1
|
Vo PHN, Ky Le G, Huy LN, Zheng L, Chaiwong C, Nguyen NN, Nguyen HTM, Ralph PJ, Kuzhiumparambil U, Soroosh D, Toft S, Madsen C, Kim M, Fenstermacher J, Hai HTN, Duan H, Tscharke B. Occurrence, spatiotemporal trends, fate, and treatment technologies for microplastics and organic contaminants in biosolids: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133471. [PMID: 38266587 DOI: 10.1016/j.jhazmat.2024.133471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 01/26/2024]
Abstract
This review provides a comprehensive overview of the occurrence, fate, treatment and multi-criteria analysis of microplastics (MPs) and organic contaminants (OCs) in biosolids. A meta-analysis was complementarily analysed through the literature to map out the occurrence and fate of MPs and 10 different groups of OCs. The data demonstrate that MPs (54.7% occurrence rate) and linear alkylbenzene sulfonate surfactants (44.2% occurrence rate) account for the highest prevalence of contaminants in biosolids. In turn, dioxin, polychlorinated biphenyls (PCBs) and phosphorus flame retardants (PFRs) have the lowest rates (<0.01%). The occurrence of several OCs (e.g., dioxin, per- and polyfluoroalkyl substances, polycyclic aromatic hydrocarbons, pharmaceutical and personal care products, ultraviolet filters, phosphate flame retardants) in Europe appear at higher rates than in Asia and the Americas. However, MP concentrations in biosolids from Australia are reported to be 10 times higher than in America and Europe, which required more measurement data for in-depth analysis. Amongst the OC groups, brominated flame retardants exhibited exceptional sorption to biosolids with partitioning coefficients (log Kd) higher than 4. To remove these contaminants from biosolids, a wide range of technologies have been developed. Our multicriteria analysis shows that anaerobic digestion is the most mature and practical. Thermal treatment is a viable option; however, it still requires additional improvements in infrastructure, legislation, and public acceptance.
Collapse
Affiliation(s)
- Phong H N Vo
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia.
| | - Gia Ky Le
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Lai Nguyen Huy
- Environmental Engineering and Management, Asian Institute of Technology (AIT), Klong Luang, Pathumthani, Thailand
| | - Lei Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Chawalit Chaiwong
- Environmental Engineering and Management, Asian Institute of Technology (AIT), Klong Luang, Pathumthani, Thailand
| | - Nam Nhat Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hong T M Nguyen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Peter J Ralph
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Unnikrishnan Kuzhiumparambil
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Danaee Soroosh
- Biotechnology Department, Iranian Research Organization for Science and Technology, Tehran 3353-5111, Iran
| | - Sonja Toft
- Urban Utilities, Level 10/31 Duncan St, Fortitude Valley, QLD 4006, Australia
| | - Craig Madsen
- Urban Utilities, Level 10/31 Duncan St, Fortitude Valley, QLD 4006, Australia
| | - Mikael Kim
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | | | - Ho Truong Nam Hai
- Faculty of Environment, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City 700000, Viet Nam
| | - Haoran Duan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ben Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| |
Collapse
|
2
|
Cuccarese M, Van Hulle SWH, Mancini IM, Masi S, Caniani D. Removal of organic micropollutants from water by adsorption on thermo-plasma expanded graphite encapsulated into calcium alginate. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:497-512. [PMID: 37869604 PMCID: PMC10584748 DOI: 10.1007/s40201-023-00876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/06/2023] [Indexed: 10/24/2023]
Abstract
Nowadays, public concern is focused on the degradation of water quality. For this reason, the development of innovative technologies for water treatment in view of (micro)pollutant removal is important. Indeed, organic (micro)pollutants, such as pharmaceuticals, herbicides, pesticides and plasticizers at concentration levels of μg L-1 or even ng L-1 are hardly removed during conventional wastewater treatment. In view of this, thermo-plasma expanded graphite, a light-weight innovative material in the form of a powder, was encapsulated into calcium alginate to obtain a granular form useful as filtration and adsorption material for removal of different pollutants. The produced material was used to remove atrazine, bisphenol-A, 17-α-ethinylestradiol and carbamazepine (at concentration levels of 125, 250 and 500 µg L-1) by top-down filtration. The effect of flow rate, bed depth and adsorbent composition was evaluated based on breakthrough curves. The experimental data was analysed with the Adams-Bohart model in view of scale-up. Under optimal conditions, removal and adsorption capacity of respectively about 21%, 21%, 38%,42%, 43 µg g-1, 44 µg g-1, 37 µg g-1 and 87 µg g-1 were obtained for atrazine, bisphenol, 17-α ethinylestradiol and carbamazepine when using 0.12 g of thermo-plasma expanded graphite to treat 200 mL at 500 µg L-1 (for each compound) of solution obtaining at contact time of 20 min. The granular form of TPEG obtained (GTPEG) by entrapping in calcium alginate results to have a good adsorbent property for the removal of carbamazepine, atrazine, bisphenol A and 17-α ethinylestradiol from water at concentration levels between 250 and 500 μg L-1. Promising results confirm the adsorbent properties of TPEG and push-up us to investigate on its application and improve of its performance by evaluating different entrapping materials. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-023-00876-9.
Collapse
Affiliation(s)
- Marco Cuccarese
- Scuola di Ingegneria, Università degli Studi della Basilicata, viale dell’Ateneo Lucano n.10, 85100 Potenza, Italy
| | - Stijn W. H. Van Hulle
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Universiteit Gent, Gr.Karel.de Goedelaan 5, 8500 Kortrijk, Belgium
| | - Ignazio M. Mancini
- Scuola di Ingegneria, Università degli Studi della Basilicata, viale dell’Ateneo Lucano n.10, 85100 Potenza, Italy
| | - Salvatore Masi
- Scuola di Ingegneria, Università degli Studi della Basilicata, viale dell’Ateneo Lucano n.10, 85100 Potenza, Italy
| | - Donatella Caniani
- Scuola di Ingegneria, Università degli Studi della Basilicata, viale dell’Ateneo Lucano n.10, 85100 Potenza, Italy
| |
Collapse
|
3
|
Wang Q, Zheng W, Wang Y, Zhang T, Zhou Z, Wu Z. Insights into effects of operating temperature on the removal of pharmaceuticals/pesticides/synthetic organic compounds by membrane bioreactor process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122145. [PMID: 37422084 DOI: 10.1016/j.envpol.2023.122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/17/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
In this study, the removal efficiency and mechanism of 8 kinds of typical micropollutants by membrane bioreactor (MBR) at different temperatures (i.e. 15, 25 and 35 °C) were investigated. MBR exhibited the high removal rate (>85%) for 3 kinds of industrial synthetic organic micropollutants (i.e. bisphenol A (BPA), 4-tert-octylphenol (TB) and 4-n-nonylphenol (NP)) with similar functional groups, structures and high hydrophobicity (Log D > 3.2). However, the removal rates of ibuprofen (IBU), carbamazepine (CBZ) and sulfamethoxazole (SMX) with pharmaceutical activity showed great discrepancy (i.e. 93%, 14.2% and 29%, respectively), while that of pesticides (i.e. acetochlor (Ac) and 2,4-dichlorophenoxy acetic acid (2,4-D) were both lower than 10%. The results showed that the operating temperature played a significant role in microbial growth and activities. High temperature (35 °C) led to a decreased removal efficiency for most of hydrophobic organic micropollutants, and was also not conducive for refractory CBZ due to the temperature sensitivity. At lower temperature (15 °C), a large amount of exopolysaccharides and proteins were released by microorganisms, which caused the inhibited microbial activity, poor flocculation and sedimentation, resulting in the polysaccharide-type membrane fouling. It was proved that dominant microbial degradation of 61.01%-92.73% and auxiliary adsorption of 5.29%-28.30% were the main mechanisms for micropollutant removal in MBR system except for pesticides due to the toxicity. Therefore, the removal rates of most micropollutants were highest at 25 °C due to the high activity sludge so as to enhance microbial adsorption and degradation.
Collapse
Affiliation(s)
- Qiaoying Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wenjia Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Zhen Zhou
- College of Environmental and Chemical Engineering, Shanghai Institute of Pollution Control and Ecological Security, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
4
|
Dubey M, Vellanki BP, Kazmi AA. Removal of emerging contaminants in conventional and advanced biological wastewater treatment plants in India-a comparison of treatment technologies. ENVIRONMENTAL RESEARCH 2023; 218:115012. [PMID: 36502902 DOI: 10.1016/j.envres.2022.115012] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/07/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Emerging contaminants (ECs) are a growing concern for the environment and human health. The study investigates 20 commonly reported ECs in 10 wastewater treatment plants (WWTPs) in urban to semi-urban settlements of north India over two years in the summer and winter. The selected plants were based on waste stabilization pond (WSP), up-flow anaerobic sludge blanket (UASB), activated sludge process (ASP), anoxic-aerobic process (AO), anaerobic-anoxic-oxic process, biodenipho process, sequencing batch reactor, and densadeg-biofor process. Of the 20 ECs, all 20 were identified in the influent and effluent, and 13 were identified in the final sludge on at least one occasion. The concentration in the influent, effluent, and sludge varied in the range from 2.5 ng/L to 77.4 μg/L, below limit of detection (LOD) to 1.984 μg/L, and < LOD to 1.41 μg/g, respectively. Acetaminophen and caffeine were predominately detected in the influent, whereas naproxen, ciprofloxacin, and carbamazepine were predominant in the effluent. The total removal in the plants was found in the range of 40.3-68.6%, mainly attributed to biodegradation/biotransformation. Removal of ECs by WWTPs, ranked by a relative removal criterion, followed the order: Biological nutrient removal based plants > WSP > UASB > densadeg-biofor > AO > ASP > combitreat-SBR. The risk assessment showed the risk to algae from antibiotics and triclosan, daphnia from triclosan, and fish from triclosan and hormones.
Collapse
Affiliation(s)
- Monika Dubey
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, Roorkee, Uttarakhand, India
| | - Bhanu Prakash Vellanki
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, Roorkee, Uttarakhand, India.
| | - Absar Ahmad Kazmi
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
5
|
Khoo YS, Goh PS, Lau WJ, Ismail AF, Abdullah MS, Mohd Ghazali NH, Yahaya NKEM, Hashim N, Othman AR, Mohammed A, Kerisnan NDA, Mohamed Yusoff MA, Fazlin Hashim NH, Karim J, Abdullah NS. Removal of emerging organic micropollutants via modified-reverse osmosis/nanofiltration membranes: A review. CHEMOSPHERE 2022; 305:135151. [PMID: 35654232 DOI: 10.1016/j.chemosphere.2022.135151] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Hazardous micropollutants (MPs) such as pharmaceutically active compounds (PhACs), pesticides and personal care products (PCPs) have emerged as a critical concern nowadays for acquiring clean and safe water resources. In the last few decades, innumerable water treatment methods involving biodegradation, adsorption and advanced oxidation process have been utilized for the removal of MPs. Of these methods, membrane technology has proven to be a promising technique for the removal of MPs due to its sustainability, high efficiency and cost-effectiveness. Herein, the aim of this article is to provide a comprehensive review regarding the MPs rejection mechanisms of reverse osmosis (RO) and nanofiltration (NF) membranes after incorporation of nanomaterials and also surface modification atop the PA layer. Size exclusion, adsorption and electrostatic charge interaction mechanisms play important roles in governing the MP removal rate. In addition, this review also discusses the state-of-the-art research on the surface modification of thin film composite (TFC) membrane and nanomaterials-incorporated thin film nanocomposite (TFN) membrane in enhancing MPs removal performance. It is hoped that this review can provide insights in modifying the physicochemical properties of NF and RO membranes to achieve better performance in water treatment process, particularly for the removal of emerging hazardous substances.
Collapse
Affiliation(s)
- Ying Siew Khoo
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| | - Mohd Sohaimi Abdullah
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Nor Hisham Mohd Ghazali
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Nasehir Khan E M Yahaya
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Norbaya Hashim
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Ahmad Rozian Othman
- Sewerage Service Department (JPP), Block B, Level 2 & 3, Atmosphere PjH No 2, Jalan Tun Abdul Razak, Precinct 2, 62100, Federal Territory, Putrajaya, Malaysia
| | - Alias Mohammed
- Sewerage Service Department (JPP), Block B, Level 2 & 3, Atmosphere PjH No 2, Jalan Tun Abdul Razak, Precinct 2, 62100, Federal Territory, Putrajaya, Malaysia
| | - Nirmala Devi A/P Kerisnan
- Sewerage Service Department (JPP), Block B, Level 2 & 3, Atmosphere PjH No 2, Jalan Tun Abdul Razak, Precinct 2, 62100, Federal Territory, Putrajaya, Malaysia
| | - Muhammad Azroie Mohamed Yusoff
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Noor Haza Fazlin Hashim
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Jamilah Karim
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Nor Salmi Abdullah
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| |
Collapse
|
6
|
Spindola Vilela CL, Damasceno TL, Thomas T, Peixoto RS. Global qualitative and quantitative distribution of micropollutants in the deep sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119414. [PMID: 35598814 DOI: 10.1016/j.envpol.2022.119414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Micropollutants (MPs) include a wide range of biological disruptors that can be toxic to wildlife and humans at very low concentrations (<1 μg/L). These mainly anthropogenic pollutants have been widely detected in different areas of the planet, including the deep sea, and have impacts on marine life. Because of this potential toxicity, the global distribution, quantity, incidence, and potential impacts of deep-sea MPs were investigated in a systematic review of the literature. The results showed that MPs have reached different zones of the ocean and are more frequently reported in the Northern Hemisphere, where higher concentrations are found. MPs are also concentrated in depths up to 3000 m, where they are also more frequently studied, but also extend deeper than 10,000 m. Potentially toxic metals (PTMs), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDTs), organotins, and polycyclic aromatic hydrocarbons (PAHs) were identified as the most prevalent and widely distributed MPs at ≥200 m depth. PTMs are widely distributed in the deep sea in high concentrations; aluminum is the most prevalent up to 3000 m depth, followed by zinc and copper. PCBs, organotins, hexachlorocyclohexanes (HCHs), PAHs, and phenols were detected accumulated in both organisms and environmental samples above legislated thresholds or known toxicity levels. Our assessment indicated that the deep sea can be considered a sink for MPs.
Collapse
Affiliation(s)
- Caren Leite Spindola Vilela
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Taissa Lopes Damasceno
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Torsten Thomas
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Raquel Silva Peixoto
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
7
|
Comparative analysis of separation methods used for the elimination of pharmaceuticals and personal care products (PPCPs) from water – A critical review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Mahlangu OT, Motsa MM, Nkambule TI, Mamba BB. Rejection of trace organic compounds by membrane processes: mechanisms, challenges, and opportunities. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This work critically reviews the application of various membrane separation processes (MSPs) in treating water polluted with trace organic compounds (TOrCs) paying attention to nanofiltration (NF), reverse osmosis (RO), membrane bioreactor (MBR), forward osmosis (FO), and membrane distillation (MD). Furthermore, the focus is on loopholes that exist when investigating mechanisms through which membranes reject/retain TOrCs, with the emphasis on the characteristics of the model TOrCs which would facilitate the identification of all the potential mechanisms of rejection. An explanation is also given as to why it is important to investigate rejection using real water samples, especially when aiming for industrial application of membranes with novel materials. MSPs such as NF and RO are prone to fouling which often leads to lower permeate flux and solute rejection, presumably due to cake-enhanced concentration polarisation (CECP) effects. This review demonstrates why CECP effects are not always the reason behind the observed decline in the rejection of TOrCs by fouled membranes. To mitigate for fouling, researchers have often modified the membrane surfaces by incorporating nanoparticles. This review also attempts to explain why nano-engineered membranes have not seen a breakthrough at industrial scale. Finally, insight is provided into the possibility of harnessing solar and wind energy to drive energy intensive MSPs. Focus is also paid into how low-grade energy could be stored and applied to recover diluted draw solutions in FO mode.
Collapse
Affiliation(s)
- Oranso T. Mahlangu
- College of Engineering, Science and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida Science Campus , Roodepoort 1709 , South Africa
| | - Machawe M. Motsa
- College of Engineering, Science and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida Science Campus , Roodepoort 1709 , South Africa
| | - Thabo I. Nkambule
- College of Engineering, Science and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida Science Campus , Roodepoort 1709 , South Africa
| | - Bhekie B. Mamba
- College of Engineering, Science and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida Science Campus , Roodepoort 1709 , South Africa
| |
Collapse
|
9
|
Sengar A, Vijayanandan A. Effects of pharmaceuticals on membrane bioreactor: Review on membrane fouling mechanisms and fouling control strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152132. [PMID: 34863739 DOI: 10.1016/j.scitotenv.2021.152132] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/21/2021] [Accepted: 11/28/2021] [Indexed: 05/27/2023]
Abstract
Pharmaceuticals have become contaminants of emerging concern due to their toxicity towards aquatic life and pseudo persistent nature in the environment. Membrane bioreactor (MBR) is one such technology that has the potential to act as a barrier against the release of pharmaceuticals into the environment. Fouling is the deposition of the constituents of the mixed liquor on the membrane surface and it limit the world-wide applicability of MBRs. To remove foulant layer, aggressive chemicals and extra cost consideration in terms of energy are required. Extracellular polymeric substances (EPS) and soluble microbial products (SMP) are recognized as principal foulants. Presence of pharmaceuticals has been found to increase the fouling in MBRs. Fouling aggravates in proportion to the concentration of pharmaceuticals. Pharmaceuticals exert chemical stress in microbes, hence forcing them to secrete more EPS/SMP. Pharmaceuticals alter the composition of the foulants and affect microbial metabolism, thereby inflicting direct/indirect effects on fouling. Pharmaceuticals have been found to increase or decrease the size of sludge flocs, however the exact mechanism that govern the floc size change is yet to be understood. Different techniques such as coupling advanced oxidation processes with MBR, adding activated carbon, bioaugmenting MBR with quorum quenching strains have shown to reduce fouling in MBRs treating pharmaceutical wastewater. These fouling mitigation techniques work on reducing the EPS/SMP concentration, thereby alleviating fouling. The present review provides a comprehensive understanding of the effects induced by pharmaceuticals in the activated sludge characteristics and identifying the fouling mechanism. Furthermore, significant knowledge gaps and recent advances in fouling mitigation strategies are discussed. This review has also made an effort to highlight the positive aspect of the foulant layer in retaining pharmaceuticals and antibiotic resistance genes, thereby suggesting a possible delicate trade-off between the flux decline and enhanced removal of pharmaceuticals.
Collapse
Affiliation(s)
- Ashish Sengar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
10
|
Liu W, Song X, Na Z, Li G, Luo W. Strategies to enhance micropollutant removal from wastewater by membrane bioreactors: Recent advances and future perspectives. BIORESOURCE TECHNOLOGY 2022; 344:126322. [PMID: 34785336 DOI: 10.1016/j.biortech.2021.126322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Membrane bioreactor (MBR) has been widely implemented to advance wastewater treatment and reuse. Nevertheless, conventional MBRs with porous microfiltration or ultrafiltration membranes are not designed for the removal of micropollutants, which ubiquitously occur in wastewater at trace concentrations, but potentially exert detrimental impacts to the ecosystem. Several effective strategies have been applied to improve MBR performance for micropollutant removal, particularly the hydrophilic and recalcitrant compounds. These strategies mainly include the optimization of operational conditions, employment of high-retention membranes to replace porous ones, addition of functional materials into bioreactor, and integration of effluent purification processes. In particular, effluent purification by advanced oxidation processes (AOPs) and high-retention membranes can complement MBR to secure almost complete removal of micropollutants. Nevertheless, further research is still necessary to evaluate the technical and economic feasibility of these strategies, especially for long-term treatment performance, to screen the suitable techniques for industrial MBR applications.
Collapse
Affiliation(s)
- Wancen Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoye Song
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Centre of Beijing, Beijing University of Technology, Beijing 100124,China
| | - Zhang Na
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Centre of Beijing, Beijing University of Technology, Beijing 100124,China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Sengupta A, Jebur M, Kamaz M, Wickramasinghe SR. Removal of Emerging Contaminants from Wastewater Streams Using Membrane Bioreactors: A Review. MEMBRANES 2021; 12:60. [PMID: 35054586 PMCID: PMC8778677 DOI: 10.3390/membranes12010060] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 11/25/2022]
Abstract
Water is a very valuable natural resource. As the demand for water increases the presence of emerging contaminants in wastewater has become a growing concern. This is particularly true when one considers direct reuse of wastewater. Obtaining sufficient removal of emerging contaminants will require determining the level of removal for the various unit operations in the wastewater treatment process. Membrane bioreactors are attractive as they combine an activated sludge process with a membrane separation step. They are frequently used in a wastewater treatment process and can operate at higher solid loadings than conventional activated sludge processes. Determining the level of removal of emerging contaminants in the membrane bioreactor step is, therefore, of great interest. Removal of emerging contaminants could be by adsorption onto the biomass or membrane surface, biotransformation, size exclusion by the membrane, or volatilization. Given the fact that most emerging contaminants are low molecule weight non-volatile compounds, the latter two methods of removal are usually unimportant. However, biotransformation and adsorption onto the biomass are important mechanisms of removal. It will be important to determine if the microorganisms present at given treatment facility are able to remove ECs present in the wastewater.
Collapse
Affiliation(s)
- Arijit Sengupta
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India;
| | - Mahmood Jebur
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
- Department of Chemical Engineering, Tikrit University, Tikrit 34001, Iraq
| | - Mohanad Kamaz
- Ministry of Oil, State Company of Gas Filling and Services, Karbala 56001, Iraq;
| | - S. Ranil Wickramasinghe
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
12
|
Chen X, Wei X, Yang Y, Wang S, Lu Q, Wang Y, Li Q, Wang S. Comparison of nitrogen removal efficiency and microbial characteristics of modified two-stage A/O, A 2/O and SBR processes. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4687-4699. [PMID: 33963963 DOI: 10.1007/s10653-021-00855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
The low temperature of sewage in north China results in low performance of biological treatment at municipal wastewater treatment plants (MWTPs), especially in biological nitrogen removal. A modified two-stage A/O process with an embedded biofilm was proposed to enhance nitrogen removal. The operation performance of a pilot test was compared with an A2/O and SBR process at existing MWTPs to investigate the resistance to low temperature. The microbial communities for the three processes were compared based on the metagenomics results of 16sDNA high-throughput sequencing from activated sludge. The modified A/O resulted in a higher average removal of COD (90.12%) than A2/O (85.23%) and SBR (83.03%), especially of small-molecule organic compounds (< 500 Da) and macromolecular refractory organics (> 5 k Da); the TN removal rate of A2/O, SBR and the modified A/O was also increased from 74.47%, 70.63% and 78.46%, respectively. High-throughput sequencing revealed increased microbial diversity and an abundance of denitrifying functional bacteria was observed in the modified A/O process at low temperatures. The abundance of nitrite oxidation bacteria (NOB) including Nitrosomonas and Nitrospira, the amount was 1.76% and 2.34% in modified A/O, respectively, whereas NOB only accounted for 1.82% in A2/O and 1.35% in SBR.
Collapse
Affiliation(s)
- Xiurong Chen
- National Engineering Laboratory for High-Concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Process, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Xiao Wei
- National Engineering Laboratory for High-Concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Process, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yingying Yang
- National Engineering Laboratory for High-Concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Process, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Shanshan Wang
- National Engineering Laboratory for High-Concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Process, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Quanlin Lu
- National Engineering Laboratory for High-Concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Process, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yuan Wang
- National Engineering Laboratory for High-Concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Process, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Qiuyue Li
- National Engineering Laboratory for High-Concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Process, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Shuoyuan Wang
- National Engineering Laboratory for High-Concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Process, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
13
|
Almuntashiri A, Hosseinzadeh A, Volpin F, Ali SM, Dorji U, Shon H, Phuntsho S. Removal of pharmaceuticals from nitrified urine. CHEMOSPHERE 2021; 280:130870. [PMID: 34162101 DOI: 10.1016/j.chemosphere.2021.130870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 05/17/2023]
Abstract
In this study, granular activated carbon (GAC) was examined for the removal of five of the most commonly detected pharmaceuticals (naproxen, carbamazepine, acetaminophen, ibuprofen and metronidazole) from a nitrified urine to make the urine-derived fertiliser nutrient safe for food crops. Batch experiments were conducted to investigate the adsorption kinetics that described the removal of micropollutants (equal concentrations of 0.2 mM) from the synthetic nitrified urine at different GAC dosages (10-3000 mg/L). Artificial neural network modelling was also used to predict and simulate the removal of pharmaceuticals from nitrified urine. Langmuir and Freundlich isotherm models described the equilibrium data, with the Langmuir model providing slightly higher correlations. At the highest dose of 3000 mg/L GAC, all the pharmaceuticals showed a removal rates of over 90% after 1 h of adsorption time and 99% removal rates after 6 h of adsorption time. This study concludes that GAC is able to remove the targeted xenobiotics without affecting the concentration of N and P in the urine, suggesting that nitrified urine could be safely used as a nutrient product in future.
Collapse
Affiliation(s)
- Abdulaziz Almuntashiri
- School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, 15 Broadway, Ultimo, NSW, 2007, Australia.
| | - Ahmad Hosseinzadeh
- School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, 15 Broadway, Ultimo, NSW, 2007, Australia.
| | - Federico Volpin
- School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, 15 Broadway, Ultimo, NSW, 2007, Australia.
| | - Syed Muztuza Ali
- School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, 15 Broadway, Ultimo, NSW, 2007, Australia.
| | - Ugyen Dorji
- School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, 15 Broadway, Ultimo, NSW, 2007, Australia.
| | - Hokyong Shon
- School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, 15 Broadway, Ultimo, NSW, 2007, Australia.
| | - Sherub Phuntsho
- School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, 15 Broadway, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
14
|
Hasse Palharim P, Lastre-Acosta AM, Mierzwa JC, Teixeira ACSC. Influence of low and high dosages of methyl and propyl parabens on membrane bioreactor (MBR) performance. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1965167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Priscila Hasse Palharim
- Research Group in Advanced Oxidation Processes (Adox), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, São Paulo, Brazil
| | - Arlen Mabel Lastre-Acosta
- Research Group in Advanced Oxidation Processes (Adox), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, São Paulo, Brazil
| | - José Carlos Mierzwa
- InternationalReference Center onWater Reuse (IRCWR), Universityof São Paulo, São Paulo, Brazil
| | - Antonio Carlos Silva Costa Teixeira
- Research Group in Advanced Oxidation Processes (Adox), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Espinosa-Ortiz EJ, Rene ER, Gerlach R. Potential use of fungal-bacterial co-cultures for the removal of organic pollutants. Crit Rev Biotechnol 2021; 42:361-383. [PMID: 34325585 DOI: 10.1080/07388551.2021.1940831] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fungi and bacteria coexist in a wide variety of natural and artificial environments which can lead to their association and interaction - ranging from antagonism to cooperation - that can affect the survival, colonization, spatial distribution and stress resistance of the interacting partners. The use of polymicrobial cultivation approaches has facilitated a more thorough understanding of microbial dynamics in mixed microbial communities, such as those composed of fungi and bacteria, and their influence on ecosystem functions. Mixed (multi-domain) microbial communities exhibit unique associations and interactions that could result in more efficient systems for the degradation and removal of organic pollutants. Several previous studies have reported enhanced biodegradation of certain pollutants when using combined fungal-bacterial treatments compared to pure cultures or communities of either fungi or bacteria (single domain systems). This article reviews: (i) the mechanisms of pollutant degradation that can occur in fungal-bacterial systems (e.g.: co-degradation, production of secondary metabolites, enhancement of degradative enzyme production, and transport of bacteria by fungal mycelia); (ii) case studies using fungal-bacterial co-cultures for the removal of various organic pollutants (synthetic dyes, polycyclic aromatic hydrocarbons, pesticides, and other trace or volatile organic compounds) in different environmental matrices (e.g. water, gas/vapors, soil); (iii) the key aspects of engineering artificial fungal-bacterial co-cultures, and (iv) the current challenges and future perspectives of using fungal-bacterial co-cultures for environmental remediation.
Collapse
Affiliation(s)
- Erika J Espinosa-Ortiz
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.,Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Eldon R Rene
- Department of Water Supply, Sanitary and Environmental Engineering, IHE Delft Institute for Water Education, 2601DA Delft, The Netherlands
| | - Robin Gerlach
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.,Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| |
Collapse
|
16
|
Nguyen PY, Carvalho G, Reis MAM, Oehmen A. A review of the biotransformations of priority pharmaceuticals in biological wastewater treatment processes. WATER RESEARCH 2021; 188:116446. [PMID: 33038717 DOI: 10.1016/j.watres.2020.116446] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 05/18/2023]
Abstract
Wastewater effluent discharges have been considered as one of the main sources of synthetic chemicals entering into the aquatic environment. Even though they occur at low concentrations, pharmaceutically active compounds (PhACs) can have an impact on ecological toxicity that affects aquatic organisms. Moreover, new regulations in development toward preserving water quality reinforces the increasing need to monitor and abate some PhACs in wastewater treatment plants (WWTPs), where they are typically only partially eliminated. Unlike most previous reviews, we have focussed on how the main biological and chemical molecular factors impact the biotransformations of key PhACs in biological WWTP processes. Biotransformations have been found to be an important contributor towards the removal of PhACs from WWTP effluents. This review paper critically assesses these aspects and the recent advances that have been achieved in wastewater treatment processes for biodegradation of 7 PhACs; namely the non-steroidal anti-inflammatory drug (NSAID) diclofenac (DCF); the macrolide antibiotics azithromycin (AZM), erythromycin (ERY) and clarithromycin (CLR); the two natural estrogens estrone (E1) and 17β-estradiol (E2), and the synthetic estrogen 17α-ethinylesradiol (EE2). These represent the micropollutants of the EU Watch list in Decision 2015/495/EU that are most relevant to WWTPs due to their frequent detection. The metabolic pathways, transformation products and impact of relevant factors to biological WWTP processes is addressed in this review. The biokinetics of PhAC biodegradation in different engineered bioprocesses is also discussed. Promising technologies and operational strategies that are likely to have a high impact on controlling PhAC releases are highlighted and future research needs are also proposed.
Collapse
Affiliation(s)
- P Y Nguyen
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Gilda Carvalho
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Maria A M Reis
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
17
|
Asif MB, Hou J, Price WE, Chen V, Hai FI. Removal of trace organic contaminants by enzymatic membrane bioreactors: Role of membrane retention and biodegradation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118345] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Jiang Q, Zhou J, Miao Y, Yang S, Zhou M, Zhong Z, Xing W. Lower-temperature preparation of SiC ceramic membrane using zeolite residue as sintering aid for oil-in-water separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118238] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Chen X, Hu Z, Qi Y, Song C, Chen G. The interactions of algae-activated sludge symbiotic system and its effects on wastewater treatment and lipid accumulation. BIORESOURCE TECHNOLOGY 2019; 292:122017. [PMID: 31450061 DOI: 10.1016/j.biortech.2019.122017] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
The ability of Scenedesmus sp. 336, Chlorella sp. 1602 and activated sludge (AS) alone or in combination to remove nutrients and accumulate lipid in artificial municipal wastewater under light/dark conditions was studied. The symbiotic systems showed greater advantages than the sterile systems. Scenedesmus sp. 336 + AS system obtained the highest lipid productivity after seven days of cultivation in light, while the NO3--N and COD were completely absorbed and utilized, as well as the removal rate of PO43--P and NH4+-N were 99.82% and 87.13%, respectively. Total superoxide dismutase (SOD) activity was measured to demonstrate the relationship between oxidative stress and lipid accumulation. Besides, the results of microbial analysis showed that some dominant plant growth-promoting bacteria could secrete indole-3-acetic acid (IAA) to enhance the interaction between algae and bacteria, and the denitrifying bacteria that could coexist with microalgae also improved the efficiency of wastewater treatment in the symbiotic systems.
Collapse
Affiliation(s)
- Xingyu Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhan Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yun Qi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Chunfeng Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
20
|
Kim Y, Li S, Phuntsho S, Xie M, Shon HK, Ghaffour N. Understanding the organic micropollutants transport mechanisms in the fertilizer-drawn forward osmosis process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109240. [PMID: 31310933 DOI: 10.1016/j.jenvman.2019.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 06/12/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
We systematically investigated the transport mechanisms of organic micropollutants (OMPs) in a fertilizer-drawn forward osmosis (FDFO) membrane process. Four representative OMPs, i.e., atenolol, atrazine, primidone, and caffeine, were chosen for their different molecular weights and structural characteristics. All the FDFO experiments were conducted with the membrane active layer on the feed solution (FS) side using three different fertilizer draw solutions (DS): potassium chloride (KCl), monoammonium phosphate (MAP), and diammonium phosphate (DAP) due to their different properties (i.e., osmotic pressure, diffusivity, viscosity and solution pH). Using KCl as the DS resulted in both the highest water flux and the highest reverse solute flux (RSF), while MAP and DAP resulted in similar water fluxes with varying RSF. The pH of the FS increased with DAP as the DS due to the reverse diffusion of NH4+ ions from the DS toward the FS, while for MAP and DAP DS, the pH of the FS was not impacted. The OMPs transport behavior (OMPs flux) was evaluated and compared with a simulated OMPs flux obtained via the pore-hindrance transport model to identify the effects of the OMPs structural properties. When MAP was used as DS, the OMPs flux was dominantly influenced by the physicochemical properties (i.e., hydrophobicity and surface charge). Those OMPs with positive charge and more hydrophobic, exhibited higher forward OMP fluxes. With DAP as the DS, the more hydrated FO membrane (caused by increased pH) as well as the enhanced RSF hindered OMPs transport through the FO membrane. With KCl as DS, the structural properties of the OMPs were dominant factors in the OMPs flux, however the higher RSF of the KCl draw solute may likely hamper the OMPs transport through the membrane especially those with higher MW (e.g., atenolol). The pore-hindrance model can be instrumental in understanding the effects of the hydrodynamic properties and the surface properties on the OMPs transport behaviors.
Collapse
Affiliation(s)
- Youngjin Kim
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Sheng Li
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia; Guangzhou Institute of Advanced Technology, Chinese Academy of Science, Haibin Road #1121, Nansha District, Guangzhou, China
| | - Sherub Phuntsho
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Post Box 129, Broadway, NSW 2007, Australia
| | - Ming Xie
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Post Box 129, Broadway, NSW 2007, Australia.
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
21
|
Arola K, Ward A, Mänttäri M, Kallioinen M, Batstone D. Transport of pharmaceuticals during electrodialysis treatment of wastewater. WATER RESEARCH 2019; 161:496-504. [PMID: 31229730 DOI: 10.1016/j.watres.2019.06.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Electrodialysis (ED) is a promising emerging electrochemical membrane technology for nutrient concentration and recovery from wastewater. However associated environmental safety aspects have to be assessed before utilizing concentrated nutrient produced by ED, for instance as fertilizer. Municipal wastewaters contain various micropollutants that have the potential of being concentrated during the ED treatment processes. This study quantified the transport of pharmaceuticals during ED nutrient recovery from synthetic centrate wastewater. Specifically, it is evaluated whether pharmaceutical micropollutants are mobile, and therefore able to transport across the cation exchange membranes and concentrate into the ED concentrate product. Results demonstrate that NH4+-N, PO43--P and K+ could be concentrated up to 5 times in the concentrated ED product (3700-4000 mg/L NH4+-N, 21-25 mg/L PO43--P, 990-1040 mg/L K+). Target micropollutants, such as diclofenac, carbamazepine and furosemide were largely retained in the diluent, with less than 8% being transported across to the concentrate product (feed micropollutant concentration 10 or 100 μg/L) based on the final target pharmaceutical amounts in the ED concentrate product (μg). Some transport of micropollutants such as atenolol, metoprolol and hydrochlorothiazide was observed to the concentrate product. For instance a final concentration of 10.3, 9.4 and 8.6 μg/L on average was measured for these pollutants in the final ED concentrate product (final volume ∼1 L) in experiments with a feed water (initial volume 20 L) containing only 10 μg/L of target pharmaceuticals. Transport of pharmaceuticals across the ED membranes was concluded to be dominated mainly by the molecule hydrophobicity/hydrophilicity as well as electrostatic interactions between pharmaceutical molecules and ED membranes. Particularly excluded were those having a negative charge and high hydrophobicity such as diclofenac and ibuprofen.
Collapse
Affiliation(s)
- Kimmo Arola
- LUT University, LUT School of Engineering Science, Skinnarilankatu 34, Lappeenranta, Finland.
| | - Andrew Ward
- University of Queensland, Advanced Water Management Centre, Level 4, Gehrmann Laboratories Building (60), Brisbane, QLD, 4072, Australia
| | - Mika Mänttäri
- LUT University, LUT School of Engineering Science, Skinnarilankatu 34, Lappeenranta, Finland
| | - Mari Kallioinen
- LUT University, LUT School of Engineering Science, Skinnarilankatu 34, Lappeenranta, Finland
| | - Damien Batstone
- University of Queensland, Advanced Water Management Centre, Level 4, Gehrmann Laboratories Building (60), Brisbane, QLD, 4072, Australia
| |
Collapse
|
22
|
Investigation into Micropollutant Removal from Wastewaters by a Membrane Bioreactor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16081363. [PMID: 30988273 PMCID: PMC6518293 DOI: 10.3390/ijerph16081363] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/08/2019] [Accepted: 04/13/2019] [Indexed: 12/22/2022]
Abstract
Direct potable reuse of wastewater is attractive as the demand for potable water increases. However, the presence of organic micropollutants in industrial and domestic wastewater is a major health and environmental concern. Conventional wastewater treatment processes are not designed to remove these compounds. Further many of these emerging pollutants are not regulated. Membrane bioreactor based biological wastewater treatment has recently become a preferred method for treating municipal and other industrial wastewaters. Here the removal of five selected micropollutants representing different classes of emerging micropollutants has been investigated using a membrane bioreactor. Acetaminophen, amoxicillin, atrazine, estrone, and triclosan were spiked into wastewaters obtained from a local wastewater treatment facility prior to introduction to the membrane bioreactor containing both anoxic and aerobic tanks. Removal of these compounds by adsorption and biological degradation was determined for both the anoxic and aerobic processes. The removal as a function of operating time was investigated. The results obtained here suggest that removal may be related to the chemical structure of the micropollutants.
Collapse
|
23
|
Yu W, Du B, Yang L, Zhang Z, Yang C, Yuan S, Zhang M. Occurrence, sorption, and transformation of free and conjugated natural steroid estrogens in the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9443-9468. [PMID: 30758794 DOI: 10.1007/s11356-019-04402-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/25/2019] [Indexed: 05/06/2023]
Abstract
Natural steroid estrogens (NSEs), including free estrogens (FEs) and conjugated estrogens (CEs), are of emerging concern globally among public and scientific community due to their recognized adverse effects on human and wildlife endocrine systems in recent years. In this review, the properties, occurrence, sorption process, and transformation pathways of NSEs are clarified in the environment. The work comprehensively summarizes the occurrence of both free and conjugated estrogens in different natural and built environments (e.g., river, WWTPs, CAFOs, soil, and sediment). The sorption process of NSEs can be impacted by organic compounds, colloids, composition of clay minerals, specific surface area (SSA), cation exchange capacity (CEC), and pH value. The degradation and transformation of free and conjugated estrogens in the environment primarily involves oxidation, reduction, deconjugation, and esterification reactions. Elaboration about the major, subordinate, and minor transformation pathways of both biotic and abiotic processes among NSEs is highlighted. The moiety types and binding sites also would affect deconjugation degree and preferential transformation pathways of CEs. Notably, some intermediate products of NSEs still remain estrogenic potency during transformation process; the elimination of total estrogenic activity needs to be addressed in further studies. The in-depth researches regarding the behavior of both free and conjugated estrogens are further required to tackle their contamination problem in the ecosystem. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China
| | - Banghao Du
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China.
| | - Lun Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environments of the Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Chun Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environments of the Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Shaochun Yuan
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China
| | - Minne Zhang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China
| |
Collapse
|
24
|
Nsenga Kumwimba M, Meng F. Roles of ammonia-oxidizing bacteria in improving metabolism and cometabolism of trace organic chemicals in biological wastewater treatment processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:419-441. [PMID: 31096373 DOI: 10.1016/j.scitotenv.2018.12.236] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/20/2018] [Accepted: 12/15/2018] [Indexed: 05/27/2023]
Abstract
While there has been a significant recent improvement in the removal of pollutants in natural and engineered systems, trace organic chemicals (TrOCs) are posing a major threat to aquatic environments and human health. There is a critical need for developing potential strategies that aim at enhancing metabolism and/or cometabolism of these compounds. Recently, knowledge regarding biodegradation of TrOCs by ammonia-oxidizing bacteria (AOB) has been widely developed. This review aims to delineate an up-to-date version of the ecophysiology of AOB and outline current knowledge related to biodegradation efficiencies of the frequently reported TrOCs by AOB. The paper also provides an insight into biodegradation pathways by AOB and transformation products of these compounds and makes recommendations for future research of AOB. In brief, nitrifying WWTFs (wastewater treatment facilities) were superior in degrading most TrOCs than non-nitrifying WWTFs due to cometabolic biodegradation by the AOB. To fully understand and/or enhance the cometabolic biodegradation of TrOCs by AOB, recent molecular research has focused on numerous crucial factors including availability of the compounds to AOB, presence of growth substrate (NH4-N), redox potentials, microorganism diversity (AOB and heterotrophs), physicochemical properties and operational parameters of the WWTFs, molecular structure of target TrOCs and membrane-based technologies, may all significantly impact the cometabolic biodegradation of TrOCs. Still, further exploration is required to elucidate the mechanisms involved in biodegradation of TrOCs by AOB and the toxicity levels of formed products.
Collapse
Affiliation(s)
- Mathieu Nsenga Kumwimba
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; Faculty of Agronomy, Department of Natural Resources and Environmental Management, University of Lubumbashi, Democratic Republic of the Congo
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
25
|
López-Ortiz CM, Sentana-Gadea I, Varó-Galvañ P, Maestre-Pérez SE, Prats-Rico D. The use of combined treatments for reducing parabens in surface waters: Ion-exchange resin and nanofiltration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:228-236. [PMID: 29787906 DOI: 10.1016/j.scitotenv.2018.05.150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/12/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
In this study, the removal of parabens from waters, using a combined treatment of magnetic ion exchange resins and subsequent filtration through nanofiltration membranes, was investigated. The selected parabens were methylparaben, ethylparaben, propylparaben and butylparaben. Two different magnetic anionic exchanger resins, MIEX® DOC and MIEX® GOLD, and two nanofiltration membranes (NF), NF-90 and DESAL-HL, were tested. The study was carried out using mono and multicomponent systems, using deionized water and natural waters sampled from two different rivers. In this way, competitive and matrix effects could be evaluated. The results showed, that with the combined treatments, higher elimination rates were obtained. The best removal efficiencies were obtained when the DOC resin was combined with both NF-90 and DESAL-HL membranes. Thus, butylparaben and propylparaben reached removal yields around 100% with both membranes, whereas the corresponding values for methylparaben were 91%, when the NF-90 membrane was employed, or 92% when DESAL-HL membrane was utilized. The elimination rates of ethylparaben with the same treatments were 96% with the NF-90 and 97% when the DESAL-HL membrane was combined with the DOC resin. The elimination percentages were higher as the paraben alkyl chain length increased. In addition, no competitiveness or matrix effects were detected. When the MIEX® GOLD resin was used for pre-treatment, membrane fouling worsened which indicated that resin selection needs to be carefully considered to achieve the best results.
Collapse
Affiliation(s)
- Carmen M López-Ortiz
- University Institute of Water and Environmental Sciences, University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain.
| | - Irene Sentana-Gadea
- University Institute of Water and Environmental Sciences, University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain
| | - Pedro Varó-Galvañ
- University Institute of Water and Environmental Sciences, University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain
| | - Salvador E Maestre-Pérez
- Analytical Chemistry, Nutrition and Food Science Department, University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain
| | - Daniel Prats-Rico
- University Institute of Water and Environmental Sciences, University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
26
|
Liu YL, Wang XM, Yang HW, Xie YF. Adsorption of pharmaceuticals onto isolated polyamide active layer of NF/RO membranes. CHEMOSPHERE 2018; 200:36-47. [PMID: 29471167 DOI: 10.1016/j.chemosphere.2018.02.088] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Adsorption of trace organic compounds (TrOCs) onto the membrane materials has a great impact on their rejection by nanofiltration (NF) and reverse osmosis (RO) membranes. This study aimed to investigate the difference in adsorption of various pharmaceuticals (PhACs) onto different NF/RO membranes and to demonstrate the necessity of isolating the polyamide (PA) active layer from the polysulfone (PS) support layer for adsorption characterization and quantification. Both the isolated PA layers and the PA+PS layers of NF90 and ESPA1 membranes were used to conduct static adsorption tests. Results showed that apparent differences existed between the PA layer and the PA+PS layer in the adsorption capacity of PhACs as well as the time necessary to reach the adsorption equilibrium. PhACs with different physicochemical properties could be adsorbed to different extents by the isolated PA layer, which was mainly attributed to electrostatic attraction/repulsion and hydrophobic interactions. The PA layer of ESPA1 exhibited apparently higher adsorption capacities for the positively charged PhACs and similar adsorption capacities for the neutral PhACs although it had significantly less total interfacial area (per unit membrane surface area) for adsorption compared to the PA layer of NF90. The higher affinity of the PA layer of ESPA1 for the PhACs could be due to its higher capacity of forming hydrogen bonds with PhACs resulted from the modified chemistry with more -OH groups. This study provides a novel approach to determining the TrOC adsorption onto the active layer of membranes for the ease of investigating adsorption mechanisms.
Collapse
Affiliation(s)
- Yan-Ling Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Hong-Wei Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yuefeng F Xie
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Environmental Engineering Programs, The Pennsylvania State University, Middletown, PA 17057, USA
| |
Collapse
|
27
|
Tran NH, Reinhard M, Gin KYH. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. WATER RESEARCH 2018; 133:182-207. [PMID: 29407700 DOI: 10.1016/j.watres.2017.12.029] [Citation(s) in RCA: 759] [Impact Index Per Article: 108.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/30/2017] [Accepted: 12/13/2017] [Indexed: 05/22/2023]
Abstract
Emerging contaminants, such as antibiotics, pharmaceuticals, personal care products, hormones, and artificial sweeteners, are recognized as new classes of water contaminants due to their proven or potential adverse effects on aquatic ecosystems and human health. This review provides comprehensive data on the occurrence of 60 emerging contaminants (ECs) in influent, treated effluent, sludge, and biosolids in wastewater treatment plants (WWTPs). In particular, data on the occurrence of ECs in the influents and effluents of WWTPs are systematically summarized and categorized according to geographical regions (Asia, Europe, and North America). The occurrence patterns of ECs in raw influent and treated effluents of WWTPs between geographical regions were compared and evaluated. Concentrations of most ECs in raw influent in Asian region tend to be higher than those in European and North American countries. Many antibiotics were detected in the influents and effluents of WWTPs at concentrations close to or exceeding the predicted no-effect concentrations (PNECs) for resistance selection. The efficacy of EC removal by sorption and biodegradation during wastewater treatment processes are discussed in light of kinetics and parameters, such as sorption coefficients (Kd) and biodegradation constants (kbiol), and physicochemical properties (i.e. log Kow and pKa). Commonly used sampling and monitoring strategies are critically reviewed. Analytical research needs are identified, and novel investigative approaches for future monitoring studies are proposed.
Collapse
Affiliation(s)
- Ngoc Han Tran
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, T-Lab Building, Singapore 117411, Singapore.
| | - Martin Reinhard
- Department of Civil and Environmental Engineering, Stanford University, CA 94305, USA
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
28
|
Luo W, Xie M, Song X, Guo W, Ngo HH, Zhou JL, Nghiem LD. Biomimetic aquaporin membranes for osmotic membrane bioreactors: Membrane performance and contaminant removal. BIORESOURCE TECHNOLOGY 2018; 249:62-68. [PMID: 29040861 DOI: 10.1016/j.biortech.2017.09.170] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 06/07/2023]
Abstract
In this study, we investigated the performance of an osmotic membrane bioreactor (OMBR) enabled by a novel biomimetic aquaporin forward osmosis (FO) membrane. Membrane performance and removal of 30 trace organic contaminants (TrOCs) were examined. Results show that the aquaporin FO membrane had better transport properties in comparison with conventional cellulose triacetate and polyamide thin-film composite FO membranes. In particular, the aquaporin FO membrane exhibited much lower salt permeability and thus smaller reverse salt flux, resulting in a less severe salinity build-up in the bioreactor during OMBR operation. During OMBR operation, the aquaporin FO membrane well complemented biological treatment for stable and excellent contaminant removal. All 30 TrOCs selected here were removed by over 85% regardless of their diverse properties. Such high and stable contaminant removal over OMBR operation also indicates the stability and compatibility of the aquaporin FO membrane in combination with activated sludge treatment.
Collapse
Affiliation(s)
- Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Ming Xie
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, Melbourne, VIC 8001, Australia
| | - Xiaoye Song
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Hao H Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - John L Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Long D Nghiem
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
29
|
Asif MB, Hai FI, Kang J, van de Merwe JP, Leusch FDL, Price WE, Nghiem LD. Biocatalytic degradation of pharmaceuticals, personal care products, industrial chemicals, steroid hormones and pesticides in a membrane distillation-enzymatic bioreactor. BIORESOURCE TECHNOLOGY 2018; 247:528-536. [PMID: 28972906 DOI: 10.1016/j.biortech.2017.09.129] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
Laccase-catalyzed degradation of a broad spectrum of trace organic contaminants (TrOCs) by a membrane distillation (MD)-enzymatic membrane bioreactor (EMBR) was investigated. The MD component effectively retained TrOCs (94-99%) in the EMBR, facilitating their continuous biocatalytic degradation. Notably, the extent of TrOC degradation was strongly influenced by their molecular properties. A significant degradation (above 90%) of TrOCs containing strong electron donating functional groups (e.g., hydroxyl and amine groups) was achieved, while a moderate removal was observed for TrOCs containing electron withdrawing functional groups (e.g., amide and halogen groups). Separate addition of two redox-mediators, namely syringaldehyde and violuric acid, further improved TrOC degradation by laccase. However, a mixture of both showed a reduced performance for a few pharmaceuticals such as primidone, carbamazepine and ibuprofen. Mediator addition increased the toxicity of the media in the enzymatic bioreactor, but the membrane permeate (i.e., final effluent) was non-toxic, suggesting an added advantage of coupling MD with EMBR.
Collapse
Affiliation(s)
- Muhammad B Asif
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Jinguo Kang
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; Strategic Water Infrastructure Lab, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute and Griffith School of Environment, Griffith University, QLD 4222, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute and Griffith School of Environment, Griffith University, QLD 4222, Australia
| | - William E Price
- Strategic Water Infrastructure Lab, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Long D Nghiem
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
30
|
Xu Z, Ben Y, Chen Z, Jiang A, Shen J, Han X. Application and microbial ecology of psychrotrophs in domestic wastewater treatment at low temperature. CHEMOSPHERE 2018; 191:946-953. [PMID: 29145139 DOI: 10.1016/j.chemosphere.2017.10.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
The feasibility of a bunch of screened psychrotrophs being applied to low-temperature wastewater treatment was investigated. The screened psychrophillic strains are capable of growth at a broad temperature-range from 0 to 40 °C and exhibit a preferable TTC-dehydrogenase activity at low temperature (4-10 °C). Along the sharply fluctuant temperatures (25-4-25 °C), the screened psychrotrophs (compared with the indigenous mesophiles) demonstrate less fluctuations of COD removal and more rapid recovery after temperature shocks. COD removal of approximate 80% was recorded by single psychrotrophs (while only 10% by single mesophiles) at low temperature (4 °C). Soft polyurethane foam showed better performance for psychrotrophs immobilization, with the optimal filling rate of 30% (v/v) in the bioreactor. The observation shows that the immobilized psychrotrophs demonstrated a relatively high performance on both conventional and emerging organic contaminants removals at low temperature. In order to check the feasibility of the screened psychrotrophs in treating actual domestic wastewater, a pilot-scale ICABR bioreactor was operated firstly at low temperature (4 °C) and then at seasonal varying temperatures (0-30 °C) for one year, the influent COD of 150-600 mg L-1 was efficiently reduced to 40 ± 18 mg L-1 under the conditions of an overall hydraulic retention time of 10 h. Furthermore, psychrotrophs performed stably as the predominant bacteria family during the whole operation. This study provides evidence that microbial intensification with psychrotrophs was a feasible strategy to improve the efficiency of conventional wastewater treatment process at low temperature.
Collapse
Affiliation(s)
- Zhenzhen Xu
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China.
| | - Yue Ben
- Water Works Department, State Nuclear Electric Power Planning Design and Research Institute Co. LTD, Beijing 100095, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Anxi Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiaoyun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
31
|
Luo W, Phan HV, Li G, Hai FI, Price WE, Elimelech M, Nghiem LD. An Osmotic Membrane Bioreactor-Membrane Distillation System for Simultaneous Wastewater Reuse and Seawater Desalination: Performance and Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:14311-14320. [PMID: 29135240 DOI: 10.1021/acs.est.7b02567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, we demonstrate the potential of an osmotic membrane bioreactor (OMBR)-membrane distillation (MD) hybrid system for simultaneous wastewater reuse and seawater desalination. A stable OMBR water flux of approximately 6 L m-2 h-1 was achieved when using MD to regenerate the seawater draw solution. Water production by the MD process was higher than that from OMBR to desalinate additional seawater and thus account for draw solute loss due to the reverse salt flux. Amplicon sequencing on the Miseq Illumina platform evidenced bacterial acclimatization to salinity build-up in the bioreactor, though there was a reduction in the bacterial community diversity. In particular, 18 halophilic and halotolerant bacterial genera were identified with notable abundance in the bioreactor. Thus, the effective biological treatment was maintained during OMBR-MD operation. By coupling biological treatment and two high rejection membrane processes, the OMBR-MD hybrid system could effectively remove (>90%) all 30 trace organic contaminants of significant concern investigated here and produce high quality water. Nevertheless, further study is necessary to address MD membrane fouling due to the accumulation of organic matter, particularly protein- and humic-like substances, in seawater draw solution.
Collapse
Affiliation(s)
- Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University , Beijing 100193, China
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong , Wollongong, New South Wales 2522, Australia
| | - Hop V Phan
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong , Wollongong, New South Wales 2522, Australia
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University , Beijing 100193, China
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong , Wollongong, New South Wales 2522, Australia
| | - William E Price
- Strategic Water Infrastructure Laboratory, School of Chemistry, University of Wollongong , Wollongong, New South Wales 2522, Australia
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University , New Haven, Connecticut 06520-8286, United States
| | - Long D Nghiem
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong , Wollongong, New South Wales 2522, Australia
| |
Collapse
|
32
|
Kruglova A, Gonzalez-Martinez A, Kråkström M, Mikola A, Vahala R. Bacterial diversity and population shifts driven by spotlight wastewater micropollutants in low-temperature highly nitrifying activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:291-299. [PMID: 28668740 DOI: 10.1016/j.scitotenv.2017.06.191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
In this study the influence of low-temperature (8°C), sludge retention time (SRT) and loading of spotlight wastewater micropollutants (MPs) on bacterial community of activated sludge was investigated with a special focus on nitrification. Two Sequencing batch reactors (SBR) and two membrane bioreactors (MBR) were operated with synthetic municipal-like wastewater receiving and not receiving ibuprofen, diclofenac, estrone and 17α-ethynylestradiol (EE2). Bacterial population studies were related to removal efficiencies of studied MPs. The results showed that studied bacterial communities significantly differed from all previously published nitrifying activated sludge communities. Exceptionally low concentration of autotrophic nitrifying bacteria were found (<0.5%) as well as no common heterotrophic nitrifies were presenting in activated sludge and therefore could not be related to the MPs removal. Additionally SRT had a spacious effect on the diversity of bacteria and bacterial population shifts under pressure of MPs. Growth of Firmicutes was suppressed by presence of MPs in all the reactors. Increase of MPs concentrations in wastewater improved the removal of EE2. Abundance of Delta- and Gammaproteobacteria showed positive correlation with diclofenac removal.
Collapse
Affiliation(s)
- Antonina Kruglova
- Aalto University, Department of Built Environment, P.O. Box 15200, FI-00076 AALTO Espoo, Finland.
| | | | - Matilda Kråkström
- Åbo Akademy University, Johan Gadolin Process Chemistry Centre, c/o Laboratory of Organic Chemistry, Piispankatu 8, 20500 Turku, Finland
| | - Anna Mikola
- Aalto University, Department of Built Environment, P.O. Box 15200, FI-00076 AALTO Espoo, Finland
| | - Riku Vahala
- Aalto University, Department of Built Environment, P.O. Box 15200, FI-00076 AALTO Espoo, Finland
| |
Collapse
|
33
|
Zhang B, Song X, Nghiem LD, Li G, Luo W. Osmotic membrane bioreactors for wastewater reuse: Performance comparison between cellulose triacetate and polyamide thin film composite membranes. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.06.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Arola K, Hatakka H, Mänttäri M, Kallioinen M. Novel process concept alternatives for improved removal of micropollutants in wastewater treatment. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.06.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Degradation of Trace Organic Contaminants by a Membrane Distillation—Enzymatic Bioreactor. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7090879] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Grandclément C, Seyssiecq I, Piram A, Wong-Wah-Chung P, Vanot G, Tiliacos N, Roche N, Doumenq P. From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review. WATER RESEARCH 2017; 111:297-317. [PMID: 28104517 DOI: 10.1016/j.watres.2017.01.005] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/15/2016] [Accepted: 01/02/2017] [Indexed: 05/02/2023]
Abstract
Because of the recalcitrance of some micropollutants to conventional wastewater treatment systems, the occurrence of organic micropollutants in water has become a worldwide issue, and an increasing environmental concern. Their biodegradation during wastewater treatments could be an interesting and low cost alternative to conventional physical and chemical processes. This paper provides a review of the organic micropollutants removal efficiency from wastewaters. It analyses different biological processes, from conventional ones, to new hybrid ones. Micropollutant removals appear to be compound- and process- dependent, for all investigated processes. The influence of the main physico-chemical parameters is discussed, as well as the removal efficiency of different microorganisms such as bacteria or white rot fungi, and the role of their specific enzymes. Even though some hybrid processes show promising micropollutant removals, further studies are needed to optimize these water treatment processes, in particular in terms of technical and economical competitiveness.
Collapse
Affiliation(s)
- Camille Grandclément
- Aix-Marseille Univ, CNRS, LCE, Marseille, France; Aix-Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France; Société Seakalia SAS, Groupe Ovalee, Technopôle de Château-Gombert, Héliopolis, 13013, Marseille, France
| | | | - Anne Piram
- Aix-Marseille Univ, CNRS, LCE, Marseille, France
| | | | - Guillaume Vanot
- Société Seakalia SAS, Groupe Ovalee, Technopôle de Château-Gombert, Héliopolis, 13013, Marseille, France
| | - Nicolas Tiliacos
- Société Seakalia SAS, Groupe Ovalee, Technopôle de Château-Gombert, Héliopolis, 13013, Marseille, France
| | - Nicolas Roche
- Aix-Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France.
| | | |
Collapse
|
37
|
Luo W, Phan HV, Xie M, Hai FI, Price WE, Elimelech M, Nghiem LD. Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: Biological stability, membrane fouling, and contaminant removal. WATER RESEARCH 2017; 109:122-134. [PMID: 27883917 DOI: 10.1016/j.watres.2016.11.036] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 06/06/2023]
Abstract
This study systematically compares the performance of osmotic membrane bioreactor - reverse osmosis (OMBR-RO) and conventional membrane bioreactor - reverse osmosis (MBR-RO) for advanced wastewater treatment and water reuse. Both systems achieved effective removal of bulk organic matter and nutrients, and almost complete removal of all 31 trace organic contaminants investigated. They both could produce high quality water suitable for recycling applications. During OMBR-RO operation, salinity build-up in the bioreactor reduced the water flux and negatively impacted the system biological treatment by altering biomass characteristics and microbial community structure. In addition, the elevated salinity also increased soluble microbial products and extracellular polymeric substances in the mixed liquor, which induced fouling of the forward osmosis (FO) membrane. Nevertheless, microbial analysis indicated that salinity stress resulted in the development of halotolerant bacteria, consequently sustaining biodegradation in the OMBR system. By contrast, biological performance was relatively stable throughout conventional MBR-RO operation. Compared to conventional MBR-RO, the FO process effectively prevented foulants from permeating into the draw solution, thereby significantly reducing fouling of the downstream RO membrane in OMBR-RO operation. Accumulation of organic matter, including humic- and protein-like substances, as well as inorganic salts in the MBR effluent resulted in severe RO membrane fouling in conventional MBR-RO operation.
Collapse
Affiliation(s)
- Wenhai Luo
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Hop V Phan
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ming Xie
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, Melbourne, VIC 8001, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - William E Price
- Strategic Water Infrastructure Laboratory, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, United States
| | - Long D Nghiem
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
38
|
Bui XT, Vo TPT, Ngo HH, Guo WS, Nguyen TT. Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:1050-1067. [PMID: 27198651 DOI: 10.1016/j.scitotenv.2016.04.191] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 06/05/2023]
Abstract
With the introduction and discharge of thousands of new micropollutants (MPs) every year, traditional water and wastewater treatment plants may be incapable of tackling them all. With their low concentrations and diversity in nature, MP removal encounters numerous challenges. Although some MPs are effectively eliminated via conventional treatment methods, most of them can easily escape and are retained in the discharged effluent. Therefore, advanced methods such as (i) adsorption, (ii) oxidation and advanced oxidation processes (O3 and O3-based advanced oxidation processes, UV/H2O2), (iii) membrane processes, and (iv) membrane bioreactors, become an inevitable approach. Despite the unsurprisingly vast number of papers on MP treatment available at present, most of these studies were carried out at a laboratory scale while only a few pilot- and full-scale studies have experimented. Nevertheless, an in-depth assessment of real-world MP treatment methods is extremely crucial for practitioners. To date, no paper has been dedicated to look at this issue. Therefore, this paper aims to review these large-scale treatment methods. First, the paper goes through the regulations and standards which deal with MPs in water courses. It will then assess these methods in various case-studies with reference to different criteria towards serving as a reference for further practical applications.
Collapse
Affiliation(s)
- X T Bui
- Environmental Engineering and Management Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - T P T Vo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - H H Ngo
- Environmental Engineering and Management Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia.
| | - W S Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - T T Nguyen
- Environmental Engineering and Management Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
39
|
Luo W, Hai FI, Price WE, Elimelech M, Nghiem LD. Evaluating ionic organic draw solutes in osmotic membrane bioreactors for water reuse. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.05.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Kruglova A, Kråkström M, Riska M, Mikola A, Rantanen P, Vahala R, Kronberg L. Comparative study of emerging micropollutants removal by aerobic activated sludge of large laboratory-scale membrane bioreactors and sequencing batch reactors under low-temperature conditions. BIORESOURCE TECHNOLOGY 2016; 214:81-88. [PMID: 27128192 DOI: 10.1016/j.biortech.2016.04.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/07/2016] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
Four emerging micropollutants ibuprofen, diclofenac, estrone (E1) and 17α-ethinylestradiol (EE2) were studied in large laboratory-scale wastewater treatment plants (WWTPs) with high nitrifying activity. Activated sludge (AS) with sludge retention times (SRTs) of 12days and 14days in sequencing batch reactors (SBRs) and 30days, 60days and 90days in membrane bioreactors (MBRs) were examined at 8°C and 12°C. Concentrations of pharmaceuticals and their main metabolites were analysed in liquid phase and solid phase of AS by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A remarkable amount of contaminants were detected in solids of AS, meaning the accumulation of micropollutants in bacterial cells. The biodegradation rate constants (Kbiol) were affected by SRT and temperature. MBR with a 90-day SRT showed the best results of removal. Conventional SBR process was inefficient at 8°C showing Kbiol values lower than 0.5lgSS(-1)d(-1) for studied micropollutants.
Collapse
Affiliation(s)
- Antonina Kruglova
- Aalto University, Department of Built Environment, P.O. Box 15200, FI-00076 AALTO, Espoo, Finland.
| | - Matilda Kråkström
- Åbo Akademy University, Johan Gadolin Process Chemistry Centre, c/o Laboratory of Organic Chemistry, Piispankatu 8, 20500 Turku, Finland
| | - Mats Riska
- Aalto University, Department of Built Environment, P.O. Box 15200, FI-00076 AALTO, Espoo, Finland
| | - Anna Mikola
- Aalto University, Department of Built Environment, P.O. Box 15200, FI-00076 AALTO, Espoo, Finland
| | - Pirjo Rantanen
- Aalto University, Department of Built Environment, P.O. Box 15200, FI-00076 AALTO, Espoo, Finland
| | - Riku Vahala
- Aalto University, Department of Built Environment, P.O. Box 15200, FI-00076 AALTO, Espoo, Finland
| | - Leif Kronberg
- Åbo Akademy University, Johan Gadolin Process Chemistry Centre, c/o Laboratory of Organic Chemistry, Piispankatu 8, 20500 Turku, Finland
| |
Collapse
|
41
|
García-Gómez C, Drogui P, Seyhi B, Gortáres-Moroyoqui P, Buelna G, Estrada-Alvgarado M, Álvarez L. Combined membrane bioreactor and electrochemical oxidation using Ti/PbO2 anode for the removal of carbamazepine. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.04.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Al Qarni H, Collier P, O'Keeffe J, Akunna J. Investigating the removal of some pharmaceutical compounds in hospital wastewater treatment plants operating in Saudi Arabia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:13003-14. [PMID: 26996911 PMCID: PMC4912980 DOI: 10.1007/s11356-016-6389-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/29/2016] [Indexed: 05/02/2023]
Abstract
The concentrations of 12 pharmaceutical compounds (atenolol, erythromycin, cyclophosphamide, paracetamol, bezafibrate, carbamazepine, ciprofloxacin, caffeine, clarithromycin, lidocaine, sulfamethoxazole and N-acetylsulfamethoxazol (NACS)) were investigated in the influents and effluents of two hospital wastewater treatment plants (HWWTPs) in Saudi Arabia. The majority of the target analytes were detected in the influent samples apart from bezafibrate, cyclophosphamide, and erythromycin. Caffeine and paracetamol were detected in the influent at particularly high concentrations up to 75 and 12 ug/L, respectively. High removal efficiencies of the pharmaceutical compounds were observed in both HWWTPs, with greater than 90 % removal on average. Paracetamol, sulfamethoxazole, NACS, ciprofloxacin, and caffeine were eliminated by between >95 and >99 % on average. Atenolol, carbamazepine, and clarithromycin were eliminated by >86 % on average. Of particular interest were the high removal efficiencies of carbamazepine and antibiotics that were achieved by the HWWTPs; these compounds have been reported to be relatively recalcitrant to biological treatment and are generally only partially removed. Elevated temperatures and high levels of sunlight were considered to be the main factors that enhanced the removal of these compounds.
Collapse
Affiliation(s)
- Hamed Al Qarni
- Urban Water Technology Centre, School of Science, Engineering and Technology, University of Abertay Dundee, Bell Street, Dundee, DD1 1HG, Scotland, UK
| | - Philip Collier
- Urban Water Technology Centre, School of Science, Engineering and Technology, University of Abertay Dundee, Bell Street, Dundee, DD1 1HG, Scotland, UK
| | - Juliette O'Keeffe
- Urban Water Technology Centre, School of Science, Engineering and Technology, University of Abertay Dundee, Bell Street, Dundee, DD1 1HG, Scotland, UK
| | - Joseph Akunna
- Urban Water Technology Centre, School of Science, Engineering and Technology, University of Abertay Dundee, Bell Street, Dundee, DD1 1HG, Scotland, UK.
| |
Collapse
|
43
|
Biodegradation of cellulose triacetate and polyamide forward osmosis membranes in an activated sludge bioreactor: Observations and implications. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.02.066] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Taheran M, Brar SK, Verma M, Surampalli RY, Zhang TC, Valero JR. Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 547:60-77. [PMID: 26789358 DOI: 10.1016/j.scitotenv.2015.12.139] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/28/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Pharmaceutically active compounds (PhACs), which find their way easily into the water sources, are emerging as a major concern for drinking water quality and aquatic species. Therefore, their removal from water sources is a priority from environmental point of view. During the past decade, different methods including membrane separation, adsorption systems and chemical transformation have been evaluated for removal of these compounds. This paper reviews different aspects of PhAC removal by using membrane separation processes, as they have been conventionally known to show high potential in the production of superior quality drinking and industrial water. In brief, osmosis membranes can efficiently remove almost all PhACs though its operational cost is relatively high and nanofiltration (NF) membranes are highly influenced by electrostatic and hydrophobic interaction. Moreover, the efficiency of membrane bioreactors (MBRs) is difficult to predict due to the complex interaction of compounds with microorganisms. To improve the performance and robustness of membrane technology, it is suggested to combine membranes with other systems, such as activated carbon and enzymatic degradation.
Collapse
Affiliation(s)
- Mehrdad Taheran
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Satinder K Brar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - M Verma
- CO(2) Solutions Inc., 2300, rue Jean-Perrin, Québec, Québec G2C 1T9, Canada
| | - R Y Surampalli
- Department of Civil Engineering, University of Nebraska-Lincoln, N104 SEC, PO Box 886105, Lincoln, NE 68588-6105, USA
| | - T C Zhang
- Department of Civil Engineering, University of Nebraska-Lincoln, N104 SEC, PO Box 886105, Lincoln, NE 68588-6105, USA
| | - J R Valero
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
45
|
Nguyen LN, van de Merwe JP, Hai FI, Leusch FDL, Kang J, Price WE, Roddick F, Magram SF, Nghiem LD. Laccase-syringaldehyde-mediated degradation of trace organic contaminants in an enzymatic membrane reactor: Removal efficiency and effluent toxicity. BIORESOURCE TECHNOLOGY 2016; 200:477-484. [PMID: 26519700 DOI: 10.1016/j.biortech.2015.10.054] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/01/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
Redox-mediators such as syringaldehyde (SA) can improve laccase-catalyzed degradation of trace organic contaminants (TrOCs) but may increase effluent toxicity. The degradation performance of 14 phenolic and 17 non-phenolic TrOCs by a continuous flow enzymatic membrane reactor (EMR) at different TrOC and SA loadings was assessed. A specific emphasis was placed on the investigation of the toxicity of the enzyme (laccase), SA, TrOCs and the treated effluent. Batch tests demonstrated significant individual and interactive toxicity of the laccase and SA preparations. Reduced removal of resistant TrOCs by the EMR was observed for dosages over 50μg/L. SA addition at a concentration of 10μM significantly improved TrOC removal, but no removal improvement was observed at the elevated SA concentrations of 50 and 100μM. The treated effluent showed significant toxicity at SA concentrations beyond 10μM, providing further evidence that higher dosage of SA must be avoided.
Collapse
Affiliation(s)
- Luong N Nguyen
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jason P van de Merwe
- Smart Water Research Centre, Australian Rivers Institute, School of Environment, Griffith University, QLD 4222, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Frederic D L Leusch
- Smart Water Research Centre, Australian Rivers Institute, School of Environment, Griffith University, QLD 4222, Australia
| | - Jinguo Kang
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; Strategic Water Infrastructure Lab, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - William E Price
- Strategic Water Infrastructure Lab, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Felicity Roddick
- School of Civil, Environmental and Chemical Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Saleh F Magram
- Department of Civil Engineering, King Abdul Aziz University, Jeddah 21589, Saudi Arabia
| | - Long D Nghiem
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
46
|
Semblante GU, Hai FI, Huang X, Ball AS, Price WE, Nghiem LD. Trace organic contaminants in biosolids: Impact of conventional wastewater and sludge processing technologies and emerging alternatives. JOURNAL OF HAZARDOUS MATERIALS 2015; 300:1-17. [PMID: 26151380 DOI: 10.1016/j.jhazmat.2015.06.037] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/10/2015] [Accepted: 06/19/2015] [Indexed: 06/04/2023]
Abstract
This paper critically reviews the fate of trace organic contaminants (TrOCs) in biosolids, with emphasis on identifying operation conditions that impact the accumulation of TrOCs in sludge during conventional wastewater and sludge treatment and assessing the technologies available for TrOC removal from biosolids. The fate of TrOCs during sludge thickening, stabilisation (e.g. aerobic digestion, anaerobic digestion, alkaline stabilisation, and composting), conditioning, and dewatering is elucidated. Operation pH, sludge retention time (SRT), and temperature have significant impact on the sorption and biodegradation of TrOCs in activated sludge that ends up in the sludge treatment line. Anaerobic digestion may exacerbate the estrogenicity of sludge due to bioconversion to more potent metabolites. Application of advanced oxidation or thermal pre-treatment may minimise TrOCs in biosolids by increasing the bioavailability of TrOCs, converting TrOCs into more biodegradable products, or inducing complete mineralisation of TrOCs. Treatment of sludge by bioaugmentation using various bacteria, yeast, or fungus has the potential to reduce TrOC levels in biosolids.
Collapse
Affiliation(s)
- Galilee U Semblante
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Andrew S Ball
- School of Applied Sciences, RMIT University, Bundoora 3083, Australia
| | - William E Price
- Strategic Water Infrastructure Laboratory, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Long D Nghiem
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
47
|
Zangi-Kotler M, Ben-Dov E, Tiehm A, Kushmaro A. Microbial community structure and dynamics in a membrane bioreactor supplemented with the flame retardant dibromoneopentyl glycol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:17615-17624. [PMID: 26146373 DOI: 10.1007/s11356-015-4975-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
Brominated flame retardants (BFRs) are a group of widely used compounds that, due to their limited biodegradability, exhibit excessive persistence in the environment. The persistence and high toxicity of these compounds to the natural biota causes great environmental concern. We investigated the biodegradation of the BFR dibromoneopentyl glycol (DBNPG) under continuous culture conditions using a miniature membrane bioreactor (mMBR) to assess its feasibility as a bioremediation approach. This system demonstrated long-term, stable biodegradation of DBNPG (>90 days), with an average removal rate of about 50%. Pyrosequencing of the 16S rRNA gene of the microorganisms involved in this process revealed the dominance of reads affiliated with the genus Brevundimonas of the Alphaproteobacteria class during the different mMBR operational stages. The bacterial community was also dominated by reads affiliated with the Sinorhizobium and Sphingopyxis genera within the Alphaproteobacteria class and the Sediminibacterium genus of the Sphingobacteria class. Real-time PCR used to analyze possible changes in the population dynamics of these four dominant groups revealed their consistent presence throughout the long-term mMBR biodegradation activity. Two genera, Brevundimonas and Sphingopyxis, were found to increase in abundance during the acclimation period and then remained relatively stable, forming the main parts of the consortium over the prolonged active stage.
Collapse
Affiliation(s)
- Moran Zangi-Kotler
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Beer-Sheva, Israel
| | - Eitan Ben-Dov
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Beer-Sheva, Israel
- Achva Academic College, 7980400, M.P. Shikmim, Israel
| | - Andreas Tiehm
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, 76139, Karlsruhe, Germany
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Beer-Sheva, Israel.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
48
|
Luo W, Hai FI, Kang J, Price WE, Nghiem LD, Elimelech M. The role of forward osmosis and microfiltration in an integrated osmotic-microfiltration membrane bioreactor system. CHEMOSPHERE 2015; 136:125-132. [PMID: 25966331 DOI: 10.1016/j.chemosphere.2015.04.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
This study investigates the performance of an integrated osmotic and microfiltration membrane bioreactor (O/MF-MBR) system for wastewater treatment and reclamation. The O/MF-MBR system simultaneously used microfiltration (MF) and forward osmosis (FO) membranes to extract water from the mixed liquor of an aerobic bioreactor. The MF membrane facilitated the bleeding of dissolved inorganic salts and thus prevented the build-up of salinity in the bioreactor. As a result, sludge production and microbial activity were relatively stable over 60 days of operation. Compared to MF, the FO process produced a better permeate quality in terms of nutrients, total organic carbon, as well as hydrophilic and biologically persistent trace organic chemicals (TrOCs). The high rejection by the FO membrane also led to accumulation of hydrophilic and biologically persistent TrOCs in the bioreactor, consequently increasing their concentration in the MF permeate. On the other hand, hydrophobic and readily biodegradable TrOCs were minimally detected in both MF and FO permeates, with no clear difference in the removal efficiencies between two processes.
Collapse
Affiliation(s)
- Wenhai Luo
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jinguo Kang
- Strategic Water Infrastructure Laboratory, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - William E Price
- Strategic Water Infrastructure Laboratory, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Long D Nghiem
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, United States
| |
Collapse
|
49
|
Luo Y, Jiang Q, Ngo HH, Nghiem LD, Hai FI, Price WE, Wang J, Guo W. Evaluation of micropollutant removal and fouling reduction in a hybrid moving bed biofilm reactor-membrane bioreactor system. BIORESOURCE TECHNOLOGY 2015; 191:355-359. [PMID: 26031758 DOI: 10.1016/j.biortech.2015.05.073] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
A hybrid moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) system and a conventional membrane bioreactor (CMBR) were compared in terms of micropollutant removal efficiency and membrane fouling propensity. The results show that the hybrid MBBR-MBR system could effectively remove most of the selected micropollutants. By contrast, the CMBR system showed lower removals of ketoprofen, carbamazepine, primidone, bisphenol A and estriol by 16.2%, 30.1%, 31.9%, 34.5%, and 39.9%, respectively. Mass balance calculations suggest that biological degradation was the primary removal mechanism in the MBBR-MBR system. During operation, the MBBR-MBR system exhibited significantly slower fouling development as compared to the CMBR system, which could be ascribed to the wide disparity in the soluble microbial products (SMP) levels between MBBR-MBR (4.02-6.32 mg/L) and CMBR (21.78 and 33.04 mg/L). It is evident that adding an MBBR process prior to MBR treatment can not only enhance micropollutant elimination but also mitigate membrane fouling.
Collapse
Affiliation(s)
- Yunlong Luo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qi Jiang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu H Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Long D Nghiem
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - William E Price
- Strategic Water Infrastructure Laboratory, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jie Wang
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
50
|
Ojajuni O, Saroj D, Cavalli G. Removal of organic micropollutants using membrane-assisted processes: a review of recent progress. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/21622515.2015.1036788] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Oluwatosin Ojajuni
- Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Surrey GU2 7XH, UK
| | - Devendra Saroj
- Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Surrey GU2 7XH, UK
| | - Gabriel Cavalli
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Surrey GU2 7XH, UK
| |
Collapse
|