1
|
Chen J, Dai R, Wu Z, Wang Z. Upcycling End-of-Life Polyvinylidene Fluoride Membranes into Reverse Osmosis Membranes for Sustainable Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9849-9858. [PMID: 40331357 DOI: 10.1021/acs.est.5c03098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Membrane technology has been increasingly applied in water purification to address global water scarcity. However, commercial membranes inevitably reach the end-of-life (EoL) after long-term operation, which constrains the sustainability of membrane technology. Herein, we demonstrated the feasibility of upcycling real EoL poly(vinylidene fluoride) (PVDF) microfiltration (MF) membranes into reverse osmosis (RO) membranes with higher separation precision via the interfacial polymerization (IP) reaction. We highlighted that the EoL MF membrane, with a fouling-induced narrowed pore size and relatively hydrophobic properties, is preferred for upcycling. The resultant upcycled RO membrane exhibited a satisfactory NaCl rejection (98.6 ± 0.4%) with favorable water permeance (2.3 ± 0.7 L m-2 h-1 bar-1), comparable to the performance of commercial RO membranes. Real wastewater treatment evaluations confirmed the membrane stability and permeate safety. Life-cycle assessment and techno-economic analysis showed that this upcycling process promises environmental and economic benefits, potentially reducing CO2-eq emissions by 18.6% and costs by 76.5%-92.2% compared with the conventional membrane approach. This proof-of-concept study paves the way for creating a closed eco-loop of membrane recycling for sustainable water purification.
Collapse
Affiliation(s)
- Jiansuxuan Chen
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruobin Dai
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhichao Wu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Liu Z, Tan H, Shao Y, Nie G, Hou Z, Yang P, Li S, Liu C. Membrane-based adsorbent materials for uranium extraction from seawater: recent progress and future prospects. NANOSCALE 2025; 17:9764-9785. [PMID: 40136246 DOI: 10.1039/d4nr04603j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The global energy shortage is becoming increasingly severe, making it urgent to address the energy deficit. Nuclear energy is considered a green, efficient and clean energy source. The reserves of uranium, an essential strategic nuclear fuel resource, have become pivotal in addressing the energy crisis. Compared to uranium resources on land, the ocean is rich in uranium. Therefore, uranium extraction from seawater has become an ideal choice. However, the variety of competing ions in seawater, its high salinity and the complex marine environment make uranium extraction from seawater a huge challenge. In the context of assessing the economics and sustainability of the entire uranium separation process, membrane-based adsorbents are considered ideal materials for large-scale uranium extraction from seawater due to their ease of collection and reuse. This review discusses different types of membrane-based adsorbent materials, including modified non-woven membranes, phase conversion membranes, and other types of membrane materials. In addition, this review summarizes recent studies on the use of membrane-based adsorbents for extracting uranium from seawater and the prospects for their development. With the rapid development of membrane-based adsorbents for uranium extraction from seawater, this review also discusses the challenges and future prospects of this frontier field.
Collapse
Affiliation(s)
- Zhong Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China.
- Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lake, Xining, Qinghai 810008, China
| | - Huanhuan Tan
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| | - Yuling Shao
- Xi'an North Huian Chemical Industries Co., Ltd, Xi'an 710302, China
| | - Guoliang Nie
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China.
- Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lake, Xining, Qinghai 810008, China
| | - Zewei Hou
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China.
- Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lake, Xining, Qinghai 810008, China
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| | - Peipei Yang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| | - Songwei Li
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| |
Collapse
|
3
|
He H, Wang X, Huang X, Wang X, Zhu H, Chen F, Wu X, Wu H, Ma J, Wen X. Leveraging almost hydrophobic PVDF membrane and in-situ ozonation in O 3/UF/BAC system for superior anti-fouling and rejection performance in drinking water treatment. WATER RESEARCH 2025; 274:123105. [PMID: 39798531 DOI: 10.1016/j.watres.2025.123105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The almost hydrophobic PVDF membrane (PVDF matrix) commonly exhibited excellent performance in pollutant rejection but with poor anti-fouling performance. This study intended to develop the rejection performance and enhance anti-fouling of the PVDF membrane in an O3/UF/BAC system for high quality water production through leveraging the advantages of in-situ ozonation and the nature of the PVDF membrane. Reduced density gradient (RDG) analysis demonstrated that the PVDF membrane exhibited excellent ozone resistance by reducing hydrogen bonds and electrostatic interactions between the membrane surface and ozone. Consequently, the physicochemical properties of the PVDF membrane remained unchanged in the laboratory continuous flow experiment with in-situ ozonation at 2.86 mg/L. The almost hydrophobicity of the PVDF membrane not only resisted fouling but also facilitated the reaction between ozone and foulants of higher concentrations locally at membrane surface, leading to dynamic changes in membrane fouling, with TMP/TMP0 initially increasing, then decreasing and stable. Therefore, the Rtotal, Rcake and Rgel of the PVDF membrane decreased by 47.40 %, 46.79 % and 50.99 % as compared to the UF/BAC system, respectively, in the O3/UF/BAC system. In-situ ozonation transformed macromolecular substances into micromolecules, particularly organic matter with lignin/carboxylic-rich alicyclic molecules and aromatic structures. The majority of these micromolecules were either rejected by the deposited foulants layer through Van der Waals interaction and utilized as a carbon source by membrane surface microorganisms (eg., Curvibacter and Methyloversatilis), or further degraded by microorganism in the BAC unit. This resulted in a 19.34 % and 40.58 % reduction in CODMn concentrations in the UF and BAC effluents, respectively. The system's anti-fouling and water purification performance observed in laboratory experiments was confirmed in a pilot test, providing new insights into the use of in-situ ozonation and organic membranes.
Collapse
Affiliation(s)
- Haiyang He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiao Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Fengxiang Chen
- CITIC Environment Investment Group Co., Ltd., Beijing, 100020, China
| | - Xianzhi Wu
- CITIC Environment Investment Group Co., Ltd., Beijing, 100020, China
| | - Huifeng Wu
- CITIC Environment Investment Group Co., Ltd., Beijing, 100020, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xianghua Wen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Yuan M. A review of synaptic devices based on organic ferroelectric materials. Phys Chem Chem Phys 2025; 27:7502-7518. [PMID: 40152054 DOI: 10.1039/d5cp00591d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
This article reviews advancements in synaptic devices using organic ferroelectric materials, particularly PVDF and its copolymers. As AI and big data progress, traditional computing faces limitations in storage and power consumption, leading to neuromorphic computing's rise. Ferroelectric memristors exhibit excellent controllability and retention, making them ideal for simulating synapses. The article discusses fabrication methods, performance optimization, and challenges such as thermal stability and integration costs. Ultimately, optimized PVDF-based devices could significantly enhance low-power, high-performance computing and drive innovations in AI and the internet of things.
Collapse
Affiliation(s)
- Mu Yuan
- School of Materials Science and Engineering, Northeastern University, NO. 3-11, Wenhua Road, Heping District, Shenyang, P. R. China.
| |
Collapse
|
5
|
Filimon A, Dobos AM, Onofrei MD, Serbezeanu D. Polyvinyl Alcohol-Based Membranes: A Review of Research Progress on Design and Predictive Modeling of Properties for Targeted Application. Polymers (Basel) 2025; 17:1016. [PMID: 40284281 PMCID: PMC12030392 DOI: 10.3390/polym17081016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
This review provides a comprehensive evaluation of the current state of polyvinyl alcohol (PVA)-based membranes, emphasizing their significance in membrane technology for various applications. The analysis encompasses both experimental and theoretical research articles, with a focus on recent decades, aiming to elucidate the potential and limitations of different fabrication approaches, structure-property relationships, and their applicability in the real world. The review begins by examining the advanced polymeric materials and strategies employed in the design and processing of membranes with tailored properties. Fundamental principles of membrane processes are introduced, with a focus on general modeling approaches for describing the fluid transport through membranes. A key aspect of discussion is the distinction between the membrane performance and process performance. Additionally, an in-depth analysis of PVA membranes in various applications is presented, particularly in environmental fields (e.g., fuel cell, water treatment, air purification, and food packaging) and biomedical domains (e.g., drug delivery systems, wound healing, tissue engineering and regenerative medicine, hemodialysis and artificial organs, and ophthalmic and periodontal treatment). Special attention is given to the relationship between membranes' characteristics, such as material composition, structure, and processing parameters, and their overall performance, in terms of permeability, selectivity, and stability. Despite their promising properties, enhanced through innovative fabrication methods that expand their applicability, challenges remain in optimizing long-term stability, improving fouling resistance, and increasing process scalability. Therefore, further research is needed to develop novel modifications and composite structures that overcome these limitations and enhance the practical implementation of PVA-based membranes. By offering a systematic overview, this review aims to advance the understanding of PVA membrane fabrication, properties, and functionality, providing valuable insights for continued development and optimization in membrane technology.
Collapse
Affiliation(s)
- Anca Filimon
- “Petru Poni” Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.M.D.); (M.D.O.); (D.S.)
| | | | | | | |
Collapse
|
6
|
Khan AM, Russo F, Macedonio F, Criscuoli A, Curcio E, Figoli A. The State of the Art on PVDF Membrane Preparation for Membrane Distillation and Membrane Crystallization: Towards the Use of Non-Toxic Solvents. MEMBRANES 2025; 15:117. [PMID: 40277987 PMCID: PMC12029554 DOI: 10.3390/membranes15040117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025]
Abstract
Most parts of the earth are covered with water, but only 0.3% of it is available to living beings. Industrial growth, fast urbanization, and poor water management have badly affected the water quality. In recent years, a transition has been seen from the traditional (physical, chemical) wastewater treatment methods towards a greener, sustainable, and scalable membrane technology. Even though membrane technology offers a green pathway to address the wastewater treatment issue on a larger scale, the fabrication of polymeric membranes from toxic solvents is an obstacle in making it a fully green method. The concept of green chemistry has encouraged scientists to engage in research for new biodegradable and non-protic solvents to replace with already existing toxic ones. This review outlines the use of non-toxic solvents for the preparation of PVDF membranes and their application in membrane distillation and membrane crystallization.
Collapse
Affiliation(s)
- Aqsa Mansoor Khan
- Institute for Membrane Technology, National Research Council Italy CNR-ITM, Via P.Bucci 17/C, 87036 Rende, CS, Italy; (A.M.K.); (F.R.); (A.F.)
- Department of Environmental Engineering, DIAM, University of Calabria, Via P.Bucci-Cube 44/A, 87036 Rende, CS, Italy;
| | - Francesca Russo
- Institute for Membrane Technology, National Research Council Italy CNR-ITM, Via P.Bucci 17/C, 87036 Rende, CS, Italy; (A.M.K.); (F.R.); (A.F.)
| | - Francesca Macedonio
- Institute for Membrane Technology, National Research Council Italy CNR-ITM, Via P.Bucci 17/C, 87036 Rende, CS, Italy; (A.M.K.); (F.R.); (A.F.)
| | - Alessandra Criscuoli
- Institute for Membrane Technology, National Research Council Italy CNR-ITM, Via P.Bucci 17/C, 87036 Rende, CS, Italy; (A.M.K.); (F.R.); (A.F.)
| | - Efrem Curcio
- Department of Environmental Engineering, DIAM, University of Calabria, Via P.Bucci-Cube 44/A, 87036 Rende, CS, Italy;
| | - Alberto Figoli
- Institute for Membrane Technology, National Research Council Italy CNR-ITM, Via P.Bucci 17/C, 87036 Rende, CS, Italy; (A.M.K.); (F.R.); (A.F.)
| |
Collapse
|
7
|
Arthanareeswaran G, Sankar K, Parvin US, Taweepreda W, Ismail AF. Evaluation of integrated polysaccharide, biopolymers and clay composite membranes for clarification process of citrus fruit (sweet lime) juice. Int J Biol Macromol 2025; 301:140266. [PMID: 39870274 DOI: 10.1016/j.ijbiomac.2025.140266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
This study focuses on the development of an efficient membrane-based clarification process to enhance the performance of subsequent ultrafiltration and produce high-quality sweet lime juice. A range of casting solutions were prepared using a blend of pore-forming polymers, including polyvinylpyrrolidone (PVP), polyvinylidene fluoride (PVDF), and cellulose acetate (CA), dissolved in dimethylformamide (DMF) solvent through the phase inversion technique. To further enhance the membrane's performance, four biopolymers poly (lactic acid) (PLA), xanthan gum, chitosan, and gelatin were incorporated, with and without clay, to refine its structure, porosity, and surface properties. The resulting membranes were characterized by FT-IR, SEM, and AFM, and their flux behaviour and fouling profiles were evaluated. The quality of the clarified juice was assessed by measuring total suspended solids (TSS), clarity, color, and apparent alcohol insoluble solids (AIS). Despite a reduction in permeate flux, the Xanthan-clay-loaded membrane enhanced juice quality and clarity. For the PLA-based membrane and the xanthan-based membrane, the fouling coefficient was lower. This membrane-based clarification technique can be applied effectively in the juice processing industries to improve product quality.
Collapse
Affiliation(s)
- G Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India.
| | - Karthikumar Sankar
- Department of Biotechnology, Kamaraj College of Engineering and Technology, S.P.G.C.Nagar, K.Vellakulam, Near Virudhunagar, Tamil Nadu, India
| | - U Shameera Parvin
- Department of Food Science, Dhanalakshmi Srinivasan Institute of Research and Technology, Perambalur, Tamil Nadu, India
| | - Wirach Taweepreda
- Polymer Science Program, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat-Yai 90110, Songkhla, Thailand
| | - A F Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| |
Collapse
|
8
|
Ahbab N, Naz S, Xu TB, Zhang S. A Comprehensive Review of Piezoelectric PVDF Polymer Fabrications and Characteristics. MICROMACHINES 2025; 16:386. [PMID: 40283263 PMCID: PMC12029650 DOI: 10.3390/mi16040386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025]
Abstract
Polyvinylidene fluoride (PVDF) polymer films, renowned for their exceptional piezoelectric, pyroelectric, and ferroelectric properties, offer a versatile platform for the development of cutting-edge micro-scale functional devices, enabling innovative applications ranging from energy harvesting and sensing to medical diagnostics and actuation. This paper presents an in-depth review of the material properties, fabrication methodologies, and characterization of PVDF films. Initially, a comprehensive description of the physical, mechanical, chemical, thermal, electrical, and electromechanical properties is provided. The unique combination of piezoelectric, pyroelectric, and ferroelectric properties, coupled with its excellent chemical resistance and mechanical strength, makes PVDF a highly valuable material for a wide range of applications. Subsequently, the fabrication techniques, phase transitions and their achievement methods, and copolymerization and composites employed to improve and optimize the PVDF properties were elaborated. Enhancing the phase transition in PVDF films, especially promoting the high-performance β-phase, can be achieved through various processing techniques, leading to significantly enhanced piezoelectric and pyroelectric properties, which are essential for diverse applications. This concludes the discussion of PVDF material characterization and its associated techniques for thermal, crystal structure, mechanical, electrical, ferroelectric, piezoelectric, electromechanical, and pyroelectric properties, which provide crucial insights into the material properties of PVDF films, directly impacting their performance in applications. By understanding these aspects, researchers and engineers can gain valuable insights into optimizing PVDF-based devices for various applications, including energy-harvesting, sensing, and biomedical devices, thereby driving advancements in these fields.
Collapse
Affiliation(s)
- Nadia Ahbab
- Department of Mechanical Engineering and Aerospace, Old Dominion University, Norfolk, VA 23529, USA; (N.A.); (S.N.)
| | - Sidra Naz
- Department of Mechanical Engineering and Aerospace, Old Dominion University, Norfolk, VA 23529, USA; (N.A.); (S.N.)
| | - Tian-Bing Xu
- Department of Mechanical Engineering and Aerospace, Old Dominion University, Norfolk, VA 23529, USA; (N.A.); (S.N.)
| | - Shihai Zhang
- PolyK Technologies, LLC, 2124 Old Gatesburg Road, State College, PA 16803, USA;
| |
Collapse
|
9
|
Tomczak W, Gryta M, Woźniak P, Daniluk M. Changes in the Separation Properties of Aged PVDF Ultrafiltration Membranes During Long-Term Treatment of Car Wash Wastewater. MEMBRANES 2025; 15:66. [PMID: 40137018 PMCID: PMC11943878 DOI: 10.3390/membranes15030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
Car wash wastewater (CWW) is complex waste that may be effectively treated by the ultrafiltration (UF) process. However, one of the most important challenges in implementing this process on an industrial scale is the fouling phenomenon membrane aging. Indeed, these may lead to a reduction in UF performance possibly associated with a loss in integrity of the fouled/aged membrane. Therefore, the main aim of the current study was to provide a comprehensive investigation on the changes in the separation properties of aged FP100 ultrafiltration membranes made of polyvinylidene fluoride (PVDF) with respect to their application for long-term treatment of CWW. For this purpose, studies were conducted for new membranes and membranes previously used for over 5 years in a pilot plant. As a feed, solutions of dextran, solutions of model organism Escherichia coli and synthetic CWW were used. It has been found that PVDF membranes demonstrated poor stability when in frequent contact with chemicals periodically applied for membrane cleaning. Indeed, the aged membranes were characterised by the increased porosity. However, it is important to note that membranes aging had no significant impact on the permeate quality during the UF process of synthetic CWW. Indeed, the obtained permeate was characterised by the turbidity lower than 0.25 NTU. Likewise, with regard to the separation of E. coli, the aged PVDF membranes ensured the high process efficiency and over 99.99% bacterial retention. In the interest of the growing potential of PVDF membrane in CWW treatment, the results obtained in the current work complement the findings made in this field.
Collapse
Affiliation(s)
- Wirginia Tomczak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland;
| | - Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (M.G.); (P.W.)
| | - Piotr Woźniak
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (M.G.); (P.W.)
| | - Monika Daniluk
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland;
| |
Collapse
|
10
|
Leiva B, Irastorza I, Moneo A, Ibarretxe G, Silvan U, Lanceros-Méndez S. Expanding the Applicability of Electroactive Polymers for Tissue Engineering Through Surface Biofunctionalization. Biomimetics (Basel) 2025; 10:126. [PMID: 39997149 PMCID: PMC11852601 DOI: 10.3390/biomimetics10020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
Polyvinylidene fluoride (PVDF) is a synthetic semicrystalline fluoropolymer with great potential for tissue engineering applications. In addition to its excellent mechanical strength, thermal stability, biocompatibility and simple processability into different morphologies, the relevance of PVDF-based materials for tissue engineering applications comes for its electroactive properties, which include piezo-, pyro- and ferroelectricity. Nevertheless, its synthetic nature and inherent hydrophobicity strongly limit the applicability of this polymer for certain purposes, particularly those involving cell attachment. In addition, the variable adhesion of cells and proteins to PVDF surfaces with different net surface charge makes it difficult to accurately compare the biological response in each case. In this work, we describe a method for the surface functionalization of PVDF films with biological molecules. After an initial chemical modification, and, independently of its polarization state, the PVDF films covalently bind equivalent amounts of cell-binding proteins. In addition, the materials retain their properties, including piezoelectric activity, representing a very promising method for the functionalization of PVDF-based tissue engineering approaches.
Collapse
Affiliation(s)
- Beatriz Leiva
- Basque Centre for Materials, Applications and Nanostructures (BCMaterials), UPV/EHU Science Park, 48940 Leioa, Spain; (B.L.); (I.I.)
| | - Igor Irastorza
- Basque Centre for Materials, Applications and Nanostructures (BCMaterials), UPV/EHU Science Park, 48940 Leioa, Spain; (B.L.); (I.I.)
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - Andrea Moneo
- Basque Centre for Materials, Applications and Nanostructures (BCMaterials), UPV/EHU Science Park, 48940 Leioa, Spain; (B.L.); (I.I.)
| | - Gaskon Ibarretxe
- Cell Biology and Histology Department, Faculty of Medicine, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Unai Silvan
- Basque Centre for Materials, Applications and Nanostructures (BCMaterials), UPV/EHU Science Park, 48940 Leioa, Spain; (B.L.); (I.I.)
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Senentxu Lanceros-Méndez
- Basque Centre for Materials, Applications and Nanostructures (BCMaterials), UPV/EHU Science Park, 48940 Leioa, Spain; (B.L.); (I.I.)
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
11
|
Lai YJ, Oh PC, Chew TL, Ahmad AL. Surface Repellency beyond Hydrophobicity: A Review on the Latest Innovations in Superomniphobic Surfaces. ACS OMEGA 2025; 10:5172-5192. [PMID: 39989837 PMCID: PMC11840608 DOI: 10.1021/acsomega.4c08269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 02/25/2025]
Abstract
Superhydrophobic surfaces have long faced challenges in repelling low-surface-tension liquids like oil and alcohol, limiting their practical applications. Over the past few years, researchers have been actively looking for new alternatives to overcome this issue. Recently, superomniphobic surfaces have attracted significant interest due to their ability to repel both high- and low-surface-tension liquids. Compared with superhydrophobic surfaces, superomniphobic surfaces provide enhanced liquid repellency, making them more suitable for industrial and real-world applications. This Review explores the recent advancements in the fabrication of superomniphobic surfaces. Three basic wetting principles, Young's, Wenzel's, and Cassie-Baxter's equations, are discussed. The vital role of low surface energy and high surface roughness of hierarchical and re-entrant structures in achieving a steady Cassie-Baxter state that has a low contact area between the solid surface and liquid droplet is emphasized. Additionally, a comprehensive description of various fabrication techniques, characterizations, and practical applications of superomniphobic surfaces is provided. Finally, the challenges and future prospects regarding this research area are addressed. This comprehensive review aims to inspire researchers to refine and enhance current development methods of superomniphobic surfaces and stimulate further exploration in the research field.
Collapse
Affiliation(s)
- Yee Jack Lai
- Department
of Chemical Engineering, Universiti Teknologi
PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Carbon
Capture, Utilization and Storage Centre (CCUSC), Institute of Sustainable
Energy and Resources (ISER), Universiti
Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Pei Ching Oh
- Department
of Chemical Engineering, Universiti Teknologi
PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Carbon
Capture, Utilization and Storage Centre (CCUSC), Institute of Sustainable
Energy and Resources (ISER), Universiti
Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Thiam Leng Chew
- Department
of Chemical Engineering, Universiti Teknologi
PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Carbon
Capture, Utilization and Storage Centre (CCUSC), Institute of Sustainable
Energy and Resources (ISER), Universiti
Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Abdul Latif Ahmad
- School
of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong
Tebal 14300, Pulau Pinang, Malaysia
| |
Collapse
|
12
|
Regmi C, Kshetri YK, Wickramasinghe SR. Hybrid combination of advanced oxidation process with membrane technology for wastewater treatment: gains and problems. NANOTECHNOLOGY 2025; 36:132002. [PMID: 39883952 DOI: 10.1088/1361-6528/adb040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 01/30/2025] [Indexed: 02/01/2025]
Abstract
Over the past few decades, significant efforts have been dedicated to advancing technologies for the removal of micropollutants from water. Achieving complete pure water with a single treatment process is challenging and nearly impossible. One promising approach among various alternatives is adopting hybrid technology, which is considered as a win-win technology. It utilizes the advantages of each technique, resulting in the enhancement of wastewater treatment. This pioneering idea is designed to significantly enhance water quality, addressing real-world implementation hurdles, and offer a promising solution to the worldwide issue of water scarcity. This review assesses the merits and drawbacks of the hybrid photocatalytic membrane technology employed in wastewater treatment. Notably, this hybrid process not only improves the membrane filtration capacity and permeates water quality but also enhances the antifouling performance of the membrane. However, it is crucial to acknowledge potential drawbacks, such as membrane structure degradation and photocatalytic activity loss in nanoparticles during the operation period. While improvements in wastewater treatment efficiency are evident, there remains ample room for further enhancements. The review summarizes the future directions and challenges of implementing such an integrated system.
Collapse
Affiliation(s)
- Chhabilal Regmi
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, United States of America
| | - Yuwaraj K Kshetri
- Research Center for Green Advanced Materials, Sun Moon University, Chungnam 31460, Republic of Korea
- Department of Energy and Chemical Engineering, Sun Moon University, Chungnam 31460, Republic of Korea
| | - S Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, United States of America
| |
Collapse
|
13
|
Zhu X, Liu P, Fang F, Wang H, Alimi LO, Moosa BA, Khashab NM. An Organic Vapor-Responsive Actuator Based on a Novel Urea Macrocycle. Chemistry 2025; 31:e202403657. [PMID: 39584427 DOI: 10.1002/chem.202403657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
The mechanical actuation of smart materials has garnered considerable attention in biological and medical research due to their ability to mimic biological processes at both molecular level, such as conformational changes in individual compounds, and at the macroscopic level, where polymeric substrates respond to external stimuli. In this study, we present a polymeric composite incorporating a novel urea macrocycle as a filler, forming a soft actuator that responds to various organic solvent vapors. The underlying actuation mechanism is attributed to crystalline phase transition of urea macrocycle, driven by the host-guest interactions with diverse guest molecules. This work provides valuable insights for advancing the design of supramolecular hosts in smart material applications.
Collapse
Affiliation(s)
- Xuanfu Zhu
- Smart Hybrid Materials (SHMs) Laboratory, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Peiren Liu
- Smart Hybrid Materials (SHMs) Laboratory, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Fang Fang
- Smart Hybrid Materials (SHMs) Laboratory, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Haochen Wang
- Smart Hybrid Materials (SHMs) Laboratory, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lukman O Alimi
- Smart Hybrid Materials (SHMs) Laboratory, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Basem A Moosa
- Smart Hybrid Materials (SHMs) Laboratory, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
14
|
Ádám BÁ, Spátay S, Jávor B, László S, Illés L, Fürjes P, Tóth T, Huszthy P, Golcs Á. Atmospheric air plasma pre-activation and customizable covalent functionalization of PVDF-membranes of microtiter filter plates. Sci Rep 2025; 15:3238. [PMID: 39863620 PMCID: PMC11762284 DOI: 10.1038/s41598-024-85040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Microtiter-plate-based systems are unified platforms of high-throughput experimentation (HTE). These polymeric devices are used worldwide on a daily basis-mainly in the pharmaceutical industry-for parallel syntheses, reaction optimization, various preclinical studies and high-throughput screening methods. Accordingly, laboratory automation today aims to handle these commercially available multiwell plates, making developments focused on their modifications a priority area of modern applied research. We performed the covalent functionalization of the porous PVDF-membrane of microtiter filter plates as the essence of conventional and common sandwich plate systems by introducing a generalizable method. After surface-activation of the indifferent membrane polymer, customizable functionalization becomes feasible by covalently attached monofunctional molecular linkers. The study was designed with future adaptability, and thus, industrially widespread atmospheric plasma and two different chemical treatments were investigated and compared in terms of practical implementation, polarization effects, extent of labeling, effects on morphology and porosity as well as on permeability. For critical comparison, contact angle measurements, surface ATR-FTIR, 1H-NMR, 19F-NMR, UV-Vis spectroscopy, scanning electron microscopy and permeability tests were used.
Collapse
Affiliation(s)
- Bálint Árpád Ádám
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért Tér 4, 1111, Budapest, Hungary
| | - Sára Spátay
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért Tér 4, 1111, Budapest, Hungary
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre U. 9, 1092, Budapest, Hungary
| | - Bálint Jávor
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért Tér 4, 1111, Budapest, Hungary
| | - Szabolcs László
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért Tér 4, 1111, Budapest, Hungary
- HUN-REN, Computation-Driven Chemistry Research Group, Műegyetem Rkp. 3, 1111, Budapest, Hungary
| | - Levente Illés
- Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós U. 29-33, 1121, Budapest, Hungary
| | - Péter Fürjes
- Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós U. 29-33, 1121, Budapest, Hungary
| | - Tünde Tóth
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért Tér 4, 1111, Budapest, Hungary
- HUN-REN Centre for Energy Research, Konkoly-Thege Miklós U. 29-33, 1121, Budapest, Hungary
| | - Péter Huszthy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért Tér 4, 1111, Budapest, Hungary
| | - Ádám Golcs
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre U. 9, 1092, Budapest, Hungary.
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői U. 26, 1085, Budapest, Hungary.
| |
Collapse
|
15
|
Yao H, Zhang Y, Yang G, Fu L, Li Y, Zhou L, Geng S, Xiang Y, Seh ZW. Recycling of Spent Lithium Iron Phosphate Cathodes: Challenges and Progress. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67087-67105. [PMID: 39282747 DOI: 10.1021/acsami.4c09359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The number of spent lithium iron phosphate (LiFePO4, LFP) batteries will increase sharply in the next few years, owing to their large market share and development potential. Therefore, recycling of spent LFP batteries is necessary and urgent from both resource utilization and environmental protection standpoints. In this review, the significance of pretreatment for LFP recycling is first underscored, and its technical challenges and recent advancements are presented. Following that, the current recycling methods for spent LFP cathodes are outlined in terms of the respective treating processes, advantages, and disadvantages. Additionally, the preparation methods of LFP cathode material are reviewed to guide the resynthesis of LFP that uses salts obtained from spent LFP, which are beneficial for closed-loop recycling of LFP batteries. Lastly, we explore the future development direction of spent LFP battery recycling, highlighting the importance of technological innovation to advance the sustainable growth of the LFP battery industry.
Collapse
Affiliation(s)
- Hao Yao
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yuhui Zhang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Gaoliang Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Lin Fu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yuanjian Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Liangjun Zhou
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China
| | - Shuo Geng
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yong Xiang
- University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
16
|
Castillo-Ruiz M, Negrete C, Espinoza JP, Martínez I, Daille LK, González C, Rodríguez B. Antibiofilm Effects of Modifying Polyvinylidene Fluoride Membranes with Polyethylenimine, Poly(acrylic acid) and Graphene Oxide. Polymers (Basel) 2024; 16:3418. [PMID: 39684163 DOI: 10.3390/polym16233418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Biofouling in membrane filtration systems poses significant operational challenges, leading to decreased permeate flux. The aim of this work was to study the anti-biofilm properties of new nanofiltration membranes produced via layer-by-layer, LBL, assembly by coating a polyvinylidene fluoride (PVDF) support with a polyethylenimine (PEI) and poly(acrylic acid)/graphene oxide (PAA-GO) mixture. The membranes were characterized according to contact angle, scanning electron microscopy (SEM), atomic force microscopy and their Z-potential. Biofilm quantification and characterization were carried out using crystal violet staining and SEM, while bacterial viability was assessed by using colony-forming units. The membrane with three bilayers ((PAA-PEI)3/PVDF) showed a roughness of 77.78 nm. The incorporation of GO ((GO/PAA-PEI)3/PVDF) produced a membrane with a smoother surface (roughness of 26.92 nm) and showed salt rejections of 16% and 68% for NaCl and Na2SO4, respectively. A significant reduction, ranging from 82.37 to 77.30%, in biofilm formation produced by S. aureus and E. coli were observed on modified membranes. Additionally, the bacterial viability on the modified membranes was markedly reduced (67.42-99.98%). Our results show that the modified membranes exhibited both antibiofilm and antimicrobial capacities, suggesting that these properties mainly depend on the properties of the modifying agents, as the initial adherence on the membrane surface was not totally suppressed, but the proliferation and formation of EPSs were prevented.
Collapse
Affiliation(s)
- Mario Castillo-Ruiz
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, General Gana 1702, Santiago 8370854, Chile
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Sazié 2320, Santiago 8370134, Chile
| | - Constanza Negrete
- Facultad de Ciencias Naturales, Matemáticas y del Medioambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa 7800003, Chile
| | - Juan Pablo Espinoza
- CIBQA, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, Fábrica 1865, Santiago 8320000, Chile
| | - Iván Martínez
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, General Gana 1702, Santiago 8370854, Chile
| | - Leslie K Daille
- Centro GEMA-Genómica, Ecología & Medio Ambiente, Universidad Mayor, Camino La Pirámide 5750, Santiago 8580745, Chile
| | - Christopher González
- CIRENYS, Escuela de Química y Farmacia, Facultad de Ciencias Médicas, Universidad Bernardo O'Higgins, General Gana 1702, Santiago 8370854, Chile
| | - Bárbara Rodríguez
- CIRENYS, Escuela de Química y Farmacia, Facultad de Ciencias Médicas, Universidad Bernardo O'Higgins, General Gana 1702, Santiago 8370854, Chile
| |
Collapse
|
17
|
Zhang J, Zhao W, Shi C, Zhao L, Chu Y, Ren Y, Wang Q, Chi Y, Zhou S. A Novel PVDF Ultrafiltration Membrane Modified by C 60(OH) n-Ag. Polymers (Basel) 2024; 16:3359. [PMID: 39684103 DOI: 10.3390/polym16233359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Ultrafiltration membranes in the fields of water treatment and biomedicine should have high permeability as well as antibacterial and antifouling capabilities. In this study, based on the hydrophilicity of fullerol (C60(OH)n) and the bacteriostatic properties of silver (Ag), a fullerol-silver (C60(OH)n-Ag) complex was prepared as a multifunctional additive. A polyvinylidene fluoride (PVDF)-composited C60(OH)n-Ag ultrafiltration membrane (C60(OH)n-Ag/PVDF) was prepared by immersion precipitation phase transformation. Addition of the C60(OH)n-Ag complex improved the permeability and retention of the traditional PVDF membrane. Compared with the traditional PVDF membrane, the surface water contact angle of the modified PVDF and C60(OH)n-Ag ultrafiltration membrane was reduced from 75.05° to 34.50°, its pure water flux increased from 224.11 L·m-2·h-1 to 804.05 L·m-2·h-1, the retention rate on bovine serum protein was increased from 75.00% to 96.44% and the flux recovery rate increased from 64.91% to 79.08%. The C60(OH)n-Ag/PVDF ultrafiltration membrane had good inhibitory effects on Escherichia coli and Staphylococcus aureus, while the PVDF ultrafiltration membrane had no obvious inhibitory effects.
Collapse
Affiliation(s)
- Jie Zhang
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Wenjun Zhao
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Chengyang Shi
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Liman Zhao
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Yudi Chu
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Yanan Ren
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Qun Wang
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Yanxia Chi
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Shujing Zhou
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
18
|
Jayasekara AS, Mazzaferro L, O'Hara R, Asatekin A, Cebe P. Hydrophobic fouling-resistant electrospun nanofiber membranes from poly(vinylidene fluoride)/polyampholyte blends. SOFT MATTER 2024; 20:8654-8662. [PMID: 39436385 DOI: 10.1039/d4sm00817k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
This study reports the fabrication of non-woven fibrous membranes from electrospinning blended solutions of PVDF with polyampholytes in N,N-dimethylformamide and methanol. Polyampholytes are macromolecules that have both positive and negative charged units in different side groups attached to the backbone. In this study, we used a random polyampholyte amphiphilic copolymer (r-PAC) synthesized by co-polymerizing a hydrophobic monomer in addition to the positive and negative charged monomer units, to reduce the fouling propensity of PVDF electrospun membranes while preserving its inherent hydrophobicity. Blends of PVDF/r-PAC were electrospun across the full range of compositions from 0/100 to 100/0. Scanning electron microscopic analysis showed formation of beaded fibers with average fibril diameters from 0.09-0.18 μm. The variation in the fiber diameters is caused by the change in surface charge density, dynamic viscosity of the solution, and the instability of the Taylor cone. Bead formation was observed in the mats electrospun from less viscous solutions. Wide angle X-ray scattering showed that electrospun fibers of PVDF crystallized into the electro-active β and γ crystal phases, whereas polyampholytes were amorphous. Thermogravimetry showed that the PVDF/r-PAC blends have a multi-step thermal degradation mechanism while PVDF homopolymer showed single-step thermal degradation. Sessile drop contact angle measurements confirmed that fibers possess high hydrophobicity and super-oleophilicity. Adsorptive fouling experiments with a fluorescently labeled protein confirmed that the fiber mats obtained from the PVDF/r-PAC blends resist protein adsorption, exhibiting highly enhanced fouling resistance compared to the fibers obtained from homopolymer PVDF.
Collapse
Affiliation(s)
- Anuja S Jayasekara
- Department of Physics & Astronomy, Tufts University, Medford, MA 02155, USA.
| | - Luca Mazzaferro
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA 02155, USA
| | - Ryan O'Hara
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA 02155, USA
| | - Ayse Asatekin
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA 02155, USA
| | - Peggy Cebe
- Department of Physics & Astronomy, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
19
|
Hamdy N, El-Geundi M, Fuoad M, Alalm MG. Optimization and reusability of photocatalytic g-C 3N 4/W-TiO 2/PVDF membranes for degradation of sulfamethazine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63977-63992. [PMID: 39522114 DOI: 10.1007/s11356-024-35445-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Pharmaceuticals and personal care products (PPCPs) are prevalent emerging pollutants in the aquatic environment. The photocatalysis process has proven high efficiency in degrading PPCPs; however, the fate and repercussions of photocatalyst residuals are a major concern. To avoid that, we developed a composite from graphitic carbon nitride/tungsten doped with titanium dioxide (g-C3N4/W-TiO2) and loaded it on polyvinylidene fluoride (PVDF) membranes by the phase-inversion method. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and other different analyses implied the successful synthesis of g-C3N4/W-TiO2 composite and coating on PVDF membranes. A Box-Behnken design (BBD) was used to optimize the operational parameters, including pH, g-C3N4 ratio in the composite, and initial SMZ concentration by the response surface methodology (RSM). The highest SMZ degradation percentage was 98.60% after 240 min of irradiation. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) along with suspect screening was used to identify the intermediate transformation products and propose the SMZ degradation pathway. The loss in membrane activity after five cycles of photocatalytic degradation was about 18%. According to the current study, the photocatalytic membrane g-C3N4/W-TiO2/PVDF is promising for removing sulfonamide antibiotics from wastewater.
Collapse
Affiliation(s)
- Nourhan Hamdy
- Department of Chemical Engineering, Faculty of Engineering, Minia University, Al Minya, Egypt
| | - Mohammad El-Geundi
- Department of Chemical Engineering, Faculty of Engineering, Minia University, Al Minya, Egypt
| | - Mohram Fuoad
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Gar Alalm
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
20
|
Lin ZF, Lin HY, Doong RA, Schäfer AI. Heterostructure g-C 3N 4/Bi 2MoO 6 PVDF nanofiber composite membrane for the photodegradation of steroid hormone micropollutants. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134765. [PMID: 38905981 DOI: 10.1016/j.jhazmat.2024.134765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/13/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Photocatalytic membrane reactors (PMRs) are a promising technology for micropollutant removal. Sunlight utilization and catalyst surface sites limit photodegradation. A poly(vinylidene fluoride) (PVDF) nanofiber composite membrane (NCM) with immobilized visible-light-responsive g-C3N4/Bi2MoO6 (BMCN) were developed. Photodegradation of steroid hormones with the PVDF-BMCN NCM was investigated with varying catalyst properties, operating conditions, and relevant solution chemistry under solar irradiation. Increasing CN ratio (0-65 %) enhanced estradiol (E2) degradation from 20 ± 10 to 75 ± 7 % due to improved sunlight utilization and photon lifetime. PVDF nanofibers reduced self-aggregation of catalysts. Hydraulic residence time and light intensity enhanced the photodegradation. With the increasing pH value, the E2 removal decreased from 84 ± 4 to 67 ± 7 % owing to electrical repulsion and thus reduced adsorption between catalysts and E2. A removal of 96 % can be attained at environmentally relevant feed concentration (100 ng.L-1) with a flux of 60 L.m-2.h-1, irradiance of 100 mW.cm-2, and 1 mg.cm-2 BMCN65 loading. This confirmed that heterojunction photocatalysts can enhance micropollutants degradation in PMRs.
Collapse
Affiliation(s)
- Zhi-Fu Lin
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany; Institute of Analytical and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30044, Taiwan, R.O.C.; International Intercollegiate Ph.D. Program, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30044, Taiwan, R.O.C
| | - Han-Ya Lin
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Ruey-An Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30044, Taiwan, R.O.C
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.
| |
Collapse
|
21
|
Boubakri A, Elgharbi S, Bouguecha S, Orfi J, El Oudi M, Bechambi O, Hafiane A. An in-depth analysis of membrane distillation research (1990-2023): Exploring trends and future directions through bibliometric approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121942. [PMID: 39067338 DOI: 10.1016/j.jenvman.2024.121942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
This bibliometric analysis offers a comprehensive investigation into membrane distillation (MD) research from 1990 to 2023. Covering 4389 publications, the analysis sheds light on the evolution, trends, and future directions of the field. It delves into authorship patterns, publication trends, prominent journals, and global contributions to reveal collaborative networks, research hotspots, and emerging themes within MD research. The findings demonstrate extensive global participation, with esteemed journals such as Desalination and the Journal of Membrane Science serving as key platforms for disseminating cutting-edge research. The analysis further identifies crucial themes and concepts driving MD research, ranging from membrane properties to strategies for mitigating membrane fouling. Co-occurrence analysis further highlights the interconnectedness of research themes, showcasing advancements in materials, sustainable heating strategies, contaminant treatment, and resource management. Overlay co-occurrence analysis provides temporal perspective on emerging research trends, delineating six key topics that will likely shape the future of MD. These include innovations in materials and surface engineering, sustainable heating strategies, emerging contaminants treatment, sustainable water management, data-driven approaches, and sustainability assessments. Finally, the study serves as a roadmap for researchers and engineers navigating the dynamic landscape of MD research, offering insights into current trends and future trajectories, ultimately aiming to propel MD technology towards enhanced performance, sustainability, and global relevance.
Collapse
Affiliation(s)
- Ali Boubakri
- Laboratory Water, Membranes and Environmental Biotechnology, Center of Water Research and Technologies (CERTE), PB 273, 8020, Soliman, Tunisia.
| | - Sarra Elgharbi
- Chemistry Department, College of Sciences, University of Ha'il, Hail, Saudi Arabia
| | - Salah Bouguecha
- Department of Mechanical Engineering, Faculty of Engineering, King Abdul-Aziz University, P.B: 80204, Jeddah, 21589, Saudi Arabia
| | - Jamel Orfi
- Mechanical Engineering Department, King Saud University, PO Box 800, Riyadh, 11421, Saudi Arabia; K.A.CARE Energy Research and Innovation Center, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mabrouka El Oudi
- Chemistry Department, College of Sciences, University of Ha'il, Hail, Saudi Arabia
| | - Olfa Bechambi
- Al Ghazalah, University of Hail, Ha'il, Saudi Arabia
| | - Amor Hafiane
- Laboratory Water, Membranes and Environmental Biotechnology, Center of Water Research and Technologies (CERTE), PB 273, 8020, Soliman, Tunisia
| |
Collapse
|
22
|
Feng G, Wang Z, Xu M, Wang C, Li Y. Cyclodextrin-modified PVDF membranes with improved anti-fouling performance. CHEMOSPHERE 2024; 363:142808. [PMID: 38992443 DOI: 10.1016/j.chemosphere.2024.142808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
The design of hydrophilic polyvinylidene fluoride (PVDF) membranes with anti-fouling properties has been explored for decades. Surface modification and blending are typical strategies to tailor the hydrophilicity of PVDF membranes. Herein, cyclodextrin was used to improve the antifouling performance of PVDF membranes. Cyclodextrin-modified PVDF membranes were prepared by coupling PVDF amination (blending with branched polyethyleneimine) and activated cyclodextrin grafting. The blending of PEI in the PVDF casting solution preliminarily aminated the PVDF, resulting in PEI-crosslinked/grafted PVDF membranes after phase inversion. Aldehydes groups on cyclodextrin, introduced by oxidation, endow cyclodextrin to be grafted on the aminated PVDF membrane by the formation of imines. Borch reduction performed on the activated cyclodextrin-grafted PVDF membrane converted the imine bonds to secondary amines, ensuring the membrane stability. The resulting membranes possess excellent antifouling performance, with a lower protein adsorption capacity (5.7 μg/cm2, indicated by Bovine Serum Albumin (BSA)), and a higher water flux recovery rate (FRR = 96%). The proposed method provides a facial strategy to prepare anti-fouling PVDF membranes.
Collapse
Affiliation(s)
- Guoying Feng
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China; School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, China
| | - Zhilu Wang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
| | - Man Xu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
| | - Cunwen Wang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
| | - Yanbo Li
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China.
| |
Collapse
|
23
|
Huang H, Wu H, Xu Y, Xu F. Self-discharge suppression by composite regenerated cellulose ion-selective separator for high-energy aqueous supercapacitors. Int J Biol Macromol 2024; 276:133896. [PMID: 39019363 DOI: 10.1016/j.ijbiomac.2024.133896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/29/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Aqueous supercapacitors exhibit the advantage of high cycling stability, inherent safety and appealing energy density, and thus have long been considered an exceptional technology for efficient energy storage. However, in the absence of an electric field, the spontaneous transmembrane diffusion of ions leads to self-discharge or energy decay of supercapacitors. Herein, we propose a phase transformation strategy to design a porous regenerated cellulose and polyvinylidene difluoride composite separator with ion selectivity by utilizing cellulose dissolution regeneration with PVDF enhancement. Specifically, the anion selective property of PVDF screens the transmembrane diffusion of electrolyte ions, thereby suppressing the self-discharge of supercapacitors. The in-depth characterization indicated that the RC@PVDF separator applied to aqueous supercapacitors demonstrated high performance by maintaining a capacitance of 173 F g-1 after 20,000 cycles. After 24 h of self-discharge, the supercapacitor retained 59 % of its energy. In addition, the cross-linked network of regenerated cellulose provides critical properties for the ion-selective separator, including strong mechanical stability, excellent thermal stability (220 °C) and uniform pore structure (31 nm). This work is anticipated to provide considerable insight into the creative design of self-discharge suppression separators for long-term energy storage supercapacitors.
Collapse
Affiliation(s)
- Haocun Huang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Hongqin Wu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yanglei Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
24
|
Chu H, Liu Z, Wang CC, Wang P. Sustainable production and applications of metal-organic frameworks. Chem Commun (Camb) 2024; 60:8350-8359. [PMID: 39028126 DOI: 10.1039/d4cc02063d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Metal-organic frameworks (MOFs) have become a hot spot in the area of functional materials and have undergone rapid development in a wide range of fields in the 21st century. However, the scalable application of MOFs is still constrained by high production cost at the front end. Additionally, systematic discussion of the reuse of spent MOFs is lacking. Encouragingly, an increasing number of studies have been focusing on the low-cost production and recycling of MOF-based materials, providing feasible solutions for resource recovery and reduction. To stimulate future enthusiasm and interest in realizing the blue economy of MOFs, ranging from front-end production to terminal disposal, we have presented and summarized the state-of-the-art progress in the sustainable synthesis, separation, and reuse of MOFs. Based on the existing challenges, we also propose fit-for-purpose future directions in the MOF field to move toward blue economy.
Collapse
Affiliation(s)
- Hongyu Chu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Zhengxing Liu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
25
|
Qin Q, Yang G, Li J, Sun M, Jia H, Wang J. A review of flow field characteristics in submerged hollow fiber membrane bioreactor: Micro-interface, module and reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121525. [PMID: 38897085 DOI: 10.1016/j.jenvman.2024.121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
As an important part of the membrane field, hollow fiber membranes (HFM) have been widely concerned by scholars. HFM fouling in the industrial application results in a reduction in its lifespan and an increase in cost. In recent years, various explorations on the HFM fouling control strategies have been carried out. In the current work, we critically review the influence of flow field characteristics in HFM-based bioreactor on membrane fouling control. The flow field characteristics mainly refer to the spatial and temporal variation of the related physical parameters. In the HFM field, the physical parameter mainly refers to the variation characteristics of the shear force, flow velocity and turbulence caused by hydraulics. The factors affecting the flow field characteristics will be discussed from three levels: the micro-flow field near the interface of membrane (micro-interface), the flow field around the membrane module and the reactor design related to flow field, which involves surface morphology, crossflow, aeration, fiber packing density, membrane vibration, structural design and other related parameters. The study of flow field characteristics and influencing factors in the HFM separation process will help to improve the performance of HFM in full-scale water treatment plants.
Collapse
Affiliation(s)
- Qingwen Qin
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Guang Yang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Juan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin, 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin, 300387, China
| | - Min Sun
- Centre for Complexity Science, Henan University of Technology, Zhengzhou, 450001, China
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin, 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin, 300387, China.
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin, 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin, 300387, China; Cangzhou Institute of Tiangong University, Cangzhou, 061000, China.
| |
Collapse
|
26
|
Ni L, Wang P, Westerhoff P, Luo J, Wang K, Wang Y. Mechanisms and Strategies of Advanced Oxidation Processes for Membrane Fouling Control in MBRs: Membrane-Foulant Removal versus Mixed-Liquor Improvement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11213-11235. [PMID: 38885125 DOI: 10.1021/acs.est.4c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Membrane bioreactors (MBRs) are well-established and widely utilized technologies with substantial large-scale plants around the world for municipal and industrial wastewater treatment. Despite their widespread adoption, membrane fouling presents a significant impediment to the broader application of MBRs, necessitating ongoing research and development of effective antifouling strategies. As highly promising, efficient, and environmentally friendly chemical methods for water and wastewater treatment, advanced oxidation processes (AOPs) have demonstrated exceptional competence in the degradation of pollutants and inactivation of bacteria in aqueous environments, exhibiting considerable potential in controlling membrane fouling in MBRs through direct membrane foulant removal (MFR) and indirect mixed-liquor improvement (MLI). Recent proliferation of research on AOPs-based antifouling technologies has catalyzed revolutionary advancements in traditional antifouling methods in MBRs, shedding new light on antifouling mechanisms. To keep pace with the rapid evolution of MBRs, there is an urgent need for a comprehensive summary and discussion of the antifouling advances of AOPs in MBRs, particularly with a focus on understanding the realizing pathways of MFR and MLI. In this critical review, we emphasize the superiority and feasibility of implementing AOPs-based antifouling technologies in MBRs. Moreover, we systematically overview antifouling mechanisms and strategies, such as membrane modification and cleaning for MFR, as well as pretreatment and in-situ treatment for MLI, based on specific AOPs including electrochemical oxidation, photocatalysis, Fenton, and ozonation. Furthermore, we provide recommendations for selecting antifouling strategies (MFR or MLI) in MBRs, along with proposed regulatory measures for specific AOPs-based technologies according to the operational conditions and energy consumption of MBRs. Finally, we highlight future research prospects rooted in the existing application challenges of AOPs in MBRs, including low antifouling efficiency, elevated additional costs, production of metal sludge, and potential damage to polymeric membranes. The fundamental insights presented in this review aim to elevate research interest and ignite innovative thinking regarding the design, improvement, and deployment of AOPs-based antifouling approaches in MBRs, thereby advancing the extensive utilization of membrane-separation technology in the field of wastewater treatment.
Collapse
Affiliation(s)
- Lingfeng Ni
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
27
|
Prasanwong C, Harnchana V, Thongkrairat P, Pimanpang S, Jarernboon W, Thongbai P, Pimsawat A, Van Huynh N, Amornkitbamrung V, Treetong A, Klamchuen A. Photoinduced charge generation of nanostructured carbon derived from human hair biowaste for performance enhancement in polyvinylidene fluoride based triboelectric nanogenerator. J Colloid Interface Sci 2024; 665:720-732. [PMID: 38554462 DOI: 10.1016/j.jcis.2024.03.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Carbon nanostructures derived from human hair biowaste are incorporated into polyvinylidene fluoride (PVDF) polymer to enhance the energy conversion performance of a triboelectric nanogenerator (TENG). The PVDF filled with activated carbon nanomaterial from human hair (AC-HH) exhibits improved surface charge density and photoinduced charge generation. These remarkable properties are attributed to the presence of graphene-like nanostructures in AC-HH, contributing to the augmented performance of PVDF@AC-HH TENG. The correlation of surface morphologies, surface charge potential, charge capacitance properties, and TENG electrical output of the PVDF composites at various AC-HH loading is studied and discussed. Applications of the PVDF@AC-HH TENG as a power source for micro/nanoelectronics and a movement sensor for detecting finger gestures are also demonstrated. The photoresponse property of the fabricated TENG is demonstrated and analyzed in-depth. The analysis indicates that the photoinduced charge carriers originate from the conductive reduced graphene oxide (rGO), contributing to the enhanced surface charge density of the PVDF composite film. This research introduces a novel approach to enhancing TENG performance through the utilization of carbon nanostructures derived from human biowaste. The findings of this work are crucial for the development of innovative energy-harvesting technology with multifunctionality, including power generation, motion detection, and photoresponse capabilities.
Collapse
Affiliation(s)
- Chaiwat Prasanwong
- Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Viyada Harnchana
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Phrutsakorn Thongkrairat
- Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Samuk Pimanpang
- Department of Physics, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Wirat Jarernboon
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Prasit Thongbai
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Adulphan Pimsawat
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ngoc Van Huynh
- Faculty of Technology and Business, Phu Xuan University, Hue City, Viet Nam
| | - Vittaya Amornkitbamrung
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Alongkot Treetong
- National Nanotechnology Center (NANOTEC), NSTDA, 111 Thailand Science Park, Paholyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| | - Annop Klamchuen
- National Nanotechnology Center (NANOTEC), NSTDA, 111 Thailand Science Park, Paholyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
28
|
Wang R, Liu H, Wang Z, Zhao J, Lv Z, Qi Y, Yu Y, Sun S. Synergistic Interaction of Ionic Liquid Grafted Poly(vinylidene Fluoride) and Carbon Nanotubes to Construct Water Treatment Membranes with Multiple Separation Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11903-11913. [PMID: 38813993 DOI: 10.1021/acs.langmuir.3c03913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
In this study, the dual strategy of 1-butyl-3-vinylimidazolium bromide ionic liquid (IL) grafting and carbon nanotubes (CNTs) nanocomposition was applied to modify poly(vinylidene fluoride) (PVDF)-based membranes. The highly hydrophilic/oleophobic and fouling-resistant PVDF-g-IL/CNTs membranes with excellent separation efficiency were obtained by the nonsolvent-induced phase separation method with ethanol-water mixed solution as the coagulation bath. The grafted IL not only generated hydrophilic groups on PVDF chains but also acted together with the CNTs to induce the formation of hydrophilic β-crystalline phase of PVDF, which significantly improved the hydrophilicity and pore structure of the modified PVDF membranes. As a result, the pure water flux of the optimal membrane increased up to 294.2 L m-2 h-1, which was 5.2 times greater than that of the pure PVDF membrane. Simultaneously, the electrostatic interaction of the positive IL and the integration of CNTs enhanced adsorption sites of the membranes, producing exceptional retention and adsorption of dye wastewater and oil-water emulsion. This study presents a straightforward and efficient approach for fabricating PVDF separation membranes, which have potential applications in the purification of various polluted wastewater.
Collapse
Affiliation(s)
- Ruijia Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Hongxu Liu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Zicheng Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Jingxuan Zhao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Ziwei Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yuchao Qi
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yang Yu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Shulin Sun
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
29
|
Mocny P, Lin TC, Parekh R, Zhao Y, Czarnota M, Urbańczyk M, Majidi C, Matyjaszewski K. Selective and Controlled Grafting from PVDF-Based Materials by Oxygen-Tolerant Green-Light-Mediated ATRP. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38652837 PMCID: PMC11082848 DOI: 10.1021/acsami.4c03369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Poly(vinylidene fluoride) (PVDF) shows excellent chemical and thermal resistance and displays high dielectric strength and unique piezoelectricity, which are enabling for applications in membranes, electric insulators, sensors, or power generators. However, its low polarity and lack of functional groups limit wider applications. While inert, PVDF has been modified by grafting polymer chains by atom transfer radical polymerization (ATRP), albeit via an unclear mechanism, given the strong C-F bonds. Herein, we applied eosin Y and green-light-mediated ATRP to modify PVDF-based materials. The method gave nearly quantitative (meth)acrylate monomer conversions within 2 h without deoxygenation and without the formation of unattached homopolymers, as confirmed by control experiments and DOSY NMR measurements. The gamma distribution model that accounts for broadly dispersed polymers in DOSY experiments was essential and serves as a powerful tool for the analysis of PVDF. The NMR analysis of poly(methyl acrylate) graft chain-ends on PVDF-CTFE (statistical copolymer with chlorotrifluoroethylene) was carried out successfully for the first time and showed up to 23 grafts per PVDF-CTFE chain. The grafting density was tunable depending on the solvent composition and light intensity during the grafting. The initiation proceeded either from the C-Cl sites of PVDF-CTFE or via unsaturations in the PVDF backbones. The dehydrofluorinated PVDF was 20 times more active than saturated PVDF during the grafting. The method was successfully applied to modify PVDF, PVDF-HFP, and Viton A401C. The obtained PVDF-CTFE-g-PnBMA materials were investigated in more detail. They featured slightly lower crystallinity than PVDF-CTFE (12-18 vs 24.3%) and had greatly improved mechanical performance: Young's moduli of up to 488 MPa, ductility of 316%, and toughness of 46 × 106 J/m3.
Collapse
Affiliation(s)
- Piotr Mocny
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, Pennsylvania 15213, United States
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Ting-Chih Lin
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Rohan Parekh
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Yuqi Zhao
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Marek Czarnota
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Mateusz Urbańczyk
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Carmel Majidi
- Department
of Mechanical Engineering, Carnegie Mellon
University, 5000 Forbes
Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
30
|
Maru K, Kalla S, Jangir R. Efficient Dye Extraction from Wastewater Using Indium-MOF-Immobilized Polyvinylidene Fluoride Membranes with Selective Filtration for Enhanced Remediation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8144-8161. [PMID: 38584360 DOI: 10.1021/acs.langmuir.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Industrial activities have led to releasing harmful substances into the environment, necessitating the elimination of these toxic compounds from wastewater. Organic dyes, commonly found in industrial effluents, pose a threat to ecosystems and human health. Conventional treatment methods often suffer from limitations such as high cost and poor efficiency. Metal-organic frameworks (MOFs) have emerged as promising materials for selective separation, including membrane filtration (MF). Mixed-matrix membranes (MMMs) combining MOFs with polymers offer improved filtration properties. In this study, MMMs were fabricated by incorporating synthesized In-MOF with a polyvinylidene fluoride (PVDF) polymer (In-MOF@PVDF MMMs) using the nonsolvent-induced phase separation process. The MMMs were evaluated for the MF of various organic dyes, achieving notable removal efficiencies. The membrane containing 20% In-MOF (M4) demonstrated exceptional performance, removing 99% of the methylene blue (MB) dye. Additionally, membrane M4 effectively filtered Azure A (AZA), Azure B (AZB), and toluidine blue O (TOLO) with a removal efficiency of 99%. However, for Rhodamine B (RHB) and methyl orange (MO), the removal efficiencies were slightly lower at 74 and 39%, respectively. Further, these membranes are utilized in selective dye filtration in the MB+/RHB+ and MB+/MO- systems, where the selectivity was found for MB. The isothermal and DFT studies revealed the membrane's behavior with dye mixtures, while water stability and regeneration studies confirmed its durability. Thus, these findings highlight the potential of In-MOF@PVDF MMMs for effective and selective dye removal in wastewater treatment applications.
Collapse
Affiliation(s)
- Ketan Maru
- Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat, Gujarat 395 007, India
| | - Sarita Kalla
- Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat, Gujarat 395 007, India
| | - Ritambhara Jangir
- Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat, Gujarat 395 007, India
| |
Collapse
|
31
|
Siddique A, Nawaz H, Razzaque S, Tabasum A, Gong H, Razzaq H, Umar M. PVDF-Based Piezo-Catalytic Membranes-A Net-Zero Emission Approach towards Textile Wastewater Purification. Polymers (Basel) 2024; 16:699. [PMID: 38475382 DOI: 10.3390/polym16050699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Among the various water purification techniques, advancements in membrane technology, with better fabrication and analysis, are receiving the most research attention. The piezo-catalytic degradation of water pollutants is an emerging area of research in water purification technology. This review article focuses on piezoelectric polyvinylidene difluoride (PVDF) polymer-based membranes and their nanocomposites for textile wastewater remediation. At the beginning of this article, the classification of piezoelectric materials is discussed. Among the various membrane-forming polymers, PVDF is a piezoelectric polymer discussed in detail due to its exceptional piezoelectric properties. Polyvinylidene difluoride can show excellent piezoelectric properties in the beta phase. Therefore, various methods of β-phase enhancement within the PVDF polymer and various factors that have a critical impact on its piezo-catalytic activity are briefly explained. This review article also highlights the major aspects of piezoelectric membranes in the context of dye degradation and a net-zero approach. The β-phase of the PVDF piezoelectric material generates an electron-hole pair through external vibrations. The possibility of piezo-catalytic dye degradation via mechanical vibrations and the subsequent capture of the resulting CO2 and H2 gases open up the possibility of achieving the net-zero goal.
Collapse
Affiliation(s)
- Amna Siddique
- Department of Chemistry, University of Wah, Quaid Avenue, Wah 47040, Pakistan
| | - Hifza Nawaz
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Shumaila Razzaque
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka44/52, 01-224 Warsaw, Poland
| | - Anila Tabasum
- Department of Chemistry, University of Wah, Quaid Avenue, Wah 47040, Pakistan
| | - Hugh Gong
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Humaira Razzaq
- Department of Chemistry, University of Wah, Quaid Avenue, Wah 47040, Pakistan
| | - Muhammad Umar
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
32
|
Wang T, Hou Z, Yang H, Hu J. A PEGylated PVDF Antifouling Membrane Prepared by Grafting of Methoxypolyethylene Glycol Acrylate in Gama-Irradiated Homogeneous Solution. MATERIALS (BASEL, SWITZERLAND) 2024; 17:873. [PMID: 38399124 PMCID: PMC10890161 DOI: 10.3390/ma17040873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024]
Abstract
In this study, methoxypolyethylene glycol acrylate (mPEGA) served as a PEGylated monomer and was grafted onto polyvinylidene fluoride (PVDF) through homogeneous solution gamma irradiation. The grafting process was confirmed using several techniques, including infrared spectroscopy (FTIR), thermodynamic stability assessments, and rotational viscosity measurements. The degree of grafting (DG) was determined via the gravimetric method. By varying the monomer concentration, a range of DGs was achieved in the PVDF-g-mPEGA copolymers. Investigations into water contact angles and scanning electron microscopy (SEM) images indicated a direct correlation between increased hydrophilicity, membrane porosity, and higher DG levels in the PVDF-g-mPEGA membrane. Filtration tests demonstrated that enhanced DGs resulted in more permeable PVDF-g-mPEGA membranes, eliminating the need for pore-forming agents. Antifouling tests revealed that membranes with a lower DG maintained a high flux recovery rate, indicating that the innate properties of PVDF could be largely preserved.
Collapse
Affiliation(s)
- Ting Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (T.W.); (J.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengchi Hou
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
| | - Haijun Yang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
| | - Jun Hu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (T.W.); (J.H.)
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
| |
Collapse
|
33
|
Khan MJ, Wibowo A, Karim Z, Posoknistakul P, Matsagar BM, Wu KCW, Sakdaronnarong C. Wastewater Treatment Using Membrane Bioreactor Technologies: Removal of Phenolic Contaminants from Oil and Coal Refineries and Pharmaceutical Industries. Polymers (Basel) 2024; 16:443. [PMID: 38337332 DOI: 10.3390/polym16030443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Huge amounts of noxious chemicals from coal and petrochemical refineries and pharmaceutical industries are released into water bodies. These chemicals are highly toxic and cause adverse effects on both aquatic and terrestrial life. The removal of hazardous contaminants from industrial effluents is expensive and environmentally driven. The majority of the technologies applied nowadays for the removal of phenols and other contaminants are based on physio-chemical processes such as solvent extraction, chemical precipitation, and adsorption. The removal efficiency of toxic chemicals, especially phenols, is low with these technologies when the concentrations are very low. Furthermore, the major drawbacks of these technologies are the high operation costs and inadequate selectivity. To overcome these limitations, researchers are applying biological and membrane technologies together, which are gaining more attention because of their ease of use, high selectivity, and effectiveness. In the present review, the microbial degradation of phenolics in combination with intensified membrane bioreactors (MBRs) has been discussed. Important factors, including the origin and mode of phenols' biodegradation as well as the characteristics of the membrane bioreactors for the optimal removal of phenolic contaminants from industrial effluents are considered. The modifications of MBRs for the removal of phenols from various wastewater sources have also been addressed in this review article. The economic analysis on the cost and benefits of MBR technology compared with conventional wastewater treatments is discussed extensively.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| | - Agung Wibowo
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| | - Zoheb Karim
- MoRe Research Örnsköldsvik AB, SE-89122 Örnsköldsvik, Sweden
| | - Pattaraporn Posoknistakul
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| | - Babasaheb M Matsagar
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan 32003, Taiwan
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
34
|
Almarzooqi N, Shaheen A, Nogueira R, Mustafa I, Arafat HA, Hong S, AlMarzooqi F. Electrothermal interfacial evaporation through carbon-nanostructured composite membranes. CHEMOSPHERE 2024; 349:140913. [PMID: 38072202 DOI: 10.1016/j.chemosphere.2023.140913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
High energy demand required in membrane distillation (MD) process to heat feed water and maintain the necessary temperature gradient across the membrane presents a challenge to widespread adoption of MD. In response to this challenge, surface heating membrane distillation (SHMD) has emerged as a promising solution. SHMD can employ solar or electrical energy to directly heat the membrane and feed, eliminating the need for an external heat source to heat feed water. In this study, we explore electrothermally-driven interfacial evaporation using a multi-walled carbon nanotube (MWCNT)-based composite membrane and further envision its utilization for high-efficient SHMD. Upon application of voltage, the resistance of the MWCNT leads to the conversion of electrical energy into heat, which is then uniformly transferred to feeds. The MWCNT-based composite membrane exhibited an evaporative water flux of up to 2.34 kg m-2h-1 with an associated energy efficiency of 61% and demonstrated outstanding localized surface heating performance. The employed membranes exhibited no significant variations in either resistance or surface temperature, regardless of the direction of the applied electric field. Energy parameters from the electrothermal membranes showed quantitative agreement with values reported for various electrothermal MD systems, suggesting the potential of the composite membranes in energy-efficient and cost-effective localized heating MD applications.
Collapse
Affiliation(s)
- Noora Almarzooqi
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Alaa Shaheen
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Ricardo Nogueira
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Ibrahim Mustafa
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Hassan A Arafat
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Research and Innovation Center for Graphene & 2D Materials (RIC-2D), Khalifa University, Abu Dhabi, 127788, United Arab Emirates.
| | - Seunghyun Hong
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates.
| | - Faisal AlMarzooqi
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates.
| |
Collapse
|
35
|
Liu J, Su L, Zhang X, Shtansky DV, Fang X. Ferroelectric-Optoelectronic Hybrid System for Photodetection. SMALL METHODS 2024; 8:e2300319. [PMID: 37312397 DOI: 10.1002/smtd.202300319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/28/2023] [Indexed: 06/15/2023]
Abstract
Photodetectors (PDs), as functional devices based on photon-to-electron conversion, are an indispensable component for the next-generation Internet of Things system. The research of advanced and efficient PDs that meet the diverse demands is becoming a major task. Ferroelectric materials can develop a unique spontaneous polarization due to the symmetry-breaking of the unit cell, which is switchable under an external electric field. Ferroelectric polarization field has the intrinsic characteristics of non-volatilization and rewritability. Introducing ferroelectrics to effectively manipulate the band bending and carrier transport can be non-destructive and controllable in the ferroelectric-optoelectronic hybrid systems. Hence, ferroelectric integration offers a promising strategy for high-performance photoelectric detection. This paper reviews the fundamentals of optoelectronic and ferroelectric materials, and their interactions in hybrid photodetection systems. The first section introduces the characteristics and applications of typical optoelectronic and ferroelectric materials. Then, the interplay mechanisms, modulation effects, and typical device structures of ferroelectric-optoelectronic hybrid systems are discussed. Finally, in summary and perspective section, the progress of ferroelectrics integrated PDs is summed up and the challenges of ferroelectrics in the field of optoelectronics are considered.
Collapse
Affiliation(s)
- Jie Liu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Institute of Optoelectronics, Fudan University, Shanghai, 200438, P. R. China
| | - Li Su
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Institute of Optoelectronics, Fudan University, Shanghai, 200438, P. R. China
| | - Xinglong Zhang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Institute of Optoelectronics, Fudan University, Shanghai, 200438, P. R. China
| | - Dmitry V Shtansky
- National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Xiaosheng Fang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Institute of Optoelectronics, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
36
|
Ponomar M, Ruleva V, Sarapulova V, Pismenskaya N, Nikonenko V, Maryasevskaya A, Anokhin D, Ivanov D, Sharma J, Kulshrestha V, Améduri B. Structural Characterization and Physicochemical Properties of Functionally Porous Proton-Exchange Membrane Based on PVDF-SPA Graft Copolymers. Int J Mol Sci 2024; 25:598. [PMID: 38203772 PMCID: PMC10779367 DOI: 10.3390/ijms25010598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/08/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Fluorinated proton-exchange membranes (PEMs) based on graft copolymers of dehydrofluorinated polyvinylidene fluoride (D-PVDF), 3-sulfopropyl acrylate (SPA), and 1H, 1H, 2H-perfluoro-1-hexene (PFH) were prepared via free radical copolymerization and characterized for fuel cell application. The membrane morphology and physical properties were studied via small-(SAXS) and wide-angle X-ray scattering (WAXS), SEM, and DSC. It was found that the crystallinity degree is 17% for PEM-RCF (co-polymer with SPA) and 16% for PEM-RCF-2 (copolymer with SPA and PFH). The designed membranes possess crystallite grains of 5-6 nm in diameter. SEM images reveal a structure with open pores on the surface of diameters from 20 to 140 nm. Their transport and electrochemical characterization shows that the lowest membrane area resistance (0.9 Ωcm2) is comparable to perfluorosulfonic acid PEMs (such as Nafion®) and polyvinylidene fluoride (PVDF) based CJMC cation-exchange membranes (ChemJoy Polymer Materials, China). Key transport and physicochemical properties of new and commercial membranes were compared. The PEM-RCF permeability to NaCl diffusion is rather high, which is due to a relatively low concentration of fixed sulfonate groups. Voltammetry confers that the electrochemical behavior of new PEM correlates to that of commercial cation-exchange membranes, while the ionic conductivity reveals an impact of the extended pores, as in track-etched membranes.
Collapse
Affiliation(s)
- Maria Ponomar
- Department of Physical Chemistry, Kuban State University, 350040 Krasnodar, Russia
| | - Valentina Ruleva
- Department of Physical Chemistry, Kuban State University, 350040 Krasnodar, Russia
| | - Veronika Sarapulova
- Department of Physical Chemistry, Kuban State University, 350040 Krasnodar, Russia
| | - Natalia Pismenskaya
- Department of Physical Chemistry, Kuban State University, 350040 Krasnodar, Russia
| | - Victor Nikonenko
- Department of Physical Chemistry, Kuban State University, 350040 Krasnodar, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia (B.A.)
| | - Alina Maryasevskaya
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia (B.A.)
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Denis Anokhin
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia (B.A.)
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry Russian Academy of Sciences, 142432 Chernogolovka, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Dimitri Ivanov
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia (B.A.)
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry Russian Academy of Sciences, 142432 Chernogolovka, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institut de Sciences des Matériaux de Mulhouse-IS2M, CNRS UMR 7361, 68057 Mulhouse, France
| | - Jeet Sharma
- Institute Charles Gerhardt, CNRS, University of Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, 34000 Montpellier, France;
- Membrane Science and Separation Technology Division, Council of Scientific and Industrial Research, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vaibhav Kulshrestha
- Membrane Science and Separation Technology Division, Council of Scientific and Industrial Research, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bruno Améduri
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia (B.A.)
- Institute Charles Gerhardt, CNRS, University of Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, 34000 Montpellier, France;
| |
Collapse
|
37
|
Tuncay G, Türken T, Koyuncu İ. Investigation of different molecular weight Polyvinylidene Fluoride (PVDF) polymer for the fabrication and performance of braid hollow fiber membranes. ENVIRONMENTAL TECHNOLOGY 2024; 45:404-417. [PMID: 35946589 DOI: 10.1080/09593330.2022.2112092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
In the current study, braid reinforced membranes were fabricated from polyvinylidene fluoride (PVDF) polymers with two different molecular weights, and the blending of the polymers in a 1:1 ratio to upgrade the performance of the membrane. Characterization, filtration studies, and membrane bioreactor (MBR) application were done to evaluate membrane performance by applying the same operation conditions on each membrane. Characterization studies indicated that the fabricated membrane from blending polymers was a hydrophilic structure with a contact angle of 50.78° and smoother surface properties compared to the other fabricated membranes. According to the MBR results, at the end of the operation process, TMP levels of the membrane from the blending method are found 150 mbar, membrane from high molecular weight PVDF polymer had 250 mbar, and membrane from low molecular weight PVDF polymer had 800 mbar. As a consequence of the investigation, it is seen that the hydrophilic structure of the membrane allows the pollutant to adsorb less to the blend membrane surface, and the lower roughness is also a factor in reducing fouling.
Collapse
Affiliation(s)
- Gizem Tuncay
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
- Department of Environmental Engineering, Istanbul Technical University Istanbul, Turkey
| | - Türker Türken
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
- Department of Environmental Engineering, Istanbul Technical University Istanbul, Turkey
| | - İsmail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
- Department of Environmental Engineering, Istanbul Technical University Istanbul, Turkey
| |
Collapse
|
38
|
Lin LC, Chen SJ, Yu HY. Connecting Structural Characteristics and Material Properties in Phase-Separating Polymer Solutions: Phase-Field Modeling and Physics-Informed Neural Networks. Polymers (Basel) 2023; 15:4711. [PMID: 38139962 PMCID: PMC10748238 DOI: 10.3390/polym15244711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The formed morphology during phase separation is crucial for determining the properties of the resulting product, e.g., a functional membrane. However, an accurate morphology prediction is challenging due to the inherent complexity of molecular interactions. In this study, the phase separation of a two-dimensional model polymer solution is investigated. The spinodal decomposition during the formation of polymer-rich domains is described by the Cahn-Hilliard equation incorporating the Flory-Huggins free energy description between the polymer and solvent. We circumvent the heavy burden of precise morphology prediction through two aspects. First, we systematically analyze the degree of impact of the parameters (initial polymer volume fraction, polymer mobility, degree of polymerization, surface tension parameter, and Flory-Huggins interaction parameter) in a phase-separating system on morphological evolution characterized by geometrical fingerprints to determine the most influential factor. The sensitivity analysis provides an estimate for the error tolerance of each parameter in determining the transition time, the spinodal decomposition length, and the domain growth rate. Secondly, we devise a set of physics-informed neural networks (PINN) comprising two coupled feedforward neural networks to represent the phase-field equations and inversely discover the value of the embedded parameter for a given morphological evolution. Among the five parameters considered, the polymer-solvent affinity is key in determining the phase transition time and the growth law of the polymer-rich domains. We demonstrate that the unknown parameter can be accurately determined by renormalizing the PINN-predicted parameter by the change of characteristic domain size in time. Our results suggest that certain degrees of error are tolerable and do not significantly affect the morphology properties during the domain growth. Moreover, reliable inverse prediction of the unknown parameter can be pursued by merely two separate snapshots during morphological evolution. The latter largely reduces the computational load in the standard data-driven predictive methods, and the approach may prove beneficial to the inverse design for specific needs.
Collapse
Affiliation(s)
| | | | - Hsiu-Yu Yu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; (L.-C.L.); (S.-J.C.)
| |
Collapse
|
39
|
Soleimani T, Sordes F, Techer I, Junqua G, Hayek M, Salgues M, Souche JC. Comparative environmental and economic life cycle assessment of phytoremediation of dredged sediment using Arundo Donax, integrated with biomass to bioenergy valorization chain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166160. [PMID: 37574070 DOI: 10.1016/j.scitotenv.2023.166160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/16/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
The economic and environmental life cycle assessment (LCA) was integrated into a laboratory-based experiment to evaluate the feasibility and sustainability of phytoremediation of chloride-rich marine dredged sediment, using perennial reed Arundo Donax along with biomass valorization. As a prerequisite for life cycle assessments, a baseline mathematical model was developed to estimate the yields of biomass to bioenergy valorization chain including the estimation of biomass yield per m3 sediment, bioenergy yields from valorization schemes, expected green electricity yield, and the phytoremediation time frame. This mathematical model was applied to develop a parametric life cycle inventory for two scenarios of sediment phytoremediation separately or integrated with biomass valorization, for LCA and further sensitivity and uncertainty analysis. Comparative LCA unveiled that the cost and environmental impacts of annual phytoremediation of 1m3 sediment alone or integrated with biomass valorization are much inferior to the corresponding sediment landfill as the inevitable alternative approach for sediment management. With the chloride bioaccumulation capacity of 9940 mg per kg dry biomass of A. donax, the phytoremediation of sediment with chloride concentration higher than 1650 mg/kg may not be achievable in a realistic time frame. Due to the importance of considering sediment depth and the effectiveness of the plant rooting system in estimating the performance of phytoremediation and the time frame, the volume of sediment (1m3) is a more appropriate functional unit than the surface area (ha) for LCA studies of phytoremediation. In addition, considering the volume of sediment as a functional unit retains comparability to other valorization scenarios such as sediment incorporation in cementitious matrices and management scenarios such as landfill, which are generally expressed on a volume or mass basis. Integrating biomass-derived bioenergy production into phytoremediation could offer local and global benefits in terms of economy and environment mainly due to carbon sequestration and avoiding fossil-based fuels.
Collapse
Affiliation(s)
- Tara Soleimani
- HSM, Univ Montpellier, IMT Mines Ales, CNRS, IRD, Ales, France.
| | - Flo Sordes
- UPR CHROME, Univ. Nîmes, rue du Dr Georges Salan, 30021 Nîmes, France
| | - Isabelle Techer
- UPR CHROME, Univ. Nîmes, rue du Dr Georges Salan, 30021 Nîmes, France
| | | | - Mahmoud Hayek
- LMGC, Univ Montpellier, IMT Mines Ales, CNRS, Ales, France
| | - Marie Salgues
- LMGC, Univ Montpellier, IMT Mines Ales, CNRS, Ales, France
| | | |
Collapse
|
40
|
Arias-Ruiz F, Rangel-Porras G, Falcón-Millán G, Razo-Lazcano T, González-Muñoz P. Effect of basic and basic/acid modifications on the surface of PVDF membranes for the insertion of TiO 2 and its use in environmental applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:126009-126028. [PMID: 38008843 DOI: 10.1007/s11356-023-31052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/10/2023] [Indexed: 11/28/2023]
Abstract
Supporting titanium oxide (TiO2) on polymeric membrane surfaces is a strategy to increase the photocatalytic activity of this material as well as to modify membrane surface with antifouling properties or to develop hybrid processes of water treatment. The chemical characteristics of the polymeric membrane surfaces are a determining factor in the correct impregnation of TiO2 particles. In this work, the titanium oxide was immobilized on polyvinylidene fluoride (PVDF) membrane surface by direct impregnation during the synthesis of the inorganic particles by sol-gel route. The PVDF membranes were previously modified by treatments based on an alkaline attack followed by acid treatment. The final TiO2-modified membranes were characterized by infrared and Raman spectroscopy, as well as by scanning electron microscopy. In addition, the changes on the surface characteristics were determined by contact angle measurements. Finally, the membranes were tested on the photocatalytic degradation of methyl orange (MO). The results obtained indicate that the basic/acid pretreatment allows the generation of active sites in the membrane and that when carrying out the synthesis of TiO2 on the membrane, it can be anchored stably on its surface and through the pores. The microscopies indicate that the structure of the membrane is not compromised by the pretreatment. The amount of TiO2 deposited on the membrane was of 0.1580 ± 0.01773 mg TiO2/cm2 membrane. With this amount of TiO2, a degradation percentage of 98.2% is achieved after 450 min; when the membrane is used for a second cycle, a degradation percentage of 82.0% is obtained, which remains constant for 3 subsequent cycles. This method, which uses the PVDF membrane as a support for TiO2 particles, represents a low-cost and easy-to-prepare insertion procedure, with good degradation percentages, which means that the membrane can be used for subsequent studies in filtration systems in the treatment of effluents from the textile industry.
Collapse
Affiliation(s)
- Fabiola Arias-Ruiz
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de La Venada S/N, Guanajuato, Guanajuato, 36040, México
| | - Gustavo Rangel-Porras
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de La Venada S/N, Guanajuato, Guanajuato, 36040, México
| | - Guadalupe Falcón-Millán
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de La Venada S/N, Guanajuato, Guanajuato, 36040, México
| | - Teresa Razo-Lazcano
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de La Venada S/N, Guanajuato, Guanajuato, 36040, México
| | - Pilar González-Muñoz
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de La Venada S/N, Guanajuato, Guanajuato, 36040, México.
| |
Collapse
|
41
|
Peng L, Shu Y, Jiang L, Liu W, Zhao G, Zhang R. A New Strategy of Chemical Photo Grafting Metal Organic Framework to Construct NH 2-UiO-66/BiOBr/PVDF Photocatalytic Membrane for Synergistic Separation and Self-Cleaning Dyes. Molecules 2023; 28:7667. [PMID: 38005388 PMCID: PMC10675660 DOI: 10.3390/molecules28227667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Photocatalytic membranes are typical multifunctional membranes that have emerged in recent years. The lack of active functional groups on the surface of membranes made of inert materials such as polyvinylidene fluoride(PVDF) makes it difficult to have a stable binding interaction with photocatalysts directly. Therefore, in this study, we developed a simple method to prepare NH2-UiO-66/BiOBr/PVDF(MUB) membranes for efficient dye treatment by grafting benzophenolic acid-functionalized NH2-UiO-66 onto the surface of membranes with photocatalytic properties under visible light irradiation using benzophenolic acid with photoinitiating ability as an anchor. The structural characteristics, photocatalytic properties, antifouling properties, and reusability of the composite membranes were investigated in subsequent experiments using a series of experiments and characterizations. The results showed that the benzophenone acid grafting method was stable and the nanoparticles were not easily dislodged. The MUB composite membrane achieved a higher dye degradation efficiency (99.2%) than the pristine PVDF membrane at 62.9% within a reaction time of 180 min. In addition, the composite membranes exhibited higher permeate fluxes for both pure and mixed dyes and also demonstrated outstanding water flux recovery (>96%) after the light self-cleaning cycle operation. This combination proved to improve the performance of the membranes instead of reducing them, increasing their durability and reusability, and helping to broaden the application areas of membrane filtration technology.
Collapse
Affiliation(s)
- Lin Peng
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
- Key Laboratory of Oilfield Chemicals, China National Petroleum Corporation (CNPC), Beijing 100083, China
| | - Yong Shu
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
- Key Laboratory of Oilfield Chemicals, China National Petroleum Corporation (CNPC), Beijing 100083, China
| | - Luming Jiang
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
- Key Laboratory of Oilfield Chemicals, China National Petroleum Corporation (CNPC), Beijing 100083, China
| | - Weidong Liu
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
- Key Laboratory of Oilfield Chemicals, China National Petroleum Corporation (CNPC), Beijing 100083, China
| | - Guixiang Zhao
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
- Key Laboratory of Oilfield Chemicals, China National Petroleum Corporation (CNPC), Beijing 100083, China
| | - Rui Zhang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
42
|
You X, Shen L, Zhao Y, Zhao DL, Teng J, Lin H, Li R, Xu Y, Zhang M. Quantifying interfacial interactions for improved membrane antifouling: A novel approach using triangulation and surface element integration method. J Colloid Interface Sci 2023; 650:775-783. [PMID: 37441970 DOI: 10.1016/j.jcis.2023.06.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/28/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023]
Abstract
To gain a thorough understanding of interfacial behaviors such as adhesion and flocculation controlling membrane fouling, it is necessary to simulate the actual membrane surface morphology and quantify interfacial interactions. In this work, a new method integrating the rough membrane morphology reconstruction technology (atomic force microscopy (AFM) combining with triangulation technique), the surface element integration (SEI) method, the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, the compound Simpson's approach, and the computer programming was proposed. This new method can exactly mimic the real membrane surface in terms of roughness and shape, breaking the limitation of previous fractal theory and Gaussian method where the simulated membrane surface is only statistically similar to the real rough surface, thus achieving a precise description of the interfacial interactions between sludge foulants and the real membrane surface. This method was then applied to assess the antifouling propensity of a polyvinylidene fluoride (PVDF) membrane modified with Ni-ZnO particles (NZPs). The simulated results showed that the interfacial interactions between sludge foulants in a membrane bioreactor (MBR) and the modified PVDF-NZPs membrane transformed from an attractive force to a repulsive force. The phenomenon confirmed the significant antifouling propensity of the PVDF-NZPs membrane, which is highly consistent with the experimental findings and the interfacial interactions described in previous literature, suggesting the high feasibility and reliability of the proposed method. Meanwhile, the original programming code of the quantification was also developed, which further facilitates the widespread use of this method and enhances the value of this work.
Collapse
Affiliation(s)
- Xiujia You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ying Zhao
- Teachers' Colleges, Beijing Union University, 5 Waiguanxiejie Street, Chaoyang District, Beijing 100011, China.
| | - Die Ling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
43
|
Costa CM, Cardoso VF, Martins P, Correia DM, Gonçalves R, Costa P, Correia V, Ribeiro C, Fernandes MM, Martins PM, Lanceros-Méndez S. Smart and Multifunctional Materials Based on Electroactive Poly(vinylidene fluoride): Recent Advances and Opportunities in Sensors, Actuators, Energy, Environmental, and Biomedical Applications. Chem Rev 2023; 123:11392-11487. [PMID: 37729110 PMCID: PMC10571047 DOI: 10.1021/acs.chemrev.3c00196] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 09/22/2023]
Abstract
From scientific and technological points of view, poly(vinylidene fluoride), PVDF, is one of the most exciting polymers due to its overall physicochemical characteristics. This polymer can crystalize into five crystalline phases and can be processed in the form of films, fibers, membranes, and specific microstructures, being the physical properties controllable over a wide range through appropriate chemical modifications. Moreover, PVDF-based materials are characterized by excellent chemical, mechanical, thermal, and radiation resistance, and for their outstanding electroactive properties, including high dielectric, piezoelectric, pyroelectric, and ferroelectric response, being the best among polymer systems and thus noteworthy for an increasing number of technologies. This review summarizes and critically discusses the latest advances in PVDF and its copolymers, composites, and blends, including their main characteristics and processability, together with their tailorability and implementation in areas including sensors, actuators, energy harvesting and storage devices, environmental membranes, microfluidic, tissue engineering, and antimicrobial applications. The main conclusions, challenges and future trends concerning materials and application areas are also presented.
Collapse
Affiliation(s)
- Carlos M. Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Vanessa F. Cardoso
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Pedro Martins
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | | | - Renato Gonçalves
- Center of
Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Pedro Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
for Polymers and Composites IPC, University
of Minho, 4804-533 Guimarães, Portugal
| | - Vitor Correia
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Clarisse Ribeiro
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
| | - Margarida M. Fernandes
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Pedro M. Martins
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
- Centre
of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- BCMaterials,
Basque Center for Materials, Applications
and Nanostructures, UPV/EHU
Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
44
|
Jia S, Liu F, Xue J, Wang R, Huo H, Zhou J, Li L. Enhancing the Performance of Lithium-Oxygen Batteries with Quasi-Solid Polymer Electrolytes. ACS OMEGA 2023; 8:36710-36719. [PMID: 37841182 PMCID: PMC10568585 DOI: 10.1021/acsomega.3c02917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
The quasi-solid electrolyte membranes (QSEs) are obtained by solidifying the precursor of unsaturated polyester and liquid electrolyte in a glass fiber. By modifying the ratio of tetraethylene glycol dimethyl ether, QSE with balanced ionic conductivity, flexibility, and electrochemical stability window is acquired, which is helpful for inhibiting the decomposition of electrolyte on the cathode surface. The QSE is beneficial to the interfacial reaction of Li+, electrons, and O2 in the quasi-solid lithium-oxygen battery (LOB), can reduce the crossover of oxygen to the anode, and extend the cycle life of LOBs to 317 cycles. Benefitting from the application of QSE, a more stable solid electrolyte interface layer can be constructed on the anode side, which can homogenize Li+ flux and facilitate uniform Li deposition. Lithium-oxygen pouch cell with in situ formed QSE2 works well when the cell is folded or a corner is cut off. Our results indicate that the QSE plays important roles in both the cathode and Li metal anode, which can be further improved with the in situ forming strategy.
Collapse
Affiliation(s)
- SiXin Jia
- Beijing
Key Laboratory of Energy Conversion and Storage Materials, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - FengQuan Liu
- College
of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - JinXin Xue
- Beijing
Key Laboratory of Energy Conversion and Storage Materials, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Rui Wang
- Beijing
Key Laboratory of Energy Conversion and Storage Materials, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hong Huo
- Beijing
Key Laboratory of Energy Conversion and Storage Materials, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - JianJun Zhou
- Beijing
Key Laboratory of Energy Conversion and Storage Materials, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lin Li
- Beijing
Key Laboratory of Energy Conversion and Storage Materials, College
of Chemistry, Beijing Normal University, Beijing 100875, China
- College
of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| |
Collapse
|
45
|
Zhang F, Xin J, Wu X, Liu J, Niu L, Wang D, Li X, Shao C, Li X, Liu Y. Floating metal phthalocyanine@polyacrylonitrile nanofibers for peroxymonosulfate activation: Synergistic photothermal effects and highly efficient flowing wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132228. [PMID: 37557048 DOI: 10.1016/j.jhazmat.2023.132228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
Highly efficient floating photocatalysis has potential applications in organic pollutant treatment but remains limited by low degradation efficiency in practical applications. By introducing the photothermal effect into a peroxymonosulfate (PMS) coupled photocatalysis system, tetracycline hydrochloride (TCH) degradation could be significantly enhanced using floating metal phthalocyanine@polyacrylonitrile (MPc@PAN) nanofiber mats. MPc@PAN nanofibers with different metal centers showed similar photothermal conversion performance but different activation energies for PMS activation, resulting in metal-center-dependent synergistic photothermal effects, i.e., light-enhanced dominated, thermal-enhanced dominated, and conjointly light-thermal dominated mechanisms. The porous structures and floating ability of the FePc@PAN nanofibers provided a fast mass transfer process, with higher solar energy utilization and superior photothermal conversion performance than the FePc nanopowders. Meanwhile, the FePc@PAN nanofibers showed excellent TCH removal stability within 10 cycles (>92%) and extremely low Fe ion leaching (<0.055 mg/L) in a dual-channel flowing wastewater treatment system. This work provides new insight into PMS activation via photothermal effects for environmental remediation.
Collapse
Affiliation(s)
- Fang Zhang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Jiayu Xin
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Xi Wu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Jie Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Luyao Niu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Dan Wang
- College of information technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, People's Republic of China
| | - Xinghua Li
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China.
| | - Changlu Shao
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China.
| | - Xiaowei Li
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| |
Collapse
|
46
|
Siddiqa A, Majid A, Saira F, Farooq S, Qureshi R, Qaisar S. Nanodiamond embedded polyaniline/polyvinylidene fluoride nanocomposites as microfiltration membranes for removal of industrial pollution. RSC Adv 2023; 13:29206-29214. [PMID: 37809025 PMCID: PMC10552077 DOI: 10.1039/d3ra05351b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023] Open
Abstract
Membrane fouling remains a challenge to the membrane technology. Herein, we report the fabrication of composite membranes of polyaniline/polyvinylidene fluoride (PANI/PVDF) blended with nanodiamond (ND) with improved antifouling properties. The designed membranes were characterized by XRD, FTIR and SEM techniques. Characterization analysis revealed that addition of ND has maintained the structural integrity and porosity of composite membranes. The membrane permeation and antifouling performances were tested for hydrophilicity, porosity, pure water flux, shrinkage ratio, salt rejection of zinc acetate and copper acetate, and their fouling recovery ratio (FRR) measurements. A high solvent content ratio of 0.55 and a low shrinkage ratio of <12% due to enhanced hydrophilicity and porosity of the composite membrane with fouling-recovery of membranes to 88% were achieved. Separation of copper and zinc ions from aqueous solution was achieved. These findings imply that ND-based PANI/PVDF composite membranes can effectively serve as microfiltration membranes in industrial and municipal wastewater treatment.
Collapse
Affiliation(s)
- Asima Siddiqa
- Nanoscience and Technology Division, National Centre for Physics Islamabad Pakistan
| | - Abdul Majid
- Department of Chemistry, Quaid-i-Azam University Islamabad Pakistan
| | - Farhat Saira
- Nanoscience and Technology Division, National Centre for Physics Islamabad Pakistan
| | - Saima Farooq
- Department of Biological Sciences &Chemistry, College of Arts and Science, University of Nizwa Nizwa-616 Oman
| | - Rumana Qureshi
- Department of Chemistry, Quaid-i-Azam University Islamabad Pakistan
| | - Sara Qaisar
- Nanoscience and Technology Division, National Centre for Physics Islamabad Pakistan
| |
Collapse
|
47
|
Wang J, Wang H, Shen L, Li R, Lin H. A sustainable solution for organic pollutant degradation: Novel polyethersulfone/carbon cloth/FeOCl composite membranes with electric field-assisted persulfate activation. WATER RESEARCH 2023; 244:120530. [PMID: 37657317 DOI: 10.1016/j.watres.2023.120530] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Sulfate radical-based advanced oxidation processes (SR-AOP) and ultrafiltration (UF) membranes have demonstrated effectiveness in treating wastewater. This investigation illuminated a pioneering two-stage procedure for fabricating polyethersulfone/carbon cloth/FeOCl (PES/CC/FeOCl) composite catalytic membranes, exhibiting proficiency in persulfate activation. Evidenced by their distinctively high degradation rates and superior stability, these innovative composite membranes efficaciously obviate tetracycline (TC), showcasing a striking TC degradation rate, with an unparalleled removal ratio peaking at 93% under applied electrical fields. The process underlying persulfate activation and TC degradation was meticulously explored through electron paramagnetic resonance (EPR) and quenching trials. These evaluations unveil that hydroxyl radicals (•OH) and sulfate radicals (SO4•-) primarily drive the eradication of diminutive organic molecules. Subsequent studies emphasized the noteworthy rejection ratio of the PES/CC/FeOCl composite membranes (90%) for sodium alginate (SA), further revealing their exceptional on-line cleansing efficiency in an electrofiltration-associated in-situ oxidation system. In essence, this study proposed a novel approach for the synthesis of composite membranes adept at the catalytic degradation of organic pollutants. This paradigm-shifting research imparted a unique lens to perceive the integration of membrane separation technology, enriching the domain of advanced wastewater treatment strategies.
Collapse
Affiliation(s)
- Jing Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Hao Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| |
Collapse
|
48
|
Wang B, Huang P, Li B, Wu Z, Xing Y, Zhu J, Liu L. Carbon-Based Nanomaterials Electrodes of Ionic Soft Actuators: From Initial 1D Structure to 3D Composite Structure for Flexible Intelligent Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304246. [PMID: 37635123 DOI: 10.1002/smll.202304246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/11/2023] [Indexed: 08/29/2023]
Abstract
With the rapid development of autonomous and intelligent devices driven by soft actuators, ion soft actuators in flexible intelligent devices have several advantages over other actuators, including their light weight, low voltage drive, large strain, good flexibility, fast response, etc. Traditional ionic polymer metal composites have received a lot of attention over the past decades, but they suffer from poor driving performance and short service lives since the precious metal electrodes are not only expensive, heavy, and labor-intensive, but also prone to cracking with repeated actuation. As excellent candidates for the electrode materials of ionic soft actuators, carbon-based nanomaterials have received a lot of interest because of their plentiful reserves, low cost, and excellent mechanical, electrical, and electrochemical properties. This research reviewed carbon-based nanomaterial electrodes of ion soft actuators for flexible smart devices from a fresh perspective from 1D to 3D combinations. The design of the electrode structure is introduced after the driving mechanism of ionic soft actuators. The details of ionic soft actuator electrodes made of carbon-based nanomaterials are then provided. Additionally, a summary of applications for flexible intelligent devices is provided. Finally, suggestions for challenges and prospects are made to offer direction and inspiration for further development.
Collapse
Affiliation(s)
- Bozheng Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Peng Huang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Bingjue Li
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Ze Wu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Youqiang Xing
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Jianxiong Zhu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Lei Liu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
49
|
Guan T, Chen S. Multiscale Simulations on Synaptic Signal Transduction of Energy-Harvesting P(VDF-TrFE)-Based Artificial Retina. J Phys Chem B 2023. [PMID: 37421374 DOI: 10.1021/acs.jpcb.3c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Ferroelectric polymers have drawn a lot of research concerns recently due to their lightness, mechanical flexibility, conformability, and facile processability. Remarkably, these polymers can be used to fabricate biomimetic devices, such as artificial retina or electronic skin, to realize artificial intelligence. The artificial visual system behaves as a photoreceptor, converting incoming light into electric signals. The most widely studied ferroelectric polymer, poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)], can be used as the building block in this visual system to implement synaptic signal generation. There is a void in computational investigations on the complicated working picture of P(VDF-TrFE)-based artificial retina from a microscopic mechanism to a macroscopic mechanism. Therefore, a multiscale simulation method combining quantum chemistry calculations, first-principles calculations, Monte Carlo simulations, and the Benav model was established to illustrate the whole working principle, involving synaptic signal transduction and consequent communication with neuron cells, of the P(VDF-TrFE)-based artificial retina. This newly developed multiscale method not only can be further applied to other energy-harvesting systems involving synaptic signals but also would be helpful to build microscopic/macroscopic pictures within these energy-harvesting devices.
Collapse
Affiliation(s)
- Tong Guan
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Shuang Chen
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
50
|
Rensmo A, Savvidou EK, Cousins IT, Hu X, Schellenberger S, Benskin JP. Lithium-ion battery recycling: a source of per- and polyfluoroalkyl substances (PFAS) to the environment? ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1015-1030. [PMID: 37195252 DOI: 10.1039/d2em00511e] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recycling of lithium-ion batteries (LIBs) is a rapidly growing industry, which is vital to address the increasing demand for metals, and to achieve a sustainable circular economy. Relatively little information is known about the environmental risks posed by LIB recycling, in particular with regards to the emission of persistent (in)organic fluorinated chemicals. Here we present an overview on the use of fluorinated substances - in particular per- and polyfluoroalkyl substances (PFAS) - in state-of-the-art LIBs, along with recycling conditions which may lead to their formation and/or release to the environment. Both organic and inorganic fluorinated substances are widely reported in LIB components, including the electrodes and binder, electrolyte (and additives), and separator. Among the most common substances are LiPF6 (an electrolyte salt), and the polymeric PFAS polyvinylidene fluoride (used as an electrode binder and a separator). Currently the most common LIB recycling process involves pyrometallurgy, which operates at high temperatures (up to 1600 °C), sufficient for PFAS mineralization. However, hydrometallurgy, an increasingly popular alternative recycling approach, operates under milder temperatures (<600 °C), which could favor incomplete degradation and/or formation and release of persistent fluorinated substances. This is supported by the wide range of fluorinated substances detected in bench-scale LIB recycling experiments. Overall, this review highlights the need to further investigate emissions of fluorinated substances during LIB recycling and suggests that substitution of PFAS-based materials (i.e. during manufacturing), or alternatively post-treatments and/or changes in process conditions may be required to avoid formation and emission of persistent fluorinated substances.
Collapse
Affiliation(s)
- Amanda Rensmo
- RISE Research Institutes of Sweden, Environment and Sustainable Chemistry Unit, Stockholm, Sweden.
- Stockholm University, Department of Environmental Science, Stockholm, Sweden
| | - Eleni K Savvidou
- Stockholm University, Department of Environmental Science, Stockholm, Sweden
| | - Ian T Cousins
- Stockholm University, Department of Environmental Science, Stockholm, Sweden
| | - Xianfeng Hu
- SWERIM AB, Aronstorpsvägen 1, SE-974 37 Luleå, Sweden
| | - Steffen Schellenberger
- RISE Research Institutes of Sweden, Environment and Sustainable Chemistry Unit, Stockholm, Sweden.
| | - Jonathan P Benskin
- Stockholm University, Department of Environmental Science, Stockholm, Sweden
| |
Collapse
|