1
|
Xu Y, Hao S, Jia D, Qin Y, Wang J, Gao J, Xiao J, Hu Y. Carboxyl-free polyamide reverse osmosis membrane with sustainable anti-fouling performance in treating industrial coke wastewater. WATER RESEARCH 2025; 280:123495. [PMID: 40090146 DOI: 10.1016/j.watres.2025.123495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025]
Abstract
Carboxyl groups in polyamide (PA) reverse osmosis (RO) membrane contribute significantly to fouling and scaling, hindering the sustainable operation of RO in practical applications. Herein, we developed a novel interfacial polymerization (IP) strategy to finely engineer the molecular structure of PA with no carboxyl groups, and to significantly enhance RO membrane fouling/scaling-resistance. During IP, trimesoyl chloride (TMC) at the interface was consumed completely by the diffused m-phenylenediamine (MPD) and glycerol (GLY) under the assistance of benzalkonium chloride (BAC) surfactant. The fabricated RO membrane with no carboxyl groups exhibits sustainable anti-fouling performance with low flux decline ratios and high flux recovery ratios during the five cycles of fouling and cleaning when treating real coke wastewater, surpassing the reported anti-fouling membranes and the renowned commercial fouling-resistant RO membrane (DuPont FilmTec™ CR100). This work provides some insights to precisely tailor the molecular structure of PA RO membrane with sustainable anti-fouling performance.
Collapse
Affiliation(s)
- Yongkai Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Research on Membrane Science and Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Shuang Hao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Research on Membrane Science and Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Dingxian Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Research on Membrane Science and Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Yiwen Qin
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Research on Membrane Science and Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Jianxiao Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Research on Membrane Science and Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Jie Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Research on Membrane Science and Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Jun Xiao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Research on Membrane Science and Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Yunxia Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Research on Membrane Science and Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| |
Collapse
|
2
|
Zhou S, Zhang M, Xue L, Li J, Ma X, Zheng Z, Wang T, Wen X, Yang Y, Yan S, Zhou Q, Liang B, Xing D. Dopamine-alginate-zinc ion dressings employing synergistic active and passive antimicrobial strategies for enhanced burn wound infection management and accelerated healing. Carbohydr Polym 2025; 359:123571. [PMID: 40306778 DOI: 10.1016/j.carbpol.2025.123571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/20/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025]
Abstract
Burn wounds are particularly challenging to manage due to high infection rates, excessive exudate, and impaired healing. We developed an innovative burn Polydopamine-Alginate-Zinc ion (Zn2+) dressing (APBM) using a synergistic approach combining passive bacterial inhibition and active sterilization mechanisms. APBM was synthesized through a facile two-step process, integrating an effective bacterial adhesion-blocking mechanism with active sterilization via Zn2+. In vitro studies demonstrated that APBM achieved over 99 % antibacterial efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), and exhibited notable activity against Candida albicans (C. albicans). The antibacterial effect persisted for 11 days against S. aureus and 9 days against E. coli. APBM exhibited an exudate absorption rate twice that of conventional polyurethane (PU) sponges. In a rat burn model, APBM enhanced micro angiogenesis, collagen deposition and reduced inflammation, resulting in a 27.5 % faster wound healing rate compared to the blank group. This performance was superior to dressings employing only a single antimicrobial strategy and conventional sponges. Overall, APBM showed significant potential as a composite functional dressing addressing infection prevention, exudate management, and healing promotion, presenting a promising solution to the major challenges faced in burn wound care.
Collapse
Affiliation(s)
- Sha Zhou
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Miao Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Linyuan Xue
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Jiyixuan Li
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Xinyue Ma
- Medical College of Qingdao University, Qingdao 266071, Shandong, China
| | - Zihan Zheng
- Medical College of Qingdao University, Qingdao 266071, Shandong, China
| | - Tianrui Wang
- Traumatology Department, The Affiliated Hospital of Qingdao University, Qingdao 266071, Shandong, China
| | - Xiaobo Wen
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Ying Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Saisai Yan
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Qihui Zhou
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Liu C, Gao R, Wang X, Faria AF, Yang L, Zhang B, He Q. Maximizing membrane antifouling potential: The impact of fluoride positioning in multifunctional designs. WATER RESEARCH 2025; 281:123565. [PMID: 40174562 DOI: 10.1016/j.watres.2025.123565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Fluoropolymers with low surface energy demonstrate outstanding potential for fouling release. However, their limited effectiveness in practical antifouling applications requires integration with other strategies. This study explored the significant impact of fluoropolymers in a multifunctional approach that combines antiadhesion (S), antibacterial (M), and fouling release (H) properties to enhance the performance of thin-film-composite (TFC) membranes for controlling biofouling (The letters S, M and H originate from the initial letters of the corresponding functional monomers). We constructed membrane surface functionalities with fluoropolymers placed in different layers: p(H-M-S), which incorporates fluoropolymers in the innermost layer as a release-antibacterial-antiadhesion membrane; p(M-H-S), where fluoropolymers are in the middle layer as an antibacterial-release-antiadhesion membrane; and p(M-S-H), with fluoropolymers in the outermost layer as an antibacterial-antiadhesion-release membrane. This multifunctional approach resulted in superior membrane transport properties and varying resistance to biofouling. During repeated filtration cycles, the p(H-M-S) membrane showed the most effective biofouling mitigation and long-term durability, achieving an 82 % flux recovery in the third cycle due to the synergistic effects of its three combined functions. The p(M-H-S) membrane displayed strong antiadhesion performance in the early stages but had limited durability over time. In contrast, the p(M-S-H) membrane revealed the weakest fouling resistance, likely because of the hydrophobic nature of the fluorinated components in the outermost layer. Bacterial adhesion assay and protein release tests further demonstrated that the p(M-H-S) membrane reduced bacterial adhesion by 66 % and released 23 % of the protein foulants. This effectiveness is attributed to the antifouling activity provided by the hydrophilic zwitterions and bactericidal quaternary ammonium compounds, as well as the fouling-release capability of fluoropolymers, which facilitates the detachment of foulants under hydraulic forces. Microscopic analysis, coupled with interfacial energy evaluations, confirmed the presence of various multi-defense mechanisms based on the different functional architectures of the membranes. These findings offer valuable insights for designing optimized multifunctional antifouling membranes with improved performance and stability.
Collapse
Affiliation(s)
- Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Rui Gao
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiao Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Andreia F Faria
- Engineering School of Sustainable Infrastructure & Environment (ESSIE), Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, 32611-6580, USA
| | - Liu Yang
- Engineering School of Sustainable Infrastructure & Environment (ESSIE), Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, 32611-6580, USA
| | - Bin Zhang
- Analytical and Testing Center of Chongqing University, Chongqing, 401331, China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
4
|
Adrah K, Pathiraja G, Rathnayake H. Insight into Iron(III)-Tannate Biosorbent for Adsorption Desalination and Tertiary Treatment of Water Resources. ACS OMEGA 2025; 10:239-260. [PMID: 39829501 PMCID: PMC11739983 DOI: 10.1021/acsomega.4c05152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/28/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025]
Abstract
An innovative biosorbent-based water remediation unit could reduce the demand for freshwater while protecting the surface and groundwater sources by using saline water resources, such as brine, brackish water, and seawater for irrigation. Herein, for the first time, we introduce a simple, rapid, and cost-effective iron(III)-tannate biosorbent-based technology, which functions as a stand-alone fixed-bed filter system for the treatment of salinity, heavy-metal contaminants, and pathogens present in a variety of water resources. Our approach presents a streamlined, cost-efficient, energy-saving, and sustainable avenue for water treatment, distinct from current adsorption desalination or conventional membrane techniques supplemented with chemical and UV treatments for disinfection. The proof of feasibility for effective treatment of heavy metals, adsorption desalination, and cleansing of pathogens is demonstrated using synthetic water, brine, and field-collected seawater. The adsorption equilibrium and adsorption kinetic isotherm models, and mass transfer diffusion models confirmed the sorbent's function for sieving heavy-metal ions-silver (Ag+), cadmium (Cd2+), and lead (Pb2+)-from water. The maximum adsorption capacities (q m) of the sorbent for Ag+, Cd2+, and Pb2+ reach 96.25, 66.54, and 133.83 mg/g at neutral pH. The sorbent's affinity for heavy-metal-ion adsorption significantly increased, yielding q m of 116.57 mg/g for Ag+, 104.04 mg/g for Cd2+, and 165.66 mg/g for Pb2+, at pH 9, respectively, due to the sorbent's amphoteric nature. The pristine sorbents exhibit exceptional adsorption desalination efficacy (>70%) for removing salinity from brine and seawater, promoting heterogeneous adsorption. Fe(III)-TA's ability to disinfect seawater, with 67% efficacy over a very short contact time (∼15 min), confirms its remarkable antimicrobial properties for contact active mode pathogens cleansing. By preventing the release of salts, heavy-metal contaminants, and pathogens into the environment, our results proved that this novel multiplex biobased sorbent approach directly contributes to the water quality of surface and groundwater resources.
Collapse
Affiliation(s)
- Kelvin Adrah
- Department of Nanoscience,
Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, 1907 East Gate City Blvd, Greensboro, North Carolina 27401, United States
| | - Gayani Pathiraja
- Department of Nanoscience,
Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, 1907 East Gate City Blvd, Greensboro, North Carolina 27401, United States
| | - Hemali Rathnayake
- Department of Nanoscience,
Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, 1907 East Gate City Blvd, Greensboro, North Carolina 27401, United States
| |
Collapse
|
5
|
Liu J, Lin C, Chen L, Fu W, Yang H, Li T, Chu H, Wang Z, Tang CY. A Novel Shear-Detachment Approach for Modeling Dynamics of Membrane Cleaning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:23222-23230. [PMID: 39680065 DOI: 10.1021/acs.est.4c05791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
We report a novel shear-detachment (SD) approach to simulate the dynamics of flux recovery in the membrane cleaning process. In this model, the rate of foulant detachment away from the membrane is governed by both the shear intensity and the probability of successful foulant detachment, with the latter modeled by Boltzmann distribution. Our SD predictions exhibit good agreement with experimental results, accurately capturing the dynamics of flux recovery. Modeling outcomes reveal that the time required for fully restoring water flux is largely independent of the initial cake mass but significantly dependent on crossflow-flushing velocity and adhesive energy of foulant to membrane. Higher flushing velocity and/or lower adhesive energy can create a shear-limited condition where almost all shear events bring about successful foulant detachment, facilitating rapid flux recovery. Conversely, a smaller flushing velocity or greater adhesive energy can result in increasingly detachment-limited situations, where the cleaning efficiency is primarily dictated by the probability of foulant detachment. Our study offers profound insights into the importance of shear rate and detachment probability in governing foulant detachment kinetics and self-cleaning behavior, which carry significant implications for membrane preparation and process operation.
Collapse
Affiliation(s)
- Junxia Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chenxi Lin
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Linchun Chen
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wei Fu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Haiyan Yang
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Tian Li
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Huaqiang Chu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518005, China
| |
Collapse
|
6
|
Yao Y, Lu Y, Xu J, Yu J, Guo L, Ding H, Li J, Liao J, Ang EH, Shen Z, Shen J. Rational regulation of post-electrodialysis electrochromic anion exchange membranes via TiO 2@Ag synergistically strengthens visible-light photocatalytic anti-contamination activity. WATER RESEARCH 2024; 263:122178. [PMID: 39096806 DOI: 10.1016/j.watres.2024.122178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/24/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Membrane-contamination during electrodialysis (ED) process is still a non-negligible challenge, while irreversible consumption and unsustainability have become the main bottlenecks limiting the improvement of anion exchange membranes (AEMs) anti-contamination activity. Here, we introduce a novel approach to design AEMs by chemically assembling 4-pyndinepropanol with bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) in an electrochromic-inspired process. Subsequently, the co-mingled TiO2@Ag nanosheet with the casting-solution were sprayed onto the surface of the substrate membrane to create a micrometer-thick interfacial layer. The addition of Ag nanoparticles (NPs) enhances the active sites of TiO2, resulting in stronger local surface plasmon resonance (LSPR) effects and reducing its energy band gap limitation (From 3.11 to 2.63 eV). Post-electrodialysis electrochromic AEMs incorporating TiO2@Ag exhibit synergistic enhancement of sunlight absorption, effectively suppressing photogenerated carrier binding and promoting migration. These resultant-membranes demonstrate significantly improved bacterial inhibition properties (42.0-fold increase for E. coli) and degradation activity (7.59-fold increase for rhodamine B) compared to pure TiO2 membranes. Importantly, they maintain photocatalytic activity without compromising salt-separation performance or stability, as the spraying process utilizes the same substrate materials. This approach to rational design and regulation of anti-contamination AEMs offers new insights into the collaborative synergy of color-changing and photocatalytic materials.
Collapse
Affiliation(s)
- Yuyang Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | - Yueyue Lu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingwen Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiacheng Yu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
| | - Liang Guo
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Heda Ding
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jian Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| | - Zhenlu Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
7
|
Feng G, Wang Z, Xu M, Wang C, Li Y. Cyclodextrin-modified PVDF membranes with improved anti-fouling performance. CHEMOSPHERE 2024; 363:142808. [PMID: 38992443 DOI: 10.1016/j.chemosphere.2024.142808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
The design of hydrophilic polyvinylidene fluoride (PVDF) membranes with anti-fouling properties has been explored for decades. Surface modification and blending are typical strategies to tailor the hydrophilicity of PVDF membranes. Herein, cyclodextrin was used to improve the antifouling performance of PVDF membranes. Cyclodextrin-modified PVDF membranes were prepared by coupling PVDF amination (blending with branched polyethyleneimine) and activated cyclodextrin grafting. The blending of PEI in the PVDF casting solution preliminarily aminated the PVDF, resulting in PEI-crosslinked/grafted PVDF membranes after phase inversion. Aldehydes groups on cyclodextrin, introduced by oxidation, endow cyclodextrin to be grafted on the aminated PVDF membrane by the formation of imines. Borch reduction performed on the activated cyclodextrin-grafted PVDF membrane converted the imine bonds to secondary amines, ensuring the membrane stability. The resulting membranes possess excellent antifouling performance, with a lower protein adsorption capacity (5.7 μg/cm2, indicated by Bovine Serum Albumin (BSA)), and a higher water flux recovery rate (FRR = 96%). The proposed method provides a facial strategy to prepare anti-fouling PVDF membranes.
Collapse
Affiliation(s)
- Guoying Feng
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China; School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, China
| | - Zhilu Wang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
| | - Man Xu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
| | - Cunwen Wang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
| | - Yanbo Li
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China.
| |
Collapse
|
8
|
Miao Z, Zhou J. Photo-responsive anti-fouling polyzwitterionic brushes: a mesoscopic simulation. J Mater Chem B 2024; 12:8076-8086. [PMID: 38973671 DOI: 10.1039/d4tb00899e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The antifouling effects of a toothbrush-shaped photo-responsive polyzwitterionic membrane were studied via dissipative particle dynamics simulations in this work. The results reveal that the membrane modified by spiropyran methacrylate brushes displays photo-switchable and antifouling capability due to the photo-induced ring-opening reaction. Namely, surface morphology and hydrophilicity change in response to visible or UV light irradiation, which can be observed visually by protein adsorption and desorption. Further study indicates that: (1) brush-modification density can influence the structure and properties of the membrane. With low modification density, systems cannot establish an intact selective layer, which hinders the antifouling ability; as the modification density increases, the intact selective layer can be formed, which is conducive to the expression of photo-responsiveness and antifouling capability. (2) Factors of toothbrush-hair length and grafting ratio can influence the establishment of a light-responsive surface: as the grafting ratio and toothbrush-hair length increase, the light-responsive surface is gradually formed, meanwhile, the antifouling ability can be continuously reinforced under UV light irradiation. (3) As the brushes switch into a zwitterionic merocyanine state under UV exposure, the selective layer swelling becomes stronger than that with a hydrophobic spiropyran state under visible exposure. This is owing to the enhanced interaction between zwitterionic brushes and water, which is the root of the antifouling effect. The present work is expected to provide some guidelines for the design and development of novel antifouling membrane surfaces.
Collapse
Affiliation(s)
- Zhaohong Miao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China.
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China.
| |
Collapse
|
9
|
Filice S, Scuderi V, Scalese S. Sulfonated Pentablock Copolymer (Nexar TM) for Water Remediation and Other Applications. Polymers (Basel) 2024; 16:2009. [PMID: 39065326 PMCID: PMC11280590 DOI: 10.3390/polym16142009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
This review focuses on the use of a sulfonated pentablock copolymer commercialized as NexarTM in water purification applications. The properties and the use of sulfonated copolymers, in general, and of NexarTM, in particular, are described within a brief reference focusing on the problem of different water contaminants, purification technologies, and the use of nanomaterials and nanocomposites for water treatment. In addition to desalination and pervaporation processes, adsorption and photocatalytic processes are also considered here. The reported results confirm the possibility of using NexarTM as a matrix for embedded nanoparticles, exploiting their performance in adsorption and photocatalytic processes and preventing their dispersion in the environment. Furthermore, the reported antimicrobial and antibiofouling properties of NexarTM make it a promising material for achieving active coatings that are able to enhance commercial filter lifetime and performance. The coated filters show selective and efficient removal of cationic contaminants in filtration processes, which is not observed with a bare commercial filter. The UV surface treatment and/or the addition of nanostructures such as graphene oxide (GO) flakes confer NexarTM with coating additional functionalities and activity. Finally, other application fields of this polymer are reported, i.e., energy and/or gas separation, suggesting its possible use as an efficient and economical alternative to the more well-known Nafion polymer.
Collapse
Affiliation(s)
- Simona Filice
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy;
| | | | - Silvia Scalese
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy;
| |
Collapse
|
10
|
Alnumani A, Abutaleb A, Park B, Mubashir M. Recent advancement on water filtration membranes: Navigating biofouling challenges. ENVIRONMENTAL RESEARCH 2024; 251:118615. [PMID: 38437904 DOI: 10.1016/j.envres.2024.118615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
This study investigates the field of antifouling membranes for water filtration and desalination applications, specifically focusing on two-dimensional materials. The study examines the importance of these membranes in the context of climate change and its effects on coastal ecosystems. The occurrence of biofouling in seawater desalination membranes is closely connected to intricate processes influenced by factors such as water quality, microbial communities, hydrodynamics, and membrane properties. Microorganism adhesion initiates the process, which then advances into irreversible attachment and the creation of biofilm. Detached pieces contribute to the perpetuation of fouling. Biofouling is caused by a variety of biomaterials and organics, including bacteria, extracellular polymeric substances (EPS), proteins, and humic compounds. Innovative methods such as surface alterations using two-dimensional materials like graphene and graphene oxide, as well as the use of biofouling-resistant materials, provide promising possibilities. These materials have antifouling characteristics, making them environmentally beneficial options that reduce the need for chemical cleaning. Their application improves the water treatment process by preventing fouling and enhancing membrane performance. Real-world research applications can enhance and optimize these tactics to effectively reduce biofouling in seawater desalination systems, hence improving efficiency and sustainability. This is particularly important in light of climate change and its impact on coastal ecosystems. The findings obtained from the literature review emphasise the utmost significance of tackling biofouling in the face of a changing environment, particularly with regard to microorganisms. Important factors to consider are the selection of coating materials, the implementation of environmentally friendly cleaning solutions made from natural chemicals, and the improvement of pretreatment systems. Green cleaning agents are important eco-friendly alternatives to typical biocides, as they possess antibacterial, antifungal, and antifouling capabilities. Given the existence of climate change, these observations serve as a basis for promoting environmentally friendly methods in water treatment technology.
Collapse
Affiliation(s)
- Ammar Alnumani
- Water Technologies Innovation Institute & Research Advancement, Saline Water Conversion Corporation, WTIIRA-SWCC, Jubail, 35417, Saudi Arabia.
| | - Abdulrahman Abutaleb
- Water Technologies Innovation Institute & Research Advancement, Saline Water Conversion Corporation, WTIIRA-SWCC, Jubail, 35417, Saudi Arabia.
| | - Byungsung Park
- Water Technologies Innovation Institute & Research Advancement, Saline Water Conversion Corporation, WTIIRA-SWCC, Jubail, 35417, Saudi Arabia
| | - Muhammad Mubashir
- Water Technologies Innovation Institute & Research Advancement, Saline Water Conversion Corporation, WTIIRA-SWCC, Jubail, 35417, Saudi Arabia
| |
Collapse
|
11
|
Zhou Z, Shi Q. Bioinspired Dopamine and N-Oxide-Based Zwitterionic Polymer Brushes for Fouling Resistance Surfaces. Polymers (Basel) 2024; 16:1634. [PMID: 38931984 PMCID: PMC11207554 DOI: 10.3390/polym16121634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Biofouling is a great challenge for engineering material in medical-, marine-, and pharmaceutical-related applications. In this study, a novel trimethylamine N-oxide (TMAO)-analog monomer, 3-(2-methylacrylamido)-N,N-dimethylpropylamine N-oxide (MADMPAO), was synthesized and applied for the grafting of poly(MADMPAO) (pMPAO) brushes on quartz crystal microbalance (QCM) chips by the combination of bio-inspired poly-dopamine (pDA) and surface-initiated atom transfer radical polymerization technology. The result of ion adsorption exhibited that a sequential pDA and pMPAO arrangement from the chip surface had different characteristics from a simple pDA layer. Ion adsorption on pMPAO-grafted chips was greatly inhibited at low salt concentrations of 1 and 10 mmol/L due to strong surface hydration in the presence of charged N+ and O- of zwitterionic pMPAO brushes on the outer layer on the chip surface, well known as the "anti-polyelectrolyte" effect. During BSA adsorption, pMPAO grafting also led to a marked decrease in frequency shift, indicating great inhibition of protein adsorption. It was attributed to weaker BSA-pMPAO interaction. In this study, the Au@pDA-4-pMPAO chip with the highest coating concentration of DA kept stable dissipation in BSA adsorption, signifying that the chip had a good antifouling property. The research provided a novel monomer for zwitterionic polymer and demonstrated the potential of pMPAO brushes in the development and modification of antifouling materials.
Collapse
Affiliation(s)
- Zhen Zhou
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
12
|
Said N, Lau WJ, Zainol Abidin MN, Mansourizadeh A, Ismail AF. Fabrication and characterization of dual-layer hollow fibre membranes incorporating poly(citric acid)-grafted GO with enhanced antifouling properties for water treatment. ENVIRONMENTAL TECHNOLOGY 2024; 45:2944-2956. [PMID: 36976335 DOI: 10.1080/09593330.2023.2197127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Membrane fouling during the filtration process is a perennial issue and could lead to reduced separation efficiency. In this work, poly(citric acid)-grafted graphene oxide (PGO) was incorporated into a matrix of single-layer hollow fibre (SLHF) and dual-layer hollow fibrr (DLHF) membranes, respectively, aiming to improve membrane antifouling properties during water treatment. Different loadings of PGO ranging from 0 to 1 wt% were first introduced into the SLHF to identify the best PGO loading for the DLHF preparation with its outer layer modified by nanomaterials. The findings showed that at the optimized PGO loading of 0.7 wt%, the resultant SLHF membrane could achieve higher water permeability and bovine serum albumin rejection compared to the neat SLHF membrane. This is due to the improved surface hydrophilicity and increased structural porosity upon incorporation of optimized PGO loading. When 0.7 wt% PGO was introduced only to the outer layer of DLHF, the cross-sectional matrix of the membrane was altered, forming microvoids and spongy-like structures (more porous). Nevertheless, the BSA rejection of the membrane was improved to 97.7% owing to an inner selectivity layer produced from a different dope solution (without the PGO). The DLHF membrane also demonstrated significantly higher antifouling properties than the neat SLHF membrane. Its flux recovery rate is 85%, i.e. 37% better than that of a neat membrane. By incorporating hydrophilic PGO into the membrane, the interaction of the hydrophobic foulants with the membrane surface is greatly reduced.
Collapse
Affiliation(s)
- Noresah Said
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Muhammad Nidzhom Zainol Abidin
- Department of Chemistry, Faculty of Science, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Malaysia
| | - Amir Mansourizadeh
- Department of Chemical Engineering, Membrane Science and Technology Research Center (MSTRC), Gachsaran Branch, Islamic Azad University, Gachsaran, Iran
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Malaysia
| |
Collapse
|
13
|
Liang S, Fu K, Li X, Wang Z. Unveiling the spatiotemporal dynamics of membrane fouling: A focused review on dynamic fouling characterization techniques and future perspectives. Adv Colloid Interface Sci 2024; 328:103179. [PMID: 38754212 DOI: 10.1016/j.cis.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/12/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Membrane technology has emerged as a crucial method for obtaining clean water from unconventional sources in the face of water scarcity. It finds wide applications in wastewater treatment, advanced treatment, and desalination of seawater and brackish water. However, membrane fouling poses a huge challenge that limits the development of membrane-based water treatment technologies. Characterizing the dynamics of membrane fouling is crucial for understanding its development, mechanisms, and effective mitigation. Instrumental techniques that enable in situ or real-time characterization of the dynamics of membrane fouling provide insights into the temporal and spatial evolution of fouling, which play a crucial role in understanding the fouling mechanism and the formulation of membrane control strategies. This review consolidates existing knowledge about the principal advanced instrumental analysis technologies employed to characterize the dynamics of membrane fouling, in terms of membrane structure, morphology, and intermolecular forces. Working principles, applications, and limitations of each technique are discussed, enabling researchers to select appropriate methods for their specific studies. Furthermore, prospects for the future development of dynamic characterization techniques for membrane fouling are discussed, underscoring the need for continued research and innovation in this field to overcome the challenges posed by membrane fouling.
Collapse
Affiliation(s)
- Shuling Liang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Kunkun Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Xuesong Li
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | - Zhiwei Wang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
14
|
Petukhov DI, Johnson DJ. Membrane modification with carbon nanomaterials for fouling mitigation: A review. Adv Colloid Interface Sci 2024; 327:103140. [PMID: 38579462 DOI: 10.1016/j.cis.2024.103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
This paper provides a comprehensive overview of recent advancements in membrane modification for fouling mitigation in various water treatment processes, employing carbon nanomaterials such as fullerenes, nanodiamonds, carbon quantum dots, carbon nanotubes, and graphene oxide. Currently, using different carbon nanomaterials for polymeric membrane fouling mitigation is at various stages: CNT-modified membranes have been studied for more than ten years and have already been tested in pilot-scale setups; tremendous attention has been paid to utilizing graphene oxide as a modifying agent, while the research on carbon quantum dots' influence on the membrane antifouling properties is in the early stages. Given the intricate nature of fouling as a colloidal phenomenon, the review initially delves into the factors influencing the fouling process and explores strategies to address it. The diverse chemistry and antibacterial properties of carbon nanomaterials make them valuable for mitigating scaling, colloidal, and biofouling. This review covers surface modification of existing membranes using different carbon materials, which can be implemented as a post-treatment procedure during membrane fabrication. Creating mixed-matrix membranes by incorporating carbon nanomaterials into the polymer matrix requires the development of new synthetic procedures. Additionally, it discusses promising strategies to actively suppress fouling through external influences on modified membranes. In the concluding section, the review compares the effectiveness of carbon materials of varying dimensions and identifies key characteristics influencing the antifouling properties of membranes modified with carbon nanomaterials.
Collapse
Affiliation(s)
- Dmitrii I Petukhov
- Division of Engineering, Water Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Daniel J Johnson
- Division of Engineering, Water Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
15
|
Chen M, Wang P, Jiang H, Yan J, Qiu S, Zhang Z, Wang S, Ma J. Inhibition of biofouling by in-situ grown zwitterionic hydrogel nanolayer on membrane surface in ultralow-pressurized ultrafiltration process. WATER RESEARCH 2024; 253:121263. [PMID: 38341977 DOI: 10.1016/j.watres.2024.121263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/13/2024]
Abstract
Ultralow-pressurized ultrafiltration membrane process with low energy consumption is promising in surface water purification. However, membrane fouling and low selectivity are significant barriers for the wide application of this process. Herein, an ultrathin zwitterionic hydrogel nanolayer was in-situ grown on polysulfone ultrafiltration membrane surface through interfacially-initiated free radical polymerization. The hydrogel-modified membrane possessed improved biological fouling resistance during the dynamic filtration process (bovine serum albumin, Escherichia coli and Staphylococcus aureus), comparing with commercial polysulfone membrane. The enhanced biofouling resistance ability of zwitterionic hydrogel nanolayer was derived from the foulant repulsion of hydration shell and the bactericidal effect of quaternary ammonium, according to the results of foulant-membrane interaction energy analyses and antibacterial performances. In surface water treatment, the zwitterionic hydrogel layer inhibited biofouling and resulted in the formation of a loose and thin biofilm. In addition, the hydrogel-modified membrane possessed 22% improvement in dissolved organic carbon (DOC) removal and 134% increasement in stable water flux, compared to commercial polysulfone membrane. The in-situ grown zwitterionic hydrogel nanolayer on membrane surface offers a prospectively alternative for biofouling control in ultralow-pressurized membrane process.
Collapse
Affiliation(s)
- Mansheng Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Panpan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Chongqing Research Institute of HIT, Chongqing 401151, China.
| | - Haicheng Jiang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Jiaying Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shiyi Qiu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhilin Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Songlin Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
16
|
Sun M, Wang D, Ma H, Wang G. Small Channels Assembled by Multilayer ZIF-8 in Nanocomposite Membranes for Filtration of Ofloxacin in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4904-4913. [PMID: 38373271 DOI: 10.1021/acs.langmuir.3c03867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Metal-organic framework (MOF)-based hybrid membranes still face many unsolved difficulties in the field of liquid separation, with a reliable production technique standing out, in particular, for the water-stable MOF membranes. In this study, zeolitic imidazolate framework-8 (ZIF-8) with acceptable water stability, favorable polymer affinity, and high selectivity was meticulously grafted on commercial poly(vinylidene fluoride) (PVDF) via substrate carboxylation-assisted etching and then overlaid onto PVDF to fabricate a novel hybrid membrane by a layer-by-layer self-assembly method. The optimal membrane manufacturing conditions, including assembly time (10 min), Hmim/Zn2+ molar ratio (8:1), and optimal layer number (three layers), were thoroughly investigated for cutting-off ofloxacin in water filtration. Under low pressure, a nanofiltration scale permeability of about 199.2 L m-2 h-1 MPa-1 and 97.9% rejection of ofloxacin were obtained in bench-scale tests based on the synergistic effect of the Donnan effect and steric hindrance. More significantly, the resulting hybrid membrane demonstrated excellent hydrophilicity, high antifouling, and mechanical and repeatability performances, suggesting promising application possibilities in real-world wastewater filtering settings.
Collapse
Affiliation(s)
- Meiqi Sun
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian 116034, P. R. China
| | - Dong Wang
- College of Marine Science Technology and Environment, Dalian Ocean University, No. 52 Heishijiao, Shahekou District, Dalian 116023, P. R. China
| | - Hongchao Ma
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian 116034, P. R. China
| | - Guowen Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian 116034, P. R. China
| |
Collapse
|
17
|
Li N, Xue W, Han Y, Zhu B, Wu J, Xu Z. Defect Engineering in GO Membranes - Tailoring Size and Oxidation Degree of Nanosheet for Enhanced Pore Channels. Chem Asian J 2024:e202301065. [PMID: 38329385 DOI: 10.1002/asia.202301065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
Graphene Oxide (GO) membrane has been extensively applied in the field of water purification and membrane separation processes. While the solute molecule transport in GO membranes encompasses interlayer channels, edge defects, and in-plane crack-like holes, the significance of edge defects or crack-like pores in ultrathin membranes is often overlooked. In our study, we focused on the construction of short-range channel GO membranes with varied defect structures by modulating the transverse size of the porous nanosheets. GO nanosheets with different sizes were procured through high-energy γ-irradiation combined with centrifugation. Notably, the large-sized porous GO nanosheets (L-pGO) exhibit a consistent structure, and numerous in-plane defects. In contrast, the smaller counterparts (S-pGO) present a fewer in-plane defects. The performance metrics revealed that L-pGO exhibited a water flux of 849.25 L m-2 h-1 bar-1 , while S-pGO demonstrated nearly 100 % dye rejection capacity. These findings underscore the potential of defect engineering as a powerful strategy to enhance the efficiency of two-dimensional membranes.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Weihao Xue
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Yu Han
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Bo Zhu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Jinman Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| |
Collapse
|
18
|
Zuo L, Yang Y, Zhang H, Ma Z, Xin Q, Ding C, Li J. Bioinspired Multiscale Mineralization: From Fundamentals to Potential Applications. Macromol Biosci 2024; 24:e2300348. [PMID: 37689995 DOI: 10.1002/mabi.202300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The wondrous and imaginative designs of nature have always been an inexhaustible treasure trove for material scientists. Throughout the long evolutionary process, biominerals with hierarchical structures possess some specific advantages such as outstanding mechanical properties, biological functions, and sensing performances, the formation of which (biomineralization) is delicately regulated by organic component. Provoked by the subtle structures and profound principles of nature, bioinspired functional minerals can be designed with the participation of organic molecules. Because of the designable morphology and functions, multiscale mineralization has attracted more and more attention in the areas of medicine, chemistry, biology, and material science. This review provides a summary of current advancements in this extending topic. The mechanisms underlying mineralization is first concisely elucidated. Next, several types of minerals are categorized according to their structural characteristic, as well as the different potential applications of these materials. At last, a comprehensive overview of future developments for bioinspired multiscale mineralization is given. Concentrating on the mechanism of fabrication and broad application prospects of multiscale mineralization, the hope is to provide inspirations for the design of other functional materials.
Collapse
Affiliation(s)
- Liangrui Zuo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yifei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongbo Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhengxin Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Med-X Center for Materials, Sichuan University, Sichuan, 610041, China
| |
Collapse
|
19
|
Liu Y, Zhang Z, Li Z, Wei X, Zhao F, Fan C, Jiang Z. Surface Segregation Methods toward Molecular Separation Membranes. SMALL METHODS 2023; 7:e2300737. [PMID: 37668447 DOI: 10.1002/smtd.202300737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/14/2023] [Indexed: 09/06/2023]
Abstract
As a highly promising approach to solving the issues of energy and environment, membrane technology has gained increasing attention in various fields including water treatment, liquid separations, and gas separations, owing to its high energy efficiency and eco-friendliness. Surface segregation, a phenomenon widely found in nature, exhibits irreplaceable advantages in membrane fabrication since it is an in situ method for synchronous modification of membrane and pore surfaces during the membrane forming process. Meanwhile, combined with the development of synthesis chemistry and nanomaterial, the group has developed surface segregation as a versatile membrane fabrication method using diverse surface segregation agents. In this review, the recent breakthroughs in surface segregation methods and their applications in membrane fabrication are first briefly introduced. Then, the surface segregation phenomena and the classification of surface segregation agents are discussed. As the major part of this review, the authors focus on surface segregation methods including free surface segregation, forced surface segregation, synergistic surface segregation, and reaction-enhanced surface segregation. The strategies for regulating the physical and chemical microenvironments of membrane and pore surfaces through the surface segregation method are emphasized. The representative applications of surface segregation membranes are presented. Finally, the current challenges and future perspectives are highlighted.
Collapse
Affiliation(s)
- Yanan Liu
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Zhao Zhang
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Zongmei Li
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Xiaocui Wei
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Fu Zhao
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Chunyang Fan
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Zhongyi Jiang
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
20
|
Mahmoud AED, Mostafa E. Nanofiltration Membranes for the Removal of Heavy Metals from Aqueous Solutions: Preparations and Applications. MEMBRANES 2023; 13:789. [PMID: 37755211 PMCID: PMC10538012 DOI: 10.3390/membranes13090789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Water shortages are one of the problems caused by global industrialization, with most wastewater discharged without proper treatment, leading to contamination and limited clean water supply. Therefore, it is important to identify alternative water sources because many concerns are directed toward sustainable water treatment processes. Nanofiltration membrane technology is a membrane integrated with nanoscale particle size and is a superior technique for heavy metal removal in the treatment of polluted water. The fabrication of nanofiltration membranes involves phase inversion and interfacial polymerization. This review provides a comprehensive outline of how nanoparticles can effectively enhance the fabrication, separation potential, and efficiency of NF membranes. Nanoparticles take the form of nanofillers, nanoembedded membranes, and nanocomposites to give multiple approaches to the enhancement of the NF membrane's performance. This could significantly improve selectivity, fouling resistance, water flux, porosity, roughness, and rejection. Nanofillers can form nanoembedded membranes and thin films through various processes such as in situ polymerization, layer-by-layer assembly, blending, coating, and embedding. We discussed the operational conditions, such as pH, temperature, concentration of the feed solution, and pressure. The mitigation strategies for fouling resistance are also highlighted. Recent developments in commercial nanofiltration membranes have also been highlighted.
Collapse
Affiliation(s)
- Alaa El Din Mahmoud
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Esraa Mostafa
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| |
Collapse
|
21
|
Cheng X, Qin X, Su Z, Gou X, Yang Z, Wang H. Research on the Antibacterial Properties of MXene-Based 2D-2D Composite Materials Membrane. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2121. [PMID: 37513132 PMCID: PMC10383113 DOI: 10.3390/nano13142121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Novel MXene-based two-dimensional (2D) membranes are widely used for water purification due to their highly controllable structure and antibacterial properties. However, in the process of membrane separation, the problems of membrane fouling, especially biological fouling, limits the further application of MXene-based membranes. In this study, in order to improve the antibacterial and separation properties of membranes, three kinds of MXene-based 2D-2D composite membranes (M2~M4) were prepared using polyethersulfone (PES) as the substrate, which were GO@MXene, O-g-C3N4@MXene and BiOCl@MXene composite membranes respectively. The results showed that the antibacterial activity of M2~M4 against Escherichia coli and Staphylococcus aureus was further improved, especially the antibacterial ratio of M4 against Escherichia coli and Staphylococcus aureus was up to 50% and 82.4%, respectively. By comparing the surface morphology of MXene membrane and modified membrane treated bacteria through scanning electron microscopy (SEM), it was found that the cell density on modified membrane was significantly lower than that of pure MXene membrane.
Collapse
Affiliation(s)
- Xiaojie Cheng
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Xiaojian Qin
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Zhenglun Su
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Xun Gou
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Zhaomei Yang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Hongshan Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
22
|
Silanization enabled superhydrophobic PTFE membrane with antiwetting and antifouling properties for robust membrane distillation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
23
|
Biofouling in Membrane Bioreactors: Mechanism, Interactions and Possible Mitigation Using Biosurfactants. Appl Biochem Biotechnol 2023; 195:2114-2133. [PMID: 36385366 DOI: 10.1007/s12010-022-04261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Biofouling roots damage to membrane bioreactors (MBRs), such as physical, functional and organisational changes and even therefore clogging of the membrane pores and successive microbial degradation. Further, it blocks the pores, results into a biomass cake and in due course reduces the membrane flux and leads to an increase in the operational costs. MBR fouling contributed to the rise in transmembrane pressure (TMP) and decrease in permeate flux (in case of constant pressure operation mode). Chemical surfactants adopted for the cleaning of membrane surfaces have certain disadvantages such as toxicity manifestations, damage to the membranes and high CMC concentrations. Biosurfactant surfactants have attained increasing interest due to their low toxicity, biodegradability, stability to extreme environmental conditions such as temperatures, pH and tolerance to salinity. The biosurfactants trapped the foulants via micelle formation, which distresses hydrophobic interactions amongst bacteria and the surface. Rhamnolipids as an anionic biosurfactant pose a significant interfacial potential and have affinity to bind organic matter. The present review discusses the problem of biofouling in MBRs, type and interactions of foulants involved and also highlights the mechanisms of biosurfactant cleaning, effect of different parameters, effect of concentration, TMP, flux recovery, permeability, mitigation practices and challenges.
Collapse
|
24
|
Zhou H, Gong J, Li J, Song B, Fang S, Wang Y, Tang L, Peng P. Cross-Linked and Doped Graphene Oxide Membranes with Excellent Antifouling Capacity for Rejection of Antibiotics and Salts. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8636-8652. [PMID: 36735585 DOI: 10.1021/acsami.2c19789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Graphene oxide (GO) membranes have suffered from the instability of water permeability and low rejection of pollutant separation. In this paper, a reasonable modification protocol for GO nanosheets at the molecular level was proposed. A molecular cross-linking strategy was adopted to regulate the interlayer spacing of GO nanosheets, and nanofiltration membranes with high water stability and excellent antifouling capacity were prepared, which could effectively reject antibiotics and salts. The GO1-MPD0.5 (the mass ratio of GO nanosheets to MPD is 1:0.5) and GO/GO1-MPD0.5-0.25 (the doping ratio of GO1-MPD0.5 is 25%) membranes had stable water permeability of 4.22 ± 0.06 and 3.65 ± 0.11 L m-2 h-1 bar-1, and the rejection rates for ciprofloxacin (CIP) and ofloxacin (OFX) were 93.35 ± 3.62 and 95.48 ± 2.97 and 85.89 ± 6.52 and 88.21 ± 3.67%, respectively. Molecular dynamics simulations well explained the high water stability of membranes, and the cross-linked hydrophobic benzene ring played a role in the rejection of pollutant molecules. Moreover, the GO1-MPD0.5 membrane showed excellent antifouling capacity and the flux recovery ratio (FRR) was more than 98%. This paper provides a new idea for the design of nanofiltration membranes with high stability and good rejection permeability at the molecular level and provides a prospect for the application of nanofiltration membranes in practical water treatment and water purification.
Collapse
Affiliation(s)
- Huaiyang Zhou
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
| | - Jilai Gong
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
- Shenzhen Institute, Hunan University, Shenzhen518000, P. R. China
| | - Juan Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
| | - Biao Song
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
| | - Siyuan Fang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
| | - Yuwen Wang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
| | - Liangxiu Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
| | - Ping Peng
- College of Materials Science and Engineering, Hunan University, Changsha410082, P. R. China
| |
Collapse
|
25
|
Worku LA, Bachheti A, Bachheti RK, Rodrigues Reis CE, Chandel AK. Agricultural Residues as Raw Materials for Pulp and Paper Production: Overview and Applications on Membrane Fabrication. MEMBRANES 2023; 13:228. [PMID: 36837731 PMCID: PMC9959550 DOI: 10.3390/membranes13020228] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The need for pulp and paper has risen significantly due to exponential population growth, industrialization, and urbanization. Most paper manufacturing industries use wood fibers to meet pulp and paper requirements. The shortage of fibrous wood resources and increased deforestation are linked to the excessive dependence on wood for pulp and paper production. Therefore, non-wood substitutes, including corn stalks, sugarcane bagasse, wheat, and rice straw, cotton stalks, and others, may greatly alleviate the shortage of raw materials used to make pulp and paper. Non-woody raw materials can be pulped easily using soda/soda-AQ (anthraquinone), organosolv, and bio-pulping. The use of agricultural residues can also play a pivotal role in the development of polymeric membranes separating different molecular weight cut-off molecules from a variety of feedstocks in industries. These membranes range in applications from water purification to medicinal uses. Considering that some farmers still burn agricultural residues on the fields, resulting in significant air pollution and health issues, the use of agricultural residues in paper manufacturing can eventually help these producers to get better financial outcomes from the grown crop. This paper reviews the current trends in the technological pitch of pulp and paper production from agricultural residues using different pulping methods, with an insight into the application of membranes developed from lignocellulosic materials.
Collapse
Affiliation(s)
- Limenew Abate Worku
- Centre of Excellence in Nanotechnology, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia
- Department of Industrial Chemistry, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia
| | - Archana Bachheti
- Department of Environment Science, Graphic Era University, Dehradun 248002, India
| | - Rakesh Kumar Bachheti
- Centre of Excellence in Nanotechnology, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia
- Department of Industrial Chemistry, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia
| | | | - Anuj Kumar Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), Estrada Municipal do Campinho, University of São Paulo (USP), Lorena 12602-810, São Paulo, Brazil
| |
Collapse
|
26
|
Hu Q, Yuan Y, Wu Z, Lu H, Li N, Zhang H. The effect of surficial function groups on the anti-fouling and anti-scaling performance of thin-film composite reverse osmosis membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Nguyen HT, Bui HM, Wang YF, You SJ. Antifouling CuO@TiO 2 coating on plasma-grafted PAA/PES membrane based on photocatalysis and hydrogen peroxide activation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12929-12943. [PMID: 36121632 DOI: 10.1007/s11356-022-23005-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Because of the small size effect leading to the high bandgap of TiO2 P25, the photocatalytic membrane using this photocatalyst has low antifouling efficiency. This study prepared CuO@TiO2 composite photocatalyst with a lower bandgap than TiO2 P25 and used it as antifouling coatings on the PES membrane with PAA intermediate adhesive layer. PAA was grafted onto the surface of the PES membranes through free radicals generated by the cold plasma treatment of the PES membrane. The composite photocatalysts were characterized by FTIR, SEM-EDS, TEM-EDS, XRD, BET, UV-Vis DRS, XPS, and ESR methods demonstrating high surface area (51.0 m2/g), decreased bandgap, and the formation of active free radicals under UV light irradiation. Under photocatalysis and hydrogen peroxide activation, the degradation of AB260 (acid blue 260) catalyzed by 10%CuO@TiO2 reached about 92% after 60 min. Besides, the photocatalytic and antifouling activities of CuO@TiO2/PAA/PES membranes are high and stable over five continuous cycles. The water flux of the modified membrane was not significantly influenced and only decreased about 10% compared to the pristine membrane. In addition, the flux recovery ratios (FRR) of fouled membranes treated by photocatalysis were almost 100%.
Collapse
Affiliation(s)
- Hieu Trung Nguyen
- Department of Civil Engineering, Zhongli District, Chung Yuan Christian University, No. 200, Zhongbei Road, Taoyuan City, 32023, Taiwan
- Center for Environmental Risk Management, Zhongli District, Chung Yuan Christian University, No. 200, Zhongbei Road, Taoyuan City, 32023, Taiwan
| | - Ha Manh Bui
- Department of Environmental Sciences, Saigon University, 273 An Duong Vuong Street, District 5, Ho Chi Minh City, 70000, Vietnam
| | - Ya-Fen Wang
- Center for Environmental Risk Management, Zhongli District, Chung Yuan Christian University, No. 200, Zhongbei Road, Taoyuan City, 32023, Taiwan
- Department of Environmental Engineering, Zhongli District, Chung Yuan Christian University, No. 200, Zhongbei Road, Taoyuan City, 32023, Taiwan
| | - Sheng-Jie You
- Center for Environmental Risk Management, Zhongli District, Chung Yuan Christian University, No. 200, Zhongbei Road, Taoyuan City, 32023, Taiwan.
- Department of Environmental Engineering, Zhongli District, Chung Yuan Christian University, No. 200, Zhongbei Road, Taoyuan City, 32023, Taiwan.
| |
Collapse
|
28
|
Ma S, Shi W, Li H, Zhang Y. Simultaneously enhanced separation and antifouling properties by synergistic effect of pore-formation and surface segregation through incorporating bowl-like amphiphiles. POLYMER 2023. [DOI: 10.1016/j.polymer.2022.125616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Ye Y, Han Q, Zhao C, Ke W, Qiu M, Chen X, Fan Y. Improved negative charge of tight ceramic ultrafiltration membranes for protein-resistant and easy-cleaning performance. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Jiao S, Katz LE, Shell MS. Inverse Design of Pore Wall Chemistry To Control Solute Transport and Selectivity. ACS CENTRAL SCIENCE 2022; 8:1609-1617. [PMID: 36589891 PMCID: PMC9801506 DOI: 10.1021/acscentsci.2c01011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 05/08/2023]
Abstract
Next-generation membranes for purification and reuse of highly contaminated water require materials with precisely tuned functionality to address key challenges, including the removal of small, charge-neutral solutes. Bioinspired multifunctional membrane surfaces enhance transport properties, but the combinatorically large chemical space is difficult to navigate through trial and error. Here, we demonstrate a computational inverse design approach to efficiently identify promising materials and elucidate design rules. We develop a combined evolutionary optimization, machine learning, and molecular simulation workflow to spatially design chemical functional group patterning in a model nanopore that enhances transport of water relative to solutes. The genetic optimization discovers nonintuitive functionalization strategies that hinder the transport of solutes through the pore, simply by patterning hydrophobic methyl and hydrophilic hydroxyl functional groups. Examining these patterns, we demonstrate that they exploit an unexpected diffusive solute hopping mechanism. This inverse design procedure and the identification of novel molecular mechanisms for pore chemical heterogeneity to impact solute selectivity demonstrate new routes to the design of membrane materials with novel functionalities. More broadly, this work illustrates how chemical design is a powerful strategy to modulate water-mediated surface-solute interactions in complex, soft material systems that are relevant to diverse technologies.
Collapse
Affiliation(s)
- Sally Jiao
- Department
of Chemical Engineering, University of California, Santa Barbara, California93106, United States
| | - Lynn E. Katz
- Department
of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas78712, United States
| | - M. Scott Shell
- Department
of Chemical Engineering, University of California, Santa Barbara, California93106, United States
| |
Collapse
|
31
|
Ahmad NNR, Mohammad AW, Mahmoudi E, Ang WL, Leo CP, Teow YH. An Overview of the Modification Strategies in Developing Antifouling Nanofiltration Membranes. MEMBRANES 2022; 12:membranes12121276. [PMID: 36557183 PMCID: PMC9780855 DOI: 10.3390/membranes12121276] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 05/12/2023]
Abstract
Freshwater deficiency has become a significant issue affecting many nations' social and economic development because of the fast-growing demand for water resources. Nanofiltration (NF) is one of the promising technologies for water reclamation application, particularly in desalination, water, and wastewater treatment fields. Nevertheless, membrane fouling remains a significant concern since it can reduce the NF membrane performance and increase operating expenses. Consequently, numerous studies have focused on improving the NF membrane's resistance to fouling. This review highlights the recent progress in NF modification strategies using three types of antifouling modifiers, i.e., nanoparticles, polymers, and composite polymer/nanoparticles. The correlation between antifouling performance and membrane properties such as hydrophilicity, surface chemistry, surface charge, and morphology are discussed. The challenges and perspectives regarding antifouling modifiers and modification strategies conclude this review.
Collapse
Affiliation(s)
- Nor Naimah Rosyadah Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Abdul Wahab Mohammad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: author:
| | - Ebrahim Mahmoudi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Wei Lun Ang
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Choe Peng Leo
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia
| | - Yeit Haan Teow
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
32
|
Xue J, Li J, Gao J, Wang M, Ma S. CoFe2O4 functionalized PVDF membrane for synchronous oil/water separation and peroxomonosulfate activation toward aromatic pollutants degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
33
|
Yang M, Wang J, Zhang M, Liu K, Huang H. Particle oscillation at corrugated membrane-water interface: An in-situ direct observation and implication to membrane fouling control. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
34
|
Wang Y, He Y, Yu J, Li H, Li S, Tian S. A freestanding dual-cross-linked membrane with robust anti-crude oil-fouling performance for highly efficient crude oil-in-water emulsion separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Wang C, Wang H, Li Y, Feng Y, Liu ZQ, Zhao TS, Cao L. Zwitterionic metal-organic frameworks modified polyamide membranes with enhanced water flux and antifouling capacity. CHEMOSPHERE 2022; 309:136684. [PMID: 36195125 DOI: 10.1016/j.chemosphere.2022.136684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/13/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Antifouling properties are considered to be crucial parameter to polyamide (PA) composite nanofiltration (NF) membranes for practical applications. In this study, an antifouling material, surface zwitterionization of Metal-organic frameworks (Z-MIL-101 (Cr)) was firstly prepared by decorating zwitterionic polymer onto the MOFs surface. Subsequently, a novel type of MOFs-based hybrid membranes were fabricated via mixing the Z-MIL-101 (Cr) nanoparticle with the organic matrix by interfacial polymerization technique. The most optimal hybrid membrane had a high water permeation of 26 L m-2 h-1 bar-1, which was 2.1 times higher than that pristine PA membrane, while the retention for Na2SO4 was still kept at a considerably high value of 93%. The significant increased water flue can attribute to the existence of water channels generated by the Z-MIL-101 (Cr). More important, the antifouling property of the hybrid membrane was much better than that pristine PA, which was due to the formation of superhydrophilic liquid layer surrounding the zwitterionic groups. The combination of the micropore structure of the MOFs and the excellent antifouling properties of the decorated zwitterionic polymer effectively improved separation performances and antifouling ability, which makes these hybrid membranes promising for water purification.
Collapse
Affiliation(s)
- Chongbin Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, PR China
| | - Hongchao Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, PR China
| | - Yongsheng Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, PR China
| | - Yuanyuan Feng
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, PR China.
| | - Zhong Qiu Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, PR China
| | - Tian Sheng Zhao
- State Key Laboratory of High-efficiency Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, PR China
| | - Li Cao
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
36
|
Li M, Yang Y, Zhu L, Wang G, Zeng Z, Xue L. Anti-fouling and highly permeable thin-film composite forward osmosis membranes based on the reactive polyvinylidene fluoride porous substrates. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Yang X, Ma X, Yuan J, Feng X, Zhao Y, Chen L. Enhanced the antifouling and antibacterial performance of
PVC
/
ZnO‐CMC
nanoparticles ultrafiltration membrane. J Appl Polym Sci 2022. [DOI: 10.1002/app.53412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Xin Yang
- School of Material Science and Engineering Tiangong University Tianjin China
| | - Xiao Ma
- School of Material Science and Engineering Tiangong University Tianjin China
| | - Jingjing Yuan
- School of Material Science and Engineering Tiangong University Tianjin China
| | - Xia Feng
- School of Material Science and Engineering Tiangong University Tianjin China
- State Key Laboratory of Separation Membrane and Membrane Processes Tiangong University Tianjin China
| | - Yiping Zhao
- School of Material Science and Engineering Tiangong University Tianjin China
- State Key Laboratory of Separation Membrane and Membrane Processes Tiangong University Tianjin China
| | - Li Chen
- School of Material Science and Engineering Tiangong University Tianjin China
- State Key Laboratory of Separation Membrane and Membrane Processes Tiangong University Tianjin China
| |
Collapse
|
38
|
Xiong C, Xiong W, Mu Y, Pei D, Wan X. Mussel-inspired polymeric coatings with the antifouling efficacy controlled by topologies. J Mater Chem B 2022; 10:9295-9304. [PMID: 36345846 DOI: 10.1039/d2tb01851a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Block copolymers with different topologies (linear, loop, 3-armed and 4-armed polymers) containing poly(N-vinylpyrrrolidone) (PVP) antifouling blocks and terminal poly(dopamine-acrylamide) (PDAA) anchoring blocks were synthesized. These polymers can form a robust antifouling nanolayer on various surfaces. The morphologies of the polymer-modified surfaces are strongly dependent on the topologies of the polymers: with the increase of arm numbers, the morphology evolves from the smooth surface to the nanoscale coarse surface. As a result, the hydrophilicity of the coatings increases with the increase of degree of nanoscale roughness, and the 4-armed block copolymer forms a superhydrophilic surface with a water contact angle (WCA) as low as 8.7°. Accordingly, the linear diblock copolymer exhibits the worst antifouling efficiency, while the 4-armed polymer exhibits the best antifouling efficiency. This is the first example systematically showing that the antifouling efficacy could be adjusted simply by the topology of the coatings. Cell viability studies revealed that all of the copolymers exhibit excellent cytocompatibility. These biocompatible polymers with narrowly distributed molecular weight might find niches for antifouling applications in various areas such as anti-protein absorption, anti-bacterial and anti-marine fouling.
Collapse
Affiliation(s)
- Chenxi Xiong
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, P. R. China.
| | - Wenjuan Xiong
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, P. R. China.
| | - Youbing Mu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, P. R. China.
| | - Danfeng Pei
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 210062, P. R. China.
| | - Xiaobo Wan
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, P. R. China.
| |
Collapse
|
39
|
He Y, Zhang E, Feng X, Chen L, Jiang Z. Facile optimization of grafted chain length on antifouling properties based on hyperbranched polyglycerol. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Recovery of nisin from culture supernatants of Lactococcus lactis by ultrafiltration: Flux properties and separation efficiency. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Wang Y, Bao C, Li D, Chen J, Xu X, Wen S, Guan Z, Zhang Q, Ding Y, Xin Y, Zou Y. Antifouling and chlorine-resistant cyclodextrin loose nanofiltration membrane for high-efficiency fractionation of dyes and salts. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
42
|
Wang H, Dai R, Wang L, Wang X, Wang Z. Membrane fouling behaviors in a full-scale zero liquid discharge system for cold-rolling wastewater brine treatment: A comprehensive analysis on multiple membrane processes. WATER RESEARCH 2022; 226:119221. [PMID: 36242936 DOI: 10.1016/j.watres.2022.119221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/10/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The challenge of water scarcity drives zero liquid discharge (ZLD) treatment to maximize reuse of industrial wastewater. Deciphering the characteristics and mechanisms of membrane fouling in the membrane-based ZLD system is crucial for the development of effective fouling control strategies. However, current studies only focused on the membrane fouling of single step, lacking in-depth understanding on the ZLD systems using multiple membrane processes. Herein, membrane fouling characteristics and mechanisms in a full-scale ZLD system for cold-rolling wastewater brine treatment were investigated via a comprehensive analysis on multiple nanofiltration (NF) and reverse osmosis (RO) membrane processes. The membrane fouling behaviors showed distinct characteristics along the wastewater flow direction in the ZLD system. Increasing amounts of foulants were deposited on the membrane surfaces with the sequence of the 1st pass RO, 1st stage NF, and 2nd stage NF processes. The organic fouling and silica scaling were more intensive in the 1st stage NF and 2nd stage NF for treating the brine of the 1st pass RO, as the foulants were rejected and concentrated by previous membrane processes. Severe inorganic fouling, containing amorphous SiO2, Al2O3, and Al2SiO5, occurred on the membrane surface of the 2nd pass RO membrane, due to the recirculated high-concentration silica, high water recovery, and concentration polarization. For the 3rd pass RO process, both the amounts of organic and inorganic foulants decreased dramatically, due to the low foulant concentration in its influent. This work provides a comprehensive understanding of membrane fouling in a membrane-based ZLD system, facilitating the development of membrane fouling control strategies for multiple membrane processes.
Collapse
Affiliation(s)
- Hailan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Lingna Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
43
|
Li R, Cao S, Feng X, Don J, Guo X, Wang H, Zhang Y. Guanidinium-based loose nanofiltration membranes for dye purification and chlorine resistance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
44
|
Said SM, Wang T, Feng YN, Ren Y, Zhao ZP. Recent Progress in Membrane Technologies Based on Metal–Phenolic Networks: A Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Seleman Mahamoud Said
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, Beijing, 102488, P. R. China
- University of Dar es Salaam, College of Engineering and Technology, Department of Chemical and Process Engineering, P.O. Box 35131, Dar es Salaam, 16103, United Republic of Tanzania
| | - Tao Wang
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, Beijing, 102488, P. R. China
| | - Ying-Nan Feng
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, Beijing, 102488, P. R. China
| | - Yongsheng Ren
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Department of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Zhi-Ping Zhao
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, Beijing, 102488, P. R. China
| |
Collapse
|
45
|
He Y, Xing S, Jiang P, Zhao Y, Chen L. Volume Overlap Variation within Hyperbranched Polymer Brushes Resolves Topology Effects against Protein Fouling. Biomacromolecules 2022; 23:4924-4933. [PMID: 36239027 DOI: 10.1021/acs.biomac.2c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hyperbranched polymer brushes with a three-dimensional dendritic structure are used in antifouling applications to obtain bioinert and compact dendritic structures. Though hyperbranched polyglycerol (HPG) is extensively utilized in the antifouling layer, there is still a lack of direct studies on the relationship between the interfacial properties and topology effect of hyperbranched polymer brushes. Here, we established the degree of chain volume overlap (Dv) to characterize the spatial shielding efficiency generated by HPG brushes and investigated the impact mechanism of the variable chain length on the interfacial physicochemical properties. The results revealed the Dv-relevant feature of performance that the most densely packed HPG brushes for a medium-length LHPG3.07 enable the functional surface to display optimal antifouling performance toward protein adsorption by forming the most effective space barrier and hydrated layer in appropriate molecular weights and graft density. Moreover, we clarified the advance of hyperbranched polymer brushes exhibited in topology effects for imparting surface-enhanced resistance to biofouling relies on the generable higher steric hindrance as compared with linear analogs. This study established a Dv-relevant evaluation model for acquiring an optimized antifouling surface based on the appropriate choice of polymer structure, topology morphologies, and grafting parameters.
Collapse
Affiliation(s)
- Yang He
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin300387, China.,Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
| | - Songlin Xing
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin300387, China
| | - Peng Jiang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin300387, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin300387, China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin300387, China
| |
Collapse
|
46
|
Ma R, Lu X, Zhang S, Ren K, Gu J, Liu C, Liu Z, Wang H. Constructing discontinuous silicon-island structure with low surface energy based on the responsiveness of hydrophilic layers to improve the anti-fouling property of membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
47
|
Soyekwo F, Wen H, Liao D, Liu C. Fouling-resistant ionic graft-polyamide nanofiltration membrane with improved permeance for lithium separation from MgCl2/LiCl mixtures. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Oxley A, Livingston AG. Anti-fouling membranes for organic solvent nanofiltration (OSN) and organic solvent ultrafiltration (OSU): graft modified polybenzimidazole (PBI). J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
49
|
Tannic acid (TA)-based coating modified membrane enhanced by successive inkjet printing of Fe3+ and sodium periodate (SP) for efficient oil-water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
50
|
Tong Y, Wang Y, Bian S, Ge H, Xiao F, Li L, Gao C, Zhu G. Incorporating Ag@RF core-shell nanomaterials into the thin film nanocomposite membrane to improve permeability and long-term antibacterial properties for nanofiltration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156231. [PMID: 35643139 DOI: 10.1016/j.scitotenv.2022.156231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Ag@resorcinol-formaldehyde resin (Ag@RF) core-shell nanomaterials were prepared by Stöber method, and introduced into polyamide (PA) selective layer of thin-film nanocomposite (TFN) membranes through the interfacial polymerization (IP) process. Due to the abundant hydroxyl groups on the surface and suitable particle size, Ag@RF nanoparticles (Ag@RFs) could be uniformly dispersed in the piperazine aqueous solution and participate in the IP process to precisely regulate the microstructure of the PA selective layer. The resulting "crater structure" and irregular granular structure enlarged the permeable area and contributed to the surface hydrophilicity. For the nanofiltration application, the water flux of TFN membrane modified by Ag@RFs to Na2SO4 solution reached 150 L·m-2·h-1 which was 87.5% greater than TFC, and salt rejection was maintained. The antibacterial efficiency of the prepared TFN membrane on E. coli reached 99.6% in the antibacterial experiment. In addition, due to the special structure of Ag@RFs, the TFN membrane also showed an expected slow-release capability of Ag+, allowing for long-term anti-biofouling properties. This work demonstrates that Ag@RF core-shell nanoparticles with high compatibility of organic nanoparticles and antibacterial properties of Ag nanoparticles could be used as promising nanofillers for designing functional nanofiltration TFN membranes.
Collapse
Affiliation(s)
- Yunbo Tong
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanyi Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Shengjun Bian
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Haochen Ge
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Fangkun Xiao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Lingling Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Congjie Gao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Guiru Zhu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|