples Federico II, 80138 Naples, Italy
| | - Giancarlo Parenti
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples Federico II, 80138 Naples, Italy
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Alfredo Guarino
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
7
|
ŞENEL E, TÜRK S, MALKAN ÜY, PEKER MÇ, TÜRK C, GÜNER HR, UÇAR G, İZDEŞ S, KAYAASLAN B, BAYHAN Gİ, EMEKSİZ S, HASANOĞLU İ, BEKTAŞ ŞG, BÜTÜN TÜRK Ş, ÖZCAN S, ERTÜRK A, AKDAĞ AG, YILMAZ A, HAZNEDAROĞLU İC. Pathobiological alterations affecting the distinct clinical courses of pediatric versus adult COVID-19 syndrome. Turk J Med Sci 2023; 53:1194-1204. [PMID: 38813031 PMCID: PMC10763797 DOI: 10.55730/1300-0144.5685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 10/26/2023] [Accepted: 05/31/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim The clinical presentation of pediatric coronavirus disease 2019 (COVID-19) is associated with a milder disease course than the adult COVID-19 syndrome. The disease course of COVID-19 has three clinicobiological phases: initiation, propagation, and complication. This study aimed to assess the pathobiological alterations affecting the distinct clinical courses of COVID-19 in pediatric age groups versus the adult population. We hypothesized that critical biogenomic marker expressions drive the mild clinical presentations of pediatric COVID-19. Materials and methods Blood samples were obtained from 72 patients with COVID-19 hospitalized at Ankara City Hospital between March and July 2021. Peripheral blood mononuclear cells were isolated using Ficoll-Paque and density-gradient sedimentation. The groups were compared using a t-test and limma analyses. Mean standardized gene expression levels were used to hierarchically cluster genes employing Euclidean Gene Cluster 3.0. The expression levels of identified genes were determined using reverse transcription-polymerase chain reaction. Results This study found that ANPEP gene expression was significantly downregulated in the pediatric group (p < 0.05, FC: 1.57) and IGF2R gene expression was significantly upregulated in the adult group (p < 0.05, FC: 2.98). The study results indicated that the expression of critical biogenomic markers, such as the first-phase (ACE2 and ANPEP) and second-phase (EGFR and IGF2R) receptor genes, was crucial in the genesis of mild clinical presentations of pediatric COVID-19. ANPEP gene expression was lower in pediatric COVID-19. Conclusion The interrelationship between the ANPEP and ACE2 genes may prevent the progression of COVID-19 from initiation to the propagating phase in pediatric patients. High IGF2R gene expression could potentially contribute to a protective effect and may be a contributing factor for the mild clinical course observed in pediatric patients.
Collapse
Affiliation(s)
- Emrah ŞENEL
- Department of Pediatric Surgery, Surgical Medical Sciences, Faculty of Medicine, Yıldırım Beyazıt University, Ankara City Hospital, Ankara,
Turkiye
| | - Seyhan TÜRK
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Ankara,
Turkiye
| | - Ümit Yavuz MALKAN
- Department of Hematology, Faculty of Medicine, Hacettepe University, Ankara,
Turkiye
| | - Mustafa Çağrı PEKER
- Department of Economics, Faculty of Economics and Administrative Sciences, Hacettepe University, Ankara,
Turkiye
| | - Can TÜRK
- Department of Medical Microbiology, Faculty of Medicine, Lokman Hekim University, Ankara,
Turkiye
| | - Hatice Rahmet GÜNER
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Yıldırım Beyazıt University, Ankara City Hospital, Ankara,
Turkiye
| | - Gülberk UÇAR
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Ankara,
Turkiye
| | - Seval İZDEŞ
- Department of Intensive Care Unit, Faculty of Medicine, Yıldırım Beyazıt University, Ankara City Hospital, Ankara,
Turkiye
| | - Bircan KAYAASLAN
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Yıldırım Beyazıt University, Ankara City Hospital, Ankara,
Turkiye
| | - Gülsüm İclal BAYHAN
- Department of Pediatric Infectious Diseases, Faculty of Medicine, Yıldırım Beyazıt University, Ankara City Hospital, Ankara,
Turkiye
| | - Serhat EMEKSİZ
- Department of Pediatric Intensive Care Unit, Faculty of Medicine, Yıldırım Beyazıt University, Ankara City Hospital, Ankara,
Turkiye
| | - İmran HASANOĞLU
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Yıldırım Beyazıt University, Ankara City Hospital, Ankara,
Turkiye
| | | | - Şeyma BÜTÜN TÜRK
- Department of Child Health and Diseases, Ankara City Hospital, Ankara,
Turkiye
| | - Serhan ÖZCAN
- Department of Child Intensive Care Unit, Kayseri City Training and Research Hospital, Kayseri,
Turkiye
| | - Ahmet ERTÜRK
- Department of Pediatric Surgery, Ankara City Hospital, Ankara,
Turkiye
| | - Ahmet Gökhan AKDAĞ
- Department of Intensive Care Unit, Ankara City Hospital, Ankara,
Turkiye
| | - Ayşegül YILMAZ
- Department of Medical Microbiology, Faculty of Medicine, Lokman Hekim University, Ankara,
Turkiye
| | | |
Collapse
|
8
|
Sha A, Liu Y, Zhao X. SARS-CoV-2 and gastrointestinal diseases. Front Microbiol 2023; 14:1177741. [PMID: 37323898 PMCID: PMC10267706 DOI: 10.3389/fmicb.2023.1177741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/21/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of the novel coronavirus disease (COVID-19) pandemic, which has caused serious challenges for public health systems worldwide. LITERATURE REVIEW SARS-CoV-2 invades not only the respiratory system, but also the digestive system, causing a variety of gastrointestinal diseases. SIGNIFICANCE Understanding the gastrointestinal diseases caused by SARS-CoV-2, and the damage mechanisms of SARS-CoV-2 to the gastrointestinal tracts and gastrointestinal glands are crucial to treating the gastrointestinal diseases caused by SARS-CoV-2. CONCLUSION This review summarizes the gastrointestinal diseases caused by SARS-CoV-2, including gastrointestinal inflammatory disorders, gastrointestinal ulcer diseases, gastrointestinal bleeding, and gastrointestinal thrombotic diseases, etc. Furthermore, the mechanisms of gastrointestinal injury induced by SARS-COV-2 were analyzed and summarized, and the suggestions for drug prevention and treatment were put forward for the reference of clinical workers.
Collapse
Affiliation(s)
- Ailong Sha
- School of Teacher Education, Chongqing Three Gorges University, Chongqing, China
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yi Liu
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Xuewen Zhao
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| |
Collapse
|
9
|
Akkuş G. Newly-onset Autoimmune Diabetes Mellitus Triggered by COVID 19 Infection: A Case-based Review. Endocr Metab Immune Disord Drug Targets 2023; 23:887-893. [PMID: 36200218 DOI: 10.2174/2666145415666221004111511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/10/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022]
Abstract
The devastating global pandemic Coronavirus disease 2019 (COVID 19) isolated in China in January 2020 is responsible for an outbreak of pneumonia and other multisystemic complications. The clinical picture of the infection has extreme variability: it goes from asymptomatic patients or mild forms with fever, cough, fatigue and loss of smell and taste to severe cases ending up in the intensive care unit (ICU). This is due to a possible cytokine storm that may lead to multiorgan failure, septic shock, or thrombosis. Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV -2), which is the virus that causes COVID 19, binds to angiotensin-converting enzyme 2 (ACE2) receptors, which are expressed in key metabolic organs and tissues, including pancreatic beta cells, adipose tissue, the small intestine and the kidneys. Therefore it is possible to state that newly-onset diabetes is triggered by COVID 19 infection. Although many hypotheses have clarified the potential diabetogenic effect of COVID 19, a few observations were reported during this pandemic. Two male patients admitted to us with devastating hyperglycemia symptoms were diagnosed with type 1/autoimmune diabetes mellitus within 3 months following COVID 19 infection. Autoantibodies and decreased C peptide levels were detected in these patients. We speculated that several mechanisms might trigger autoimmune insulitis and pancreatic beta-cell destruction by COVID 19 infection. We aim to raise awareness of the possible link between SARS-CoV-2 and newly onset type 1 diabetes mellitus. Further studies are needed to determine a more definitive link between the two clinical entities.
Collapse
Affiliation(s)
- Gamze Akkuş
- Faculty of Medicine, Division of Endocrinology, Cukurova University, Adana, Turkey
| |
Collapse
|
10
|
Giotis ES, Cil E, Brooke GN. Use of Antiandrogens as Therapeutic Agents in COVID-19 Patients. Viruses 2022; 14:2728. [PMID: 36560732 PMCID: PMC9788624 DOI: 10.3390/v14122728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), is estimated to have caused over 6.5 million deaths worldwide. The emergence of fast-evolving SARS-CoV-2 variants of concern alongside increased transmissibility and/or virulence, as well as immune and vaccine escape capabilities, highlight the urgent need for more effective antivirals to combat the disease in the long run along with regularly updated vaccine boosters. One of the early risk factors identified during the COVID-19 pandemic was that men are more likely to become infected by the virus, more likely to develop severe disease and exhibit a higher likelihood of hospitalisation and mortality rates compared to women. An association exists between SARS-CoV-2 infectiveness and disease severity with sex steroid hormones and, in particular, androgens. Several studies underlined the importance of the androgen-mediated regulation of the host protease TMPRSS2 and the cell entry protein ACE2, as well as the key role of these factors in the entry of the virus into target cells. In this context, modulating androgen signalling is a promising strategy to block viral infection, and antiandrogens could be used as a preventative measure at the pre- or early hospitalisation stage of COVID-19 disease. Different antiandrogens, including commercial drugs used to treat metastatic castration-sensitive prostate cancer and other conditions, have been tested as antivirals with varying success. In this review, we summarise the most recent updates concerning the use of antiandrogens as prophylactic and therapeutic options for COVID-19.
Collapse
Affiliation(s)
- Efstathios S. Giotis
- Department of Infectious Diseases, Imperial College London, London W2 1PG, UK
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Emine Cil
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Greg N. Brooke
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| |
Collapse
|
11
|
Coles MJ, Masood M, Crowley MM, Hudgi A, Okereke C, Klein J. It Ain't Over 'Til It's Over: SARS CoV-2 and Post-infectious Gastrointestinal Dysmotility. Dig Dis Sci 2022; 67:5407-5415. [PMID: 35357608 PMCID: PMC8968095 DOI: 10.1007/s10620-022-07480-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023]
Abstract
The ongoing pandemic resulting from severe acute respiratory syndrome-caused by coronavirus 2 (SARS-CoV-2)-has posed a multitude of healthcare challenges of unprecedented proportions. Intestinal enterocytes have the highest expression of angiotensin-converting enzyme-2 (ACE2), which functions as the key receptor for SARS-CoV-2 entry into cells. As such, particular interest has been accorded to SARS-CoV-2 and how it manifests within the gastrointestinal system. The acute and chronic alimentary clinical implications of infection are yet to be fully elucidated, however, the gastrointestinal consequences from non-SARS-CoV-2 viral GI tract infections, coupled with the generalized nature of late sequelae following COVID-19 disease, would predict that motility disorders are likely to be seen in these patients. Determination of the chronic effects of COVID-19 disease, herein defined as GI disease which is persistent or recurrent more than 3 months following recovery from the acute respiratory illness, will require comprehensive investigations comprising combined endoscopic- and motility-based evaluation. It will be fascinating to ascertain whether the specific post-COVID-19 phenotype is hypotonic or hypertonic in nature and to identify the most vulnerable target portions of the gut. A specific biological hypothesis is that motility disorders may result from SARS-CoV-2-induced angiotensin-converting enzyme 2 (ACE2) depletion. Since SARS-CoV-2 is known to exhibit direct neuronal tropism, the potential also exists for the development of neurogenic motility disorders. This review aims to explore some of the potential pathophysiologic mechanisms underlying motility dysfunction as it relates to ACE2 and thereby aims to provide the foundation for mechanism-based potential therapeutic options.
Collapse
Affiliation(s)
- Michael J Coles
- Department of Gastroenterology, Temple University Hospital, Philadelphia, USA.
| | - Muaaz Masood
- Department of Internal Medicine, Medical College of Georgia, Augusta, USA
| | - Madeline M Crowley
- Department of Biomedical Engineering, University of British Colombia, Vancouver, Canada
| | - Amit Hudgi
- Department of Internal Medicine, Medical College of Georgia, Augusta, USA
| | - Chijioke Okereke
- Department of Internal Medicine, Medical College of Georgia, Augusta, USA
| | - Jeremy Klein
- Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| |
Collapse
|
12
|
Bustamante S, Yau Y, Boys V, Chang J, Paramsothy S, Pudipeddi A, Leong RW, Wasinger VC. Tryptophan Metabolism 'Hub' Gene Expression Associates with Increased Inflammation and Severe Disease Outcomes in COVID-19 Infection and Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:14776. [PMID: 36499104 PMCID: PMC9737535 DOI: 10.3390/ijms232314776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The epithelial barrier's primary role is to protect against entry of foreign and pathogenic elements. Both COVID-19 and Inflammatory Bowel Disease (IBD) show commonalities in symptoms and treatment with sensitization of the epithelial barrier inviting an immune response. In this study we use a multi-omics strategy to identify a common signature of immune disease that may be able to predict for more severe patient outcomes. Global proteomic approaches were applied to transcriptome and proteome. Further semi- and relative- quantitative targeted mass spectrometry methods were developed to substantiate the proteomic and metabolomics changes in nasal swabs from healthy, COVID-19 (24 h and 3 weeks post infection); serums from Crohn's disease patients (scored for epithelial leak), terminal ileum tissue biopsies (patient matched inflamed and non-inflamed regions, and controls). We found that the tryptophan/kynurenine metabolism pathway is a 'hub' regulator of canonical and non-canonical transcription, macrophage release of cytokines and significant changes in the immune and metabolic status with increasing severity and disease course. Significantly modified pathways include stress response regulator EIF2 signaling (p = 1 × 10-3); energy metabolism, KYNU (p = 4 × 10-4), WARS (p = 1 × 10-7); inflammation, and IDO activity (p = 1 × 10-6). Heightened levels of PARP1, WARS and KYNU are predictive at the acute stage of infection for resilience, while in contrast, levels remained high and are predictive of persistent and more severe outcomes in COVID disease. Generation of a targeted marker profile showed these changes in immune disease underlay resolution of epithelial barrier function and have the potential to define disease trajectory and more severe patient outcomes.
Collapse
Affiliation(s)
- Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Yunki Yau
- Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, NSW 2139, Australia
| | - Victoria Boys
- School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jeff Chang
- Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, NSW 2139, Australia
| | - Sudarshan Paramsothy
- Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, NSW 2139, Australia
| | - Aviv Pudipeddi
- Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, NSW 2139, Australia
| | - Rupert W. Leong
- Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, NSW 2139, Australia
| | - Valerie C. Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
13
|
dos Santos AAC, Rodrigues LE, Alecrim-Zeza AL, de Araújo Ferreira L, Trettel CDS, Gimenes GM, da Silva AF, Sousa-Filho CPB, Serdan TDA, Levada-Pires AC, Hatanaka E, Borges FT, de Barros MP, Cury-Boaventura MF, Bertolini GL, Cassolla P, Marzuca-Nassr GN, Vitzel KF, Pithon-Curi TC, Masi LN, Curi R, Gorjao R, Hirabara SM. Molecular and cellular mechanisms involved in tissue-specific metabolic modulation by SARS-CoV-2. Front Microbiol 2022; 13:1037467. [PMID: 36439786 PMCID: PMC9684198 DOI: 10.3389/fmicb.2022.1037467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/26/2022] [Indexed: 09/09/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is triggered by the SARS-CoV-2, which is able to infect and cause dysfunction not only in lungs, but also in multiple organs, including central nervous system, skeletal muscle, kidneys, heart, liver, and intestine. Several metabolic disturbances are associated with cell damage or tissue injury, but the mechanisms involved are not yet fully elucidated. Some potential mechanisms involved in the COVID-19-induced tissue dysfunction are proposed, such as: (a) High expression and levels of proinflammatory cytokines, including TNF-α IL-6, IL-1β, INF-α and INF-β, increasing the systemic and tissue inflammatory state; (b) Induction of oxidative stress due to redox imbalance, resulting in cell injury or death induced by elevated production of reactive oxygen species; and (c) Deregulation of the renin-angiotensin-aldosterone system, exacerbating the inflammatory and oxidative stress responses. In this review, we discuss the main metabolic disturbances observed in different target tissues of SARS-CoV-2 and the potential mechanisms involved in these changes associated with the tissue dysfunction.
Collapse
Affiliation(s)
| | - Luiz Eduardo Rodrigues
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Amanda Lins Alecrim-Zeza
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Liliane de Araújo Ferreira
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Caio dos Santos Trettel
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Gabriela Mandú Gimenes
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Adelson Fernandes da Silva
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | | | - Tamires Duarte Afonso Serdan
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
- Department of Molecular Pathobiology, University of New York, New York, NY, United States
| | - Adriana Cristina Levada-Pires
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Elaine Hatanaka
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Fernanda Teixeira Borges
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
- Divisão de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcelo Paes de Barros
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Maria Fernanda Cury-Boaventura
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Gisele Lopes Bertolini
- Department of Physiological Sciences, Biological Science Center, State University of Londrina, Londrina, PR, Brazil
| | - Priscila Cassolla
- Department of Physiological Sciences, Biological Science Center, State University of Londrina, Londrina, PR, Brazil
| | | | - Kaio Fernando Vitzel
- School of Health Sciences, College of Health, Massey University, Auckland, New Zealand
| | - Tania Cristina Pithon-Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Laureane Nunes Masi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Rui Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
- Instituto Butantan, São Paulo, Brazil
| | - Renata Gorjao
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Sandro Massao Hirabara
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Wais T, Hasan M, Rai V, Agrawal DK. Gut-brain communication in COVID-19: molecular mechanisms, mediators, biomarkers, and therapeutics. Expert Rev Clin Immunol 2022; 18:947-960. [PMID: 35868344 PMCID: PMC9388545 DOI: 10.1080/1744666x.2022.2105697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/21/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Infection with COVID-19 results in acute respiratory symptoms followed by long COVID multi-organ effects presenting with neurological, cardiovascular, musculoskeletal, and gastrointestinal (GI) manifestations. Temporal relationship between gastrointestinal and neurological symptoms is unclear but warranted for exploring better clinical care for COVID-19 patients. AREAS COVERED We critically reviewed the temporal relationship between gut-brain axis after SARS-CoV-2 infection and the molecular mechanisms involved in neuroinvasion following GI infection. Mediators are identified that could serve as biomarkers and therapeutic targets in SARS-CoV-2. We discussed the potential therapeutic approaches to mitigate the effects of GI infection with SARS-CoV-2. EXPERT OPINION Altered gut microbiota cause increased expression of various mediators, including zonulin causing disruption of tight junction. This stimulates enteric nervous system and signals to CNS precipitating neurological sequalae. Published reports suggest potential role of cytokines, immune cells, B(0)AT1 (SLC6A19), ACE2, TMRSS2, TMPRSS4, IFN-γ, IL-17A, zonulin, and altered gut microbiome in gut-brain axis and associated neurological sequalae. Targeting these mediators and gut microbiome to improve immunity will be of therapeutic significance. In-depth research and well-designed large-scale population-based clinical trials with multidisciplinary and collaborative approaches are warranted. Investigating the temporal relationship between organs involved in long-term sequalae is critical due to evolving variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Tameena Wais
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences. Pomona, CA 91766
| | - Mehde Hasan
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences. Pomona, CA 91766
| | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences. Pomona, CA 91766
| | - Devendra K. Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences. Pomona, CA 91766
| |
Collapse
|
15
|
Temena MA, Acar A. Increased TRIM31 gene expression is positively correlated with SARS-CoV-2 associated genes TMPRSS2 and TMPRSS4 in gastrointestinal cancers. Sci Rep 2022; 12:11763. [PMID: 35970857 PMCID: PMC9378649 DOI: 10.1038/s41598-022-15911-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/30/2022] [Indexed: 01/08/2023] Open
Abstract
Besides typical respiratory symptoms, COVID-19 patients also have gastrointestinal symptoms. Studies focusing on the gastrointestinal tumors derived from gastrointestinal tissues have raised a question whether these tumors might express higher levels of SARS-CoV-2 associated genes and therefore patients diagnosed with GI cancers may be more susceptible to the infection. In this study, we have analyzed the expression of SARS-CoV-2 associated genes and their co-expressions in gastrointestinal solid tumors, cancer cell lines and patient-derived organoids relative to their normal counterparts. Moreover, we have found increased co-expression of TMPRSS2-TMPRSS4 in gastrointestinal cancers suggesting that SARS-CoV-2 viral infection known to be mediated by this protease pair might facilitate the effects of viral infection in GI cancer patients. Further, our findings also demonstrate that TRIM31 expression is upregulated in gastrointestinal tumors, while the inhibition of TRIM31 significantly altered viral replication and viral processes associated with cellular pathways in gastrointestinal cancer samples. Taken together, these findings indicate that in addition to the co-expression of TMPRSS2-TMPRSS4 protease pair in GI cancers, TRIM31 expression is positively correlated with this pair and TRIM31 may play a role in providing an increased susceptibility in GI cancer patients to be infected with SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Mehmet Arda Temena
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupınar Bulvarı 1, 06800, Çankaya, Ankara, Turkey
| | - Ahmet Acar
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupınar Bulvarı 1, 06800, Çankaya, Ankara, Turkey.
| |
Collapse
|
16
|
Poeta M, Cioffi V, Buccigrossi V, Corcione F, Peltrini R, Amoresano A, Magurano F, Viscardi M, Fusco G, Tarallo A, Damiano C, Lo Vecchio A, Bruzzese E, Guarino A. SARS-CoV-2 causes secretory diarrhea with an enterotoxin-like mechanism, which is reduced by diosmectite. Heliyon 2022; 8:e10246. [PMID: 35996551 PMCID: PMC9385603 DOI: 10.1016/j.heliyon.2022.e10246] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/25/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND AIMS The pathophysiology of SARS-CoV-2-associated diarrhea is unknown. Using an experimental model validated for rotavirus-induced diarrhea, we investigated the effects of SARS-CoV-2 on transepithelial ion fluxes and epithelial integrity of human intestinal cells. The effect of the antidiarrheal agent diosmectite on secretion was also evaluated following its inclusion in COVID-19 management protocols. METHODS We evaluated electrical parameters (intensity of short-circuit current [Isc] and transepithelial electrical resistance [TEER]) in polarized Caco-2 cells and in colonic specimens mounted in Ussing chambers after exposure to heat-inactivated (hi) SARS-CoV-2 and spike protein. Spectrofluorometry was used to measure reactive oxygen species (ROS), a marker of oxidative stress. Experiments were repeated after pretreatment with diosmectite, an antidiarrheal drug used in COVID-19 patients. RESULTS hiSARS-CoV-2 induced an increase in Isc when added to the mucosal (but not serosal) side of Caco-2 cells. The effect was inhibited in the absence of chloride and calcium and by the mucosal addition of the Ca2+-activated Cl- channel inhibitor A01, suggesting calcium-dependent chloride secretion. Spike protein had a lower, but similar, effect on Isc. The findings were consistent when repeated in human colonic mucosa specimens. Neither hiSARS-CoV-2 nor spike protein affected TEER, indicating epithelial integrity; both increased ROS production. Pretreatment with diosmectite inhibited the secretory effect and significantly reduced ROS of both hiSARS-CoV-2 and spike protein. CONCLUSIONS SARS-CoV-2 induces calcium-dependent chloride secretion and oxidative stress without damaging intestinal epithelial structure. The effects are largely induced by the spike protein and are significantly reduced by diosmectite. SARS-CoV-2 should be added to the list of human enteric pathogens.
Collapse
Affiliation(s)
- Marco Poeta
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Valentina Cioffi
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Vittoria Buccigrossi
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Francesco Corcione
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Roberto Peltrini
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Fabio Magurano
- Department of Infectious Diseases, National Institute of Health, Rome, Italy
| | - Maurizio Viscardi
- Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, Naples, Italy
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, Naples, Italy
| | - Antonietta Tarallo
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Carla Damiano
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Andrea Lo Vecchio
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Eugenia Bruzzese
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Alfredo Guarino
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| |
Collapse
|
17
|
Huang XY, Yang LJ, Hu X, Zhang XX, Gu X, Du LJ, He ZY, Gu XJ. Elevated levels of fructosamine are independently associated with SARS-CoV-2 reinfection: A 12-mo follow-up study. World J Diabetes 2022; 13:543-552. [PMID: 36051424 PMCID: PMC9329841 DOI: 10.4239/wjd.v13.i7.543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/29/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The association between blood levels of fructosamine (FMN) and recurrent coronavirus disease 2019 (COVID-19) is currently unclear.
AIM To investigate a prospective relationship between blood levels of FMN and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection.
METHODS A total of 146 Chinese hospitalized patients infected with SARS-CoV-2 were consecutively collectively recruited and followed from January 2020 to May 2021. Diagnosis of COVID-19 and SARS-CoV-2 reinfection was based on the diagnostic criteria and treatment protocol in China. The levels of FMN were determined in blood and divided into tertiles based on their distribution in the cohort of COVID-19 patients. Multivariate-adjusted hazard ratios (HRs) with 95% confidence intervals (CIs) were estimated for SARS-CoV-2 reinfection across the tertiles of FMN levels. A Cox regression model was used to generate the HR for SARS-CoV-2 reinfection in the participants in the top tertile of FMN levels compared with those at the bottom. Disease-free survival was used as the time variable, and relapse was used as the state variable, adjusted for age, gender, influencing factors such as diabetes mellitus, hypertension, and corticosteroid therapy, and clinical indexes such as acute liver failure, acute kidney failure, white blood cell (WBC) count, C-reactive protein, prognostic nutritional index (PNI), and blood lipids. Kaplan-Meier analysis with log-rank tests was used to compare the survival rate between patients with elevated FMN levels (FMN > 1.93 mmol/L, the top tertile) and those with nonelevated levels.
RESULTS Clinical data for the 146 patients with confirmed COVID-19 [age 49 (39-55) years; 49% males] were analyzed. Eleven patients had SARS-CoV-2 reinfection. The SARS-CoV-2 reinfection rate in patients with elevated FMN levels was significantly higher than that in patients with nonelevated FMN (17% vs 3%; P = 0.008) at the end of the 12-mo follow-up. After adjustments for gender, age, diabetes mellitus, hypertension, corticosteroid therapy, WBC count, PNI, indexes of liver and renal function, and blood lipids, patients with nonelevated FMN levels had a lower risk of SARS-CoV-2 reinfection than those with elevated FMN levels (HR = 6.249, 95%CI: 1.377-28.351; P = 0.018). Kaplan-Meier analysis showed that the cumulative survival rate of patients infected with SARS-CoV-2 was higher in patients with nonelevated FMN levels than in those with elevated FMN levels (97% vs 83%; log rank P = 0.002).
CONCLUSION Elevated levels of FMN are independently associated with SARS-CoV-2 reinfection, which highlights that patients with elevated FMN should be cautiously monitored after hospital discharge.
Collapse
Affiliation(s)
- Xiao-Yan Huang
- Department of Endocrine and Metabolic Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
- Department of Endocrine and Metabolic Disease, Yueqing People’s Hospital, Affiliated Hospital of Wenzhou Medical University, Wenzhou 325600, Zhejiang Province, China
| | - Li-Juan Yang
- Department of Endocrine and Metabolic Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Xiang Hu
- Department of Endocrine and Metabolic Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Xing-Xing Zhang
- Department of Endocrine and Metabolic Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Xiao Gu
- Department of Endocrine and Metabolic Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Lin-Jia Du
- Department of Endocrine and Metabolic Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Zhi-Ying He
- Department of Endocrine and Metabolic Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Xue-Jiang Gu
- Department of Endocrine and Metabolic Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
18
|
Lu YC, Tseng LW, Huang YC, Yang CW, Chen YC, Chen HY. The Potential Complementary Role of Using Chinese Herbal Medicine with Western Medicine in Treating COVID-19 Patients: Pharmacology Network Analysis. Pharmaceuticals (Basel) 2022; 15:ph15070794. [PMID: 35890093 PMCID: PMC9323801 DOI: 10.3390/ph15070794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pandemic in 2019—coronavirus disease (COVID-19). More and more Western medicine (WM) and Chinese herbal medicine (CHM) treatments have been used to treat COVID-19 patients, especially among Asian populations. However, the interactions between WM and CHM have not been studied. This study aims at using the network pharmacology approach to explore the potential complementary effects among commonly used CHM and WM in a clinical setting from a biomolecular perspective. Three well-published and widely used CHM formulas (National Research Institute of Chinese Medicine 101 (NRICM101), Qing-Fei-Pai-Du-Tang (QFPDT), Hua-Shi-Bai-Du-Formula (HSBDF)) and six categories of WM (Dexamethasone, Janus kinase inhibitors (JAKi), Anti-Interleukin-6 (Anti-IL6), anticoagulants, non-vitamin K antagonist oral anticoagulants (NOAC), and Aspirin) were included in the network pharmacology analysis. The target proteins on which these CHM and WM had direct effects were acquired from the STITCH database, and the potential molecular pathways were found in the REACTOME database. The COVID-19-related target proteins were obtained from the TTD database. For the three CHM formulas, QFPDT covered the most proteins (714), and 27 of them were COVID-19-related, while HSBDF and NRICM101 covered 624 (24 COVID-19-related) and 568 (25 COVID-19-related) proteins, respectively. On the other hand, WM covered COVID-19-related proteins more precisely and seemed different from CHM. The network pharmacology showed CHM formulas affected several inflammation-related proteins for COVID-19, including IL-10, TNF-α, IL-6, TLR3, and IL-8, in which Dexamethasone and Aspirin covered only IL-10 and TNF-α. JAK and IL-6 receptors were only inhibited by WM. The molecular pathways covered by CHM and WM also seemed mutually exclusive. WM had advantages in cytokine signaling, while CHM had an add-on effect on innate and adaptive immunity, including neutrophil regulation. WM and CHM could be used together to strengthen the anti-inflammation effects for COVID-19 from different pathways, and the combination of WM and CHM may achieve more promising results. These findings warrant further clinical studies about CHM and WM use for COVID-19 and other diseases.
Collapse
Affiliation(s)
- Yi-Chin Lu
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan; (Y.-C.L.); (L.-W.T.); (C.-W.Y.)
| | - Liang-Wei Tseng
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan; (Y.-C.L.); (L.-W.T.); (C.-W.Y.)
| | - Yu-Chieh Huang
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
| | - Ching-Wei Yang
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan; (Y.-C.L.); (L.-W.T.); (C.-W.Y.)
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Chun Chen
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan;
- Institute of Hospital and Health Care Administration, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hsing-Yu Chen
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan; (Y.-C.L.); (L.-W.T.); (C.-W.Y.)
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence:
| |
Collapse
|
19
|
Wiernsperger N, Al-Salameh A, Cariou B, Lalau JD. Protection by metformin against severe Covid-19: an in-depth mechanistic analysis. DIABETES & METABOLISM 2022; 48:101359. [PMID: 35662580 PMCID: PMC9154087 DOI: 10.1016/j.diabet.2022.101359] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 12/05/2022]
Abstract
Since the outbreak of Covid-19, several observational studies on diabetes and Covid-19 have reported a favourable association between metformin and Covid-19-related outcomes in patients with type 2 diabetes mellitus (T2DM). This is not surprising since metformin affects many of the pathophysiological mechanisms implicated in SARS-CoV-2 immune response, systemic spread and sequelae. A comparison of the multifactorial pathophysiological mechanisms of Covid-19 progression with metformin's well-known pleiotropic properties suggests that the treatment of patients with this drug might be particularly beneficial. Indeed, metformin could alleviate the cytokine storm, diminish virus entry into cells, protect against microvascular damage as well as prevent secondary fibrosis. Although our in-depth analysis covers many potential metformin mechanisms of action, we want to highlight more particularly its unique microcirculatory protective effects since worsening of Covid-19 disease clearly appears as largely due to severe defects in the structure and functioning of microvessels. Overall, these observations confirm that metformin is a unique, pleiotropic drug that targets many of Covid-19′s pathophysiology processes in a diabetes-independent manner.
Collapse
Affiliation(s)
| | - Abdallah Al-Salameh
- Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, Amiens, France; PériTox/UMR-I 01, University of Picardie Jules Verne, Amiens, France
| | - Bertrand Cariou
- Département d'Endocrinologie, Diabétologie et Nutrition, l'institut du thorax, Inserm, CNRS, UNIV Nantes, CHU Nantes, Hôpital Guillaume et René Laennec, 44093 Nantes Cedex 01, France
| | - Jean-Daniel Lalau
- Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, Amiens, France; PériTox/UMR-I 01, University of Picardie Jules Verne, Amiens, France.
| |
Collapse
|
20
|
Khazaal S, Harb J, Rima M, Annweiler C, Wu Y, Cao Z, Abi Khattar Z, Legros C, Kovacic H, Fajloun Z, Sabatier JM. The Pathophysiology of Long COVID throughout the Renin-Angiotensin System. Molecules 2022; 27:2903. [PMID: 35566253 PMCID: PMC9101946 DOI: 10.3390/molecules27092903] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 has expanded across the world since its discovery in Wuhan (China) and has had a significant impact on people's lives and health. Long COVID is a term coined by the World Health Organization (WHO) to describe a variety of persistent symptoms after acute SARS-CoV-2 infection. Long COVID has been demonstrated to affect various SARS-CoV-2-infected persons, independently of the acute disease severity. The symptoms of long COVID, like acute COVID-19, consist in the set of damage to various organs and systems such as the respiratory, cardiovascular, neurological, endocrine, urinary, and immune systems. Fatigue, dyspnea, cardiac abnormalities, cognitive and attention impairments, sleep disturbances, post-traumatic stress disorder, muscle pain, concentration problems, and headache were all reported as symptoms of long COVID. At the molecular level, the renin-angiotensin system (RAS) is heavily involved in the pathogenesis of this illness, much as it is in the acute phase of the viral infection. In this review, we summarize the impact of long COVID on several organs and tissues, with a special focus on the significance of the RAS in the disease pathogenesis. Long COVID risk factors and potential therapy approaches are also explored.
Collapse
Affiliation(s)
- Shaymaa Khazaal
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli P.O. Box 45061, Lebanon;
| | - Julien Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Dekouene Campus, Sin El Fil P.O. Box 55251, Lebanon;
| | - Mohamad Rima
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli P.O. Box 45061, Lebanon;
| | - Cédric Annweiler
- Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital & Laboratoire de Psychologie des Pays de la Loire, LPPL EA 4638, SFR Confluences, University of Angers, 44312 Angers, France;
| | - Yingliang Wu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.W.); (Z.C.)
| | - Zhijian Cao
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.W.); (Z.C.)
| | - Ziad Abi Khattar
- Laboratory of Georesources, Geosciences and Environment (L2GE), Microbiology/Tox-Ecotoxicology Team, Faculty of Sciences 2, Lebanese University, Campus Fanar, Jdeidet El-Matn, Beirut P.O. Box 90656, Lebanon;
| | - Christian Legros
- INSERM, CNRS, MITOVASC, Team 2 CarMe, SFR ICAT, University of Angers, 49000, France;
| | - Hervé Kovacic
- Institut de Neurophysiopathologie (INP), Aix-Marseille Université CNRS, 13385 Marseille, France;
| | - Ziad Fajloun
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli P.O. Box 45061, Lebanon;
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli P.O. Box 45061, Lebanon;
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), Aix-Marseille Université CNRS, 13385 Marseille, France;
| |
Collapse
|
21
|
Rokni M, Heidari Nia M, Sarhadi M, Mirinejad S, Sargazi S, Moudi M, Saravani R, Rahdar S, Kargar M. Association of TMPRSS2 Gene Polymorphisms with COVID-19 Severity and Mortality: a Case-Control Study with Computational Analyses. Appl Biochem Biotechnol 2022; 194:3507-3526. [PMID: 35386063 PMCID: PMC8986508 DOI: 10.1007/s12010-022-03885-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a severe disease caused by a new variant of beta-coronavirus that first appeared in China. Human genetic factors, including polymorphisms, serve pivotal roles in the high transmission of SARS-CoV-2 and the stubbornly progressing sickness seen in a small but significant percentage of infected people; however, but these factors remain ill-defined. A total of 288 COVID-19 patients and 288 controls were genotyped for TMPRSS2 polymorphisms using both restriction fragment length polymorphism polymerase chain reaction (RFLP-PCR) and amplification refractory mutation system (ARMS)-PCR techniques. Different genotypes of TMPRSS2 polymorphisms were compared in terms of disease susceptibility and mortality. The statistical analysis showed that minor alleles of all studied variants statistically increased the risk of COVID-19, except for the rs75603675 C > A variant. The T allele of rs12329760 conferred an increased risk of COVID-19. Moreover, the AG/AC/TT/AG combination of genotypes significantly enhanced the risk of COVID-19 in our population. Different haplotypes of rs17854725/rs75603675/rs12329760/rs4303795 polymorphisms, including GACA, GACG, GATG, GATA, AATA, ACCG, ACTG, ACTA, GCCA, and GCTG, were found to be associated with increased risk of the disease (odds ratio > 1). Regarding the clinical and paraclinical characteristics, a statistically significant difference was found between non-severe and severe forms except for gender, platelet, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and underlying diseases. In addition, case genotypes of TMPRSS2 rs17854725 A > G, rs12329760 C > T, and rs4303795 A > G were significantly different regarding severe and non-severe forms of the disease (P-value < 0.001). Specifically, death was more frequent in carriers of the AG genotype of rs17854725 A > G (P-value = 0.022). Patients who carry the minor alleles of the four studied TMPRSS2 variants were rather vulnerable to COVID-19 infection. Our findings indicated that rs17854725 A > G (AA vs. AG and AA vs. GG), rs12329760 C > T (CC vs. CT and CC vs. TT), and rs4303795 A > G (AA vs. AG) genotypes of TMPRSS2 variations are associated with a more invasive disorder pattern. More studies on larger populations are needed to confirm our results.
Collapse
Affiliation(s)
- Mohsen Rokni
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Milad Heidari Nia
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran.
| | - Mahdiyeh Moudi
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sara Rahdar
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| | - Maryam Kargar
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Clinical Significance of COVID-19 and Diabetes: In the Pandemic Situation of SARS-CoV-2 Variants including Omicron (B.1.1.529). BIOLOGY 2022; 11:biology11030400. [PMID: 35336774 PMCID: PMC8945151 DOI: 10.3390/biology11030400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023]
Abstract
Simple Summary Amidst the dual pandemics of diabetes and coronavirus disease 2019 (COVID-19), with the constant emergence of novel variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a vicious cycle has been created, i.e., a hyperglycemic state contributes to the severe clinical course of COVID-19, which in turn has deleterious effects on glycometabolism and in some cases causes new-onset diabetes. Here, we present a comprehensive review of the current literature on the clinical and experimental findings associated with the interrelationship between diabetes and COVID-19. To control disease outcomes and glucometabolic complications in COVID-19, this issue is still being investigated. Abstract The coronavirus disease 2019 (COVID-19) global pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains uncontrolled, with the spread of emerging variants. According to accumulating evidence, diabetes is one of the leading risk factors for a severe COVID-19 clinical course, depending on the glycemic state before admission and during COVID-19 hospitalization. Multiple factors are thought to be responsible, including an altered immune response, coexisting comorbidity, and disruption of the renin-angiotensin system through the virus–host interaction. However, the precise underlying mechanisms remain under investigation. Alternatively, the focus is currently on the diabetogenic and ketosis-prone potential of SARS-CoV-2 itself, even for probable triggers of stress and steroid-induced hyperglycemia in COVID-19. In this article, we present a comprehensive review of the recent literature on the clinical and experimental findings associated with diabetes and COVID-19, and we discuss their bidirectional relationship, i.e., the risk for an adverse prognosis and the deleterious effects on glycometabolism. Accurate assessments of the incidence of new-onset diabetes induced by COVID-19 and its pathogenicity are still unknown, especially in the context of the circulation of SARS-CoV-2 variants, such as Omicron (B.1.1.529), which is a major challenge for the future.
Collapse
|
23
|
Roy K, Agarwal S, Banerjee R, Paul MK, Purbey PK. COVID-19 and gut immunomodulation. World J Gastroenterol 2021; 27:7925-7942. [PMID: 35046621 PMCID: PMC8678818 DOI: 10.3748/wjg.v27.i46.7925] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/09/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023] Open
Abstract
The disease coronavirus disease 2019 (COVID-19) is a severe respiratory illness that has emerged as a devastating health problem worldwide. The disease outcome is heterogeneous, and severity is likely dependent on the immunity of infected individuals and comorbidities. Although symptoms of the disease are primarily associated with respiratory problems, additional infection or failure of other vital organs are being reported. Emerging reports suggest a quite common co-existence of gastrointestinal (GI) tract symptoms in addition to respiratory symptoms in many COVID-19 patients, and some patients show just the GI symptoms. The possible cause of the GI symptoms could be due to direct infection of the epithelial cells of the gut, which is supported by the fact that (1) The intestinal epithelium expresses a high level of angiotensin-converting enzyme-2 and transmembrane protease serine 2 protein that are required for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry into the cells; (2) About half of the severe COVID-19 patients show viral RNA in their feces and various parts of the GI tract; and (3) SARS-CoV-2 can directly infect gut epithelial cells in vitro (gut epithelial cells and organoids) and in vivo (rhesus monkey). The GI tract seems to be a site of active innate and adaptive immune responses to SARS-CoV-2 as clinically, stool samples of COVID-19 patients possess proinflammatory cytokines (interleukin 8), calprotectin (neutrophils activity), and immunoglobulin A antibodies. In addition to direct immune activation by the virus, impairment of GI epithelium integrity can evoke immune response under the influence of systemic cytokines, hypoxia, and changes in gut microbiota (dysbiosis) due to infection of the respiratory system, which is confirmed by the observation that not all of the GI symptomatic patients are viral RNA positive. This review comprehensively summarizes the possible GI immunomodulation by SARS-CoV-2 that could lead to GI symptoms, their association with disease severity, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Koushik Roy
- Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT 84112, United States
| | - Sidra Agarwal
- Department of Gastroenterology, Shadan Institute of Medical Sciences, Peeramcheru 500086, Telangana, India
| | - Rajib Banerjee
- Department of Electronics and Communication Engineering, Dr. B. C. Roy Engineering College, Durgapur 713206, West Bengal, India
| | - Manash K Paul
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Prabhat K Purbey
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
24
|
Shook LL, Bordt EA, Meinsohn MC, Pepin D, De Guzman RM, Brigida S, Yockey LJ, James KE, Sullivan MW, Bebell LM, Roberts DJ, Kaimal AJ, Li JZ, Schust D, Gray KJ, Edlow AG. Placental Expression of ACE2 and TMPRSS2 in Maternal Severe Acute Respiratory Syndrome Coronavirus 2 Infection: Are Placental Defenses Mediated by Fetal Sex? J Infect Dis 2021; 224:S647-S659. [PMID: 34293137 PMCID: PMC8344531 DOI: 10.1093/infdis/jiab335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Expression of angiotensin-converting enzyme 2 (ACE2) and type II transmembrane serine protease (TMPRSS2), host molecules required for viral entry, may underlie sex differences in vulnerability to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We investigated whether placental ACE2 and TMPRSS2 expression vary by fetal sex in the presence of maternal SARS-CoV-2 infection. METHODS Placental ACE2 and TMPRSS2 expression was quantified by quantitative reverse transcription polymerase chain reaction (RT-PCR) and by Western blot in 68 pregnant women (38 SARS-CoV-2 positive, 30 SARS-CoV-2 negative) delivering at Mass General Brigham from April to June 2020. The impact of fetal sex and maternal SARS-CoV-2 exposure on ACE2 and TMPRSS2 was analyzed by 2-way analysis of variance (ANOVA). RESULTS Maternal SARS-CoV-2 infection impacted placental TMPRSS2 expression in a sexually dimorphic fashion (2-way ANOVA interaction, P = .002). We observed no impact of fetal sex or maternal SARS-CoV-2 status on ACE2. TMPRSS2 expression was significantly correlated with ACE2 expression in males (Spearman ρ = 0.54, P = .02) but not females (ρ = 0.23, P = .34) exposed to maternal SARS-CoV-2. CONCLUSIONS Sex differences in placental TMPRSS2 but not ACE2 were observed in the setting of maternal SARS-CoV-2 infection, which may have implications for offspring vulnerability to placental infection.
Collapse
Affiliation(s)
- Lydia L Shook
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Evan A Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marie-Charlotte Meinsohn
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David Pepin
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rose M De Guzman
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sara Brigida
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Laura J Yockey
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kaitlyn E James
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mackenzie W Sullivan
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lisa M Bebell
- Division of Infectious Diseases, Massachusetts General Hospital, MGH Center for Global Health, and Harvard Medical School, Boston, Massachusetts, USA
| | - Drucilla J Roberts
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anjali J Kaimal
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Z Li
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Danny Schust
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, Missouri, USA
| | - Kathryn J Gray
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea G Edlow
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Zhang H, Shao B, Dang Q, Chen Z, Zhou Q, Luo H, Yuan W, Sun Z. Pathogenesis and Mechanism of Gastrointestinal Infection With COVID-19. Front Immunol 2021; 12:674074. [PMID: 34858386 PMCID: PMC8631495 DOI: 10.3389/fimmu.2021.674074] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
As a new infectious disease, COVID-19 is spread through the respiratory tract in most cases. Its source and pathological mechanism are not clear. The most common clinical feature is pulmonary infection. Also, a lot patients have gastrointestinal symptoms. Angiotensin-converting enzyme 2 (ACE2) is a functional cellular receptor for SARS-CoV-2, which is like SARS-CoV, a coronavirus associated with severe acute respiratory syndrome (SARS) outbreak in 2003. The tissues and cells expressing ACE2 are potential targets for SARS-CoV-2 infection, and the high expression of ACE2 in intestinal epithelial cells marks that SARS-CoV-2 may directly infect intestinal epithelial cells. Recent studies also suggest that SARS-CoV-2 existed and replicated in intestinal environment for a long time. The interaction between SARS-CoV-2 and RAS system leads to the decrease of local anti-inflammatory ability. The virus cycle leads to excessive imbalance of immune response and cytokine release. The downregulation of ACE2 after viral infection leads to gastrointestinal dysfunction. The above are the causes of gastrointestinal symptoms. Here, we reviewed the possible causes and mechanisms of gastrointestinal symptoms caused by COVID-19. Additionally, we discussed the influence of gastrointestinal symptoms on the prognosis of patients.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Shao
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuang Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Luo
- Department of Hepatobiliary and Pancreatic Surgery, Guangshan County People's Hospital, Xinyang, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Zulkifli KK, Tan PO, Mustaffa N, Chuah YY, Muthukaruppan R, Ma ZF, Lee YY. Is Gut Involvement a Cause or Effect of COVID-19? Malays J Med Sci 2021; 28:186-193. [PMID: 35002498 PMCID: PMC8715874 DOI: 10.21315/mjms2021.28.6.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/24/2021] [Indexed: 01/08/2023] Open
Abstract
Digestive disorder symptoms in COVID-19 may be similar in form to post-infectious functional gastrointestinal disorder (PI-FGID). To cause clinical effects, SARS-CoV-2 must reach the bowels and gastric hypochlorhydria may facilitate such transit. Asian elderly are predisposed to greater infection rate and severity of COVID-19, and the high prevalence of gastric atrophy and intake of proton-pump inhibitor in this aged group might explain the risk. Persistence shedding of SARS-CoV-2 in stools indicates that faecal transmission should not be disregarded. Gut involvement in COVID-19 is mediated by angiotensin-converting enzyme 2 (ACE2) receptor, which serves as the entry point for SARS-CoV-2 in the small bowel. ACE2 dysregulation has an impact on the homeostasis of gut microbiota and altered inflammatory response. Liver injury is variable in COVID-19 and is likely a result of by-stander effects rather than actual viropathic process. Further research is needed to understand if gut involvement is a cause or effect of SARS-CoV-2.
Collapse
Affiliation(s)
| | - Phei Oon Tan
- School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Nazri Mustaffa
- School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Yoen Young Chuah
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ping Tung Christian Hospital, Ping Tung, Taiwan
| | - Raman Muthukaruppan
- Department of Medicine and Gastroenterology Unit, Hospital Queen Elizabeth, Kota Kinabalu, Sabah, Malaysia
| | - Zheng Feei Ma
- School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
27
|
Kanmaniraja D, Kurian J, Holder J, Gunther MS, Chernyak V, Hsu K, Lee J, Mcclelland A, Slasky SE, Le J, Ricci ZJ. Review of COVID-19, part 1: Abdominal manifestations in adults and multisystem inflammatory syndrome in children. Clin Imaging 2021; 80:88-110. [PMID: 34298343 PMCID: PMC8223038 DOI: 10.1016/j.clinimag.2021.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/23/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
The coronavirus disease 2019 (COVID -19) pandemic caused by the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) has affected almost every country in the world, resulting in severe morbidity, mortality and economic hardship, and altering the landscape of healthcare forever. Although primarily a pulmonary illness, it can affect multiple organ systems throughout the body, sometimes with devastating complications and long-term sequelae. As we move into the second year of this pandemic, a better understanding of the pathophysiology of the virus and the varied imaging findings of COVID-19 in the involved organs is crucial to better manage this complex multi-organ disease and to help improve overall survival. This manuscript provides a comprehensive overview of the pathophysiology of the virus along with a detailed and systematic imaging review of the extra-thoracic manifestation of COVID-19 with the exception of unique cardiothoracic features associated with multisystem inflammatory syndrome in children (MIS-C). In Part I, extra-thoracic manifestations of COVID-19 in the abdomen in adults and features of MIS-C will be reviewed. In Part II, manifestations of COVID-19 in the musculoskeletal, central nervous and vascular systems will be reviewed.
Collapse
Affiliation(s)
- Devaraju Kanmaniraja
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, United States of America.
| | - Jessica Kurian
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, United States of America.
| | - Justin Holder
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, United States of America.
| | - Molly Somberg Gunther
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, United States of America.
| | - Victoria Chernyak
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Kevin Hsu
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, United States of America.
| | - Jimmy Lee
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, United States of America.
| | - Andrew Mcclelland
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, United States of America.
| | - Shira E Slasky
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, United States of America
| | - Jenna Le
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, United States of America.
| | - Zina J Ricci
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, United States of America.
| |
Collapse
|
28
|
Xie L, Zhang Z, Wang Q, Chen Y, Lu D, Wu W. COVID-19 and Diabetes: A Comprehensive Review of Angiotensin Converting Enzyme 2, Mutual Effects and Pharmacotherapy. Front Endocrinol (Lausanne) 2021; 12:772865. [PMID: 34867819 PMCID: PMC8639866 DOI: 10.3389/fendo.2021.772865] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
The potential relationship between diabetes and COVID-19 has been evaluated. However, new knowledge is rapidly emerging. In this study, we systematically reviewed the relationship between viral cell surface receptors (ACE2, AXL, CD147, DC-SIGN, L-SIGN and DPP4) and SARS-CoV-2 infection risk, and emphasized the implications of ACE2 on SARS-CoV-2 infection and COVID-19 pathogenesis. Besides, we updated on the two-way interactions between diabetes and COVID-19, as well as the treatment options for COVID-19 comorbid patients from the perspective of ACE2. The efficacies of various clinical chemotherapeutic options, including anti-diabetic drugs, renin-angiotensin-aldosterone system inhibitors, lipid-lowering drugs, anticoagulants, and glucocorticoids for COVID-19 positive diabetic patients were discussed. Moreover, we reviewed the significance of two different forms of ACE2 (mACE2 and sACE2) and gender on COVID-19 susceptibility and severity. This review summarizes COVID-19 pathophysiology and the best strategies for clinical management of diabetes patients with COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | - Weihua Wu
- Department of Endocrinology, The 3rd Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
29
|
Steenblock C, Schwarz PEH, Ludwig B, Linkermann A, Zimmet P, Kulebyakin K, Tkachuk VA, Markov AG, Lehnert H, de Angelis MH, Rietzsch H, Rodionov RN, Khunti K, Hopkins D, Birkenfeld AL, Boehm B, Holt RIG, Skyler JS, DeVries JH, Renard E, Eckel RH, Alberti KGMM, Geloneze B, Chan JC, Mbanya JC, Onyegbutulem HC, Ramachandran A, Basit A, Hassanein M, Bewick G, Spinas GA, Beuschlein F, Landgraf R, Rubino F, Mingrone G, Bornstein SR. COVID-19 and metabolic disease: mechanisms and clinical management. Lancet Diabetes Endocrinol 2021; 9:786-798. [PMID: 34619105 PMCID: PMC8489878 DOI: 10.1016/s2213-8587(21)00244-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Up to 50% of the people who have died from COVID-19 had metabolic and vascular disorders. Notably, there are many direct links between COVID-19 and the metabolic and endocrine systems. Thus, not only are patients with metabolic dysfunction (eg, obesity, hypertension, non-alcoholic fatty liver disease, and diabetes) at an increased risk of developing severe COVID-19 but also infection with SARS-CoV-2 might lead to new-onset diabetes or aggravation of pre-existing metabolic disorders. In this Review, we provide an update on the mechanisms of how metabolic and endocrine disorders might predispose patients to develop severe COVID-19. Additionally, we update the practical recommendations and management of patients with COVID-19 and post-pandemic. Furthermore, we summarise new treatment options for patients with both COVID-19 and diabetes, and highlight current challenges in clinical management.
Collapse
Affiliation(s)
- Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Peter E H Schwarz
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital Carl Gustav Carus, Dresden, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Barbara Ludwig
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital Carl Gustav Carus, Dresden, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Linkermann
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Paul Zimmet
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Konstantin Kulebyakin
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia; Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, Moscow, Russia
| | - Vsevolod A Tkachuk
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia; Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander G Markov
- Department of General Physiology, St Petersburg State University, St Petersburg, Russia
| | | | - Martin Hrabě de Angelis
- German Center for Diabetes Research, Neuherberg, Germany; Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany; School of Life Sciences, Technische Universität München, Freising, Germany
| | - Hannes Rietzsch
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Roman N Rodionov
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kamlesh Khunti
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - David Hopkins
- Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK
| | - Andreas L Birkenfeld
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK; Department of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Bernhard Boehm
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Richard I G Holt
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jay S Skyler
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - J Hans DeVries
- Amsterdam UMC, Internal Medicine, University of Amsterdam, Amsterdam, Netherlands; Profil Institute for Metabolic Research, Neuss, Germany
| | - Eric Renard
- Department of Endocrinology, Diabetes, Nutrition, Montpellier University Hospital, Montpellier, France; Institute of Functional Genomics, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Robert H Eckel
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Bruno Geloneze
- Obesity and Comorbidities Research Center, Universidade de Campinas, Campinas, Brazil
| | - Juliana C Chan
- Department of Medicine and Therapeutics, Hong Kong Institute of Diabetes and Obesity, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Science, Chinese University of Hong Kong and Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Jean Claude Mbanya
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé, Yaounde, Cameroon
| | - Henry C Onyegbutulem
- Endocrine, Diabetes and Metabolic Unit, Department of Internal Medicine, Nile University of Nigeria-Asokoro Hospital, Abuja, Nigeria
| | - Ambady Ramachandran
- India Diabetes Research Foundation, Dr A Ramachandran's Diabetes Hospitals, Chennai, India
| | - Abdul Basit
- Baqai Institute of Diabetology and Endocrinology, Baqai Medical University, Karachi, Pakistan
| | - Mohamed Hassanein
- Dubai Hospital, Dubai Health Authority and Gulf Medical University, Dubai, United Arab Emirates
| | - Gavin Bewick
- Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK
| | - Giatgen A Spinas
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
| | | | - Francesco Rubino
- Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK; Bariatric and Metabolic Surgery, King's College Hospital, London, UK
| | - Geltrude Mingrone
- Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK; Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital Carl Gustav Carus, Dresden, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland; Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK.
| |
Collapse
|
30
|
Kumar A, Narayan RK, Prasoon P, Kumari C, Kaur G, Kumar S, Kulandhasamy M, Sesham K, Pareek V, Faiq MA, Pandey SN, Singh HN, Kant K, Shekhawat PS, Raza K, Kumar S. COVID-19 Mechanisms in the Human Body-What We Know So Far. Front Immunol 2021; 12:693938. [PMID: 34790191 PMCID: PMC8592035 DOI: 10.3389/fimmu.2021.693938] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023] Open
Abstract
More than one and a half years have elapsed since the commencement of the coronavirus disease 2019 (COVID-19) pandemic, and the world is struggling to contain it. Being caused by a previously unknown virus, in the initial period, there had been an extreme paucity of knowledge about the disease mechanisms, which hampered preventive and therapeutic measures against COVID-19. In an endeavor to understand the pathogenic mechanisms, extensive experimental studies have been conducted across the globe involving cell culture-based experiments, human tissue organoids, and animal models, targeted to various aspects of the disease, viz., viral properties, tissue tropism and organ-specific pathogenesis, involvement of physiological systems, and the human immune response against the infection. The vastly accumulated scientific knowledge on all aspects of COVID-19 has currently changed the scenario from great despair to hope. Even though spectacular progress has been made in all of these aspects, multiple knowledge gaps are remaining that need to be addressed in future studies. Moreover, multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have emerged across the globe since the onset of the first COVID-19 wave, with seemingly greater transmissibility/virulence and immune escape capabilities than the wild-type strain. In this review, we narrate the progress made since the commencement of the pandemic regarding the knowledge on COVID-19 mechanisms in the human body, including virus-host interactions, pulmonary and other systemic manifestations, immunological dysregulations, complications, host-specific vulnerability, and long-term health consequences in the survivors. Additionally, we provide a brief review of the current evidence explaining molecular mechanisms imparting greater transmissibility and virulence and immune escape capabilities to the emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India
| | - Ravi K. Narayan
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Anatomy, Andaman and Nicobar Islands Institute of Medical Sciences, Port Blair, India
| | - Pranav Prasoon
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Pittsburgh Center for Pain Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chiman Kumari
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Anatomy, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Gurjot Kaur
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- School of Pharmaceutical Sciences, Shoolini University, Solan, India
| | - Santosh Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Maheswari Kulandhasamy
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Biochemistry, Maulana Azad Medical College (MAMC), New Delhi, India
| | - Kishore Sesham
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Mangalagiri, Vijayawada, India
| | - Vikas Pareek
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Center for Cognitive and Brain Sciences, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Muneeb A. Faiq
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- New York University (NYU) Langone Health Center, NYU Robert I. Grossman School of Medicine, New York, NY, United States
| | - Sada N. Pandey
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Zoology, Banaras Hindu University (BHU), Varanasi, India
| | - Himanshu N. Singh
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Kamla Kant
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Bathinda, India
| | - Prakash S. Shekhawat
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Clinical Hematology, National Institute of Medical Sciences, Jaipur, India
| | - Khursheed Raza
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Deoghar, India
| | - Sujeet Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Center for Proteomics and Drug Discovery, Amity Institute of Biotechnology, Amity University, Maharashtra, India
| |
Collapse
|
31
|
Berdowska I, Matusiewicz M. Cathepsin L, transmembrane peptidase/serine subfamily member 2/4, and other host proteases in COVID-19 pathogenesis – with impact on gastrointestinal tract. World J Gastroenterol 2021; 27:6590-6600. [PMID: 34754154 PMCID: PMC8554394 DOI: 10.3748/wjg.v27.i39.6590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/28/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) seems to employ two routes of entrance to the host cell; via membrane fusion (with the cells expressing both angiotensin converting enzyme 2 (ACE2) and transmembrane peptidase/serine subfamily member 2/4 (TMPRSS2/4)) or via receptor-mediated endocytosis (to the target cells expressing only ACE2). The second mode is associated with cysteine cathepsins (probably cathepsin L) involvement in the virus spike protein (S protein) proteolytic activation. Also furin might activate the virus S protein enabling it to enter cells. Gastrointestinal tract (GIT) involvement in SARS-CoV-2 infection is evident in a subset of coronavirus disease 2019 (COVID-19) patients exhibiting GIT symptoms, such as diarrhea, and presenting viral-shedding in feces. Considering the abundance and co-localization of ACE2 and TMPRSS2 in the lower GIT (especially brush-border enterocytes), these two receptors seem to be mainly involved in SARS-CoV-2 invasion of the digestive tract. Additionally, in vitro studies have demonstrated the virions capability of infection and replication in the human epithelial cells lining GIT. However, also furin and cysteine cathepsins (cathepsin L) might participate in the activation of SARS-CoV-2 spike protein contributing to the virus invasiveness within GIT. Moreover, cathepsin L (due to its involvement in extracellular matrix components degradation and remodeling, the processes enhanced during SARS-CoV-2-induced inflammation) might be responsible for the dysregulation of absorption/ digestion functions of GIT, thus adding to the observed in some COVID-19 patients symptoms such as diarrhea.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Wroclaw 50-368, Lower Silesia, Poland
| | - Malgorzata Matusiewicz
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Wroclaw 50-368, Lower Silesia, Poland
| |
Collapse
|
32
|
Williams A, Branscome H, Khatkar P, Mensah GA, Al Sharif S, Pinto DO, DeMarino C, Kashanchi F. A comprehensive review of COVID-19 biology, diagnostics, therapeutics, and disease impacting the central nervous system. J Neurovirol 2021; 27:667-690. [PMID: 34581996 PMCID: PMC8477646 DOI: 10.1007/s13365-021-00998-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/17/2021] [Accepted: 07/01/2021] [Indexed: 01/08/2023]
Abstract
The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a highly transmissible disease. SARS-CoV-2 is estimated to have infected over 153 million people and to have caused over 3.2 million global deaths since its emergence in December 2019. SARS-CoV-2 is the seventh coronavirus known to infect humans, and like other coronaviruses, SARS-CoV-2 infection is characterized by a variety of symptoms including general flu-like symptoms such as a fever, sore throat, fatigue, and shortness of breath. Severe cases often display signs of pneumonia, lymphopenia, acute kidney injury, cardiac injury, cytokine storms, lung damage, acute respiratory distress syndrome (ARDS), multiple organ failure, sepsis, and death. There is evidence that around 30% of COVID-19 cases have central nervous system (CNS) or peripheral nervous system (PNS) symptoms along with or in the absence of the previously mentioned symptoms. In cases of CNS/PNS impairments, patients display dizziness, ataxia, seizure, nerve pain, and loss of taste and/or smell. This review highlights the neurological implications of SARS-CoV-2 and provides a comprehensive summary of the research done on SARS-CoV-2 pathology, diagnosis, therapeutics, and vaccines up to May 5.
Collapse
Affiliation(s)
- Anastasia Williams
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
- American Type Culture Collection (ATCC), Manassas, VA, USA
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Gifty A Mensah
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Sarah Al Sharif
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Daniel O Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
- Immunology Core, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA.
| |
Collapse
|
33
|
Qu J, Zhu HH, Huang XJ, He GF, Liu JY, Huang JJ, Chen Y, Qu Q, Wu YL, Chen XY, Lu Q. Abnormal Indexes of Liver and Kidney Injury Markers Predict Severity in COVID-19 Patients. Infect Drug Resist 2021; 14:3029-3040. [PMID: 34408447 PMCID: PMC8364353 DOI: 10.2147/idr.s321915] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/21/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND SARS-CoV-2 can damage not only the lungs but also the liver and kidney. Most critically ill patients with coronavirus disease 2019 (COVID-19) have liver and kidney dysfunction. We aim to investigate the levels of liver and kidney function indexes in mild and severe COVID-19 patients and their capability to predict the severity of the disease. METHODS The characteristics and laboratory indexes were compared between patients with different conditions. We applied binary logistic regression to find the independent risk factors of severe patients. Receiver operating characteristic (ROC) analysis was used to predict the severity of COVID-19 using the liver and kidney function indexes. RESULTS This study enrolled 266 COVID-19 patients, including 235 mild patients and 31 severe patients. Compared with mild patients, severe patients had lower albumin (ALB) and higher alanine aminotransferase (ALT), aspartate aminotransferase (AST), and urea nitrogen (BUN) (all p<0.001). Binary logistic regression analysis also identified ALB [OR=0.273 (0.079-0.947), p=0.041] and ALT [OR=2.680 (1.036-6.934), p=0.042] as independent factors of severe COVID-19 patients. Combining ALB, ALT, BUN, and LDH exhibited the area under ROC at 0.914, with a sensitivity of 86.7% and specificity of 83.0%. CONCLUSION COVID-19 patients, especially severe patients, have damage to liver and kidney function. ALT, AST, LDH, and BUN could be independent factors for predicting the severity of COVID-19. Combining the ALB, ALT, BUN, and LDH could predict the transition from mild to severe in COVID-19 patients.
Collapse
Affiliation(s)
- Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People’s Republic of China
| | - Hai-Hong Zhu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People’s Republic of China
| | - Xue-Jian Huang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People’s Republic of China
| | - Ge-Fei He
- Department of Pharmacy, The First Hospital of Changsha, Changsha, 410005, People’s Republic of China
| | - Ji-Yang Liu
- Department of Pharmacy, The First Hospital of Changsha, Changsha, 410005, People’s Republic of China
| | - Juan-Juan Huang
- Department of Pharmacy, The First Hospital of Changsha, Changsha, 410005, People’s Republic of China
| | - Ying Chen
- Department of Pharmacy, Wuhan University, Renmin Hospital, Wuhan, 430060, People’s Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410007, People’s Republic of China
| | - Ya-Li Wu
- Department of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410000, People’s Republic of China
| | - Xiang-Yu Chen
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
| | - Qiong Lu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People’s Republic of China
| |
Collapse
|
34
|
Kumar A, Narayan RK, Kulandhasamy M, Prasoon P, Kumari C, Kumar S, Pareek V, Sesham K, Shekhawat PS, Kant K, Kumar S. COVID-19 pandemic: insights into molecular mechanisms leading to sex-based differences in patient outcomes. Expert Rev Mol Med 2021; 23:e7. [PMID: 34340720 PMCID: PMC8353216 DOI: 10.1017/erm.2021.9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022]
Abstract
Recent epidemiological studies analysing sex-disaggregated patient data of coronavirus disease 2019 (COVID-19) across the world revealed a distinct sex bias in the disease morbidity as well as the mortality - both being higher for the men. Similar antecedents have been known for the previous viral infections, including from coronaviruses, such as severe acute respiratory syndrome (SARS) and middle-east respiratory syndrome (MERS). A sound understanding of molecular mechanisms leading to the biological sex bias in the survival outcomes of the patients in relation to COVID-19 will act as an essential requisite for developing a sex-differentiated approach for therapeutic management of this disease. Recent studies which have explored molecular mechanism(s) behind sex-based differences in COVID-19 pathogenesis are scarce; however, existing evidence, for other respiratory viral infections, viz. SARS, MERS and influenza, provides important clues in this regard. In attempt to consolidate the available knowledge on this issue, we conducted a systematic review of the existing empirical knowledge and recent experimental studies following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The qualitative analysis of the collected data unravelled multiple molecular mechanisms, such as evolutionary and genetic/epigenetic factors, sex-linkage of viral host cell entry receptor and immune response genes, sex hormone and gut microbiome-mediated immune-modulation, as the possible key reasons for the sex-based differences in patient outcomes in COVID-19.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India
| | - Ravi K. Narayan
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India
| | - Maheswari Kulandhasamy
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Biochemistry, Maulana Azad Medical College (MAMC), New Delhi, India
| | - Pranav Prasoon
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Pittsburgh Center for Pain Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chiman Kumari
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Anatomy, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sujeet Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Centre for Proteomics and Drug Discovery, Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, India
| | - Vikas Pareek
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Centre for Cognitive and Brain Sciences, Indian Institute of Technology, Gandhinagar, Gujarat, India
| | - Kishore Sesham
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Mangalagiri, Andhra Pradesh, India
| | - Prakash S. Shekhawat
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Hematology, Nil Ratan Sircar Medical College and Hospital (NRSMCH), Kolkata, India
| | - Kamla Kant
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Bathinda, India
| | - Santosh Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
35
|
Liu Q, Li S, Dupuy A, le Mai H, Sailliet N, Logé C, Robert JMH, Brouard S. Exosomes as New Biomarkers and Drug Delivery Tools for the Prevention and Treatment of Various Diseases: Current Perspectives. Int J Mol Sci 2021; 22:ijms22157763. [PMID: 34360530 PMCID: PMC8346134 DOI: 10.3390/ijms22157763] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/17/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Exosomes are nano-sized vesicles secreted by most cells that contain a variety of biological molecules, such as lipids, proteins and nucleic acids. They have been recognized as important mediators for long-distance cell-to-cell communication and are involved in a variety of biological processes. Exosomes have unique advantages, positioning them as highly effective drug delivery tools and providing a distinct means of delivering various therapeutic agents to target cells. In addition, as a new clinical diagnostic biomarker, exosomes play an important role in many aspects of human health and disease, including endocrinology, inflammation, cancer, and cardiovascular disease. In this review, we summarize the development of exosome-based drug delivery tools and the validation of novel biomarkers, and illustrate the role of exosomes as therapeutic targets in the prevention and treatment of various diseases.
Collapse
Affiliation(s)
- Qi Liu
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; (Q.L.); (S.L.)
| | - Shiying Li
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; (Q.L.); (S.L.)
| | - Amandine Dupuy
- Unite Mixte de Recherche 1064, Centre de Recherche en Transplantation et Immunologie, Inserm, CHU Nantes, Université de Nantes, ITUN, F-44000 Nantes, France; (A.D.); (H.l.M.); (N.S.)
| | - Hoa le Mai
- Unite Mixte de Recherche 1064, Centre de Recherche en Transplantation et Immunologie, Inserm, CHU Nantes, Université de Nantes, ITUN, F-44000 Nantes, France; (A.D.); (H.l.M.); (N.S.)
| | - Nicolas Sailliet
- Unite Mixte de Recherche 1064, Centre de Recherche en Transplantation et Immunologie, Inserm, CHU Nantes, Université de Nantes, ITUN, F-44000 Nantes, France; (A.D.); (H.l.M.); (N.S.)
- Institut de Recherche en Santé 2, 22, Cibles et Médicaments du Cancer et de l’Immunité IICiMed-AE1155, Nantes Atlantique Universités, Université de Nantes, Boulevard Bénoni-Goullin, F-44000 Nantes, France;
| | - Cédric Logé
- Institut de Recherche en Santé 2, 22, Cibles et Médicaments du Cancer et de l’Immunité IICiMed-AE1155, Nantes Atlantique Universités, Université de Nantes, Boulevard Bénoni-Goullin, F-44000 Nantes, France;
| | - J.-Michel H. Robert
- Institut de Recherche en Santé 2, 22, Cibles et Médicaments du Cancer et de l’Immunité IICiMed-AE1155, Nantes Atlantique Universités, Université de Nantes, Boulevard Bénoni-Goullin, F-44000 Nantes, France;
- Correspondence: (J.-M.H.R.); (S.B.)
| | - Sophie Brouard
- Unite Mixte de Recherche 1064, Centre de Recherche en Transplantation et Immunologie, Inserm, CHU Nantes, Université de Nantes, ITUN, F-44000 Nantes, France; (A.D.); (H.l.M.); (N.S.)
- Correspondence: (J.-M.H.R.); (S.B.)
| |
Collapse
|
36
|
Pikovsky M, Tan MY, Ahmed A, Sykes L, Agha-Jaffar R, Yu CKH. Euglycaemic ketoacidosis in pregnant women with COVID-19: two case reports. BMC Pregnancy Childbirth 2021. [PMID: 34134652 DOI: 10.1186/s12884‐021‐03928‐w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Euglycaemic ketoacidosis (EKA) is an infrequent but serious condition which usually follows a period of starvation, severe vomiting or illness in individuals with or without diabetes. Ketoacidosis is associated with materno-fetal morbidity and mortality necessitating prompt diagnosis and management. Physiological increases in insulin resistance render pregnancy a diabetogenic state with increased susceptibility to ketosis. COVID-19 is associated with worse clinical outcomes in patients with diabetes and is an independent risk factor for ketoacidosis in normoglycaemic individuals. CASE PRESENTATIONS We describe two cases of SARS-CoV-2 positive pregnant women presenting with normoglycaemic metabolic ketoacidosis. Both cases were associated with maternal and fetal compromise, requiring aggressive fluid and insulin resuscitation and early delivery. CONCLUSION We discuss possible physiology and propose a management strategy for euglycaemic ketoacidosis in pregnancy.
Collapse
Affiliation(s)
- Margaret Pikovsky
- St Mary's Hospital, Obstetrics Department, Imperial College NHS Trust, Praed Street, London, W1 2NY, UK
| | - Min Yi Tan
- St Mary's Hospital, Obstetrics Department, Imperial College NHS Trust, Praed Street, London, W1 2NY, UK
| | - Amanda Ahmed
- St Mary's Hospital, Obstetrics Department, Imperial College NHS Trust, Praed Street, London, W1 2NY, UK
| | - Lynne Sykes
- St Mary's Hospital, Obstetrics Department, Imperial College NHS Trust, Praed Street, London, W1 2NY, UK.,March of Dimes Prematurity Research Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0HS, UK
| | - Rochan Agha-Jaffar
- Endocrinology Department, St Mary's Hospital, Imperial College Healthcare NHS Trust, Praed Street, London, W1 2NY, UK
| | - Christina K H Yu
- St Mary's Hospital, Obstetrics Department, Imperial College NHS Trust, Praed Street, London, W1 2NY, UK.
| |
Collapse
|
37
|
Pikovsky M, Tan MY, Ahmed A, Sykes L, Agha-Jaffar R, Yu CKH. Euglycaemic ketoacidosis in pregnant women with COVID-19: two case reports. BMC Pregnancy Childbirth 2021; 21:427. [PMID: 34134652 PMCID: PMC8207493 DOI: 10.1186/s12884-021-03928-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/06/2021] [Indexed: 12/17/2022] Open
Abstract
Background Euglycaemic ketoacidosis (EKA) is an infrequent but serious condition which usually follows a period of starvation, severe vomiting or illness in individuals with or without diabetes. Ketoacidosis is associated with materno-fetal morbidity and mortality necessitating prompt diagnosis and management. Physiological increases in insulin resistance render pregnancy a diabetogenic state with increased susceptibility to ketosis. COVID-19 is associated with worse clinical outcomes in patients with diabetes and is an independent risk factor for ketoacidosis in normoglycaemic individuals. Case presentations We describe two cases of SARS-CoV-2 positive pregnant women presenting with normoglycaemic metabolic ketoacidosis. Both cases were associated with maternal and fetal compromise, requiring aggressive fluid and insulin resuscitation and early delivery. Conclusion We discuss possible physiology and propose a management strategy for euglycaemic ketoacidosis in pregnancy.
Collapse
Affiliation(s)
- Margaret Pikovsky
- St Mary's Hospital, Obstetrics Department, Imperial College NHS Trust, Praed Street, London, W1 2NY, UK
| | - Min Yi Tan
- St Mary's Hospital, Obstetrics Department, Imperial College NHS Trust, Praed Street, London, W1 2NY, UK
| | - Amanda Ahmed
- St Mary's Hospital, Obstetrics Department, Imperial College NHS Trust, Praed Street, London, W1 2NY, UK
| | - Lynne Sykes
- St Mary's Hospital, Obstetrics Department, Imperial College NHS Trust, Praed Street, London, W1 2NY, UK.,March of Dimes Prematurity Research Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0HS, UK
| | - Rochan Agha-Jaffar
- Endocrinology Department, St Mary's Hospital, Imperial College Healthcare NHS Trust, Praed Street, London, W1 2NY, UK
| | - Christina K H Yu
- St Mary's Hospital, Obstetrics Department, Imperial College NHS Trust, Praed Street, London, W1 2NY, UK.
| |
Collapse
|
38
|
Green Tea Polyphenol Catechins Inhibit Coronavirus Replication and Potentiate the Adaptive Immunity and Autophagy-Dependent Protective Mechanism to Improve Acute Lung Injury in Mice. Antioxidants (Basel) 2021; 10:antiox10060928. [PMID: 34200327 PMCID: PMC8230342 DOI: 10.3390/antiox10060928] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Effective antiviral therapeutics are urgently required to fight severe acute respiratory syndrome (SARS) caused by a SARS coronavirus (SARS-CoV). Because polyphenol catechins could confer antioxidative, anti-inflammatory, antiviral, and antimicrobial activities, we assessed the therapeutic effects of catechins against SARS-CoV replication in Vero E6 cells, the preventive effect of catechins on CD25/CD69/CD94/CD8+ cytotoxic T lymphocytes-mediated adaptive immunity, and the protective effect on lipopolysaccharide-induced acute lung injury (ALI) in mice. We found that catechins containing 32.8% epigallocatechin gallate, 15.2% epicatechin gallate, 13.2 epicatechin, 10.8% epigallocatechin, 10.4% gallocatechin, and 4.4% catechin directly inhibited SARS-CoV replication at sub-micromolecular concentrations. Four-week catechins ingestion increased CD8+ T cell percentage, upregulated CD69+/CD25+/CD94-NKG2A/CD8+ T lymphocytes-mediated adaptive immunity, and increased type I cytokines release responding to ovalbumin/alum. Catechins significantly reduced lipopolysaccharide-induced cytokine storm and oxidative stress and ALI by inhibiting PI3K/AKT/mTOR signaling to upregulate Beclin-1/Atg5-Atg12/LC3-II-mediated autophagy mechanism. Pretreatment of autophagy inhibitor 3-Methyladenine reversed the inhibiting effects of catechins on the cytokines and oxidative stress levels and ALI. In conclusion, our data indicated that catechins directly inhibited SARS-CoV replication, potentiated the CD25/CD69/CD94/CD8+ T lymphocytes-mediated adaptive immunity and attenuated lipopolysaccharide-induced ALI and cytokine storm by PI3K/AKT/mTOR-signaling-mediated autophagy, which may be applied to prevent and/or treat SARS-CoV infection.
Collapse
|
39
|
Wang MK, Yue HY, Cai J, Zhai YJ, Peng JH, Hui JF, Hou DY, Li WP, Yang JS. COVID-19 and the digestive system: A comprehensive review. World J Clin Cases 2021; 9:3796-3813. [PMID: 34141737 PMCID: PMC8180220 DOI: 10.12998/wjcc.v9.i16.3796] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/10/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is spreading at an alarming rate, and it has created an unprecedented health emergency threatening tens of millions of people worldwide. Previous studies have indicated that SARS-CoV-2 ribonucleic acid could be detected in the feces of patients even after smear-negative respiratory samples. However, demonstration of confirmed fecal-oral transmission has been difficult. Clinical studies have shown an incidence rate of gastrointestinal (GI) symptoms ranging from 2% to 79.1% in patients with COVID-19. They may precede or accompany respiratory symptoms. The most common GI symptoms included nausea, diarrhea, and abdominal pain. In addition, some patients also had liver injury, pancreatic damage, and even acute mesenteric ischemia/thrombosis. Although the incidence rates reported in different centers were quite different, the digestive system was the clinical component of the COVID-19 section. Studies have shown that angiotensin-converting enzyme 2, the receptor of SARS-CoV-2, was not only expressed in the lungs, but also in the upper esophagus, small intestine, liver, and colon. The possible mechanism of GI symptoms in COVID-19 patients may include direct viral invasion into target cells, dysregulation of angiotensin-converting enzyme 2, immune-mediated tissue injury, and gut dysbiosis caused by microbiota. Additionally, numerous experiences, guidelines, recommendations, and position statements were published or released by different organizations and societies worldwide to optimize the management practice of outpatients, inpatients, and endoscopy in the era of COVID-19. In this review, based on our previous work and relevant literature, we mainly discuss potential fecal-oral transmission, GI manifestations, abdominal imaging findings, relevant pathophysiological mechanisms, and infection control and prevention measures in the time of COVID-19.
Collapse
Affiliation(s)
- Ming-Ke Wang
- Department of Disease Control and Prevention, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Hai-Yan Yue
- Department of Digestive Diseases, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Jin Cai
- Department of Geriatrics, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
- Department of Infectious Diseases, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Yu-Jia Zhai
- Department of Outpatient Services, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Jian-Hui Peng
- Department of Quality Management, Guangdong Second Provincial General Hospital (Pazhou Campus), Guangzhou 510317, Guangdong Province, China
| | - Ju-Fen Hui
- Department of Disease Control and Prevention, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Deng-Yong Hou
- Department of Disease Control and Prevention, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Wei-Peng Li
- Department of Disease Control and Prevention, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Ji-Shun Yang
- Medical Care Center, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| |
Collapse
|
40
|
Al-kuraishy HM, Al-Gareeb AI, Alblihed M, Guerreiro SG, Cruz-Martins N, Batiha GES. COVID-19 in Relation to Hyperglycemia and Diabetes Mellitus. Front Cardiovasc Med 2021; 8:644095. [PMID: 34124187 PMCID: PMC8189260 DOI: 10.3389/fcvm.2021.644095] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), triggered by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), may lead to extrapulmonary manifestations like diabetes mellitus (DM) and hyperglycemia, both predicting a poor prognosis and an increased risk of death. SARS-CoV-2 infects the pancreas through angiotensin-converting enzyme 2 (ACE2), where it is highly expressed compared to other organs, leading to pancreatic damage with subsequent impairment of insulin secretion and development of hyperglycemia even in non-DM patients. Thus, this review aims to provide an overview of the potential link between COVID-19 and hyperglycemia as a risk factor for DM development in relation to DM pharmacotherapy. For that, a systematic search was done in the database of MEDLINE through Scopus, Web of Science, PubMed, Embase, China National Knowledge Infrastructure (CNKI), China Biology Medicine (CBM), and Wanfang Data. Data obtained underline that SARS-CoV-2 infection in DM patients is more severe and associated with poor clinical outcomes due to preexistence of comorbidities and inflammation disorders. SARS-CoV-2 infection impairs glucose homeostasis and metabolism in DM and non-DM patients due to cytokine storm (CS) development, downregulation of ACE2, and direct injury of pancreatic β-cells. Therefore, the potent anti-inflammatory effect of diabetic pharmacotherapies such as metformin, pioglitazone, sodium-glucose co-transporter-2 inhibitors (SGLT2Is), and dipeptidyl peptidase-4 (DPP4) inhibitors may mitigate COVID-19 severity. In addition, some antidiabetic agents and also insulin may reduce SARS-CoV-2 infectivity and severity through the modulation of the ACE2 receptor expression. The findings presented here illustrate that insulin therapy might seem as more appropriate than other anti-DM pharmacotherapies in the management of COVID-19 patients with DM due to low risk of uncontrolled hyperglycemia and diabetic ketoacidosis (DKA). From these findings, we could not give the final conclusion about the efficacy of diabetic pharmacotherapy in COVID-19; thus, clinical trial and prospective studies are warranted to confirm this finding and concern.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, Baghdad, Iraq
| | - M. Alblihed
- Department of Microbiology, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Susana G. Guerreiro
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
41
|
Patil M, Singh S, Henderson J, Krishnamurthy P. Mechanisms of COVID-19-induced cardiovascular disease: Is sepsis or exosome the missing link? J Cell Physiol 2021; 236:3366-3382. [PMID: 33078408 PMCID: PMC7920909 DOI: 10.1002/jcp.30109] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has reached a pandemic level, spreading across the globe by affecting over 33 million people and causing over 1,009,270 deaths. SARS-CoV-2 is highly infectious with a high basic reproduction number (R0 ) of 2.2-5.7 that has led to its exponential spread. Besides, very little is known about it in terms of immunogenicity and its molecular targets. SARS-CoV-2 causes acute respiratory distress syndrome, followed by multiple organ failure and death in a small percentage of individuals. Cardiac injury has emerged as another dreaded outcome of COVID-19 complications. However, a thorough understanding of the pathogenesis of SARS-CoV-2 is lacking. In this review, we discuss the virus, possible mechanisms of COVID-19-induced cardiac injury, and potential therapeutic strategies, and we explore if exosomes could be targeted to treat symptoms of COVID-19. Furthermore, we discussed the virus-induced sepsis, which may be the cause of multiple organ failure, including myocardial injury.
Collapse
Affiliation(s)
- Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - Sarojini Singh
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - John Henderson
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, AL 35294, USA
| |
Collapse
|
42
|
Mahmoud IS, Jarrar YB. Targeting the intestinal TMPRSS2 protease to prevent SARS-CoV-2 entry into enterocytes-prospects and challenges. Mol Biol Rep 2021; 48:4667-4675. [PMID: 34023987 PMCID: PMC8140747 DOI: 10.1007/s11033-021-06390-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023]
Abstract
The transmembrane protease serine 2 (TMPRSS2) is a membrane anchored protease that primarily expressed by epithelial cells of respiratory and gastrointestinal systems and has been linked to multiple pathological processes in humans including tumor growth, metastasis and viral infections. Recent studies have shown that TMPRSS2 expressed on cell surface of host cells could play a crucial role in activation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein which facilitates the rapid early entry of the virus into host cells. In addition, direct suppression of TMPRSS2 using small drug inhibitors has been demonstrated to be effective in decreasing SARS-CoV-2 infection in vitro, which presents TMPRSS2 protease as a potential therapeutic strategy for SARS-CoV-2 infection. Recently, SARS-CoV-2 has been shown to be capable of infecting gastrointestinal enterocytes and to provoke gastrointestinal disorders in patients with COVID-19 disease, which is considered as a new transmission route and target organ of SARS-CoV-2. In this review, we highlight the biochemical properties of TMPRSS2 protease and discuss the potential targeting of TMPRSS2 by inhibitors to prevent the SARS-CoV-2 spreading through gastro-intestinal tract system as well as the hurdles that need to be overcome.
Collapse
Affiliation(s)
- Ismail Sami Mahmoud
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, The Hashemite University, Zarqa, 13133, Jordan.
| | | |
Collapse
|
43
|
Llorens S, Nava E, Muñoz-López M, Sánchez-Larsen Á, Segura T. Neurological Symptoms of COVID-19: The Zonulin Hypothesis. Front Immunol 2021; 12:665300. [PMID: 33981312 PMCID: PMC8107207 DOI: 10.3389/fimmu.2021.665300] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
The irruption of SARS-CoV-2 during 2020 has been of pandemic proportions due to its rapid spread and virulence. COVID-19 patients experience respiratory, digestive and neurological symptoms. Distinctive symptom as anosmia, suggests a potential neurotropism of this virus. Amongst the several pathways of entry to the nervous system, we propose an alternative pathway from the infection of the gut, involving Toll-like receptor 4 (TLR4), zonulin, protease-activated receptor 2 (PAR2) and zonulin brain receptor. Possible use of zonulin antagonists could be investigated to attenuate neurological manifestations caused by SARS-CoV-19 infection.
Collapse
Affiliation(s)
- Sílvia Llorens
- Department of Medical Sciences, Faculty of Medicine of Albacete, University of Castilla-La Mancha, Albacete, Spain.,Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, Albacete, Spain
| | - Eduardo Nava
- Department of Medical Sciences, Faculty of Medicine of Albacete, University of Castilla-La Mancha, Albacete, Spain.,Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, Albacete, Spain
| | - Mónica Muñoz-López
- Department of Medical Sciences, Faculty of Medicine of Albacete, University of Castilla-La Mancha, Albacete, Spain.,Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, Albacete, Spain
| | | | - Tomás Segura
- Department of Medical Sciences, Faculty of Medicine of Albacete, University of Castilla-La Mancha, Albacete, Spain.,Servicio de Neurología, Hospital General Universitario de Albacete, Albacete, Spain.,Instituto de Investigación en Discapacidades Neurológicas (IDINE), University of Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
44
|
Kumar A, Singh R, Kaur J, Pandey S, Sharma V, Thakur L, Sati S, Mani S, Asthana S, Sharma TK, Chaudhuri S, Bhattacharyya S, Kumar N. Wuhan to World: The COVID-19 Pandemic. Front Cell Infect Microbiol 2021; 11:596201. [PMID: 33859951 PMCID: PMC8042280 DOI: 10.3389/fcimb.2021.596201] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
COVID-19 is a Severe Acute Respiratory Syndrome (SARS), caused by SARS-CoV-2, a novel virus which belongs to the family Coronaviridae. It was first reported in December 2019 in the Wuhan city of China and soon after, the virus and hence the disease got spread to the entire world. As of February 26, 2021, SARS-CoV-2 has infected ~112.20 million people and caused ~2.49 million deaths across the globe. Although the case fatality rate among SARS-CoV-2 patient is lower (~2.15%) than its earlier relatives, SARS-CoV (~9.5%) and MERS-CoV (~34.4%), the SARS-CoV-2 has been observed to be more infectious and caused higher morbidity and mortality worldwide. As of now, only the knowledge regarding potential transmission routes and the rapidly developed diagnostics has been guiding the world for managing the disease indicating an immediate need for a detailed understanding of the pathogen and the disease-biology. Over a very short period of time, researchers have generated a lot of information in unprecedented ways in the key areas, including viral entry into the host, dominant mutation, potential transmission routes, diagnostic targets and their detection assays, potential therapeutic targets and drug molecules for inhibiting viral entry and/or its replication in the host including cross-neutralizing antibodies and vaccine candidates that could help us to combat the ongoing COVID-19 pandemic. In the current review, we have summarized the available knowledge about the pathogen and the disease, COVID-19. We believe that this readily available knowledge base would serve as a valuable resource to the scientific and clinical community and may help in faster development of the solution to combat the disease.
Collapse
Affiliation(s)
- Ashok Kumar
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
- Manipal Academy of Higher Education, Manipal, India
| | - Rita Singh
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Jaskaran Kaur
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Sweta Pandey
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Vinita Sharma
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
- Central University of Haryana, Mahendragarh, India
| | - Lovnish Thakur
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Sangeeta Sati
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Shailendra Mani
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Tarun Kumar Sharma
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Susmita Chaudhuri
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | | | - Niraj Kumar
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| |
Collapse
|
45
|
Koufakis T, Metallidis S, Zebekakis P, Kotsa K. Intestinal SGLT1 as a therapeutic target in COVID-19-related diabetes: A "two-edged sword" hypothesis. Br J Clin Pharmacol 2021; 87:3643-3646. [PMID: 33684969 PMCID: PMC8251113 DOI: 10.1111/bcp.14800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022] Open
Abstract
Emerging data are linking coronavirus disease 2019 (COVID‐19) with an increased risk of developing new‐onset diabetes. The gut has been so far out of the frame of the discussion on the pathophysiology of COVID‐19‐induced diabetes, with the pancreas, liver, and adipose tissue being under the spotlight of medical research. Sodium‐glucose co‐transporters (SGLT) 1 represent important regulators of glucose absorption, expressed in the small intestine where they mediate almost all sodium‐dependent glucose uptake. Similar to what happens in diabetes and other viral infections, SGLT1 upregulation could result in increased intestinal glucose absorption and subsequently promote the development of hyperglycaemia in COVID‐19. Considering the above, the question whether dual SGLT (1 and 2) inhibition could contribute to improved outcomes in such cases sounds challenging, deserving further evaluation. Future studies need to clarify whether putative benefits of dual SGLT inhibition in COVID‐19 outweigh potential risks, particularly with respect to drug‐induced euglycaemic diabetic ketoacidosis, gastrointestinal side effects, and compromised host response to pathogens.
Collapse
Affiliation(s)
- Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Symeon Metallidis
- Infectious Diseases Division, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Pantelis Zebekakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece.,Infectious Diseases Division, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
46
|
Coke CJ, Davison B, Fields N, Fletcher J, Rollings J, Roberson L, Challagundla KB, Sampath C, Cade J, Farmer-Dixon C, Gangula PR. SARS-CoV-2 Infection and Oral Health: Therapeutic Opportunities and Challenges. J Clin Med 2021; 10:E156. [PMID: 33466289 PMCID: PMC7795434 DOI: 10.3390/jcm10010156] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
The novel corona virus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), and the disease it causes, COVID-19 (Coronavirus Disease-2019) have had multi-faceted effects on a number of lives on a global scale both directly and indirectly. A growing body of evidence suggest that COVID-19 patients experience several oral health problems such as dry mouth, mucosal blistering, mouth rash, lip necrosis, and loss of taste and smell. Periodontal disease (PD), a severe inflammatory gum disease, may worsen the symptoms associated with COVID-19. Routine dental and periodontal treatment may help decrease the symptoms of COVID-19. PD is more prevalent among patients experiencing metabolic diseases such as obesity, diabetes mellitus and cardiovascular risk. Studies have shown that these patients are highly susceptible for SARS-CoV-2 infection. Pro-inflammatory cytokines and oxidative stress known to contribute to the development of PD and other metabolic diseases are highly elevated among COVID-19 patients. Periodontal health may help to determine the severity of COVID-19 infection. Accumulating evidence shows that African-Americans (AAs) and vulnerable populations are disproportionately susceptible to PD, metabolic diseases and COVID-19 compared to other ethnicities in the United States. Dentistry and dental healthcare professionals are particularly susceptible to this virus due to the transferability via the oral cavity and the use of aerosol creating instruments that are ubiquitous in this field. In this review, we attempt to provide a comprehensive and updated source of information about SARS-CoV-2/COVID-19 and the various effects it has had on the dental profession and patients visits to dental clinics. Finally, this review is a valuable resource for the management of oral hygiene and reduction of the severity of infection.
Collapse
Affiliation(s)
- Christopher J. Coke
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (C.J.C.); (B.D.); (N.F.); (J.F.); (J.R.); (L.R.); (C.S.); (J.C.); (C.F.-D.)
| | - Brandon Davison
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (C.J.C.); (B.D.); (N.F.); (J.F.); (J.R.); (L.R.); (C.S.); (J.C.); (C.F.-D.)
| | - Niariah Fields
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (C.J.C.); (B.D.); (N.F.); (J.F.); (J.R.); (L.R.); (C.S.); (J.C.); (C.F.-D.)
| | - Jared Fletcher
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (C.J.C.); (B.D.); (N.F.); (J.F.); (J.R.); (L.R.); (C.S.); (J.C.); (C.F.-D.)
| | - Joseph Rollings
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (C.J.C.); (B.D.); (N.F.); (J.F.); (J.R.); (L.R.); (C.S.); (J.C.); (C.F.-D.)
| | - Leilani Roberson
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (C.J.C.); (B.D.); (N.F.); (J.F.); (J.R.); (L.R.); (C.S.); (J.C.); (C.F.-D.)
| | - Kishore B. Challagundla
- Department of Biochemistry & Molecular Biology, The Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- The Children’s Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chethan Sampath
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (C.J.C.); (B.D.); (N.F.); (J.F.); (J.R.); (L.R.); (C.S.); (J.C.); (C.F.-D.)
| | - James Cade
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (C.J.C.); (B.D.); (N.F.); (J.F.); (J.R.); (L.R.); (C.S.); (J.C.); (C.F.-D.)
| | - Cherae Farmer-Dixon
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (C.J.C.); (B.D.); (N.F.); (J.F.); (J.R.); (L.R.); (C.S.); (J.C.); (C.F.-D.)
| | - Pandu R. Gangula
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (C.J.C.); (B.D.); (N.F.); (J.F.); (J.R.); (L.R.); (C.S.); (J.C.); (C.F.-D.)
| |
Collapse
|
47
|
Kumar A, Faiq MA, Pareek V, Raza K, Narayan RK, Prasoon P, Kumar P, Kulandhasamy M, Kumari C, Kant K, Singh HN, Qadri R, Pandey SN, Kumar S. Relevance of SARS-CoV-2 related factors ACE2 and TMPRSS2 expressions in gastrointestinal tissue with pathogenesis of digestive symptoms, diabetes-associated mortality, and disease recurrence in COVID-19 patients. Med Hypotheses 2020; 144:110271. [PMID: 33254575 PMCID: PMC7487155 DOI: 10.1016/j.mehy.2020.110271] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/21/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023]
Abstract
COVID-19 is caused by a new strain of coronavirus called SARS-coronavirus-2 (SARS-CoV-2), which is a positive sense single strand RNA virus. In humans, it binds to angiotensin converting enzyme 2 (ACE2) with the help a structural protein on its surface called the S-spike. Further, cleavage of the viral spike protein (S) by the proteases like transmembrane serine protease 2 (TMPRSS2) or Cathepsin L (CTSL) is essential to effectuate host cell membrane fusion and virus infectivity. COVID-19 poses intriguing issues with imperative relevance to clinicians. The pathogenesis of GI symptoms, diabetes-associated mortality, and disease recurrence in COVID-19 are of particular relevance because they cannot be sufficiently explained from the existing knowledge of the viral diseases. Tissue specific variations of SARS-CoV-2 cell entry related receptors expression in healthy individuals can help in understanding the pathophysiological basis the aforementioned collection of symptoms. ACE2 mediated dysregulation of sodium dependent glucose transporter (SGLT1 or SLC5A1) in the intestinal epithelium also links it to the pathogenesis of diabetes mellitus which can be a possible reason for the associated mortality in COVID-19 patients with diabetes. High expression of ACE2 in mucosal cells of the intestine and GB make these organs potential sites for the virus entry and replication. Continued replication of the virus at these ACE2 enriched sites may be a basis for the disease recurrence reported in some, thought to be cured, patients. Based on the human tissue specific distribution of SARS-CoV-2 cell entry factors ACE2 and TMPRSS2 and other supportive evidence from the literature, we hypothesize that SARS-CoV-2 host cell entry receptor-ACE2 based mechanism in GI tissue may be involved in COVID-19 (i) in the pathogenesis of digestive symptoms, (ii) in increased diabetic complications, (iii) in disease recurrence.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India.
| | - Muneeb A Faiq
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; New York University (NYU) Langone Health Center, NYU Robert I Grossman School of Medicine, New York, NY, USA
| | - Vikas Pareek
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; National Brain Research Center, Manesar, Haryana, India
| | - Khursheed Raza
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Anatomy, All India Institute of Medical Sciences, Deoghar, India
| | - Ravi K Narayan
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India
| | - Pranav Prasoon
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Pittsburgh Center for Pain Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pavan Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Pediatrics, Medical University of South Carolina, Charleston, USA
| | - Maheswari Kulandhasamy
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Biochemistry, Maulana Azad Medical College (MAMC), New Delhi, India
| | - Chiman Kumari
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Anatomy, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Kamla Kant
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Bathinda, India
| | - Himanshu N Singh
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; TAGC-INSERM, U1090, Aix Marseille University, Marseille, France
| | - Rizwana Qadri
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Neuro-oncology Laboratory, Rockefeller University, New York, NY, USA
| | - Sada N Pandey
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Zoology, Banaras Hindu University (BHU), Varanasi, India
| | - Santosh Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
48
|
SARS-CoV-2 receptor networks in diabetic and COVID-19-associated kidney disease. Kidney Int 2020; 98:1502-1518. [PMID: 33038424 PMCID: PMC7543950 DOI: 10.1016/j.kint.2020.09.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
COVID-19 morbidity and mortality are increased via unknown mechanisms in patients with diabetes and kidney disease. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) for entry into host cells. Because ACE2 is a susceptibility factor for infection, we investigated how diabetic kidney disease and medications alter ACE2 receptor expression in kidneys. Single cell RNA profiling of kidney biopsies from healthy living donors and patients with diabetic kidney disease revealed ACE2 expression primarily in proximal tubular epithelial cells. This cell-specific localization was confirmed by in situ hybridization. ACE2 expression levels were unaltered by exposures to renin-angiotensin-aldosterone system inhibitors in diabetic kidney disease. Bayesian integrative analysis of a large compendium of public -omics datasets identified molecular network modules induced in ACE2-expressing proximal tubular epithelial cells in diabetic kidney disease (searchable at hb.flatironinstitute.org/covid-kidney) that were linked to viral entry, immune activation, endomembrane reorganization, and RNA processing. The diabetic kidney disease ACE2-positive proximal tubular epithelial cell module overlapped with expression patterns seen in SARS-CoV-2–infected cells. Similar cellular programs were seen in ACE2-positive proximal tubular epithelial cells obtained from urine samples of 13 hospitalized patients with COVID-19, suggesting a consistent ACE2-coregulated proximal tubular epithelial cell expression program that may interact with the SARS-CoV-2 infection processes. Thus SARS-CoV-2 receptor networks can seed further research into risk stratification and therapeutic strategies for COVID-19–related kidney damage.
Collapse
|