1
|
Ceballos-Alvarez C, Jafari M, Siaj M, Shahgaldi S, Izquierdo R. Influence of Graphene Oxide on Mechanical and Morphological Properties of Nafion ® Membranes. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:68. [PMID: 39791826 PMCID: PMC11722737 DOI: 10.3390/nano15010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion® 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion® membranes. The GO covering only 35% of the membrane surface increased the composite's wettability from hydrophobic (105.2°) to a highly hydrophilic angle (84.4°) while slightly reducing membrane swelling. Tensile tests depicted an increase in both the strain levels and tensile loads before breaking. The samples with GO presented remarkable mechanical properties when the annealing time and temperature increased; while the Nafion® control samples failed at elongations of 95% and 98%, their counterparts with GO on the surface achieved elongations of 248% and 191% when annealed at 80 °C and 110 °C respectively, demonstrating that the presence of GO mechanically stabilizes the membranes under tension. In exchange, the presence of GO altered the smoothness of the membrane surface going from an average 1.4 nm before the printing to values ranging from 8.4 to 10.2 nm depending on the annealing conditions which could affect the quality of the subsequent catalyst layer printing. Overall, the polymer's electrical insulation was unaffected, making the Nafion®-GO blend a more robust material than those traditionally used.
Collapse
Affiliation(s)
- Carlos Ceballos-Alvarez
- Département de Génie Électrique, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada;
| | - Maziar Jafari
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montreal, QC H2X 2J6, Canada; (M.J.); (M.S.)
| | - Mohamed Siaj
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montreal, QC H2X 2J6, Canada; (M.J.); (M.S.)
| | - Samaneh Shahgaldi
- Institute de Recherche sur l’Hydrogene, Université du Québec à Trois-Rivières, 3351, Boul. des Forges C.P. 500, Trois-Rivières, QC G9A 5H7, Canada;
| | - Ricardo Izquierdo
- Département de Génie Électrique, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada;
| |
Collapse
|
2
|
Jeong C, Lee D, Kim S, Baik JH, Kim J. Simultaneous nitric oxide and toluene reduction over Pt-based catalyst. Heliyon 2024; 10:e40625. [PMID: 39654788 PMCID: PMC11626009 DOI: 10.1016/j.heliyon.2024.e40625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/18/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
This research investigates the simultaneous reduction of nitric oxide (NOx) and toluene using Pt-based catalysts, aiming at applications in small-scale industrial environmental processes. Catalysts with varying Pt loadings from 0.01 to 3 % were synthesized through wet impregnation, and their dispersion was assessed across several characterizations, revealing effective Pt dispersion even at loadings above 1 %. Under conditions of high toluene feed, the 3 % Pt-loaded catalyst emerged as the most efficient, achieving significant NOx and toluene conversion rates. The performance of this catalyst was thoroughly examined under various operational parameters including NO, toluene, O2 concentrations, gas hourly space velocity (GHSV) and reaction temperature. A short-stress test further underscored its effectiveness, with NOx and toluene conversions reaching 89.7 % and 97.6 %, respectively. Additionally, a preliminary process simulation of the NOx reduction by toluene indicated an energy efficiency improvement of over 8 % compared to conventional RCO and de-NOx processes. The findings suggest the catalyst's potential for NOx reduction in industrial settings, utilizing toluene present in flue gas without the need for additional commercial reducing agents.
Collapse
Affiliation(s)
- Cheonwoo Jeong
- Industrial Gas Research Cell, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si, Jeollanam-do, 57801, Republic of Korea
| | - Dongcheol Lee
- Industrial Gas Research Cell, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si, Jeollanam-do, 57801, Republic of Korea
| | - Sungjoong Kim
- Environment Infra Section, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si, Jeollanam-do, 57801, Republic of Korea
| | - Joon Hyun Baik
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Joonwoo Kim
- Industrial Gas Research Cell, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si, Jeollanam-do, 57801, Republic of Korea
| |
Collapse
|
3
|
Li A, Zhang LL, Shao RY, Li JJ, Xu C, Li S, Tong L, Liang HW. Air oxidation of carbon supports boosts the low-humidity fuel cell performance. Chem Commun (Camb) 2024; 60:4226-4229. [PMID: 38526318 DOI: 10.1039/d4cc00081a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
We introduce a straightforward, yet effective strategy to combat the performance decline of proton-exchange membrane fuel cells in low-humidity environments. Our method centers on air-oxidizing carbon supports, significantly improving proton and oxygen transport within the cathode catalyst layer.
Collapse
Affiliation(s)
- Ang Li
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Le-Le Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Ru-Yang Shao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Jun-Jie Li
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Cong Xu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Shuai Li
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Lei Tong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Hai-Wei Liang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
4
|
Latif Z, Shahid K, Anwer H, Shahid R, Ali M, Lee KH, Alshareef M. Carbon quantum dots (CQDs)-modified polymers: a review of non-optical applications. NANOSCALE 2024; 16:2265-2288. [PMID: 38221825 DOI: 10.1039/d3nr04997c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Carbon quantum dots (CQDs) are a promising candidate to replace metal-based additives for polymer reinforcement and functionalization. Specifically, vast interest in CQDs for polymer functionalization stems from their cost effectiveness, sustainable organic precursors, and their non-toxicity. Although several reviews of optical devices based on CQDs have been reported, this mini-review covers the non-optical aspects of CQD-polymer composites. Applications of CQD-modified polymers for smart devices, mechanical reinforcement, textile surface-modification methods, membranes, protective coatings, and thermal resistance are summarized. The synthesis method of CQDs, their dispersion in a polymer matrix and the underlying mechanisms related to the enhanced performance of composites are outlined. Unlike nano-reinforcements, CQDs are self-stabilized and offer an extremely high surface area, which significantly alters the polymer properties at a 1-2% concentration. Finally, a comparative analysis of recent advances in CQD-polymer composites, their problems, and future directions are discussed.
Collapse
Affiliation(s)
- Zeeshan Latif
- School of Engineering and Technology, National Textile University, Sheikhupura Road, 37610 Faisalabad, Pakistan.
| | - Kinza Shahid
- Department of Applied Sciences, National Textile University, Sheikhupura Road, 37610 Faisalabad, Pakistan
| | - Hassan Anwer
- Department of Environmental Engineering, National University of Sciences and Technology, H-12 Islamabad, 44000, Pakistan
| | - Raghisa Shahid
- Department of Applied Sciences, National Textile University, Sheikhupura Road, 37610 Faisalabad, Pakistan
| | - Mumtaz Ali
- School of Engineering and Technology, National Textile University, Sheikhupura Road, 37610 Faisalabad, Pakistan.
| | - Kang Hoon Lee
- Department of Energy and Environmental Engineering, The Catholic University, 43 Jibong-ro, Bucheon-si 14662, South Korea.
| | - Mubark Alshareef
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
| |
Collapse
|
5
|
Rhoomi Z, Ahmed DS, Jabir MS, Balasubramanian B, Al-Garadi MA, Swelum AA. Facile Hydrothermal Synthesis of BiVO 4/MWCNTs Nanocomposites and Their Influences on the Biofilm Formation of Multidrug Resistance Streptococcus mutans and Proteus mirabilis. ACS OMEGA 2023; 8:37147-37161. [PMID: 37841170 PMCID: PMC10569021 DOI: 10.1021/acsomega.3c04722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
This study utilized a simple hydrothermal technique to prepare pure BiVO4 and tightly bound BiVO4/multiwalled carbon nanotubes (MWCNTs) nanocomposite materials. The surfactant was employed to control the growth, size, and assembly of BiVO4 and the nanocomposite. Various techniques including X-ray diffraction (XRD), Ultraviolet-visible (UV-vis), photoluminescence (PL), Raman, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) were utilized to analyze and characterize BiVO4 and the BiVO4/MWCNTs nanocomposite. Through XRD analysis, it was found that the carbon nanotubes were effectively embedded within the lattice of BiVO4 without generating any separate impurity phase and had no influence on the BiVO4 monoclinic structure. TEM images confirmed the presence of MWCNTs within BiVO4. Furthermore, adding MWCNTs in the BiVO4/MWCNTs nanocomposite resulted in an effective charge transfer transition and improved carrier separation, as evidenced by PL analysis. The introduction of MWCNTs also led to a significant reduction in the optical band gap due to quantum effects. Finally, the antibacterial activity of pure BiVO4 and the BiVO4/MWCNTs nanocomposite was assessed by exposing Proteus mirabilis and Streptococcus mutans to these materials. Biofilm inhibition and antibiofilm activity were measured using a crystal violet assay and a FilmTracer LIVE/DEAD Biofilm Viability Kit. The results demonstrated that pure BiVO4 and BiVO4/MWCNTs effectively inhibited biofilm formation. In conclusion, both pure BiVO4 and BiVO4/MWCNTs are promising materials for inhibiting the bacterial biofilm during bacterial infections.
Collapse
Affiliation(s)
- Zeena
R. Rhoomi
- Applied
Sciences Department, University of Technology, Baghdad 11231, Iraq
| | - Duha S. Ahmed
- Applied
Sciences Department, University of Technology, Baghdad 11231, Iraq
| | - Majid S. Jabir
- Applied
Sciences Department, University of Technology, Baghdad 11231, Iraq
| | | | - Maged A. Al-Garadi
- Department
of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ayman A. Swelum
- Department
of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Cahyanto A, Martins MVS, Bianchi O, Sudhakaran DP, Sililkas N, Echeverrigaray SG, Rosa V. Graphene oxide increases PMMA's resistance to fatigue and strength degradation. Dent Mater 2023; 39:763-769. [PMID: 37400298 DOI: 10.1016/j.dental.2023.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVES to characterize the effects of graphene oxide (GO) on polymethyl methacrylate's (PMMA) reliability and lifetime. The hypothesis tested was that GO would increase both Weibull parameters and decreased strength degradation over time. METHODS PMMA disks containing GO (0.01, 0.05, 0.1, or 0.5 wt%) were subjected to a biaxial flexural test to determine the Weibull parameters (m: modulus of Weibull; σ0: characteristic strength; n = 30 at 1 MPa/s) and slow crack growth (SCG) parameters (n: subcritical crack growth susceptibility coefficient, σf0: scaling parameter; n = 10 at 10-2, 10-1, 101, 100 and 102 MPa/s). Strength-probability-time (SPT) diagrams were plotted by merging SCG and Weibull parameters. RESULTS There was no significant difference in the m value of all materials. However, 0.5 GO presented the lowest σ0, whereas all other groups were similar. The lowest n value obtained for all GO-modified PMMA groups (27.4 for 0.05 GO) was higher than the Control (15.6). The strength degradation predicted after 15 years for Control was 12%, followed by 0.01 GO (7%), 0.05 GO (9%), 0.1 GO (5%), and 0.5 GO (1%). SIGNIFICANCE The hypothesis was partially accepted as GO increased PMMA's fatigue resistance and lifetime but did not significantly improve its Weibull parameters. GO added to PMMA did not significantly affect the initial strength and reliability but significantly increased PMMA's predicted lifetime. All the GO-containing groups presented higher resistance to fracture at all times analyzed compared with the Control, with the best overall results observed for 0.1 GO.
Collapse
Affiliation(s)
- Arief Cahyanto
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Malaysia; Department of Dental Materials Science and Technology, Faculty of Dentistry, Padjadjaran University, Indonesia.
| | | | - Otavio Bianchi
- Departamento de Engenharia de Materiais, Universidade Federal do Rio Grande do Sul, Brazil.
| | | | - Nikolaos Sililkas
- Biomaterials Science, Division of Dentistry, School of Medical Sciences, University of Manchester, UK.
| | | | - Vinicius Rosa
- Centre for Advanced 2D Materials, National University of Singapore, Singapore; Faculty of Dentistry, National University of Singapore, 9 Lower Kent Ridge Rd, Singapore 119085, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, 9 Lower Kent Ridge Rd, 119085, Singapore.
| |
Collapse
|
7
|
Kausar A, Ahmad I, Zhao T, Aldaghri O, Ibnaouf KH, Eisa MH. Graphene Nanocomposites as Innovative Materials for Energy Storage and Conversion-Design and Headways. Int J Mol Sci 2023; 24:11593. [PMID: 37511354 PMCID: PMC10380328 DOI: 10.3390/ijms241411593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
This review mainly addresses applications of polymer/graphene nanocomposites in certain significant energy storage and conversion devices such as supercapacitors, Li-ion batteries, and fuel cells. Graphene has achieved an indispensable position among carbon nanomaterials owing to its inimitable structure and features. Graphene and its nanocomposites have been recognized for providing a high surface area, electron conductivity, capacitance, energy density, charge-discharge, cyclic stability, power conversion efficiency, and other advanced features in efficient energy devices. Furthermore, graphene-containing nanocomposites have superior microstructure, mechanical robustness, and heat constancy characteristics. Thus, this state-of-the-art article offers comprehensive coverage on designing, processing, and applying graphene-based nanoarchitectures in high-performance energy storage and conversion devices. Despite the essential features of graphene-derived nanocomposites, several challenges need to be overcome to attain advanced device performance.
Collapse
Affiliation(s)
- Ayesha Kausar
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad 44000, Pakistan
| | - Ishaq Ahmad
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad 44000, Pakistan
| | - Tingkai Zhao
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- School of Materials Science & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| | - Khalid H Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| | - M H Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| |
Collapse
|
8
|
Javed A, Palafox Gonzalez P, Thangadurai V. A Critical Review of Electrolytes for Advanced Low- and High-Temperature Polymer Electrolyte Membrane Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37326582 DOI: 10.1021/acsami.3c02635] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the 21st century, proton exchange membrane fuel cells (PEMFCs) represent a promising source of power generation due to their high efficiency compared with coal combustion engines and eco-friendly design. Proton exchange membranes (PEMs), being the critical component of PEMFCs, determine their overall performance. Perfluorosulfonic acid (PFSA) based Nafion and nonfluorinated-based polybenzimidazole (PBI) membranes are commonly used for low- and high-temperature PEMFCs, respectively. However, these membranes have some drawbacks such as high cost, fuel crossover, and reduction in proton conductivity at high temperatures for commercialization. Here, we report the requirements of functional properties of PEMs for PEMFCs, the proton conduction mechanism, and the challenges which hinder their commercial adaptation. Recent research efforts have been focused on the modifications of PEMs by composite materials to overcome their drawbacks such as stability and proton conductivity. We discuss some current developments in membranes for PEMFCs with special emphasis on hybrid membranes based on Nafion, PBI, and other nonfluorinated proton conducting membranes prepared through the incorporation of different inorganic, organic, and hybrid fillers.
Collapse
Affiliation(s)
- Aroosa Javed
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
9
|
Min K, Al Munsur AZ, Paek SY, Jeon S, Lee SY, Kim TH. Development of High-Performance Polymer Electrolyte Membranes through the Application of Quantum Dot Coatings to Nafion Membranes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15616-15624. [PMID: 36926797 DOI: 10.1021/acsami.3c01289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Proton exchange membrane water electrolysis (PEMWE) generates oxygen and hydrogen at the anode and cathode, respectively, by conducting protons generated at the anode to the cathode through a proton exchange membrane (PEM). The performance of PEMWE can be improved with faster catalytic reactions at each electrode; thus, the development of a PEM with excellent ionic conductivity and physicochemical stability is essential. Nafion, a type of perfluoro-sulfonic acid polymer, is the most widely used PEM material. However, despite its excellent conductivity and chemical stability, it exhibits high hydrogen permeability due to its structural characteristics. Quantum dots (QDs) have a hydrophilic functional group that can act as an ion conductor and are extremely compatible with the hydrophilic cluster of Nafion due to their characteristic nanosized structure. In this study, various compositions of N-doped carbon quantum dots (CQDs) containing hydrophilic functional groups were coated on a Nafion-212 membrane. The resulting series of CQD-coated Nafion membranes exhibited improvements in morphology and ionic conductivity as well as reductions in hydrogen permeability. In particular, the Nafion membrane coated with 0.75 wt % of N-doped CQD (CQD-cNafion-0.75) exhibited improved mechanical properties and higher oxidation stability compared to Nafion-212. It also displayed higher ionic conductivity of 240.3 mS cm-1 at 80 °C and reduced hydrogen permeability (about 10% reduction) compared to Nafion-212. In addition, the performance of single-cell PEMWE using the CQD-cNafion-0.75 membrane was found to be approximately 1.2 times higher than Nafion-212.
Collapse
Affiliation(s)
- Kyungwhan Min
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| | - Abu Zafar Al Munsur
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Ujeong-ro, Naju-si, Jeollanam-do 58217, Republic of Korea
| | - Sae Yane Paek
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Soomin Jeon
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| | - So Young Lee
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Tae-Hyun Kim
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| |
Collapse
|
10
|
Pokprasert A, Chirachanchai S. Tailoring proton transfer species on the membrane surface: An approach to enhance proton conductivity for polymer electrolyte membrane fuel cell. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
11
|
Polymer Electrolyte Membranes Containing Functionalized Organic/Inorganic Composite for Polymer Electrolyte Membrane Fuel Cell Applications. Int J Mol Sci 2022; 23:ijms232214252. [PMID: 36430726 PMCID: PMC9694323 DOI: 10.3390/ijms232214252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
To mitigate the dependence on fossil fuels and the associated global warming issues, numerous studies have focused on the development of eco-friendly energy conversion devices such as polymer electrolyte membrane fuel cells (PEMFCs) that directly convert chemical energy into electrical energy. As one of the key components in PEMFCs, polymer electrolyte membranes (PEMs) should have high proton conductivity and outstanding physicochemical stability during operation. Although the perfluorinated sulfonic acid (PFSA)-based PEMs and some of the hydrocarbon-based PEMs composed of rationally designed polymer structures are found to meet these criteria, there is an ongoing and pressing need to improve and fine-tune these further, to be useful in practical PEMFC operation. Incorporation of organic/inorganic fillers into the polymer matrix is one of the methods shown to be effective for controlling target PEM properties including thermal stability, mechanical properties, and physical stability, as well as proton conductivity. Functionalization of organic/inorganic fillers is critical to optimize the filler efficiency and dispersion, thus resulting in significant improvements to PEM properties. This review focused on the structural engineering of functionalized carbon and silica-based fillers and comparisons of the resulting PEM properties. Newly constructed composite membranes were compared to composite membrane containing non-functionalized fillers or pure polymer matrix membrane without fillers.
Collapse
|
12
|
Goyal D, Dang RK, Goyal T, Saxena KK, Mohammed KA, Dixit S. Graphene: A Path-Breaking Discovery for Energy Storage and Sustainability. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6241. [PMID: 36143552 PMCID: PMC9501932 DOI: 10.3390/ma15186241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
The global energy situation requires the efficient use of resources and the development of new materials and processes for meeting current energy demand. Traditional materials have been explored to large extent for use in energy saving and storage devices. Graphene, being a path-breaking discovery of the present era, has become one of the most-researched materials due to its fascinating properties, such as high tensile strength, half-integer quantum Hall effect and excellent electrical/thermal conductivity. This paper presents an in-depth review on the exploration of deploying diverse derivatives and morphologies of graphene in various energy-saving and environmentally friendly applications. Use of graphene in lubricants has resulted in improvements to anti-wear characteristics and reduced frictional losses. This comprehensive survey facilitates the researchers in selecting the appropriate graphene derivative(s) and their compatibility with various materials to fabricate high-performance composites for usage in solar cells, fuel cells, supercapacitor applications, rechargeable batteries and automotive sectors.
Collapse
Affiliation(s)
- Deepam Goyal
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, India
| | - Rajeev Kumar Dang
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University SSG Regional Centre, Hoshiarpur 146021, India
| | - Tarun Goyal
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Jalandhar 144603, India
| | - Kuldeep K. Saxena
- Department of Mechanical Engineering, GLA University, Mathura 281406, India
| | - Kahtan A. Mohammed
- Department of Medical Physics, Hilla University College, Babylon 51002, Iraq
| | - Saurav Dixit
- Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Division of Research & Innovation, Uttaranchal University, Dehradun 248007, India
| |
Collapse
|
13
|
Proton Conductivity Enhancement at High Temperature on Polybenzimidazole Membrane Electrolyte with Acid-Functionalized Graphene Oxide Fillers. MEMBRANES 2022; 12:membranes12030344. [PMID: 35323819 PMCID: PMC8951258 DOI: 10.3390/membranes12030344] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023]
Abstract
Graphene oxide (GO) and its acid-functionalized form are known to be effective in enhancing the proton transport properties of phosphoric-acid doped polybenzimidazole (PA-doped PBI) membranes utilized in high-temperature proton exchange membrane fuel cells (HTPEMFC) owing to the presence of proton-conducting functional groups. This work aims to provide a comparison between the different effects of GO with the sulfonated GO (SGO) and phosphonated GO (PGO) on the properties of PA-doped PBI, with emphasis given on proton conductivity to understand which functional groups are suitable for proton transfer under high temperature and anhydrous conditions. Each filler was synthesized following existing methods and introduced into PBI at loadings of 0.25, 0.5, and 1 wt.%. Characterizations were carried out on the overall thermal stability, acid doping level (ADL), dimensional swelling, and proton conductivity. SGO and PGO-containing PBI exhibit better conductivity than those with GO at 180 °C under anhydrous conditions, despite a slight reduction in ADL. PBI with 0.5 wt.% SGO exhibits the highest conductivity at 23.8 mS/cm, followed by PBI with 0.5 wt.% PGO at 19.6 mS/cm. However, the membrane with PGO required a smaller activation energy for proton conduction, thus less energy was needed to initiate fast proton transfer. Additionally, the PGO-containing membrane also displayed an advantage in its thermal stability aspect. Therefore, considering these properties, it is shown that PGO is a potential filler for improving PBI properties for HTPEMFC applications.
Collapse
|
14
|
Basso Peressut A, Di Virgilio M, Bombino A, Latorrata S, Muurinen E, Keiski RL, Dotelli G. Investigation of Sulfonated Graphene Oxide as the Base Material for Novel Proton Exchange Membranes. Molecules 2022; 27:1507. [PMID: 35268613 PMCID: PMC8912047 DOI: 10.3390/molecules27051507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
This work deals with the development of graphene oxide (GO)-based self-assembling membranes as possible innovative proton conductors to be used in polymer electrolyte membrane fuel cells (PEMFCs). Nowadays, the most adopted electrolyte is Chemours' Nafion; however, it reveals significant deficiencies such as strong dehydration at high temperature and low humidity, which drastically reduces its proton conductivity. The presence of oxygenated moieties in the GO framework makes it suitable for functionalization, which is required to enhance the promising, but insufficient, proton-carrying features of GO. In this study, sulfonic acid groups (-SO3H) that should favor proton transport were introduced in the membrane structure via a reaction between GO and concentrated sulfuric acid. Six acid-to-GO molar ratios were adopted in the synthesis procedure, giving rise to final products with different sulfonation degrees. All the prepared samples were characterized by means of TGA, ATR-FTIR and Raman spectroscopy, temperature-dependent XRD, SEM and EDX, which pointed out morphological and microstructural changes resulting from the functionalization stage, confirming its effectiveness. Regarding functional features, electrochemical impedance spectroscopy (EIS) as well as measurements of ion exchange capacity (IEC) were carried out to describe the behavior of the various samples, with pristine GO and commercial Nafion® 212 used as reference. EIS tests were performed at five different temperatures (20, 40, 60, 80 and 100 °C) under high (95%) and medium (42%) relative humidity conditions. Compared to both GO and Nafion® 212, the sulfonated specimens demonstrate an increase in the number of ion-carrying groups, as proved by both IEC and EIS tests, which reveal the enhanced proton conductivity of these novel membranes. Specifically, an acid-to-GO molar ratio of 10 produces a six-fold improvement of IEC (4.23 meq g-1) with respect to pure GO (0.76 meq g-1), while a maximum eight-fold improvement (5.72 meq g-1) is achieved in SGO-15.
Collapse
Affiliation(s)
- Andrea Basso Peressut
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (A.B.P.); (A.B.); (S.L.)
| | - Matteo Di Virgilio
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (A.B.P.); (A.B.); (S.L.)
| | - Antonella Bombino
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (A.B.P.); (A.B.); (S.L.)
| | - Saverio Latorrata
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (A.B.P.); (A.B.); (S.L.)
| | - Esa Muurinen
- Environmental and Chemical Engineering Research Unit, Faculty of Technology, University of Oulu, Pentti Kaiteran katu 1, FI-90014 Oulu, Finland; (E.M.); (R.L.K.)
| | - Riitta L. Keiski
- Environmental and Chemical Engineering Research Unit, Faculty of Technology, University of Oulu, Pentti Kaiteran katu 1, FI-90014 Oulu, Finland; (E.M.); (R.L.K.)
| | - Giovanni Dotelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (A.B.P.); (A.B.); (S.L.)
| |
Collapse
|
15
|
Madih K, El-Shazly A, Elkady M, Aziz AN, Yossuf ME, Khalifa RE. A facile synthesis of cellulose acetate reinforced graphene oxide nanosheets as proton exchange membranes for fuel cell applications. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Phosphorylated graphene oxide-reinforced polybenzimidazole composite membrane for high-temperature proton exchange membrane fuel cell. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02846-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Tellez-Cruz MM, Escorihuela J, Solorza-Feria O, Compañ V. Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges. Polymers (Basel) 2021; 13:3064. [PMID: 34577965 PMCID: PMC8468942 DOI: 10.3390/polym13183064] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
The study of the electrochemical catalyst conversion of renewable electricity and carbon oxides into chemical fuels attracts a great deal of attention by different researchers. The main role of this process is in mitigating the worldwide energy crisis through a closed technological carbon cycle, where chemical fuels, such as hydrogen, are stored and reconverted to electricity via electrochemical reaction processes in fuel cells. The scientific community focuses its efforts on the development of high-performance polymeric membranes together with nanomaterials with high catalytic activity and stability in order to reduce the platinum group metal applied as a cathode to build stacks of proton exchange membrane fuel cells (PEMFCs) to work at low and moderate temperatures. The design of new conductive membranes and nanoparticles (NPs) whose morphology directly affects their catalytic properties is of utmost importance. Nanoparticle morphologies, like cubes, octahedrons, icosahedrons, bipyramids, plates, and polyhedrons, among others, are widely studied for catalysis applications. The recent progress around the high catalytic activity has focused on the stabilizing agents and their potential impact on nanomaterial synthesis to induce changes in the morphology of NPs.
Collapse
Affiliation(s)
- Miriam M. Tellez-Cruz
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, Ciudad de México 07360, Mexico; (M.M.T.-C.); (O.S.-F.)
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Omar Solorza-Feria
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, Ciudad de México 07360, Mexico; (M.M.T.-C.); (O.S.-F.)
| | - Vicente Compañ
- Departamento de Termodinámica Aplicada (ETSII), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
18
|
Khalifa RE, Omer AM, Abd Elmageed MH, Mohy Eldin MS. Titanium Dioxide/Phosphorous-Functionalized Cellulose Acetate Nanocomposite Membranes for DMFC Applications: Enhancing Properties and Performance. ACS OMEGA 2021; 6:17194-17202. [PMID: 34278106 PMCID: PMC8280670 DOI: 10.1021/acsomega.1c00568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/15/2021] [Indexed: 05/06/2023]
Abstract
This study intends to provide new TiO2/phosphorous-functionalized cellulose acetate (Ph-CA) nanocomposite membranes for direct methanol fuel cells (DMFCs). A series of TiO2/Ph-CA membranes were fabricated via solution casting technique using a systematic variation of TiO2 nanoparticle content. Chemical structure, morphological changes, and thermal properties of the as-fabricated nanocomposite membranes were investigated by FTIR, TGA, SEM, and AFM analysis tools. Further, membranes' performance, mechanical properties, water uptake, thermal-oxidative stability, and methanol permeability were also evaluated. The results clarified that the ion-exchange capacity (IEC) of the developed nanocomposite membranes improved and reached a maximum value of 1.13 and 2.01 meq/g at 25 and 80 °C, respectively, using TiO2 loading of 5 wt % compared to 0.6 and 0.81 meq/g for pristine Ph-CA membrane at the same temperature. Moreover, the TiO2/Ph-CA nanocomposite exhibited excellent thermal stability with appreciable mechanical properties (49.9 MPa). The developed membranes displayed a lower methanol permeability of 0.98 × 10-16 cm2 s-1 compared to 1.14 × 10-9 cm2 s-1 for Nafion 117. The obtained results suggested that the developed nanocomposite membranes could be potentially applied as promising polyelectrolyte membranes for possible use in DMFCs.
Collapse
Affiliation(s)
- Randa E. Khalifa
- Polymer
Materials Research Department, Advanced Technologies and New Materials
Research Institute (ATNMRI), City of Scientific
Research and Technological Applications (SRTA-City), New Borg El-Arab
City, P.O. Box 21934, Alexandria 21934, Egypt
- , . Tel: +20 128 246
7520
| | - Ahmed M. Omer
- Polymer
Materials Research Department, Advanced Technologies and New Materials
Research Institute (ATNMRI), City of Scientific
Research and Technological Applications (SRTA-City), New Borg El-Arab
City, P.O. Box 21934, Alexandria 21934, Egypt
| | - Mohamed H. Abd Elmageed
- Chemical
Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
| | - Mohamed S. Mohy Eldin
- Polymer
Materials Research Department, Advanced Technologies and New Materials
Research Institute (ATNMRI), City of Scientific
Research and Technological Applications (SRTA-City), New Borg El-Arab
City, P.O. Box 21934, Alexandria 21934, Egypt
| |
Collapse
|
19
|
Vinothkannan M, Kim AR, Yoo DJ. Potential carbon nanomaterials as additives for state-of-the-art Nafion electrolyte in proton-exchange membrane fuel cells: a concise review. RSC Adv 2021; 11:18351-18370. [PMID: 35480954 PMCID: PMC9033471 DOI: 10.1039/d1ra00685a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/05/2021] [Indexed: 01/21/2023] Open
Abstract
Proton-exchange membrane fuel cells (PEMFCs) have received great attention as a potential alternative energy device for internal combustion engines due to their high conversion efficiency compared to other fuel cells. The main hindrance for the wide commercial adoption of PEMFCs is the high cost, low proton conductivity, and high fuel permeability of the state-of-the-art Nafion membrane. Typically, to improve the Nafion membrane, a wide range of strategies have been developed, in which efforts on the incorporation of carbon nanomaterial (CN)-based fillers are highly imperative. Even though many research endeavors have been achieved in relation to CN-based fillers applicable for Nafion, still their collective summary has rarely been reported. This review aims to outline the mechanisms involved in proton conduction in proton-exchange membranes (PEMs) and the significant requirements of PEMs for PEMFCs. This review also emphasizes the improvements achieved in the proton conductivity, fuel barrier properties, and PEMFC performance of Nafion membranes by incorporating carbon nanotubes, graphene oxide, and fullerene as additives.
Collapse
Affiliation(s)
- Mohanraj Vinothkannan
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Ae Rhan Kim
- Department of Life Science, Graduate School of Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Dong Jin Yoo
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University Jeonju Jeollabuk-do 54896 Republic of Korea
- Department of Life Science, Graduate School of Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University Jeonju Jeollabuk-do 54896 Republic of Korea
| |
Collapse
|
20
|
Numan A, Gill AAS, Rafique S, Guduri M, Zhan Y, Maddiboyina B, Li L, Singh S, Nguyen Dang N. Rationally engineered nanosensors: A novel strategy for the detection of heavy metal ions in the environment. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124493. [PMID: 33229259 DOI: 10.1016/j.jhazmat.2020.124493] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal ions (HMIs) have been mainly originated from natural and anthropogenic agents. It has become one of biggest societal issues due to their recognised accumulative and toxic effects in the environment as well as biological media. Key measures are required to reduce the risks posed by toxic metal pollutants existing in the environment. The increased research activities of HMIs detection, and use of technologies based on electrochemical detection that combine with engineered nanomaterials, is a key promising and innovative strategy that can potentially confine heavy metal poisoning. Deep understanding of the characteristics of the physicochemical properties of nanomaterials is highly required. It is also important to interpret the parameters at the nano-bio interface level that merely affect cross-interactions between nanomaterials and HMIs. Therefore, the authors outlined the state-of-the-art techniques that used engineeringly developed nanomaterials to detect HMIs in the environment. The possible novel applications of extensive and relatively low-cost HMIs monitoring and detection are discussed on the basis of these strengths. Finally, it is concluded by providing gist on acquaintance with facts in the present-day scenario along with highlighting areas to explore the strategies to overcome the current limitations for practical applications is useful in further generations of nano-world.
Collapse
Affiliation(s)
- Arshid Numan
- State Key Laboratory of ASIC and System, SIST, Fudan University, 200433 Shanghai, China
| | - Atal A S Gill
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu Natal, Durban X54000, South Africa
| | - Saqib Rafique
- Multidisciplinary Nanotechnology Centre, College of Engineering, Swansea University, Swansea SA1 8EN, United Kingdom
| | - Manisha Guduri
- Department of Electronics and Communication Engineering, Institute of Aeronautical Engineering, Hyderabad, Telangana 500043, India
| | - Yiqiang Zhan
- State Key Laboratory of ASIC and System, SIST, Fudan University, 200433 Shanghai, China
| | - Balaji Maddiboyina
- Department of Pharmacy, Vishwabharathi College of Pharmaceutical Sciences, Guntur, Andhra Pradesh 522009, India
| | - Lijie Li
- Multidisciplinary Nanotechnology Centre, College of Engineering, Swansea University, Swansea SA1 8EN, United Kingdom
| | - Sima Singh
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; The Faculty of Pharmacy, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Nam Nguyen Dang
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; The Faculty of Pharmacy, Duy Tan University, Da Nang 550000, Viet Nam.
| |
Collapse
|
21
|
Peng Q, Li Y, Qiu M, Shi B, He X, Fan C, Mao X, Wu H, Jiang Z. Enhancing Proton Conductivity of Sulfonated Poly(ether ether ketone)-Based Membranes by Incorporating Phosphotungstic-Acid-Coupled Graphene Oxide. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Quan Peng
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yan Li
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Ming Qiu
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Benbing Shi
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xueyi He
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Chunyang Fan
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xunli Mao
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
22
|
Liu B, Hu B, Du J, Cheng D, Zang H, Ge X, Tan H, Wang Y, Duan X, Jin Z, Zhang W, Li Y, Su Z. Precise Molecular‐Level Modification of Nafion with Bismuth Oxide Clusters for High‐performance Proton‐Exchange Membranes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bailing Liu
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalys Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
- Jinlin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry Changchun University of Science and Technology Changchun Changchun Jilin 130024 P. R. China
| | - Bo Hu
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalys Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
- School of chemistry and pharmaceutical engineering Jilin Institute of Chemical Technology Jinlin 132022 P. R. China
| | - Jing Du
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalys Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Dongming Cheng
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalys Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Hong‐Ying Zang
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalys Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Xin Ge
- Electron Microscopy Center Jilin University Changchun 130012 China
| | - Huaqiao Tan
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalys Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Yonghui Wang
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalys Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Zhao Jin
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Wei Zhang
- Electron Microscopy Center Jilin University Changchun 130012 China
| | - Yangguang Li
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalys Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Zhongmin Su
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalys Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
- Jinlin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry Changchun University of Science and Technology Changchun Changchun Jilin 130024 P. R. China
| |
Collapse
|
23
|
Liu B, Hu B, Du J, Cheng D, Zang HY, Ge X, Tan H, Wang Y, Duan X, Jin Z, Zhang W, Li Y, Su Z. Precise Molecular-Level Modification of Nafion with Bismuth Oxide Clusters for High-performance Proton-Exchange Membranes. Angew Chem Int Ed Engl 2021; 60:6076-6085. [PMID: 33296135 DOI: 10.1002/anie.202012079] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 11/07/2022]
Abstract
Fabricating proton exchange membranes (PEMs) with high ionic conductivity and ideal mechanical robustness through regulation of the membrane microstructures achieved by molecular-level hybridization remains essential but challenging for the further development of high-performance PEM fuel cells. In this work, by precisely hybridizing nano-scaled bismuth oxide clusters into Nafion, we have fabricated the high-performance hybrid membrane, Nafion-Bi12 -3 %, which showed a proton conductivity of 386 mS cm-1 at 80 °C in aqueous solution with low methanol permeability, and conserved the ideal mechanical and chemical stabilities as PEMs. Moreover, molecular dynamics (MD) simulation was employed to clarify the structural properties and the assembly mechanisms of the hybrid membrane on the molecular level. The maximum current density and power density of Nafion-Bi12 -3 % for direct methanol fuel cells reached to 432.7 mA cm-2 and 110.2 mW cm-2 , respectively. This work provides new insights into the design of versatile functional polymer electrolyte membranes through polyoxometalate hybridization.
Collapse
Affiliation(s)
- Bailing Liu
- Key Lab of Polyoxometalate Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalys, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
- Jinlin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology Changchun, Changchun, Jilin, 130024, P. R. China
| | - Bo Hu
- Key Lab of Polyoxometalate Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalys, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
- School of chemistry and pharmaceutical engineering, Jilin Institute of Chemical Technology, Jinlin, 132022, P. R. China
| | - Jing Du
- Key Lab of Polyoxometalate Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalys, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Dongming Cheng
- Key Lab of Polyoxometalate Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalys, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Hong-Ying Zang
- Key Lab of Polyoxometalate Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalys, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xin Ge
- Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Huaqiao Tan
- Key Lab of Polyoxometalate Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalys, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yonghui Wang
- Key Lab of Polyoxometalate Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalys, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Zhao Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Wei Zhang
- Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Yangguang Li
- Key Lab of Polyoxometalate Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalys, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Zhongmin Su
- Key Lab of Polyoxometalate Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalys, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
- Jinlin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology Changchun, Changchun, Jilin, 130024, P. R. China
| |
Collapse
|
24
|
Self-Humidifying Proton Exchange Membranes for Fuel Cell Applications: Advances and Challenges. Processes (Basel) 2020. [DOI: 10.3390/pr8091069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Polymer electrolyte fuel cells (PEFCs) provide efficient and carbon-free power by converting the hydrogen chemical energy. The PEFCs can reach their greatest performance in humidified condition, as proton exchange membranes (PEMs) should be humidified for their proton transportation function. Thus, external humidifiers are commonly employed to increase the water content of reactants. However, being burdened with external humidifiers can make the control of PEFCs complicated and costly, in particular for transportation application. To overcome this issue, self-humidifying PEMs have been introduced, with which PEFC can be fed by dry reactants. In fact, internal humidification is accomplished by produced water from the recombination of permeated hydrogen and oxygen gases on the incorporated platinum catalysts within the PEM. While the water production agent remains constant, there is a broad range of additives that are utilized to retain the generated water and facilitate the proton conduction path in the PEM. This review paper has classified the aforementioned additives in three categories: inorganic materials, proton-conductive materials, and carbon-based additives. Moreover, synthesis methods, preparation procedures, and characterization tests are overviewed. Eventually, self-humidifying PEMs endowed with platinum and different additives are compared from performance and stability perspectives, such as water uptake, proton conductivity, fuel cell performance, gas cross-over, and the overall durability. In addition, their challenges and possible solutions are reviewed. Considering the concerns regarding the long-term durability of such PEMs, it seems that further investigations can be beneficial to confirm their reliability for prolonged PEFC operation.
Collapse
|
25
|
Sulfonated polybenzimidazole/amine functionalized titanium dioxide (sPBI/AFT) composite electrolyte membranes for high temperature proton exchange membrane fuel cells usage. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Protic ionic liquids immobilized in phosphoric acid-doped polybenzimidazole matrix enable polymer electrolyte fuel cell operation at 200 °C. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118188] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Mechanical Properties and Chemical Durability of Nafion/Sulfonated Graphene Oxide/Cerium Oxide Composite Membranes for Fuel-Cell Applications. Polymers (Basel) 2020; 12:polym12061375. [PMID: 32570993 PMCID: PMC7362198 DOI: 10.3390/polym12061375] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 11/17/2022] Open
Abstract
To improve both the mechanical and chemical durability of Nafion membranes for polymer electrolyte membrane fuel-cells (PEMFCs), Nafion composite membranes containing sulfonated graphene oxide (SGO) and cerium oxide (CeO2; ceria) were prepared by solution casting. The structure and chemical composition of SGO were investigated by FT-IR and XPS. The effect of the sulfonation, addition of SGO and ceria on the mechanical properties, proton conductivity, and chemical stability were evaluated. The addition of SGO gave rise to an increase in the number of sulfonic acid groups in Nafion, resulting in a higher tensile strength and proton conductivity compared to that of graphene oxide (GO). Although the addition of ceria was found to decrease the tensile strength and proton conductivity, Nafion/SGO/ceria composite membranes exhibited a higher tensile strength and proton conductivity than recast Nafion. Measurement of the weight loss and SEM observations of the composite membranes after immersing in Fenton's reagent indicate an excellent radical scavenging ability of ceria under radical degradation conditions.
Collapse
|
28
|
Composite Polymers Development and Application for Polymer Electrolyte Membrane Technologies-A Review. Molecules 2020; 25:molecules25071712. [PMID: 32276482 PMCID: PMC7180464 DOI: 10.3390/molecules25071712] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 11/24/2022] Open
Abstract
Nafion membranes are still the dominating material used in the polymer electrolyte membrane (PEM) technologies. They are widely used in several applications thanks to their excellent properties: high proton conductivity and high chemical stability in both oxidation and reduction environment. However, they have several technical challenges: reactants permeability, which results in reduced performance, dependence on water content to perform preventing the operation at higher temperatures or low humidity levels, and chemical degradation. This paper reviews novel composite membranes that have been developed for PEM applications, including direct methanol fuel cells (DMFCs), hydrogen PEM fuel cells (PEMFCs), and water electrolysers (PEMWEs), aiming at overcoming the drawbacks of the commercial Nafion membranes. It provides a broad overview of the Nafion-based membranes, with organic and inorganic fillers, and non-fluorinated membranes available in the literature for which various main properties (proton conductivity, crossover, maximum power density, and thermal stability) are reported. The studies on composite membranes demonstrate that they are suitable for PEM applications and can potentially compete with Nafion membranes in terms of performance and lifetime.
Collapse
|
29
|
Dual exchange membrane fuel cell with sequentially aligned cation and anion exchange membranes for non-humidified operation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Rosli NAH, Loh KS, Wong WY, Yunus RM, Lee TK, Ahmad A, Chong ST. Review of Chitosan-Based Polymers as Proton Exchange Membranes and Roles of Chitosan-Supported Ionic Liquids. Int J Mol Sci 2020; 21:ijms21020632. [PMID: 31963607 PMCID: PMC7014316 DOI: 10.3390/ijms21020632] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 02/02/2023] Open
Abstract
Perfluorosulphonic acid-based membranes such as Nafion are widely used in fuel cell applications. However, these membranes have several drawbacks, including high expense, non-eco-friendliness, and low proton conductivity under anhydrous conditions. Biopolymer-based membranes, such as chitosan (CS), cellulose, and carrageenan, are popular. They have been introduced and are being studied as alternative materials for enhancing fuel cell performance, because they are environmentally friendly and economical. Modifications that will enhance the proton conductivity of biopolymer-based membranes have been performed. Ionic liquids, which are good electrolytes, are studied for their potential to improve the ionic conductivity and thermal stability of fuel cell applications. This review summarizes the development and evolution of CS biopolymer-based membranes and ionic liquids in fuel cell applications over the past decade. It also focuses on the improved performances of fuel cell applications using biopolymer-based membranes and ionic liquids as promising clean energy.
Collapse
Affiliation(s)
- Nur Adiera Hanna Rosli
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (N.A.H.R.); (W.Y.W.); (R.M.Y.)
| | - Kee Shyuan Loh
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (N.A.H.R.); (W.Y.W.); (R.M.Y.)
- Correspondence:
| | - Wai Yin Wong
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (N.A.H.R.); (W.Y.W.); (R.M.Y.)
| | - Rozan Mohamad Yunus
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (N.A.H.R.); (W.Y.W.); (R.M.Y.)
| | - Tian Khoon Lee
- Department of Chemistry–Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden;
| | - Azizan Ahmad
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia;
| | - Seng Tong Chong
- College of Energy Economics and Social Sciences, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia;
| |
Collapse
|
31
|
Bernard C, Goodwin DG, Gu X, Celina M, Nyden M, Jacobs D, Sung L, Nguyen T. Graphene oxide/waterborne polyurethane nanocoatings: effects of graphene oxide content on performance properties. JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH 2020; 17:255-269. [PMID: 32454951 PMCID: PMC7246042 DOI: 10.1007/s11998-019-00267-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graphene oxide (GO) is a good nanofiller candidate for waterborne coatings because of its outstanding physical and mechanical properties, good dispersibility in water, and low cost relative to graphene. Here, we report on the performance of a one-part, waterborne polyurethane (WPU) nanocoating formulated with four different GO loadings ([0.4% to 2.0%] by mass). The degree of GO dispersion/adhesion was evaluated using scanning electron microscopy, laser scanning confocal microscopy, and Raman microscopy. Nanocoating performance was evaluated using a dynamic mechanical thermal analyzer for mechanical properties, a customized coulometric permeation apparatus for oxygen barrier properties, a combustion microcalorimeter for flammability, a hot disk analyzer for thermal conductivity, thermogravimetric analysis for thermal stability, and a moisture sorption analyzer for water uptake. The results show that GO sheets were well dispersed in, and have good adhesion to, WPU. At the higher mass loadings ([1.2% or 2%] by mass), GO increased the modulus and yield strength of WPU by 300% and 200%, respectively, increased the thermal conductivity by 38%, reduced the burning heat release rate (flammability) by 43%, and reduced the oxygen permeability by up to sevenfold. The presence of GO, however, increased water vapor uptake at high humidity; the moisture content of 2% mass loading GO/WPU nanocoatings at 90% RH was almost twice that of the moisture content for unfilled WPU. Overall, with the exception of water uptake at very high humidity (> 70% RH), the observed improvements in physical and mechanical properties combined with the ease of processing suggest that GO is a viable nanofiller for WPU coatings.
Collapse
Affiliation(s)
- C Bernard
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - D G Goodwin
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - X Gu
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - M Celina
- Sandia National Laboratory, Albuquerque, NM 87185, USA
| | - M Nyden
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - D Jacobs
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - L Sung
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - T Nguyen
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
32
|
3D lanthanide-organic supramolecular-graphene oxide composites: A simple and effective method significantly improve the proton conductivity of proton exchange membrane. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Mu’min MS, Böhm T, Moroni R, Zengerle R, Thiele S, Vierrath S, Breitwieser M. Local hydration in ionomer composite membranes determined with confocal Raman microscopy. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Yadav V, Kulshrestha V. Boron nitride: a promising material for proton exchange membranes for energy applications. NANOSCALE 2019; 11:12755-12773. [PMID: 31267118 DOI: 10.1039/c9nr03094h] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Boron nitride (BN) is an exciting material and has drawn the attention of researchers for the last decade due to its surprising properties, including large surface area, thermomechanical stability, and high chemical resistance. Functionalization of BN is a new area of interest to build up novel properties and applications of BN. BN and functionalized BN are promising membrane materials and show enormous advantages ascribed to their simple synthesis, high surface area, mechanical and thermal stability, and distinctive mechanical properties. BN-based proton exchange membranes show improvement in their physicochemical, electrochemical, thermal, mechanical, and barrier properties. Only a few research studies have been carried out on BN-based highly stable proton exchange membranes (PEMs) for various electrochemical applications. In this review, we discuss the recent advances in the functionalization of BN by different methods. The synthesis of different proton exchange membranes has also been discussed in this article. In addition, the potential applications of hybrid proton exchange membranes have also been mentioned.
Collapse
Affiliation(s)
- Vikrant Yadav
- CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar- 364002, Gujarat, India and Academy of Scientific and Innovative Research, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar- 364002, Gujarat, India.
| | - Vaibhav Kulshrestha
- CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar- 364002, Gujarat, India and Academy of Scientific and Innovative Research, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar- 364002, Gujarat, India.
| |
Collapse
|
35
|
Imran MA, He G, Wu X, Yan X, Li T, Khan A. Fabrication and characterization of sulfonated polybenzimidazole/sulfonated imidized graphene oxide hybrid membranes for high temperature proton exchange membrane fuel cells. J Appl Polym Sci 2019. [DOI: 10.1002/app.47892] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Muhammad Asif Imran
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Xuemei Wu
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Xiaoming Yan
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Tiantian Li
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Abdul‐Sammed Khan
- School of PhysicsDalian University of Technology Dalian 116024 China
| |
Collapse
|
36
|
Changkhamchom S, Sirivat A. Sulfonated (graphene oxide/poly(ether ketone ether sulfone) (S-GO/S-PEKES) composite proton exchange membrane with high proton conductivity for direct methanol fuel cell. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2019.1587770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- S. Changkhamchom
- Conductive and Electroactive Polymers Research Unit, Chulalongkorn University, Bangkok, Thailand
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
| | - A. Sirivat
- Conductive and Electroactive Polymers Research Unit, Chulalongkorn University, Bangkok, Thailand
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
37
|
Bhunia P, Kumar M, De S. Fast purification of graphene oxide solution by continuous counter current hollow fibre dialysis: A step towards large scale production. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Prasenjit Bhunia
- Department of Chemical EngineeringIndian Institute of Technology KharagpurKharagpur – 721302India
| | - Monish Kumar
- Department of Chemical EngineeringIndian Institute of Technology KharagpurKharagpur – 721302India
| | - Sirshendu De
- Department of Chemical EngineeringIndian Institute of Technology KharagpurKharagpur – 721302India
| |
Collapse
|
38
|
Zakaria Z, Kamarudin SK, Timmiati SN. Influence of Graphene Oxide on the Ethanol Permeability and Ionic Conductivity of QPVA-Based Membrane in Passive Alkaline Direct Ethanol Fuel Cells. NANOSCALE RESEARCH LETTERS 2019; 14:28. [PMID: 30659414 PMCID: PMC6338673 DOI: 10.1186/s11671-018-2836-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/13/2018] [Indexed: 05/31/2023]
Abstract
Passive alkaline-direct ethanol fuel cells (alkaline-DEFCs) appear to be suitable for producing sustainable energy for portable devices. However, ethanol crossover is a major challenge for passive alkaline-DEFC systems. This study investigated the performance of a crosslinked quaternized poly (vinyl alcohol)/graphene oxide (QPVA/GO) composite membrane to reduce ethanol permeability, leading in enhancement of passive alkaline-DEFC performance. The chemical and physical structure, morphology, ethanol uptake and permeability, ion exchange capacity, water uptake, and ionic conductivity of the composite membranes were characterized and measured to evaluate their applicability in fuel cells. The transport properties of the membrane were affected by GO loading, with an optimal loading of 15 wt.% and doped with 1 M of KOH showing the lowest ethanol permeability (1.49 × 10-7 cm2 s-1 and 3.65 × 10-7 cm2 s-1 at 30 °C and 60 °C, respectively) and the highest ionic conductivity (1.74 × 10-2 S cm-1 and 6.24 × 10-2 S cm-1 at 30 °C and 60 °C, respectively). In the passive alkaline-DEFCs, the maximum power density was 9.1 mW cm-2, which is higher than commercial Nafion 117/KOH (7.68 mW cm-2) at 30 °C with a 2 M ethanol + 2 M KOH solution. For the 60 °C, the maximum power density of composite membrane achieved was 11.4 mW cm-2.
Collapse
Affiliation(s)
- Z. Zakaria
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - S. K. Kamarudin
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
- Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - S. N. Timmiati
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| |
Collapse
|
39
|
Zakaria Z, Kamarudin SK. Performance of quaternized poly(vinyl alcohol)‐based electrolyte membrane in passive alkaline DEFCs application: RSM optimization approach. J Appl Polym Sci 2019. [DOI: 10.1002/app.47526] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Z. Zakaria
- Fuel Cell InstituteUniversiti Kebangsaan Malaysia (UKM) 43600 Bangi Selangor Malaysia
| | - S. K. Kamarudin
- Fuel Cell InstituteUniversiti Kebangsaan Malaysia (UKM) 43600 Bangi Selangor Malaysia
- Department of Chemical and Process Engineering, Faculty of Engineering and Built EnvironmentUniversiti Kebangsaan Malaysia (UKM) 43600 Bangi Selangor Malaysia
| |
Collapse
|
40
|
Bhunia P, Kumar M, De S. Rapid and efficient removal of ionic impurities from graphene oxide through hollow fiber diafiltration. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Alekseev NI, Broiko AP, Kalenov VE, Korlyakov AV, Lagosh AV, Lifshits AO, Luchinin VV, Khmel’nitskii IK. Structure of a Graphene-Modified Electroactive Polymer for Membranes of Biomimetic Systems: Simulation and Experiment. J STRUCT CHEM+ 2018. [DOI: 10.1134/s0022476618070260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
One-step fabrication and characterization of reinforced microcomposite membranes for polymer electrolyte membrane fuel cells. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.06.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Zakaria Z, Kamarudin SK, Timmiati SN, Masdar MS. New composite membrane poly(vinyl alcohol)/graphene oxide for direct ethanol-proton exchange membrane fuel cell. J Appl Polym Sci 2018. [DOI: 10.1002/app.46928] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Z. Zakaria
- Fuel Cell Institute; Universiti Kebangsaan Malaysia; 43600 UKM Bangi Selangor Malaysia
| | - S. K. Kamarudin
- Fuel Cell Institute; Universiti Kebangsaan Malaysia; 43600 UKM Bangi Selangor Malaysia
- Department of Chemical and Process Engineering; Universiti Kebangsaan Malaysia; 43600 UKM Bangi Selangor Malaysia
| | - S. N. Timmiati
- Fuel Cell Institute; Universiti Kebangsaan Malaysia; 43600 UKM Bangi Selangor Malaysia
| | - M. S. Masdar
- Fuel Cell Institute; Universiti Kebangsaan Malaysia; 43600 UKM Bangi Selangor Malaysia
- Department of Chemical and Process Engineering; Universiti Kebangsaan Malaysia; 43600 UKM Bangi Selangor Malaysia
| |
Collapse
|
44
|
Lebedeva MV, Yashtulov NA, Flid VR. Metal–Polymer Nanocomposites with Carbon Fillers for the Catalytic Oxidation of Formic Acid. KINETICS AND CATALYSIS 2018. [DOI: 10.1134/s0023158418040043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Li J, Xu G, Cai W, Xiong J, Ma L, Yang Z, Huang Y, Cheng H. Non-destructive modification on Nafion membrane via in-situ inserting of sheared graphene oxide for direct methanol fuel cell applications. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.072] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Yadav R, Subhash A, Chemmenchery N, Kandasubramanian B. Graphene and Graphene Oxide for Fuel Cell Technology. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02326] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ramdayal Yadav
- Structural Composite Fabrication Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry
of Defence, Girinagar, Pune-411025, India
| | - Akshay Subhash
- Department of Polymer Engineering, University College of Engineering, Thodupuzha, Idukki, Kerala-685587, India
| | - Nikhil Chemmenchery
- Department of Polymer Engineering, University College of Engineering, Thodupuzha, Idukki, Kerala-685587, India
| | - Balasubramanian Kandasubramanian
- Structural Composite Fabrication Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry
of Defence, Girinagar, Pune-411025, India
| |
Collapse
|
47
|
Li P, Wu W, Liu J, Shi B, Du Y, Li Y, Wang J. Investigating the nanostructures and proton transfer properties of Nafion-GO hybrid membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.066] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
48
|
Munavalli B, Torvi A, Kariduraganavar M. A facile route for the preparation of proton exchange membranes using sulfonated side chain graphite oxides and crosslinked sodium alginate for fuel cell. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.03.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
49
|
Zhang S, Li D, Kang J, Ma G, Liu Y. Electrospinning preparation of a graphene oxide nanohybrid proton-exchange membrane for fuel cells. J Appl Polym Sci 2018. [DOI: 10.1002/app.46443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shaopeng Zhang
- College of Mechanical and Electric Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Dan Li
- College of Mechanical and Electric Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Jingxin Kang
- College of Mechanical and Electric Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Guiping Ma
- College of Mechanical and Electric Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Yong Liu
- College of Mechanical and Electric Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| |
Collapse
|
50
|
Li C, Huang N, Jiang Z, Tian X, Zhao X, Xu ZL, Yang H, Jiang ZJ. Sulfonated holey graphene oxide paper with SPEEK membranes on its both sides: a sandwiched membrane with high performance for semi-passive direct methanol fuel cells. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|