1
|
Mao L, Yin R, Yang L, Zhao D. Elucidating the function of clusterin in the progression of diabetic kidney disease. Front Pharmacol 2025; 16:1573654. [PMID: 40438587 PMCID: PMC12116493 DOI: 10.3389/fphar.2025.1573654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/23/2025] [Indexed: 06/01/2025] Open
Abstract
Diabetic kidney disease (DKD) is a common microvascular complication and the main cause of death in diabetic patients. Metabolic disorders can accelerate the occurrence and development of DKD through a variety of ways, Recent studies have found that Clusterin (Clu) levels are associated with renal dysfunction and can be used as a biomarker of renal tubular injury, while preclinical studies reveal its renoprotective function. This article reviews the molecular mechanisms of Clu in the interaction between various cells in DKD. In addition, we discuss the latest research progress of Clu in the field of DKD. This review aims to explore Clu as a potential therapeutic target for DKD and provide some guidance for future clinical treatment.
Collapse
Affiliation(s)
| | | | - Longyan Yang
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Dong Zhao
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Kostopoulou E, Kalavrizioti D, Davoulou P, Papachristou E, Sinopidis X, Fouzas S, Dassios T, Gkentzi D, Kyriakou SI, Karatza A, Dimitriou G, Goumenos D, Spiliotis BE, Plotas P, Papasotiriou M. Monocyte Chemoattractant Protein-1 (MCP-1), Activin-A and Clusterin in Children and Adolescents with Obesity or Type-1 Diabetes Mellitus. Diagnostics (Basel) 2024; 14:450. [PMID: 38396489 PMCID: PMC10887959 DOI: 10.3390/diagnostics14040450] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/04/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
UNLABELLED Inflammation plays a crucial role in diabetes and obesity through macrophage activation. Macrophage chemoattractant protein-1 (MCP-1), activin-A, and clusterin are chemokines with known roles in diabetes and obesity. The aim of this study is to investigate their possible diagnostic and/or early prognostic values in children and adolescents with obesity and type-1 diabetes mellitus (T1DM). METHODS We obtained serum samples from children and adolescents with a history of T1DM or obesity, in order to measure and compare MCP-1, activin-A, and clusterin concentrations. RESULTS Forty-three subjects were included in each of the three groups (controls, T1DM, and obesity). MCP-1 values were positively correlated to BMI z-score. Activin-A was increased in children with obesity compared to the control group. A trend for higher values was detected in children with T1DM. MCP-1 and activin-A levels were positively correlated. Clusterin levels showed a trend towards lower values in children with T1DM or obesity compared to the control group and were negatively correlated to renal function. CONCLUSIONS The inflammation markers MCP-1, activin-A, and clusterin are not altered in children with T1DM. Conversely, obesity in children is positively correlated to serum MCP-1 values and characterized by higher activin-A levels, which may reflect an already established systematic inflammation with obesity since childhood.
Collapse
Affiliation(s)
- Eirini Kostopoulou
- Division of Pediatric Endocrinology, Department of Pediatrics, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (E.K.); (B.E.S.)
| | - Dimitra Kalavrizioti
- Department of Nephrology and Kidney Transplantation, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (D.K.); (P.D.); (E.P.); (D.G.); (M.P.)
| | - Panagiota Davoulou
- Department of Nephrology and Kidney Transplantation, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (D.K.); (P.D.); (E.P.); (D.G.); (M.P.)
| | - Evangelos Papachristou
- Department of Nephrology and Kidney Transplantation, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (D.K.); (P.D.); (E.P.); (D.G.); (M.P.)
| | - Xenophon Sinopidis
- Department of Pediatric Surgery, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Sotirios Fouzas
- Department of Pediatrics, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (S.F.); (T.D.); (D.G.); (A.K.); (G.D.)
| | - Theodore Dassios
- Department of Pediatrics, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (S.F.); (T.D.); (D.G.); (A.K.); (G.D.)
| | - Despoina Gkentzi
- Department of Pediatrics, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (S.F.); (T.D.); (D.G.); (A.K.); (G.D.)
| | - Stavroula Ioanna Kyriakou
- Department of Pediatric Surgery, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Ageliki Karatza
- Department of Pediatrics, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (S.F.); (T.D.); (D.G.); (A.K.); (G.D.)
| | - Gabriel Dimitriou
- Department of Pediatrics, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (S.F.); (T.D.); (D.G.); (A.K.); (G.D.)
| | - Dimitrios Goumenos
- Department of Nephrology and Kidney Transplantation, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (D.K.); (P.D.); (E.P.); (D.G.); (M.P.)
| | - Bessie E. Spiliotis
- Division of Pediatric Endocrinology, Department of Pediatrics, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (E.K.); (B.E.S.)
| | - Panagiotis Plotas
- Department of Speech and Language Therapy, School of Health Rehabilitation Sciences, University of Patras, 26504 Patras, Greece;
| | - Marios Papasotiriou
- Department of Nephrology and Kidney Transplantation, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (D.K.); (P.D.); (E.P.); (D.G.); (M.P.)
| |
Collapse
|
3
|
Wang Y, Yu H, Ma X, Wang Y, Liu W, Zhang H, Chen W, Yu S, Bao Y, Yang Y. Clusterin is closely associated with adipose tissue insulin resistance. Diabetes Metab Res Rev 2023; 39:e3688. [PMID: 37415417 DOI: 10.1002/dmrr.3688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 02/26/2023] [Accepted: 06/18/2023] [Indexed: 07/08/2023]
Abstract
AIMS Clusterin (encoded by CLU) is a novel adipokine. Serum clusterin levels were elevated in populations with obesity and diabetes. Adipose tissue insulin resistance (Adipo-IR) is proposed as an early metabolic defect that precedes systemic insulin resistance. Herein, we aimed to investigate the relationship between serum clusterin levels and Adipo-IR. CLU expression in human abdominal adipose tissues and clusterin secretion in human adipocytes was also explored. MATERIALS AND METHODS A total of 201 participants (aged 18-62 years, 139 of whom were obese) were recruited. Enzyme-linked immunosorbent assay was used to measure serum clusterin levels. Adipo-IR was calculated from the product of fasting free fatty acids and fasting insulin levels. Transcriptome sequencing of abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) was performed. Human adipocytes were used to detect the secretion of clusterin. RESULTS Serum clusterin levels were independently associated with Adipo-IR after adjusting for several confounding factors (standardised β = 0.165, p = 0.021). CLU expression in VAT and SAT was associated with obesity-related metabolic risk factors. Higher CLU expression in VAT was accompanied by an increase in collagen accumulation. Clusterin secretion in differentiated human adipocytes was stimulated by insulin and inhibited by rosiglitazone. CONCLUSIONS Clusterin is strongly associated with Adipo-IR. Serum clusterin may function as an effective indicator of adipose tissue insulin resistance.
Collapse
Affiliation(s)
- Yansu Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Haoyong Yu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Xiaojing Ma
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Yufei Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Weijie Liu
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Hongwei Zhang
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Chen
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Song Yu
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| |
Collapse
|
4
|
Padhy B, Kapuganti RS, Hayat B, Mohanty PP, Alone DP. Wide-spread enhancer effect of SNP rs2279590 on regulating epoxide hydrolase-2 and protein tyrosine kinase 2-beta gene expression. Gene 2023; 854:147096. [PMID: 36470481 DOI: 10.1016/j.gene.2022.147096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/20/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Polymorphisms in the PTK2B-CLU locus have been associated with various neurodegenerative disorders including pseudoexfoliation glaucoma, Alzheimer's and Parkinson's. Many of these genomic variants are within enhancer elements and modulate genes associated with the disease pathogenesis. However, mechanisms by which they control the gene expression is unknown. Previously, we have shown that clusterin enhancer element surrounding rs2279590 intronic variant, a risk factor in the pathogenesis of pseudoexfoliation glaucoma modulates gene expression of clusterin (CLU), protein tyrosine kinase 2 beta (PTK2B) and epoxide hydrolase 2 (EPHX2). Here, we explored the mechanism by which rs2279590 enhancer regulates their gene expression through chromosome conformation capture assays. 3C assays revealed a strong enhancer-promoter chromatin interaction between rs2279590 enhancer and promoters of genes CLU, PTK2B and EPHX2 in the HEK293 wild type cells. Moreover, genomic knockout of rs2279590 element significantly decreases the chromatin-chromatin cross-linking frequency suggesting gene regulation at transcriptional level through formation of chromatin loop. In addition, molecular assays showed a significantly decreased expression of EPHX2 but not PTK2B at both mRNA and protein level in the lens capsule of pseudoexfoliation affected patients in comparison to control subjects implying a role of EPHX2 in the pathogenesis of pseudoexfoliation.
Collapse
Affiliation(s)
- Biswajit Padhy
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Ramani Shyam Kapuganti
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Bushra Hayat
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | | | - Debasmita Pankaj Alone
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
5
|
Bilovol OM, Dunaeva IP, Kravchun PP. METABOLIC AND HORMONAL FEATURES OF CHRONIC HEART FAILURE IN PERSONS WITH POST-INFARCTION CARDIOSCLEROSIS WITH TYPE 2 DIABETES MELLITUS AND OBESITY. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:2831-2834. [PMID: 36591775 DOI: 10.36740/wlek202211218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The aim: To determine the role of lipid metabolism and fractalkin and clusterin in the progression of chronic heart failure in patients with postinfarction cardiosclerosis with concomitant type 2 diabetes and obesity. PATIENTS AND METHODS Materials and methods: A retrospective analysis of a comprehensive examination of 67 patients with postinfarction cardiosclerosis with concomitant type 2 diabetes and obesity. All patients were divided into 3 groups depending on the functional class (FC) of CHF: 1 group (n = 22) - patients with CHF II FC; Group 2 (n = 23) - patients with CHF III FC; Group 3 (n = 22) - patients with CHF IV FC. All patients were examined clinically, they were instrumental, biochemical and hormonal examination. RESULTS Results: With the progression of CHF from FC II to FC III there is a deterioration of lipid metabolism: a significant increase in cholesterol levels by 5.5%, TG - by 15.7%, LDL cholesterol - by 74.4%, VLDL cholesterol - by 15 , 9%, reduction of HDL cholesterol - by 27.6% (p <0,05). An analysis of the fractal equation showing that ailing on CHF is advised by FC; rіven clusterin -decrease. CONCLUSION Conclusions: Classical changes in patients with postinfarction cardiosclerosis with CHF and concomitant type 2 diabetes mellitus and obesity , which are the formation of atherogenic lipid metabolism disorders associated with body weight, as well as changes in the latest indicators such as fractalkin and clusterin , indicating the role of these molecules in the progression of CHF.
Collapse
Affiliation(s)
- Olexandr M Bilovol
- KHARKIV NATIONAL MEDICAL UNIVERSITY OF THE MINISTRY OF HEALTH OF UKRAINE, KHARKIV, UKRAINE
| | - Inna P Dunaeva
- KHARKIV NATIONAL MEDICAL UNIVERSITY OF THE MINISTRY OF HEALTH OF UKRAINE, KHARKIV, UKRAINE
| | - Pavel P Kravchun
- KHARKIV NATIONAL MEDICAL UNIVERSITY OF THE MINISTRY OF HEALTH OF UKRAINE, KHARKIV, UKRAINE
| |
Collapse
|
6
|
Croyal M, Wargny M, Chemello K, Chevalier C, Blanchard V, Bigot-Corbel E, Lambert G, Le May C, Hadjadj S, Cariou B. Plasma apolipoprotein concentrations and incident diabetes in subjects with prediabetes. Cardiovasc Diabetol 2022; 21:21. [PMID: 35130909 PMCID: PMC8822824 DOI: 10.1186/s12933-022-01452-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
Background The identification of circulating biomarkers associated with the risk of type 2 diabetes (T2D) is useful for improving the current prevention strategies in the most at-risk patients. Here, we aimed to investigate the association of plasma apolipoprotein concentrations in prediabetes subjects with the incidence of new-onset T2D during follow-up. Methods In the IT-DIAB prospective study, 307 participants with impaired fasting glucose levels (fasting plasma glucose [FPG]: 110–125 mg/dL) were followed yearly for 5 years. The onset of T2D was defined as a first FPG value ≥ 126 mg/dL during follow-up. Apolipoprotein (apo)A-I, A-II, A-IV, B100, C-I, C-II, C-III, C-IV, D, E, F, H, J, L1, M, and (a) plasma concentrations were determined by mass spectrometry. Correlations between apolipoproteins and metabolic parameters at baseline were assessed by Spearman’s coefficients. Kaplan–Meier curves were drawn using a ternary approach based on terciles and incident T2D. The association between plasma apolipoproteins concentrations and the incidence of T2D was determined using Cox proportional-hazards models. Results During a median follow-up of 5-year, 115 participants (37.5%) developed T2D. After adjustment for age, sex, body mass index, FPG, HbA1c, and statin use, the plasma levels of apoC-I, apoC-II, apoC-III, apoE, apoF, apoH, apoJ, and apoL1 were positively associated with a high risk for T2D. After further adjustment for plasma triglycerides, only apoE (1 SD natural-log-transformed hazard ratio: 1.28 [95% confidence interval: 1.06; 1.54]; p = 0.010), apoF (1.22 [1.01; 1.48]; p = 0.037), apoJ (1.24 [1.03; 1.49]; p = 0.024), and apoL1 (1.26 [1.05; 1.52]; p = 0.014) remained significantly associated with the onset of T2D. Kaplan–Meier survival curves also showed that the lower third of plasma apoE levels (< 5.97 mg/dL) was significantly associated with a lower risk of conversion to T2D (log-rank test, p = 0.002) compared to the middle and upper thirds. Conclusions The plasma apoE levels are positively associated with the risk of T2D in prediabetes subjects, independently of traditional risk factors. The possible associations of apoF, apoJ, and apoL1 with T2D risk also pave the way for further investigations. Trial registration This trial was registered at clinicaltrials.gov as NCT01218061 and NCT01432509 Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01452-5.
Collapse
Affiliation(s)
- Mikaël Croyal
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, 8 quai Moncousu, 44000, Nantes, France.,Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 44000, Nantes, France.,CRNH-Ouest Mass Spectrometry Core Facility, 44000, Nantes, France
| | - Matthieu Wargny
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, 8 quai Moncousu, 44000, Nantes, France.,CHU de Nantes, INSERM CIC 1413, Pôle Hospitalo-Universitaire 11: Santé Publique, Clinique des données, Nantes, France
| | - Kevin Chemello
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France
| | - Chloé Chevalier
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, 8 quai Moncousu, 44000, Nantes, France.,CRNH-Ouest Mass Spectrometry Core Facility, 44000, Nantes, France
| | - Valentin Blanchard
- Departments of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Edith Bigot-Corbel
- Department of Biochemistry, CHU Nantes, G et R Laënnec Hospital, Bd Jacques Monod, Nantes, France
| | - Gilles Lambert
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France
| | - Cédric Le May
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, 8 quai Moncousu, 44000, Nantes, France
| | - Samy Hadjadj
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, 8 quai Moncousu, 44000, Nantes, France.,CRNH-Ouest Mass Spectrometry Core Facility, 44000, Nantes, France
| | - Bertrand Cariou
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, 8 quai Moncousu, 44000, Nantes, France.
| |
Collapse
|
7
|
Ozuynuk AS, Erkan AF, Dogan N, Ekici B, Erginel-Unaltuna N, Kurmus O, Coban N. Examining the effects of the CLU and APOE polymorphisms' combination on coronary artery disease complexed with type 2 diabetes mellitus. J Diabetes Complications 2022; 36:108078. [PMID: 34686405 DOI: 10.1016/j.jdiacomp.2021.108078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/24/2023]
Abstract
AIMS Coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM) are important and increasing public health problems. This study aimed to identify the impact of APOE and CLU gene polymorphisms on the prevalence of both diseases, along with the effect of these polymorphisms on lipid profile and glucose metabolism. METHODS 736 CAD patients (≥50 stenosis) and 549 non-CAD subjects (≤30 stenosis) were genotyped for APOE (rs429358 and rs7412) and CLU (rs11136000) gene polymorphisms using hydrolysis probes in real-time PCR. Blood samples of the individuals were drawn before coronary angiography and biochemical analyses were done. The associations between the polymorphisms and the selected parameters were assessed using statistical analysis. RESULTS In this study, the ε2 and ε4 isoforms of apoE were associated with serum lipid levels and TC/HDL-C and LDL-C/HDL-C ratios in analysis adjusted for several confounders and in crude analysis. It was observed that CLU T allele carrier non-CAD subjects had lower glycosylated hemoglobin levels. Furthermore, the effects of APOE and CLU polymorphisms were assessed on CAD and T2DM presence. In crude and multiple logistic regression analyses, the ε2 isoform carriers had a lower risk for CAD complexed with T2DM. When the combinational effects of APOE and CLU polymorphisms were examined, the ε2 and T allele carriers had decreased risk for CAD complexed with T2DM compared to non-carriers. CONCLUSIONS In conclusion, the combination of APOE and CLU polymorphisms is associated with CAD-DM status along with the APOE ε2 isoform by itself, and the apoE isoforms are strongly associated with serum lipid levels.
Collapse
Affiliation(s)
- Aybike Sena Ozuynuk
- Istanbul University, Aziz Sancar Institute for Experimental Medicine, Department of Genetics, Istanbul, Turkey; Istanbul University, Graduate School of Health Sciences, Istanbul, Turkey
| | - Aycan Fahri Erkan
- Ufuk University, Faculty of Medicine, Department of Cardiology, Ankara, Turkey
| | - Nazli Dogan
- Istanbul University, Aziz Sancar Institute for Experimental Medicine, Department of Genetics, Istanbul, Turkey; Istanbul University, Graduate School of Health Sciences, Istanbul, Turkey
| | - Berkay Ekici
- Ufuk University, Faculty of Medicine, Department of Cardiology, Ankara, Turkey
| | - Nihan Erginel-Unaltuna
- Istanbul University, Aziz Sancar Institute for Experimental Medicine, Department of Genetics, Istanbul, Turkey
| | - Ozge Kurmus
- Ufuk University, Faculty of Medicine, Department of Cardiology, Ankara, Turkey
| | - Neslihan Coban
- Istanbul University, Aziz Sancar Institute for Experimental Medicine, Department of Genetics, Istanbul, Turkey.
| |
Collapse
|
8
|
|
9
|
Wittwer J, Bradley D. Clusterin and Its Role in Insulin Resistance and the Cardiometabolic Syndrome. Front Immunol 2021; 12:612496. [PMID: 33717095 PMCID: PMC7946829 DOI: 10.3389/fimmu.2021.612496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
The cardiometabolic syndrome involves a clustering of metabolic and cardiovascular factors which increase the risk of patients developing both Type 2 Diabetes Mellitus and cardio/cerebrovascular disease. Although the mechanistic underpinnings of this link remain uncertain, key factors include insulin resistance, excess visceral adiposity, atherogenic dyslipidemia, and endothelial dysfunction. Of these, a state of resistance to insulin action in overweight/obese patients appears to be central to the pathophysiologic process. Given the increasing prevalence of obesity-related Type 2 Diabetes, coupled with the fact that cardiovascular disease is the number one cause of mortality in this patient population, a more thorough understanding of the cardiometabolic syndrome and potential options to mitigate its risk is imperative. Inherent in the pathogenesis of insulin resistance is an underlying state of chronic inflammation, at least partly in response to excess adiposity. Within obese adipose tissue, an immunomodulatory shift occurs, involving a preponderance of pro-inflammatory immune cells and cytokines/adipokines, along with antigen presentation by adipocytes. Therefore, various adipokines differentially expressed by obese adipocytes may have a significant effect on cardiometabolism. Clusterin is a molecular chaperone that is widely produced by many tissues throughout the body, but is also preferentially overexpressed by obese compared lean adipocytes and relates strongly to multiple components of the cardiometabolic syndrome. Herein, we summarize the known and potential roles of circulating and adipocyte-specific clusterin in cardiometabolism and discuss potential further investigations to determine if clusterin is a viable target to attenuate both metabolic and cardiovascular disease.
Collapse
Affiliation(s)
- Jennifer Wittwer
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Diabetes and Metabolism Research Center, The Ohio State University, Columbus, OH, United States
| | - David Bradley
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Diabetes and Metabolism Research Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
Hong SW, Lee J, Kim MJ, Moon SJ, Kwon H, Park SE, Rhee EJ, Lee WY. Clusterin Protects Lipotoxicity-Induced Apoptosis via Upregulation of Autophagy in Insulin-Secreting Cells. Endocrinol Metab (Seoul) 2020; 35:943-953. [PMID: 33261311 PMCID: PMC7803614 DOI: 10.3803/enm.2020.768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There is a great need to discover factors that could protect pancreatic β-cells from apoptosis and thus prevent diabetes mellitus. Clusterin (CLU), a chaperone protein, plays an important role in cell protection in numerous cells and is involved in various cellular mechanisms, including autophagy. In the present study, we investigated the protective role of CLU through autophagy regulation in pancreatic β-cells. METHODS To identify the protective role of CLU, mouse insulinoma 6 (MIN6) cells were incubated with CLU and/or free fatty acid (FFA) palmitate, and cellular apoptosis and autophagy were examined. RESULTS Treatment with CLU remarkably upregulated microtubule-associated protein 1-light chain 3 (LC3)-II conversion in a doseand time-dependent manner with a significant increase in the autophagy-related 3 (Atg3) gene expression level, which is a mediator of LC3-II conversion. Moreover, co-immunoprecipitation and fluorescence microscopy experiments showed that the molecular interaction of LC3 with Atg3 and p62 was markedly increased by CLU. Stimulation of LC3-II conversion by CLU persisted in lipotoxic conditions, and FFA-induced apoptosis and dysfunction were simultaneously improved by CLU treatment. Finally, inhibition of LC3-II conversion by Atg3 gene knockdown markedly attenuated the cytoprotective effect of CLU. CONCLUSION Taken together, these findings suggest that CLU protects pancreatic β-cells against lipotoxicity-induced apoptosis via autophagy stimulation mediated by facilitating LC3-II conversion. Thus, CLU has therapeutic effects on FFA-induced pancreatic β-cell dysfunction.
Collapse
Affiliation(s)
- Seok-Woo Hong
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Jinmi Lee
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Min Jeong Kim
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Sun Joon Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Hyemi Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Se Eun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| |
Collapse
|
11
|
Meneses MJ, Silvestre R, Sousa-Lima I, Macedo MP. Paraoxonase-1 as a Regulator of Glucose and Lipid Homeostasis: Impact on the Onset and Progression of Metabolic Disorders. Int J Mol Sci 2019; 20:ijms20164049. [PMID: 31430977 PMCID: PMC6720961 DOI: 10.3390/ijms20164049] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
Metabolic disorders are characterized by an overall state of inflammation and oxidative stress, which highlight the importance of a functional antioxidant system and normal activity of some endogenous enzymes, namely paraoxonase-1 (PON1). PON1 is an antioxidant and anti-inflammatory glycoprotein from the paraoxonases family. It is mainly expressed in the liver and secreted to the bloodstream, where it binds to HDL. Although it was first discovered due to its ability to hydrolyze paraoxon, it is now known to have an antiatherogenic role. Recent studies have shown that PON1 plays a protective role in other diseases that are associated with inflammation and oxidative stress, such as Type 1 and Type 2 Diabetes Mellitus and Non-Alcoholic Fatty Liver Disease. The aim of this review is to elucidate the physiological role of PON1, as well as the impact of altered PON1 levels in metabolic disorders.
Collapse
Affiliation(s)
- Maria João Meneses
- CEDOC-Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
- ProRegeM PhD Programme, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
| | - Regina Silvestre
- CEDOC-Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
- Faculdade de Ciências e Tecnologias, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Inês Sousa-Lima
- CEDOC-Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
- APDP Diabetes Portugal-Education and Research Center (APDP-ERC), 1250-203 Lisbon, Portugal
| | - Maria Paula Macedo
- CEDOC-Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal.
- APDP Diabetes Portugal-Education and Research Center (APDP-ERC), 1250-203 Lisbon, Portugal.
- Medical Sciences Department and iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
12
|
Abdulwahab RA, Alaiya A, Shinwari Z, Allaith AAA, Giha HA. LC‑MS/MS proteomic analysis revealed novel associations of 37 proteins with T2DM and notable upregulation of immunoglobulins. Int J Mol Med 2019; 43:2118-2132. [PMID: 30864687 PMCID: PMC6443330 DOI: 10.3892/ijmm.2019.4127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/04/2019] [Indexed: 12/29/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a disease associated with a number of metabolic disturbances, including protein metabolism. In the present study, blood samples were obtained from Bahraini subjects, including 6 patients with T2DM and 6 age‑ and sex‑matched, non‑diabetic, healthy controls. Depleted and non‑depleted sera were prepared from the collected blood, and the global protein expression changes were evaluated by liquid chromatography tandem mass spectrometry. Only significantly and markedly differentially‑expressed proteins (P<0.05, analysis of variance; maximum fold change ≥1.5) were considered as candidate proteins for informatics analysis. Accordingly, a total of 62 proteins were identified to be differentially expressed in T2DM, compared with control subjects, and they were grouped functionally into 16 classes of proteins. The largest class was that of the immune‑associated proteins. Additionally, ~25 of these proteins (40%) had previously been associated with DM; however, the association of the other 37 proteins with T2DM was a novel observation. The majority of the identified proteins were upregulated in T2DM. The identified proteins could be involved in the pathogenesis of the disease or serve as disease biomarkers. Further validation of the identified proteins in a large study cohort is required, in order to fully access their potential clinical usefulness.
Collapse
Affiliation(s)
- Rabab Asghar Abdulwahab
- Integrated Science Division, College of Health Sciences, University of Bahrain, Manama 32038
- Al Jawhara Centre for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| | - Ayodele Alaiya
- Proteomics Unit, Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Zakia Shinwari
- Proteomics Unit, Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | | | - Hayder A. Giha
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| |
Collapse
|
13
|
Aghajanpour-Mir M, Amjadi-Moheb F, Dadkhah T, Hosseini SR, Ghadami E, Assadollahi E, Akhavan-Niaki H, Ahmadi Ahangar A. Informative combination of CLU rs11136000, serum HDL levels, diabetes, and age as a new piece of puzzle-picture of predictive medicine for cognitive disorders. Mol Biol Rep 2019; 46:1033-1041. [PMID: 30560405 DOI: 10.1007/s11033-018-4561-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/06/2018] [Indexed: 02/02/2023]
Abstract
Clusterin (CLU) is the third most important associated risk gene in cognitive disorders. Regarding the controversy about the association of CLU rs11136000 with mild cognitive impairment (MCI), the aim of this study was to investigate a putative association of CLU rs11136000 with MCI as well as the serum biological factors with a special attention to the age as a main dimension of a multifactorial elderly disease in an Iranian elderly cohort in which the mentioned association was not previously investigated. The study also checked the association between diabetes and MCI in this population. A population of 418 individuals containing 236 MCI and 192 control subjects was recruited from the Amirkola health and aging population cohort. Serum biological indexes were assessed by biochemical and enzyme-linked immunosorbent assay, and rs11136000 genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism. Bioinformatics analyses were used to identify the putative effect of rs11136000 on the secondary structure of RNA and chromatin location in different cell lines and tissues. Type 2 diabetes was present with a higher proportion in the MCI group in comparison with the control group (P = 0.041). The frequency of the C allele of CLU rs11136000 was significantly different between cases and controls and was associated with MCI risk (OR 1.79, P = 0.019). Under a dominant genetic model, the CC genotype showed a predisposing effect in individuals aged ≥ 75 years (OR 3.33, P = 0.0004). Interestingly, under an over-dominant model, the CT genotype had a protective effect in this population (OR 4.52, P = < 0.0001). We also found a significant association between the genotypes and high-density lipoprotein (HDL) levels in MCI patients (P = 0.0004). Bioinformatics analysis showed that rs11136000 is located in the transcribed region without any regulatory features such as being enhancer or insulator. Also, the T>C transition of CLU rs11136000 could not cause significant mRNA folding (P = 0.950). Contrary to other studies on Asian populations, this study demonstrated an association between rs11136000 and MCI in an elderly Iranian population. This study also suggests that an age-dependent approach to the previous studies may be performed in order to revise the previous belief in this geographical area. The rs11136000 genotypes in combination with HDL levels and knowledge about diabetes background may be used as a predictive medicine tool for cognitive disorders.
Collapse
Affiliation(s)
- Mohsen Aghajanpour-Mir
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amjadi-Moheb
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tahereh Dadkhah
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Reza Hosseini
- Social Determinants of Health (SDH) Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Elham Ghadami
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ehsan Assadollahi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Alijan Ahmadi Ahangar
- Mobility Impairment Research Center, Babol University of Medical Sciences, University of Medical Sciences, Babol, 4717641367, Iran.
| |
Collapse
|
14
|
Pujar MK, Vastrad B, Vastrad C. Integrative Analyses of Genes Associated with Subcutaneous Insulin Resistance. Biomolecules 2019; 9:biom9020037. [PMID: 30678306 PMCID: PMC6406848 DOI: 10.3390/biom9020037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
Insulin resistance is present in the majority of patients with non-insulin-dependent diabetes mellitus (NIDDM) and obesity. In this study, we aimed to investigate the key genes and potential molecular mechanism in insulin resistance. Expression profiles of the genes were extracted from the Gene Expression Omnibus (GEO) database. Pathway and Gene Ontology (GO) enrichment analyses were conducted at Enrichr. The protein–protein interaction (PPI) network was settled and analyzed using the Search Tool for the Retrieval of Interacting Genes (STRING) database constructed by Cytoscape software. Modules were extracted and identified by the PEWCC1 plugin. The microRNAs (miRNAs) and transcription factors (TFs) which control the expression of differentially expressed genes (DEGs) were analyzed using the NetworkAnalyst algorithm. A database (GSE73108) was downloaded from the GEO databases. Our results identified 873 DEGs (435 up-regulated and 438 down-regulated) genetically associated with insulin resistance. The pathways which were enriched were pathways in complement and coagulation cascades and complement activation for up-regulated DEGs, while biosynthesis of amino acids and the Notch signaling pathway were among the down-regulated DEGs. Showing GO enrichment were cardiac muscle cell–cardiac muscle cell adhesion and microvillus membrane for up-regulated DEGs and negative regulation of osteoblast differentiation and dendrites for down-regulated DEGs. Subsequently, myosin VB (MYO5B), discs, large homolog 2(DLG2), axin 2 (AXIN2), protein tyrosine kinase 7 (PTK7), Notch homolog 1 (NOTCH1), androgen receptor (AR), cyclin D1 (CCND1) and Rho family GTPase 3 (RND3) were diagnosed as the top hub genes in the up- and down-regulated PPI network and modules. In addition, GATA binding protein 6 (GATA6), ectonucleotide pyrophosphatase/phosphodiesterase 5 (ENPP5), cyclin D1 (CCND1) and tubulin, beta 2A (TUBB2A) were diagnosed as the top hub genes in the up- and down-regulated target gene–miRNA network, while tubulin, beta 2A (TUBB2A), olfactomedin-like 1 (OLFML1), prostate adrogen-regulated mucin-like protein 1 (PARM1) and aldehyde dehydrogenase 4 family, member A1 (ALDH4A1)were diagnosed as the top hub genes in the up- and down-regulated target gene–TF network. The current study based on the GEO database provides a novel understanding regarding the mechanism of insulin resistance and may provide novel therapeutic targets.
Collapse
Affiliation(s)
- Manoj Kumar Pujar
- Department of Medicine, Pooja Hospital, Davangere577002, Karnataka, India.
| | - Basavaraj Vastrad
- Department of Pharmaceutics, SET`S College of Pharmacy, Dharwad 580002, Karnataka, India.
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India.
| |
Collapse
|
15
|
Hepatic Dysfunction Caused by Consumption of a High-Fat Diet. Cell Rep 2018; 21:3317-3328. [PMID: 29241556 DOI: 10.1016/j.celrep.2017.11.059] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/11/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022] Open
Abstract
Obesity is a major human health crisis that promotes insulin resistance and, ultimately, type 2 diabetes. The molecular mechanisms that mediate this response occur across many highly complex biological regulatory levels that are incompletely understood. Here, we present a comprehensive molecular systems biology study of hepatic responses to high-fat feeding in mice. We interrogated diet-induced epigenomic, transcriptomic, proteomic, and metabolomic alterations using high-throughput omic methods and used a network modeling approach to integrate these diverse molecular signals. Our model indicated that disruption of hepatic architecture and enhanced hepatocyte apoptosis are among the numerous biological processes that contribute to early liver dysfunction and low-grade inflammation during the development of diet-induced metabolic syndrome. We validated these model findings with additional experiments on mouse liver sections. In total, we present an integrative systems biology study of diet-induced hepatic insulin resistance that uncovered molecular features promoting the development and maintenance of metabolic disease.
Collapse
|
16
|
Duarte A, Santos M, Oliveira C, Moreira P. Brain insulin signalling, glucose metabolism and females' reproductive aging: A dangerous triad in Alzheimer's disease. Neuropharmacology 2018; 136:223-242. [PMID: 29471055 DOI: 10.1016/j.neuropharm.2018.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
|
17
|
Padhy B, Hayat B, Nanda GG, Mohanty PP, Alone DP. Pseudoexfoliation and Alzheimer's associated CLU risk variant, rs2279590, lies within an enhancer element and regulates CLU, EPHX2 and PTK2B gene expression. Hum Mol Genet 2018; 26:4519-4529. [PMID: 28973302 DOI: 10.1093/hmg/ddx329] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/22/2017] [Indexed: 12/15/2022] Open
Abstract
Genetic variants at PTK2B-CLU locus pose as high-risk factors for many age-related disorders. However, the role of these variants in disease progression is less characterized. In this study, we aimed to investigate the functional significance of a clusterin intronic SNP, rs2279590, that has been associated with pseudoexfoliation, Alzheimer's disease (AD) and diabetes. We have previously shown that the alleles at rs2279590 differentially regulate clusterin (CLU) gene expression in lens capsule tissues. This polymorphism resides in an active regulatory region marked by H3K27Ac and DNase I hypersensitive site and is an eQTL for CLU expression. Here, we report the presence of an enhancer element in surrounding region of rs2279590. Deletion of a 115 bp intronic region flanking the rs2279590 variant through CRISPR-Cas9 genome editing in HEK293 cells demonstrated a decreased clusterin gene expression. Electrophoretic mobility shift and chromatin immunoprecipitation assays show that rs2279590 with allele 'A' constitutes a transcription factor binding site for heat shock factor-1 (HSF1) but not with allele 'G'. By binding to allele 'A', HSF1 abrogates the enhancer effect of the locus as validated by reporter assays. Interestingly, rs2279590 locus has a widespread enhancer effect on two nearby genes, protein tyrosine kinase 2 beta (PTK2B) and epoxide hydrolase-2 (EPHX2); both of which have been previously associated with AD as risk factors. To summarize, our study unveils a mechanistic role of the common variant rs2279590 that can affect a variety of aging disorders by regulating the expression of a specific set of genes.
Collapse
Affiliation(s)
- Biswajit Padhy
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Jatni, Khurda, 752050, India, Homi Bhabha National Institute, Training school complex, Anushakti Nagar, Mumbai 400094, India
| | - Bushra Hayat
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Jatni, Khurda, 752050, India, Homi Bhabha National Institute, Training school complex, Anushakti Nagar, Mumbai 400094, India
| | - Gargi Gouranga Nanda
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Jatni, Khurda, 752050, India, Homi Bhabha National Institute, Training school complex, Anushakti Nagar, Mumbai 400094, India
| | | | - Debasmita Pankaj Alone
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Jatni, Khurda, 752050, India, Homi Bhabha National Institute, Training school complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
18
|
Seo JA, Kang MC, Ciaraldi TP, Kim SS, Park KS, Choe C, Hwang WM, Lim DM, Farr O, Mantzoros C, Henry RR, Kim YB. Circulating ApoJ is closely associated with insulin resistance in human subjects. Metabolism 2018; 78:155-166. [PMID: 28986164 PMCID: PMC5765540 DOI: 10.1016/j.metabol.2017.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Insulin resistance is a major risk factor for type 2 diabetes. ApolipoproteinJ (ApoJ) has been implicated in altered pathophysiologic states including cardiovascular and Alzheimer's disease. However, the function of ApoJ in regulation of glucose homeostasis remains unclear. This study sought to determine whether serum ApoJ levels are associated with insulin resistance in human subjects and if they change after interventions that improve insulin sensitivity. METHODS Serum ApoJ levels and insulin resistance status were assessed in nondiabetic (ND) and type 2 diabetic (T2D) subjects. The impacts of rosiglitazone or metformin therapy on serum ApoJ levels and glucose disposal rate (GDR) during a hyperinsulinemic/euglycemic clamp were evaluated in a separate cohort of T2D subjects. Total ApoJ protein or that associated with the HDL and LDL fractions was measured by immunoblotting or ELISA. RESULTS Fasting serum ApoJ levels were greatly elevated in T2D subjects (ND vs T2D; 100±8.3 vs. 150.6±8.5AU, P<0.0001). Circulating ApoJ levels strongly correlated with fasting glucose, fasting insulin, HOMA-IR, and BMI. ApoJ levels were significantly and independently associated with HOMA-IR, even after adjustment for age, sex, and BMI. Rosiglitazone treatment in T2D subjects resulted in a reduction in serum ApoJ levels (before vs. after treatment; 100±13.9 vs. 77±15.2AU, P=0.015), whereas metformin had no effect on ApoJ levels. The change in ApoJ levels during treatment was inversely associated with the change in GDR. Interestingly, ApoJ content in the LDL fraction was inversely associated with HOMA-IR. CONCLUSION Serum ApoJ levels are closely correlated with the magnitude of insulin resistance regardless of obesity, and decrease along with improvement of insulin resistance in response only to rosiglitazone in type 2 diabetes.
Collapse
Affiliation(s)
- Ji A Seo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States; Division of Endocrinology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Min-Cheol Kang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Theodore P Ciaraldi
- Veterans Affairs San Diego Healthcare System (9111G), San Diego, CA 92161, United States; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Sang Soo Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Charles Choe
- Veterans Affairs San Diego Healthcare System (9111G), San Diego, CA 92161, United States; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Won Min Hwang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States; Division of Nephrology, Department of Internal Medicine, College of Medicine, Konyang University, Daejeon, Korea
| | - Dong Mee Lim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States; Division of Nephrology, Department of Internal Medicine, College of Medicine, Konyang University, Daejeon, Korea
| | - Olivia Farr
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Christos Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Robert R Henry
- Veterans Affairs San Diego Healthcare System (9111G), San Diego, CA 92161, United States; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.
| |
Collapse
|
19
|
Kim MJ, Choi MY, Lee DH, Roh GS, Kim HJ, Kang SS, Cho GJ, Kim YS, Choi WS. O-linked N-acetylglucosamine transferase enhances secretory clusterin expression via liver X receptors and sterol response element binding protein regulation in cervical cancer. Oncotarget 2017; 9:4625-4636. [PMID: 29435130 PMCID: PMC5797001 DOI: 10.18632/oncotarget.23588] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023] Open
Abstract
O-linked N-acetylglucosamine transferase (OGT) expression is increased in various cancer types, indicating the potential importance of O-GlcNAcylation in tumorigenesis. Secretory clusterin (sCLU) is involved in cancer cell proliferation and drug resistance, and recently, liver X receptors (LXRs) and sterol response element binding protein-1 (SREBP-1) were reported to regulate sCLU transcription. Here, we found that sCLU is significantly increased in cervical cancer cell lines, which have higher expression levels of O-GlcNAc and OGT than keratinocytes. OGT knockdown decreased expression of LXRs, SREBP-1 and sCLU through hypo-O-GlcNAcylation of LXRs. Additionally, treatment with Thiamet G, O-GlcNAcase OGA inhibitor, increased expression of O-GlcNAcylation and sCLU, and high glucose increased levels of LXRs, SREBP-1 and sCLU in HeLa cells. Moreover, OGT knockdown induced G0/G1 phase cell cycle arrest and late apoptosis in cisplatin-treated HeLa cells, and decreased viability compared to OGT intact HeLa cells. Taken together, these findings suggest that OGT, O-GlcNAcylated LXRs, and SREBP-1 increase sCLU expression in cervical cancer cells, which contributes to drug resistance.
Collapse
Affiliation(s)
- Min Jun Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Mee Young Choi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Dong Hoon Lee
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Gyeong Jae Cho
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Yoon Sook Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Wan Sung Choi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| |
Collapse
|
20
|
Matukumalli SR, Tangirala R, Rao CM. Clusterin: full-length protein and one of its chains show opposing effects on cellular lipid accumulation. Sci Rep 2017; 7:41235. [PMID: 28120874 PMCID: PMC5264606 DOI: 10.1038/srep41235] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/16/2016] [Indexed: 12/31/2022] Open
Abstract
Proteins, made up of either single or multiple chains, are designed to carry out specific biological functions. We found an interesting example of a two-chain protein where administration of one of its chains leads to a diametrically opposite outcome than that reported for the full-length protein. Clusterin is a highly glycosylated protein consisting of two chains, α- and β-clusterin. We have investigated the conformational features, cellular localization, lipid accumulation, in vivo effects and histological changes upon administration of recombinant individual chains of clusterin. We demonstrate that recombinant α- and β-chains exhibit structural and functional differences and differ in their sub-cellular localization. Full-length clusterin is known to lower lipid levels. In contrast, we find that β-chain-treated cells accumulate 2-fold more lipid than controls. Interestingly, α-chain-treated cells do not show such increase. Rabbits injected with β-chain, but not α-chain, show ~40% increase in weight, with adipocyte hypertrophy, liver and kidney steatosis. Many, sometimes contrasting, roles are ascribed to clusterin in obesity, metabolic syndrome and related conditions. Our findings of differential localization and activities of individual chains of clusterin should help in understanding better the roles of clusterin in metabolism.
Collapse
Affiliation(s)
| | | | - C. M. Rao
- CSIR- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| |
Collapse
|
21
|
Huang F, Shang Y, Luo Y, Wu P, Huang X, Tan X, Lu X, Zhen L, Hu X. Lower Prevalence of Alzheimer's Disease among Tibetans: Association with Religious and Genetic Factors. J Alzheimers Dis 2016; 50:659-67. [PMID: 26757186 DOI: 10.3233/jad-150697] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The prevalence of dementia differs among racial groups, the highest prevalence being in Latin America (8.5%) compared to sub-Saharan African regions (2-4%). The most common type of dementia is Alzheimer's disease (AD). OBJECTIVE To estimate the prevalence of AD in the Qinghai-Tibet plateau and to investigate the related factors. METHODS This was a cross-sectional, multistage cluster sampling design survey. Data was collected from May 2014 to September 2014 from 4,060 Tibetan aged >60 years. Participants underwent clinical examinations and neuropsychological evaluations. MALDI-TOF was used to test the genotypes of CLU, TFAM, TP53INP1, IGHV1-67, CR1, ApoE, and BIN1. Logistic regression models were used to ascertain the associations with AD. RESULTS The prevalence of AD among Tibetan individuals aged >60 years was 1.33% (95% CI: 0.98-1.69). The CLU haplotypes AA+GA (odds ratio (OR) = 4.483; 95% CI: 1.069-18.792) of rs2279590 was correlated with AD. The CLU haplotypes GG+GC (OR = 0.184; 95% CI: 0.038-0.888) of rs9331888 and kowtow (OR = 0.203; 95% CI 0.046-0.896) were negatively correlated with AD. CONCLUSION A low prevalence of AD was found in Tibetans from the Qinghai-Tibet plateau. Multivariate analysis might suggest that regular "mind-body" religious meditative activities may be negatively associated with AD in this population, as well as the CLU genotype at rs9331888.
Collapse
Affiliation(s)
- Fukai Huang
- Beijing Tibetan Hospital, China Tibet-ology Research Center, Beijing, P.R. China
| | - Ying Shang
- Beijing Mentougou Hospital of Traditional Chinese Medicine, Beijing, P.R. China
| | - Yuandai Luo
- Beijing Tibetan Hospital, China Tibet-ology Research Center, Beijing, P.R. China
| | - Peng Wu
- Southern Medical University, Guangzhou, P.R. China
| | - Xue Huang
- Southern Medical University, Guangzhou, P.R. China
| | - Xiaohui Tan
- Southern Medical University, Guangzhou, P.R. China
| | - Xingyi Lu
- Beijing Tibetan Hospital, China Tibet-ology Research Center, Beijing, P.R. China
| | - Lifang Zhen
- Beijing Tibetan Hospital, China Tibet-ology Research Center, Beijing, P.R. China
| | - Xianda Hu
- Beijing Tibetan Hospital, China Tibet-ology Research Center, Beijing, P.R. China
| |
Collapse
|
22
|
Zhao L, Mao Z, Woody SK, Brinton RD. Sex differences in metabolic aging of the brain: insights into female susceptibility to Alzheimer's disease. Neurobiol Aging 2016; 42:69-79. [PMID: 27143423 DOI: 10.1016/j.neurobiolaging.2016.02.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
Abstract
Despite recent advances in the understanding of clinical aspects of sex differences in Alzheimer's disease (AD), the underlying mechanisms, for instance, how sex modifies AD risk and why the female brain is more susceptible to AD, are not clear. The purpose of this study is to elucidate sex disparities in brain aging profiles focusing on 2 major areas-energy and amyloid metabolism-that are most significantly affected in preclinical development of AD. Total RNA isolated from hippocampal tissues of both female and male 129/C57BL/6 mice at ages of 6, 9, 12, or 15 months were comparatively analyzed by custom-designed Taqman low-density arrays for quantitative real-time polymerase chain reaction detection of a total of 182 genes involved in a broad spectrum of biological processes modulating energy production and amyloid homeostasis. Gene expression profiles revealed substantial differences in the trajectory of aging changes between female and male brains. In female brains, 44.2% of genes were significantly changed from 6 months to 9 months and two-thirds showed downregulation. In contrast, in male brains, only 5.4% of genes were significantly altered at this age transition. Subsequent changes in female brains were at a much smaller magnitude, including 10.9% from 9 months to 12 months and 6.1% from 12 months to 15 months. In male brains, most changes occurred from 12 months to 15 months and the majority were upregulated. Furthermore, gene network analysis revealed that clusterin appeared to serve as a link between the overall decreased bioenergetic metabolism and increased amyloid dyshomeostasis associated with the earliest transition in female brains. Together, results from this study indicate that: (1) female and male brains follow profoundly dissimilar trajectories as they age; (2) female brains undergo age-related changes much earlier than male brains; (3) early changes in female brains signal the onset of a hypometabolic phenotype at risk for AD. These findings provide a mechanistic rationale for female susceptibility to AD and suggest a potential window of opportunity for AD prevention and risk reduction in women.
Collapse
Affiliation(s)
- Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA; Neuroscience Graduate Program, University of Kansas, Lawrence, KS, USA; Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.
| | - Zisu Mao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Sarah K Woody
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Roberta D Brinton
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
23
|
Vanhooren V, Navarrete Santos A, Voutetakis K, Petropoulos I, Libert C, Simm A, Gonos ES, Friguet B. Protein modification and maintenance systems as biomarkers of ageing. Mech Ageing Dev 2015; 151:71-84. [PMID: 25846863 DOI: 10.1016/j.mad.2015.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 12/22/2022]
|
24
|
Clinical Practice Guideline on management of patients with diabetes and chronic kidney disease stage 3b or higher (eGFR <45 mL/min). Nephrol Dial Transplant 2015; 30 Suppl 2:ii1-142. [PMID: 25940656 DOI: 10.1093/ndt/gfv100] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
25
|
The E-box-like sterol regulatory element mediates the insulin-stimulated expression of hepatic clusterin. Biochem Biophys Res Commun 2015; 465:501-6. [DOI: 10.1016/j.bbrc.2015.08.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 08/11/2015] [Indexed: 01/21/2023]
|
26
|
Optimization of specific multiplex DNA primers to detect variable CLU genomic lesions in patients with Alzheimer’s disease. BIOCHIP JOURNAL 2015. [DOI: 10.1007/s13206-015-9306-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Computable cause‐and‐effect models of healthy and Alzheimer's disease states and their mechanistic differential analysis. Alzheimers Dement 2015; 11:1329-39. [DOI: 10.1016/j.jalz.2015.02.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 10/08/2014] [Accepted: 02/09/2015] [Indexed: 01/21/2023]
|
28
|
CLU rs9331888 Polymorphism Contributes to Alzheimer's Disease Susceptibility in Caucasian But Not East Asian Populations. Mol Neurobiol 2015; 53:1446-1451. [PMID: 25633098 DOI: 10.1007/s12035-015-9098-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/12/2015] [Indexed: 12/22/2022]
Abstract
Large-scale genome-wide association studies (GWAS) identified three single nucleotide polymorphisms rs11136000, rs2279590, and rs9331888 in CLU gene to be significantly associated with Alzheimer's disease (AD) in Caucasian ancestry. Both rs11136000 and rs2279590 variants were successfully replicated in Asian population. However, previous studies reported either a weak association or no association between rs9331888 polymorphism and AD in Asian population. Here, we searched the PubMed, AlzGene, and Google Scholar databases. We selected 12 independent studies that evaluated the association between the rs9331888 polymorphism and AD using a case-control design. Using an additive model, we did not identify significant heterogeneity among these 12 studies. We observed significant association between rs9331888 polymorphism and AD in pooled populations (P = 2.26E - 07, odds ratio (OR) = 1.10, 95% confidence interval (CI) 1.06-1.14). In subgroup analysis, we did not identify significant heterogeneity in both Asian and Caucasian populations. We identified significant association in Caucasian population (P = 1.67E - 08, OR = 1.13, 95% CI 1.08-1.18) but not in East Asian population (P = 0.49, OR = 1.02, 95% CI 0.96-1.10).
Collapse
|
29
|
Serum clusterin as a tumor marker and prognostic factor for patients with esophageal cancer. DISEASE MARKERS 2014; 2014:168960. [PMID: 25574066 PMCID: PMC4276701 DOI: 10.1155/2014/168960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 01/24/2023]
Abstract
Background. Recent studies have revealed that clusterin is implicated in many physiological and pathological processes, including tumorigenesis. However, the relationship between serum clusterin expression and esophageal squamous cell carcinoma (ESCC) is unclear. Methods. The serum clusterin concentrations of 87 ESCC patients and 136 healthy individuals were examined. An independent-samples Mann-Whitney U test was used to compare serum clusterin concentrations of ESCC patients to those of healthy controls. Univariate analysis was conducted using the log-rank test and multivariate analyses were performed using the Cox proportional hazards model. Results. In healthy controls, the mean clusterin concentration was 288.8 ± 75.1 μg/mL, while in the ESCC patients, the mean clusterin concentration was higher at 412.3 ± 159.4 μg/mL (P < 0.0001). The 1-, 2-, and 4-year survival rates for the 87 ESCC patients were 89.70%, 80.00%, and 54.50%. Serum clusterin had an optimal diagnostic cut-off point (serum clusterin concentration = 335.5 μg/mL) for esophageal squamous cell carcinoma with sensitivity of 71.26% and specificity of 77.94%. And higher serum clusterin concentration (>500 μg/mL) indicated better prognosis (P = 0.030). Conclusions. Clusterin may play a key role during tumorigenesis and tumor progression of ESCC and it could be applied in clinical work as a tumor marker and prognostic factor.
Collapse
|
30
|
Padhy B, Nanda GG, Chowdhury M, Padhi D, Rao A, Alone DP. Role of an extracellular chaperone, Clusterin in the pathogenesis of Pseudoexfoliation Syndrome and Pseudoexfoliation Glaucoma. Exp Eye Res 2014; 127:69-76. [PMID: 25057782 DOI: 10.1016/j.exer.2014.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/03/2014] [Accepted: 07/08/2014] [Indexed: 01/23/2023]
Abstract
Pseudoexfoliation (PEX), an age related disorder is a prominent contributor to secondary glaucoma. Earlier studies have suggested involvement of clusterin in the development of PEX. We designed a case-control study to understand the role of clusterin single nucleotide polymorphisms (SNPs) in PEX and analyzed the role of risk alleles in the disease. Genotyping of SNPs in 136 PEX patients and 89 controls of Indian origin revealed a genetic association between rs2279590 and PEX in Indian population with a p-value of 0.004. The high risk allele "G" at rs2279590 has an effect on clusterin mRNA expression. There was a twofold higher clusterin mRNA level in "GG" genotyped individuals in comparison to "AA" genotyped individuals (p = 0.039). Western blot and immunohistochemistry studies showed an upregulation of Clusterin protein in pseudoexfoliation glaucoma (PXG) affected individuals in both aqueous humor and lens capsules respectively. Together, our results reveal that rs2279590 was found to be associated with PEX in Indian population and the risk allele mediates an allele specific upregulation of the clusterin mRNA. Moreover, upregulation of Clusterin protein in PXG individuals augments further protein deposition.
Collapse
Affiliation(s)
- Biswajit Padhy
- School of Biological Sciences, NISER, Bhubaneswar, Odisha, India
| | - Gargi G Nanda
- School of Biological Sciences, NISER, Bhubaneswar, Odisha, India
| | | | - Debanand Padhi
- Glaucoma Services, LV Prasad Eye Institute, Bhubaneswar, Odisha, India
| | - Aparna Rao
- Glaucoma Services, LV Prasad Eye Institute, Bhubaneswar, Odisha, India.
| | | |
Collapse
|
31
|
CLU rs2279590 polymorphism contributes to Alzheimer's disease susceptibility in Caucasian and Asian populations. J Neural Transm (Vienna) 2014; 122:433-9. [PMID: 24947876 DOI: 10.1007/s00702-014-1260-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/09/2014] [Indexed: 01/27/2023]
Abstract
It is reported that CLU rs2279590 polymorphism is significantly associated with Alzheimer's disease (AD) in European ancestry. Recent studies investigated rs2279590 polymorphism in Asian population (Chinese, Japanese and Korean). Four studies showed negative association and two studies showed weak association between rs2279590 and AD. We believe that the weak association or no association may be caused by the relatively small sample size in Asian population. Here, we reinvestigated the association in Asian population. Meanwhile, to investigate the genetic heterogeneity of the rs2279590 polymorphism in Asian and Caucasian populations, we searched the PubMed and AlzGene databases and selected 11 independent studies (6 studies in Asian population and 5 studies in Caucasian population) including 20,655 individuals (8,605 cases and 12,050 controls) for meta-analysis. Our results showed significant association between rs2279590 polymorphism and AD in Asian population with P = 2.00E-04 and P = 2.00E-04 using additive and recessive models, respectively. We observed no significant heterogeneity between Asian and Caucasian populations. We believe that our results may be helpful to understand the mechanisms of CLU in AD pathogenesis and will be useful for future genetic studies in AD.
Collapse
|
32
|
Kwon MJ, Ju TJ, Heo JY, Kim YW, Kim JY, Won KC, Kim JR, Bae YK, Park IS, Min BH, Lee IK, Park SY. Deficiency of clusterin exacerbates high-fat diet-induced insulin resistance in male mice. Endocrinology 2014; 155:2089-101. [PMID: 24684302 DOI: 10.1210/en.2013-1870] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The present study examined the role of clusterin in insulin resistance in high fat-fed wild-type and clusterin knockout (KO) mice. The plasma levels of glucose and C-peptide and islet size were increased in clusterin KO mice after an 8-week high-fat diet. In an ip glucose tolerance test, the area under the curve for glucose was not different, whereas the area under the curve for insulin was higher in clusterin KO mice. In a hyperinsulinemic-euglycemic clamp, the clamp insulin levels were higher in clusterin KO mice after the high-fat diet. After adjusting for the clamp insulin levels, the glucose infusion rate, suppression of hepatic glucose production, and glucose uptake were lower in clusterin KO mice in the high fat-fed group. The plasma levels of clusterin and clusterin mRNA levels in the skeletal muscle and liver were increased by the high-fat diet. The mRNA levels of the antioxidant enzymes were lower, and the mRNA levels of nicotinamide adenine dinucleotide phosphate oxidase (NOX) 1 and cytokines and protein carbonylation were higher in the skeletal muscle and liver in clusterin KO mice after the high-fat diet. Palmitate-induced gene expressions of NOX1 and cytokines were higher in the primary cultured hepatocytes of clusterin KO mice compared with the wild-type mice. Clusterin inhibited the gene expression and reactive oxygen species generation by palmitate in the hepatocytes and C2C12. AKT phosphorylation by insulin was reduced in the hepatocytes of clusterin KO mice. These results suggest that clusterin plays a protective role against high-fat diet-induced insulin resistance through the suppression of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Min Jung Kwon
- Departments of Physiology (M.J.K., T.-j.J., J.-Y.H., Y.-W.K., J.-Y.K., S.-Y.P.), Internal Medicine (K.-C.W.), Biochemistry and Molecular Biology (J.-R.K.), and Pathology (Y.K.B.) and Aging-Associated Vascular Disease Research Center (T.-j.J., J.-Y.H., J.-R.K., S.-Y.P.), College of Medicine, Yeungnam University, Daegu 705-703, South Korea; Department of Anatomy (I.-S.P.), College of Medicine, Inha University, Incheon 400-712, South Korea; Department of Pharmacology (B.-H.M.), College of Medicine, Korea University, Seoul 136-705, South Korea; and Department of Internal Medicine (I.-K.L.), School of Medicine, Kyungpook National University, Daegu 700-712, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Park S, Mathis KW, Lee IK. The physiological roles of apolipoprotein J/clusterin in metabolic and cardiovascular diseases. Rev Endocr Metab Disord 2014; 15:45-53. [PMID: 24097125 DOI: 10.1007/s11154-013-9275-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Several isoforms of apolipoprotein J/clusterin (CLU) are encoded from a single gene located on chromosome 8 in humans. These isoforms are ubiquitously expressed in the tissues, and have been implicated in aging, neurodegenerative disorders, cancer progression, and metabolic/cardiovascular diseases including dyslipidemia, diabetes, atherosclerosis and myocardial infarction. The conventional secreted form of CLU (sCLU) is thought to be a component of high density lipoprotein-cholesterol. sCLU functions as a chaperone for misfolded proteins and it is thought to promote survival by reducing oxidative stress. Nuclear CLU, a truncated CLU formed by alternative splicing, is responsible for promoting apoptosis via a Bax-dependent pathway. There are putative regulatory sites in the promoter regions of CLU, which are occupied by transcription factors such as transforming growth factor (TGF)-β inhibitory element, activator protein-1, CLU-specific elements, and carbohydrate response element. However, the molecular mechanisms underlying the distinct roles of CLU in a variety of conditions remain unclear. Although the function of CLU in cancer or neurological disease has been studied intensively for three decades, physiological roles of CLU seem unexplored in the cardiovascular system and metabolic diseases. In this review, we will discuss general characteristics and regulations of CLU based on previous literature and assess the recent findings associated with its physiological roles in different tissues including the vasculature, heart, liver, kidney, adipose tissue, and brain.
Collapse
Affiliation(s)
- S Park
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
| | | | | |
Collapse
|
34
|
Affiliation(s)
- Michael A Tsoukas
- Section of Endocrinology, Boston VA Healthcare system and Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA..
| | | | | |
Collapse
|
35
|
Chu L, Fu G, Meng Q, Zhou H, Zhang M. Identification of urinary biomarkers for type 2 diabetes using bead-based proteomic approach. Diabetes Res Clin Pract 2013; 101:187-93. [PMID: 23769013 DOI: 10.1016/j.diabres.2013.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/23/2013] [Accepted: 05/17/2013] [Indexed: 02/05/2023]
Abstract
AIMS To seek urinary peptides as biomarkers distinguishing type 2 diabetes mellitus (T2DM) patients from healthy controls. METHODS Random urine samples obtained from 28 patients with T2DM and 29 healthy individuals were analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) after purification using weak cationic-exchange magnetic beads (MB-WCX). Then the generated mass spectra of peptides were analyzed by ClinProTools2.1 bioinformatics software. Subsequently, the amino acid sequences of differently expressed peptides were identified by a nano-liquid chromatography-tandem mass spectrometry and a Sequest search found the corresponding protein name. RESULTS Three differently expressed peptides and their mass to charge ratios (m/z) were found. Compared with healthy controls, the peak areas of the three differently expressed peptides were all reduced in T2DM, and the m/z were 1056.1 (m/z), 1963.5 (m/z), 2123.5 (m/z), respectively. The above-mentioned peptides were further identified as fragments of histidine triad nucleotide-binding protein 1 (HINT1), bifunctional aminoacyl-tRNA synthetase (EPRS), and clusterin precursor protein (CLU). CONCLUSIONS Histidine triad nucleotide-binding protein 1, bifunctional aminoacyl-tRNA synthetase, and clusterin precursor protein may serve as potential biomarkers distinguishing type 2 diabetes mellitus patients from healthy controls.
Collapse
Affiliation(s)
- Lina Chu
- The Ninth Clinical Medical College of Peking University, Beijing Shijitan Hospital, China
| | | | | | | | | |
Collapse
|
36
|
Trougakos IP. The molecular chaperone apolipoprotein J/clusterin as a sensor of oxidative stress: implications in therapeutic approaches - a mini-review. Gerontology 2013; 59:514-23. [PMID: 23689375 DOI: 10.1159/000351207] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/03/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Organisms are constantly exposed to physiological and environmental stresses and therefore require an efficient surveillance of genome and proteome quality in order to prevent disruption of homeostasis. Central to the intra- and extracellular proteome surveillance system are the molecular chaperones that contribute to both proteome maintenance and clearance. The conventional protein product of the apolipoprotein J/clusterin (CLU) gene is a heterodimeric secreted glycoprotein (also termed as sCLU) with a ubiquitous expression in human tissues. CLU exerts a small heat shock protein-like stress-induced chaperone activity and has been functionally implicated in numerous physiological processes as well as in ageing and most age-related diseases including tumorigenesis, neurodegeneration, and cardiovascular and metabolic syndromes. OBJECTIVE The CLU gene is differentially regulated by a wide variety of stimuli due to the combined presence of many distinct regulatory elements in its promoter that make it an extremely sensitive cellular biosensor of environmental and/or oxidative stress. Downstream to CLU gene induction, the CLU protein seems to actively intervene in pathological states of increased oxidative injury due to its chaperone-related property to inhibit protein aggregation and precipitation (a main feature of oxidant injury), as well as due to its reported distribution in both extra- and, most likely, intracellular compartments. CONCLUSION On the basis of these findings, CLU has emerged as a unique regulator of cellular proteostasis. Nevertheless, it seemingly exerts a dual function in pathology. For instance, in normal cells and during early phases of carcinogenesis, CLU may inhibit tumor progression as it contributes to suppression of proteotoxic stress. In advanced neoplasia, however, it may offer a significant survival advantage in the tumor by suppressing many therapeutic stressors and enhancing metastasis. This review will critically present a synopsis of recent novel findings that relate to the function of this amazing molecule and support the notion that CLU is a biosensor of oxidative injury; a common link between ageing and all pathologies where CLU has been implicated. Potential future perspectives, implications and opportunities for translational research and the development of new therapies will be discussed.
Collapse
Affiliation(s)
- Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece
| |
Collapse
|
37
|
Seo HY, Kim MK, Jung YA, Jang BK, Yoo EK, Park KG, Lee IK. Clusterin decreases hepatic SREBP-1c expression and lipid accumulation. Endocrinology 2013; 154:1722-30. [PMID: 23515283 DOI: 10.1210/en.2012-2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hepatic steatosis is emerging as the most important cause of chronic liver disease and is associated with the increasing incidence of obesity with insulin resistance. Sterol regulatory binding protein-1c (SREBP-1c) is a master regulator of lipogenic gene expression in the liver. Hyperinsulinemia induces SREBP-1c transcription through liver X receptor (LXR), specificity protein 1, and SREBP-1c itself. Clusterin, an 80-kDa disulfide-linked heterodimeric protein, has been functionally implicated in several physiological processes including lipid transport; however, little is known about its effect on hepatic lipogenesis. The present study examined whether clusterin regulates SREBP-1c expression and lipid accumulation in the liver. Adenovirus-mediated overexpression of clusterin inhibited insulin- or LXR agonist-stimulated SREBP-1c expression in cultured liver cells. In reporter assays, clusterin inhibited SREBP-1c promoter activity. Moreover, adenovirus-mediated overexpression of clusterin in the livers of mice fed a high-fat diet inhibited hepatic steatosis through the inhibition of SREBP-1c expression. Reporter and gel shift assays showed that clusterin inhibits SREBP-1c expression via the repression of LXR and specificity protein 1 activity. This study shows that clusterin inhibits hepatic lipid accumulation through the inhibition of SREBP-1c expression and suggests that clusterin is a negative regulator of SREBP-1c expression and hepatic lipogenesis.
Collapse
Affiliation(s)
- Hye-Young Seo
- Department of Internal Medicine, Kyungpook National University School of Medicine, 50 Samduk-2ga, Jung-gu, Daegu 700-721, South Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Charnay Y, Imhof A, Vallet PG, Kovari E, Bouras C, Giannakopoulos P. Clusterin in neurological disorders: Molecular perspectives and clinical relevance. Brain Res Bull 2012; 88:434-43. [DOI: 10.1016/j.brainresbull.2012.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
|
39
|
Tekwe CD, Carroll RJ, Dabney AR. Application of survival analysis methodology to the quantitative analysis of LC-MS proteomics data. Bioinformatics 2012; 28:1998-2003. [PMID: 22628520 DOI: 10.1093/bioinformatics/bts306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
MOTIVATION Protein abundance in quantitative proteomics is often based on observed spectral features derived from liquid chromatography mass spectrometry (LC-MS) or LC-MS/MS experiments. Peak intensities are largely non-normal in distribution. Furthermore, LC-MS-based proteomics data frequently have large proportions of missing peak intensities due to censoring mechanisms on low-abundance spectral features. Recognizing that the observed peak intensities detected with the LC-MS method are all positive, skewed and often left-censored, we propose using survival methodology to carry out differential expression analysis of proteins. Various standard statistical techniques including non-parametric tests such as the Kolmogorov-Smirnov and Wilcoxon-Mann-Whitney rank sum tests, and the parametric survival model and accelerated failure time-model with log-normal, log-logistic and Weibull distributions were used to detect any differentially expressed proteins. The statistical operating characteristics of each method are explored using both real and simulated datasets. RESULTS Survival methods generally have greater statistical power than standard differential expression methods when the proportion of missing protein level data is 5% or more. In particular, the AFT models we consider consistently achieve greater statistical power than standard testing procedures, with the discrepancy widening with increasing missingness in the proportions. AVAILABILITY The testing procedures discussed in this article can all be performed using readily available software such as R. The R codes are provided as supplemental materials. CONTACT ctekwe@stat.tamu.edu.
Collapse
Affiliation(s)
- Carmen D Tekwe
- Department of Statistics, 3143 TAMU, College Station, TX 77843-3143, USA.
| | | | | |
Collapse
|
40
|
Wang X, Anderson GA, Smith RD, Dabney AR. A hybrid approach to protein differential expression in mass spectrometry-based proteomics. ACTA ACUST UNITED AC 2012; 28:1586-91. [PMID: 22522136 DOI: 10.1093/bioinformatics/bts193] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
MOTIVATION Quantitative mass spectrometry-based proteomics involves statistical inference on protein abundance, based on the intensities of each protein's associated spectral peaks. However, typical MS-based proteomics datasets have substantial proportions of missing observations, due at least in part to censoring of low intensities. This complicates intensity-based differential expression analysis. RESULTS We outline a statistical method for protein differential expression, based on a simple Binomial likelihood. By modeling peak intensities as binary, in terms of 'presence/absence,' we enable the selection of proteins not typically amenable to quantitative analysis; e.g. 'one-state' proteins that are present in one condition but absent in another. In addition, we present an analysis protocol that combines quantitative and presence/absence analysis of a given dataset in a principled way, resulting in a single list of selected proteins with a single-associated false discovery rate. AVAILABILITY All R code available here: http://www.stat.tamu.edu/~adabney/share/xuan_code.zip.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Statistics, Texas A&M University, 3143 TAMU, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
41
|
Santos-González M, López-Miranda J, Pérez-Jiménez F, Navas P, Villalba JM. Dietary oil modifies the plasma proteome during aging in the rat. AGE (DORDRECHT, NETHERLANDS) 2012; 34:341-58. [PMID: 21472381 PMCID: PMC3312633 DOI: 10.1007/s11357-011-9239-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 03/15/2011] [Indexed: 05/05/2023]
Abstract
Fatty acids and other components of the diet may modulate, among others, mechanisms involved in homeostasis, aging, and age-related diseases. Using a proteomic approach, we have studied how dietary oil affected plasma proteins in young (6 months) or old (24 months) rats fed lifelong with two experimental diets enriched in either sunflower or virgin olive oil. After the depletion of the most abundant proteins, levels of less abundant proteins were studied using two-dimensional electrophoresis and mass spectrometry. Our results showed that compared with the sunflower oil diet, the virgin olive oil diet induced significant decreases of plasma levels of acute phase proteins such as inter-alpha inhibitor H4P heavy chain (at 6 months), hemopexin precursor (at 6 and 24 months), preprohaptoglobin precursor (at 6 and 24 months), and α-2-HS glycoprotein (at 6 and 24 months); antioxidant proteins such as type II peroxiredoxin (at 24 months); proteins related with coagulation such as fibrinogen γ-chain precursor (at 24 months), T-kininogen 1 precursor (at 6 and 24 months), and apolipoprotein H (at 6 and 24 months); or with lipid metabolism and transport such as apolipoprotein E (at 6 and 24 months) and apolipoprotein A-IV (at 24 months). The same diet increased the levels of apolipoprotein A-1 (at 6 and 24 months), diminishing in general the changes that occurred with age. Our unbiased analysis reinforces the beneficial role of a diet rich in virgin olive oil compared with a diet rich in sunflower oil, modulating inflammation, homeostasis, oxidative stress, and cardiovascular risk during aging.
Collapse
Affiliation(s)
- Mónica Santos-González
- Departamento de Biología Celular, Fisiología e Inmunología, University of Córdoba, Campus Rabanales Ed. Severo Ochoa, 3a planta, 14014 Córdoba, Spain
| | - José López-Miranda
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Francisco Pérez-Jiménez
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo (CABD), University Pablo de Olavide-CSIC, Seville, Spain
- CIBER Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Sevilla, Spain
| | - José M. Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, University of Córdoba, Campus Rabanales Ed. Severo Ochoa, 3a planta, 14014 Córdoba, Spain
| |
Collapse
|
42
|
Aronis KN, Vamvini MT, Chamberland JP, Mantzoros CS. Circulating clusterin (apolipoprotein J) levels do not have any day/night variability and are positively associated with total and LDL cholesterol levels in young healthy individuals. J Clin Endocrinol Metab 2011; 96:E1871-5. [PMID: 21900379 PMCID: PMC3205900 DOI: 10.1210/jc.2011-1555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Clusterin has been associated with several pathologies, including cardiovascular disease and neoplasias. However, little is known about its physiology and its association with metabolic and anthropometric parameters in humans. OBJECTIVE The aim of the study was to examine whether circulating clusterin levels exhibit a day/night variation pattern and whether clusterin is associated with anthropometric and metabolic parameters. DESIGN Study A was a frequent sampling study to evaluate potential periodicity in clusterin secretion. Study B was an observational study to evaluate the cross-sectional and prospective associations of clusterin with anthropometric and metabolic parameters. PARTICIPANTS Study A participants were healthy males (n = 6) and females (n = 6), aged 22.3 ± 3.1 and 22.8 ± 3.4 yr, respectively. Study B participants were 186 healthy males aged 18.4 ± 0.14 yr. Ninety-one of the study B subjects were studied again 2 yr later and clusterin's associations with change of anthropometric and metabolic parameters were thus investigated prospectively. INTERVENTION Samples in study A were collected every 15 min during an overnight admission, and subsequently pooled every hour. Samples in study B were collected during a screening visit. MAIN OUTCOME MEASURE Circulating clusterin levels were measured. RESULTS In study A, spectral domain and cosinor regression analysis failed to reveal any day/night variation pattern. In study B, clusterin was positively correlated with total and low-density lipoprotein cholesterol (r = 0.23, P = 0.002; and r = 0.20, P = 0.005). Baseline clusterin did not predict change of any anthropometric, biochemical, or metabolic parameters prospectively. CONCLUSIONS We report for the first time that circulating clusterin does not have a day/night variation pattern in healthy young individuals. Clusterin levels are associated with total and low-density lipoprotein cholesterol cross-sectionally but do not predict short-term changes in metabolic parameters in healthy young males.
Collapse
Affiliation(s)
- Konstantinos N Aronis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
43
|
SREBP-1c regulates glucose-stimulated hepatic clusterin expression. Biochem Biophys Res Commun 2011; 408:720-5. [PMID: 21549685 DOI: 10.1016/j.bbrc.2011.04.111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 04/21/2011] [Indexed: 12/29/2022]
Abstract
Clusterin is a stress-response protein that is involved in diverse biological processes, including cell proliferation, apoptosis, tissue differentiation, inflammation, and lipid transport. Its expression is upregulated in a broad spectrum of diverse pathological states. Clusterin was recently reported to be associated with diabetes, metabolic syndrome, and their sequelae. However, the regulation of clusterin expression by metabolic signals was not addressed. In this study we evaluated the effects of glucose on hepatic clusterin expression. Interestingly, high glucose concentrations significantly increased clusterin expression in primary hepatocytes and hepatoma cell lines, but the conventional promoter region of the clusterin gene did not respond to glucose stimulation. In contrast, the first intronic region was transcriptionally activated by high glucose concentrations. We then defined a glucose response element (GlRE) of the clusterin gene, showing that it consists of two E-box motifs separated by five nucleotides and resembles carbohydrate response element (ChoRE). Unexpectedly, however, these E-box motifs were not activated by ChoRE binding protein (ChREBP), but were activated by sterol regulatory element binding protein-1c (SREBP-1c). Furthermore, we found that glucose induced recruitment of SREBP-1c to the E-box of the clusterin gene intronic region. Taken together, these results suggest that clusterin expression is increased by glucose stimulation, and SREBP-1c plays a crucial role in the metabolic regulation of clusterin.
Collapse
|