1
|
Park JE, Kang TG, Moon H. The Effect of the Rotating Disk Geometry on the Flow and Flux Enhancement in a Dynamic Filtration System. MEMBRANES 2023; 13:291. [PMID: 36984677 PMCID: PMC10056996 DOI: 10.3390/membranes13030291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
A numerical study was conducted to investigate the effect of rotating patterned disks on the flow and permeate flux in a dynamic filtration (DF) system. The DF system consists of a rotating patterned disk and a stationary housing with a circular flat membrane. The feed flow is driven by the rotating disk with the angular velocity ranging from 200 to 1000 rpm and the applied pressure difference between inlet and outlet ports. Wheel-shaped patterns are engraved on the disk surfaces to add perturbation to the flow field and improve the permeate flux in the filtration system. Five disks with varying numbers of patterns were used in numerical simulations to examine the effects of the number of patterns and the angular velocity of the disk on the flow and permeate flux in the DF system. The flow characteristics are studied using the velocity profiles, the cross-sectional velocity vectors, the vortex structures, and the shear stress distribution. The wheel-shaped patterns shift the central core layer in the circumferential velocity profile towards the membrane, leading to higher shear stresses at the membrane and higher flux compared to a plain disk. When the number of patterns on the disk exceeded eight at a fixed Reynolds number, there were significant increases in wall shear stress and permeate flux compared to a plain disk filtration system with no pattern.
Collapse
Affiliation(s)
- Jo Eun Park
- School of Aerospace and Mechanical Engineering, Korea Aerospace University, 76 Hanggongdaehak-ro, Deogyang-gu, Goyang-si 10540, Gyeonggi-do, Republic of Korea
| | - Tae Gon Kang
- School of Aerospace and Mechanical Engineering, Korea Aerospace University, 76 Hanggongdaehak-ro, Deogyang-gu, Goyang-si 10540, Gyeonggi-do, Republic of Korea
- Department of Smart Air Mobility, Korea Aerospace University, 76 Hanggongdaehak-ro, Deogyang-gu, Goyang-si 10540, Gyeongi-do, Republic of Korea
| | - Heejang Moon
- School of Aerospace and Mechanical Engineering, Korea Aerospace University, 76 Hanggongdaehak-ro, Deogyang-gu, Goyang-si 10540, Gyeonggi-do, Republic of Korea
- Department of Smart Air Mobility, Korea Aerospace University, 76 Hanggongdaehak-ro, Deogyang-gu, Goyang-si 10540, Gyeongi-do, Republic of Korea
| |
Collapse
|
2
|
Castro-Muñoz R, García-Depraect O. Membrane-Based Harvesting Processes for Microalgae and Their Valuable-Related Molecules: A Review. MEMBRANES 2021; 11:membranes11080585. [PMID: 34436347 PMCID: PMC8400455 DOI: 10.3390/membranes11080585] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/21/2022]
Abstract
The interest in microalgae production deals with its role as the third generation of feedstock to recover renewable energy. Today, there is a need to analyze the ultimate research and advances in recovering the microalgae biomass from the culture medium. Therefore, this review brings the current research developments (over the last three years) in the field of harvesting microalgae using membrane-based technologies (including microfiltration, ultrafiltration and forward osmosis). Initially, the principles of membrane technologies are given to outline the main parameters influencing their operation. The main strategies adopted by the research community for the harvesting of microalgae using membranes are subsequently addressed, paying particular attention to the novel achievements made for improving filtration performance and alleviating fouling. Moreover, this contribution also gives an overview of the advantages of applying membrane technologies for the efficient extraction of the high added-value compounds in microalgae cells, such as lipids, proteins and carbohydrates, which together with the production of renewable biofuels could boost the development of more sustainable and cost-effective microalgae biorefineries.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
- Correspondence: (R.C.-M.); (O.G.-D.)
| | - Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
- Correspondence: (R.C.-M.); (O.G.-D.)
| |
Collapse
|
3
|
Tasaki K. Chemical-free recovery of crude protein from livestock manure digestate solid by thermal hydrolysis. BIORESOUR BIOPROCESS 2021; 8:60. [PMID: 38650285 PMCID: PMC10991932 DOI: 10.1186/s40643-021-00406-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/13/2021] [Indexed: 11/10/2022] Open
Abstract
Protein is becoming an increasingly important resource for a variety of commercial applications. Yet, a large volume of protein is being wasted. Notably, livestock manure solids have a significant content of protein which is not only underutilized, but prone to runoff and eventual breakdown to reactive nitrogen compounds, contributing to eutrophication. It would be desirable to remove protein before it causes environmental hazards and then convert it to value-added commercial applications. We have developed a novel thermal hydrolysis process (THP) to extract crude protein from livestock manure solid, or manure digestate solid (MDS) in particular, without the use of any chemical. We demonstrate the versatility of our new process to control the molecular weight (MW) distribution of the extracted protein hydrolysate (PH). The antioxidant activity of the crude protein hydrolysate (CPH) has been examined through Oxygen Radical Absorbance Capacity Assay. The results have shown that our CPH had its antioxidant capacity against the peroxyl radical similar to that of vitamin E and exhibited almost 7 times as strong inhibition against the hydroxyl radical as vitamin E. We also evaluated the nutritional value of our PH by analyzing its amino acid composition and the MW distribution through amino acid analysis, SDS-PAGE, and MALDI-TOF mass spectroscopy. The characterizations have revealed that the PH recovered from MDS had 2.5 times as much essential amino acids as soybean meal on dry matter basis, with the MW distribution ranging from over a 100 Da to 100 KDa. Finally, the protein powder was prepared from the extracted CPH solution and its composition was analyzed.
Collapse
Affiliation(s)
- Ken Tasaki
- Tomorrow Water, 1225 N. Patt, Anaheim, CA, 92801, USA.
| |
Collapse
|
4
|
Cheng M, Xie X, Schmitz P, Fillaudeau L. Extensive review about industrial and laboratory dynamic filtration modules: Scientific production, configurations and performances. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Mallamaci R, Budriesi R, Clodoveo ML, Biotti G, Micucci M, Ragusa A, Curci F, Muraglia M, Corbo F, Franchini C. Olive Tree in Circular Economy as a Source of Secondary Metabolites Active for Human and Animal Health Beyond Oxidative Stress and Inflammation. Molecules 2021; 26:molecules26041072. [PMID: 33670606 PMCID: PMC7922482 DOI: 10.3390/molecules26041072] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022] Open
Abstract
Extra-virgin olive oil (EVOO) contains many bioactive compounds with multiple biological activities that make it one of the most important functional foods. Both the constituents of the lipid fraction and that of the unsaponifiable fraction show a clear action in reducing oxidative stress by acting on various body components, at concentrations established by the European Food Safety Authority's claims. In addition to the main product obtained by the mechanical pressing of the fruit, i.e., the EVOO, the residual by-products of the process also contain significant amounts of antioxidant molecules, thus potentially making the Olea europea L. an excellent example of the circular economy. In fact, the olive mill wastewaters, the leaves, the pomace, and the pits discharged from the EVOO production process are partially recycled in the nutraceutical and cosmeceutical fields also because of their antioxidant effect. This work presents an overview of the biological activities of these by-products, as shown by in vitro and in vivo assays, and also from clinical trials, as well as their main formulations currently available on the market.
Collapse
Affiliation(s)
- Rosanna Mallamaci
- Department of Bioscience, Biotechnology and Biopharmaceutics, University Aldo Moro Bari, 70125 Bari, Italy;
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology, Food Chemistry & Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; (R.B.); (G.B.); (M.M.)
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, University Aldo Moro Bari, 702125 Bari, Italy;
| | - Giulia Biotti
- Department of Pharmacy and Biotechnology, Food Chemistry & Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; (R.B.); (G.B.); (M.M.)
| | - Matteo Micucci
- Department of Pharmacy and Biotechnology, Food Chemistry & Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; (R.B.); (G.B.); (M.M.)
| | - Andrea Ragusa
- Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, 73100 Lecce, Italy;
| | - Francesca Curci
- Department of Pharmacy-Drug Sciences, University Aldo Moro Bari, 70125 Bari, Italy; (F.C.); (M.M.); (C.F.)
| | - Marilena Muraglia
- Department of Pharmacy-Drug Sciences, University Aldo Moro Bari, 70125 Bari, Italy; (F.C.); (M.M.); (C.F.)
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University Aldo Moro Bari, 70125 Bari, Italy; (F.C.); (M.M.); (C.F.)
- Correspondence: ; Tel.: +39-0805442746
| | - Carlo Franchini
- Department of Pharmacy-Drug Sciences, University Aldo Moro Bari, 70125 Bari, Italy; (F.C.); (M.M.); (C.F.)
| |
Collapse
|
6
|
|
7
|
Cho H, Mushtaq A, Hwang T, Kim HS, Han JI. Orifice-based membrane fouling inhibition employing in-situ turbulence for efficient microalgae harvesting. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Tasaki K. A novel thermal hydrolysis process for extraction of keratin from hog hair for commercial applications. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 104:33-41. [PMID: 31958663 DOI: 10.1016/j.wasman.2019.12.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/26/2019] [Accepted: 12/29/2019] [Indexed: 05/12/2023]
Abstract
We have developed a novel thermal hydrolysis process (THP) to extract and hydrolyze keratin from keratinous animal body wastes without using any chemicals. Our process consists of two heating steps: one is to swell and denature the keratin protein network in the intermediate filaments, while the other is to cleavage the disulfide bonds that connect the tight keratinous fibrils together. Using hog hair as an example, the two-step process achieved a nearly 70% keratin recovery yield, with respect to the original keratin in the hog hair, which is comparable to one of the best recovery yields by conventional chemical processes. The extracted keratin hydrolysate by THP was filtered by the shear wave-induced membrane ultrafiltation for characterization. The molecular weight (MW) analysis using SDS-PAGE and MALDI-TOF mass spectroscopy has demonstrated that our keratin hydrolysis obtained by our two-step THP has a wide range of MW distribution, similar to those already in the hair-care product market. The amino acid composition analysis has shown that our keratin hydrolysate by THP had twice as much essential amino acids as soybean meals on a dry mattter basis. As to the cysteine residue content, we have shown that it can be controlled by adjusting the 2nd heating temperature.
Collapse
Affiliation(s)
- Ken Tasaki
- Tomorrow Water, 1225 N Patt St., Anaheim, CA 92801, United States.
| |
Collapse
|
9
|
Kim K, Hur JW, Kim S, Jung JY, Han HS. Biological wastewater treatment: Comparison of heterotrophs (BFT) with autotrophs (ABFT) in aquaculture systems. BIORESOURCE TECHNOLOGY 2020; 296:122293. [PMID: 31677407 DOI: 10.1016/j.biortech.2019.122293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
The present study was conducted to compare wastewater purification capacities between heterotrophs (BFT) and autotrophs (ABFT) and to evaluate the effects on the growth of fish (Nile tilapia, Oreochromis niloticus) in aquaculture systems. The wastewater treatment capacity of heterotrophs is far superior to that of autotrophs, but the BFT system requires more energy for aquaculture than does the ABFT system. Regardless, both systems effected positive influences on fish growth performance, showing excellent water-purification capacities compared with the control group (CON). No significant differences were found between CON and ABFT or between ABFT and BFT, but there were significant differences between CON and BFT. Both systems BFT and ABFT were revealed to be cost effective in relation to CON, having reduced water replacement by 82%. Therefore, the BFT and ABFT systems could be economical aquaculture systems if due advantage is taken of what both have to offer.
Collapse
Affiliation(s)
- Kyochan Kim
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Faculty of Marine Applied Biosciences, Kunsan National University, 558 Daehak-ro, Gunsan, Jeonbuk 54150, Republic of Korea
| | - Jun Wook Hur
- Faculty of Marine Applied Biosciences, Kunsan National University, 558 Daehak-ro, Gunsan, Jeonbuk 54150, Republic of Korea
| | - Soohwan Kim
- Faculty of Marine Applied Biosciences, Kunsan National University, 558 Daehak-ro, Gunsan, Jeonbuk 54150, Republic of Korea
| | - Joo-Young Jung
- Faculty of Marine Applied Biosciences, Kunsan National University, 558 Daehak-ro, Gunsan, Jeonbuk 54150, Republic of Korea; Alphaqua Co., Ltd., 730 Nakdong-daero, Busan 47042, Republic of Korea.
| | - Hyon-Sob Han
- Faculty of Marine Applied Biosciences, Kunsan National University, 558 Daehak-ro, Gunsan, Jeonbuk 54150, Republic of Korea
| |
Collapse
|
10
|
Zhang M, Yao L, Maleki E, Liao BQ, Lin H. Membrane technologies for microalgal cultivation and dewatering: Recent progress and challenges. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101686] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Tang SY, Qiu YR. Selective separation of copper and zinc and regeneration of polymer from electroplating effluent using shear induced dissociation coupling with ultrafiltration. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0310-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Harvesting of Scenedesmus acuminatus using ultrafiltration membranes operated in alternative feed directions. J Biosci Bioeng 2019; 128:103-109. [DOI: 10.1016/j.jbiosc.2019.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/30/2018] [Accepted: 01/13/2019] [Indexed: 11/21/2022]
|
13
|
Kim D, Kwak M, Kim K, Chang YK. Turbulent jet-assisted microfiltration for energy efficient harvesting of microalgae. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Zhang Y, Li X, Xu R, Ma C, Wang X, Fu Q. Algal fouling control in a hollow fiber module during ultrafiltration by angular vibrations. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Structural design of a rotating disk dynamic microfilter in improving filtration performance for fine particle removal. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.04.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Kang S, Heo S, Lee JH. Techno-economic Analysis of Microalgae-Based Lipid Production: Considering Influences of Microalgal Species. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03999] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seongwhan Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seongmin Heo
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jay H. Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
17
|
Zhang Y, Fu Q. Algal fouling of microfiltration and ultrafiltration membranes and control strategies: A review. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.04.040] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Xie X, Le Men C, Dietrich N, Schmitz P, Fillaudeau L. Local hydrodynamic investigation by PIV and CFD within a Dynamic filtration unit under laminar flow. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Hwang KJ, Wu SE, Hsueh YL. Analysis on the nonuniformity of cake formation in rotating-disk dynamic microfiltration. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2016.12.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Ye J, Zhou Q, Zhang X, Hu Q. Microalgal dewatering using a polyamide thin film composite forward osmosis membrane and fouling mitigation. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Xie X, Dietrich N, Fillaudeau L, Le Men C, Schmitz P, Liné A. Local hydrodynamics investigation within a dynamic filtration unit under laminar flow. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Evaluation of an electro-flotation-oxidation process for harvesting bio-flocculated algal biomass and simultaneous treatment of residual pollutants in coke wastewater following an algal-bacterial process. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Jung JY, Kim K, Choi SA, Shin H, Kim D, Bai SC, Chang YK, Han JI. Dynamic filtration with a perforated disk for dewatering of Tetraselmis suecica. ENVIRONMENTAL TECHNOLOGY 2017; 38:3102-3108. [PMID: 28142501 DOI: 10.1080/09593330.2017.1290145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dynamic filtration equipped with a perforated disk was adopted for the first time to dewater and concentrate Tetraselmis suecica, from a typical solution of 2-100 g/L of dense biomass suited for the downstream process. An ultrafiltration membrane, polyethersulfone 150 kDa, was found to best perform in terms of high biomass retention and filtration rate. At 1600 rpm, the highest rotation speed of the disk we tested, plateau permeate flux increased up to 20.2 times higher than those with no rotation; this improvement was attributed to fouling reduction (up to 98%) via distinctively high-shear stress on the membrane surface. Even at a high biomass concentration (100 g/L) where fouling formation was very serious, the heightened shear stress caused high flux to be maintained and fouling resistance to be reduced in an effective way. When trans-membrane pressure was increased in a stepwise manner, flux continuously rose at high rotation speed; at low speed, on the other hand, the limiting flux was observed. The dynamic filtration with the perforated disk, which was an effective high-shear stress generator, was proven to be a promising dewatering means of T. suecica, and especially so for the production of highly concentrated biomass.
Collapse
Affiliation(s)
- Joo-Young Jung
- a Advanced Biomass R&D Center , KAIST , Daejeon , Republic of Korea
- b Department of Marine Bio-materials and Aquaculture/Feeds & Foods Nutrition Research Center , Pukyong National University , Busan , Republic of Korea
| | - Kyochan Kim
- c Department of Chemical and Biomolecular Engineering , KAIST , Daejeon , Republic of Korea
| | - Sun-A Choi
- d Biomass and Waste Energy Laboratory , Korea Institute of Energy Research , Daejeon , Republic of Korea
- e Department of Chemical and Biological Engineering , Korea University , Seoul , Republic of Korea
| | - Heewon Shin
- c Department of Chemical and Biomolecular Engineering , KAIST , Daejeon , Republic of Korea
| | - Donghyun Kim
- c Department of Chemical and Biomolecular Engineering , KAIST , Daejeon , Republic of Korea
| | - Sungchul C Bai
- b Department of Marine Bio-materials and Aquaculture/Feeds & Foods Nutrition Research Center , Pukyong National University , Busan , Republic of Korea
| | - Yong Keun Chang
- a Advanced Biomass R&D Center , KAIST , Daejeon , Republic of Korea
- c Department of Chemical and Biomolecular Engineering , KAIST , Daejeon , Republic of Korea
| | - Jong-In Han
- f Department of Civil and Environmental Engineering , KAIST, Daejeon , Republic of Korea
| |
Collapse
|
24
|
Khemakhem I, Gargouri OD, Dhouib A, Ayadi MA, Bouaziz M. Oleuropein rich extract from olive leaves by combining microfiltration, ultrafiltration and nanofiltration. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Kim K, Jung JY, Shin H, Choi SA, Kim D, Bai SC, Chang YK, Han JI. Harvesting of Scenedesmus obliquus using dynamic filtration with a perforated disk. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Du X, Qu F, Liang H, Li K, Chang H, Li G. Cake properties in ultrafiltration of TiO2 fine particles combined with HA: in situ measurement of cake thickness by fluid dynamic gauging and CFD calculation of imposed shear stress for cake controlling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8806-8818. [PMID: 26810663 DOI: 10.1007/s11356-015-5984-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
In this study, the cake buildup of TiO2 fine particles in the presence of humid acid (HA) and cake layer controlling during ultrafiltration (UF) were investigated. Specifically, we measured the cake thickness using fluid dynamic gauging (FDG) method under various solution conditions, including TiO2 concentration (0.1-0.5 g/L), HA concentration (0-5 mg/L, total organic carbon (TOC)), and pH values (e.g., 4, 6 and 10), and calculated the shear stress distribution induced by stirring using computational fluid dynamics (CFD) to analyze the cake layer controlling conditions, including the operation flux (50-200 L m(-2) h(-1)) and TiO2 concentration (0.1-0.5 g/L). It was found that lower TiO2/HA concentration ratio could lead to exceedingly severe membrane fouling because of the formation of a relatively denser cake layer by filling the voids of cake layer with HA, and pH was essential for cake layer formation owing to the net repulsion between particles. Additionally, it was observed that shear stress was rewarding for mitigating cake growth under lower operation flux as a result of sufficient back-transport forces, and exhibited an excellent performance on cake layer controlling in lower TiO2 concentrations due to slight interaction forces on the vicinity of membrane.
Collapse
Affiliation(s)
- Xing Du
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| | - Fangshu Qu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China.
| | - Kai Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an, 710055, People's Republic of China
| | - Haiqing Chang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| |
Collapse
|
27
|
Kim K, Shin H, Moon M, Ryu BG, Han JI, Yang JW, Chang YK. Evaluation of various harvesting methods for high-density microalgae, Aurantiochytrium sp. KRS101. BIORESOURCE TECHNOLOGY 2015; 198:828-835. [PMID: 26457831 DOI: 10.1016/j.biortech.2015.09.103] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
Five technologies, coagulation, electro-flotation (EF), electro-coagulation-flotation (ECF), centrifugation, and membrane filtration, were systematically assessed for their adequacy of harvesting Aurantiochytrium sp. KRS101, a heterotrophic microalgal species that has much higher biomass concentration than photoautotrophic species. Coagulation, EF, and ECF were found to have limited efficiency. Centrifugation was overly powerful to susceptible cells like Aurantiochytrium sp. KRS101, inducing cell rupture and consequently biomass loss of over 13%. Membrane filtration, in particular equipped with an anti-fouling turbulence generator, turned out to be best suited: nearly 100% of harvesting efficiency and low water content in harvested biomass were achieved. With rotation rate increased, high permeate fluxes could be attained even with extremely concentrated biomass: e.g., 219.0 and 135.0 L/m(2)/h at 150.0 and 203.0 g/L, respectively. Dynamic filtration appears to be indeed a suitable means especially to obtain highly concentrated biomass that have no need of dewatering and can be directly processed.
Collapse
Affiliation(s)
- Kyochan Kim
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Heewon Shin
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Myounghoon Moon
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Byung-Gon Ryu
- Decontamination and Decommissioning Research Division, Korea Atomic Energy Research Institute (KAERI), 989-111 Daedukdaero, Yuseong-gu, Daejeon 305-353, Republic of Korea
| | - Jong-In Han
- Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Ji-Won Yang
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea; Advanced Biomass R&D Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| |
Collapse
|
28
|
Hwang T, Oh YK, Kim B, Han JI. Dramatic improvement of membrane performance for microalgae harvesting with a simple bubble-generator plate. BIORESOURCE TECHNOLOGY 2015; 186:343-347. [PMID: 25870035 DOI: 10.1016/j.biortech.2015.03.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 06/04/2023]
Abstract
To overcome fouling issue in membrane-based algae harvesting and thus make an otherwise promising harvesting option more competitive, a bubble-generator plate was developed. According to computational fluid dynamics analysis, the plate generated substantial hydrodynamic power in terms of high pressure, velocity, and shear stress. When installed in a membrane filtration system with membranes of different surface and structural characteristics (one prepared by the phase inversion method, and a commercial one) the bubble-generator was indeed effective in reducing fouling. Without the plate, the much cheaper homemade membrane had the similar performance as the commercial one. Use of the bubble-generator considerably improved the performance of both membranes, and revealed a valuable synergy with the asymmetrical structure of the homemade membrane. This result clearly showed that the ever-problematic fouling could be mitigated in a rather easy manner, and in so doing, that membrane technology could indeed become a practical option for algae harvesting.
Collapse
Affiliation(s)
- Taewoon Hwang
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, South Korea
| | - You-Kwan Oh
- Clean Fuel Department Bioenergy Research Group, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, South Korea
| | - Bohwa Kim
- Clean Fuel Department Bioenergy Research Group, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, South Korea
| | - Jong-In Han
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, South Korea.
| |
Collapse
|