1
|
Quan S, Fu X, Cai H, Ren Z, Xu Y, Jia L. The neuroimmune nexus: unraveling the role of the mtDNA-cGAS-STING signal pathway in Alzheimer's disease. Mol Neurodegener 2025; 20:25. [PMID: 40038765 DOI: 10.1186/s13024-025-00815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025] Open
Abstract
The relationship between Alzheimer's disease (AD) and neuroimmunity has gradually begun to be unveiled. Emerging evidence indicates that cyclic GMP-AMP synthase (cGAS) acts as a cytosolic DNA sensor, recognizing cytosolic damage-associated molecular patterns (DAMPs), and inducing the innate immune response by activating stimulator of interferon genes (STING). Dysregulation of this pathway culminates in AD-related neuroinflammation and neurodegeneration. A substantial body of evidence indicates that mitochondria are involved in the critical pathogenic mechanisms of AD, whose damage leads to the release of mitochondrial DNA (mtDNA) into the extramitochondrial space. This leaked mtDNA serves as a DAMP, activating various pattern recognition receptors and immune defense networks in the brain, including the cGAS-STING pathway, ultimately leading to an imbalance in immune homeostasis. Therefore, modulation of the mtDNA-cGAS-STING pathway to restore neuroimmune homeostasis may offer promising prospects for improving AD treatment outcomes. In this review, we focus on the mechanisms of mtDNA release during stress and the activation of the cGAS-STING pathway. Additionally, we delve into the research progress on this pathway in AD, and further discuss the primary directions and potential hurdles in developing targeted therapeutic drugs, to gain a deeper understanding of the pathogenesis of AD and provide new approaches for its therapy.
Collapse
Affiliation(s)
- Shuiyue Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Xiaofeng Fu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Huimin Cai
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Ziye Ren
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Yinghao Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China.
| |
Collapse
|
2
|
Zhao H, Lv Y, Xu J, Song X, Wang Q, Zhai X, Ma X, Qiu J, Cui L, Sun Y. The activation of microglia by the complement system in neurodegenerative diseases. Ageing Res Rev 2025; 104:102636. [PMID: 39647582 DOI: 10.1016/j.arr.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Neurodegenerative diseases (NDDs) are a group of neurological disorders characterized by the progressive loss of neuronal structure and function, leading to cognitive and behavioral impairments. Despite significant research advancements, there is currently no definitive cure for NDDs. With global aging on the rise, the burden of these diseases is becoming increasingly severe, highlighting the urgency of understanding their pathogenesis and developing effective therapeutic strategies. Microglia, specialized macrophages in the central nervous system, play a dual role in maintaining neural homeostasis. They are involved in clearing cellular debris and apoptotic cells, but in their activated state, they release inflammatory factors that contribute significantly to neuroinflammation. The complement system (CS), a critical component of the innate immune system, assists in clearing damaged cells and proteins. However, excessive or uncontrolled activation of the CS can lead to chronic neuroinflammation, exacerbating neuronal damage. This review aims to explore the roles of microglia and the CS in the progression of NDDs, with a specific focus on the mechanisms through which the CS activates microglia by modulating mitochondrial function. Understanding these interactions may provide insights into potential therapeutic targets for mitigating neuroinflammation and slowing neurodegeneration.
Collapse
Affiliation(s)
- He Zhao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Yayun Lv
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Jiasen Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Xiaoyu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Qi Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Xiaoyu Zhai
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Xiaohui Ma
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Jingjing Qiu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China.
| | - Limei Cui
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China.
| | - Yan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China.
| |
Collapse
|
3
|
López-Hernández R, de la Torre-Álamo MM, García-Bueno B, Baroja-Mazo A, Fenoy FJ, Cuevas S. Inflammasomes in Alzheimer's Progression: Nrf2 as a Preventive Target. Antioxidants (Basel) 2025; 14:121. [PMID: 40002308 PMCID: PMC11851705 DOI: 10.3390/antiox14020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Current knowledge about Alzheimer's disease highlights the accumulation of β-amyloid plaques (Aβ1-42) and neurofibrillary tangles composed of hyperphosphorylated Tau, which lead to the loss of neuronal connections. Microglial activation and the release of inflammatory mediators play a significant role in the progression of Alzheimer's pathology. Recent advances have identified the involvement of inflammasomes, particularly NOD-like receptor NLR family pyrin domain containing 3 (NLRP3), whose activation promotes the release of proinflammatory cytokines and triggers pyroptosis, exacerbating neuroinflammation. Aggregates of Aβ1-42 and hyperphosphorylated Tau have been shown to activate these inflammasomes, while the apoptosis-associated speck-like protein (ASC) components form aggregates that further accelerate Aβ aggregation. Defects in the autophagic clearance of inflammasomes have also been implicated in Alzheimer's disease, contributing to sustained inflammation. This review explores strategies to counteract inflammation in Alzheimer's, emphasizing the degradation of ASC specks and the inhibition of NLRP3 inflammasome activation. Notably, the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor emerges as a promising therapeutic target due to its dual role in mitigating oxidative stress and directly inhibiting NLRP3 inflammasome formation. By reducing inflammasome-driven inflammation, Nrf2 offers significant potential for addressing the neuroinflammatory aspects of Alzheimer's disease.
Collapse
Affiliation(s)
- Rubén López-Hernández
- Molecular Inflammation Group, Pathophysiology of the Inflammation and Oxidative Stress Lab, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain;
| | - María Magdalena de la Torre-Álamo
- Molecular Inflammation Group, Digestive and Endocrine Surgery and Transplantation of Abdominal Organs, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (M.M.d.l.T.-Á.); (B.G.-B.); (A.B.-M.)
| | - Belén García-Bueno
- Molecular Inflammation Group, Digestive and Endocrine Surgery and Transplantation of Abdominal Organs, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (M.M.d.l.T.-Á.); (B.G.-B.); (A.B.-M.)
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, Digestive and Endocrine Surgery and Transplantation of Abdominal Organs, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (M.M.d.l.T.-Á.); (B.G.-B.); (A.B.-M.)
| | - Francisco Jose Fenoy
- Department of Physiology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain;
| | - Santiago Cuevas
- Molecular Inflammation Group, Pathophysiology of the Inflammation and Oxidative Stress Lab, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain;
| |
Collapse
|
4
|
Ateya NH, Al-Taie SF, Jasim SA, Uthirapathy S, Chaudhary K, Rani P, Kundlas M, Naidu KS, Amer NA, Ahmed JK. Histone Deacetylation in Alzheimer's Diseases (AD); Hope or Hype. Cell Biochem Biophys 2025:10.1007/s12013-025-01670-0. [PMID: 39825060 DOI: 10.1007/s12013-025-01670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Histone acetylation is the process by which histone acetyltransferases (HATs) add an acetyl group to the N-terminal lysine residues of histones, resulting in a more open chromatin structure. Histone acetylation tends to increase gene expression more than methylation does. In the central nervous system (CNS), histone acetylation is essential for controlling the expression of genes linked to cognition and learning. Histone deacetylases (HDACs), "writing" enzymes (HATs), and "reading" enzymes with bromodomains that identify and localize to acetylated lysine residues are responsible for maintaining histone acetylation. By giving animals HDAC inhibitors (HDACis), it is possible to intentionally control the ratios of "writer" and "eraser" activity, which will change the acetylation of histones. In addition to making the chromatin more accessible, these histone acetylation alterations re-allocate the targeting of "readers," including the transcriptional co-activators, cAMP response element-binding protein (CBP), and bromodomain-containing protein 4 (Brd4) in the CNS. Conclusive evidence has shown that HDACs slow down the progression of Alzheimer's disease (AD) by reducing the amount of histone acetylation, decreasing the activity of genes linked to memory, supporting cognitive decline and Amyloid beta (Aβ) protein accumulation, influencing aberrant tau phosphorylation, and promoting the emergence of neurofibrillary tangles (NFTs). In this review, we have covered the therapeutic targets and functions of HDACs that might be useful in treating AD.
Collapse
Affiliation(s)
- Nabaa Hisham Ateya
- Biotechnology Department, College of Applied Science, Fallujah University, Al-Fallujah, Iraq
| | - Sarah F Al-Taie
- University of Baghdad, College of Science, Department of Biotechnology, Baghdad, Iraq
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques department, College of Health and Medical Technology, University of Al-maarif, Anbar, Ramadi, Iraq.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University Erbil, Kurdistan Region, Erbil, Iraq
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Pooja Rani
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Nevin Adel Amer
- Nursing Department, College of Applied Medical Sciences, Jouf University, Sakakah, Saudi Arabia
- Medical Surgical Nursing Department, Faculty of Nursing, Menofia University, Shibin el Kom, Saudi Arabia
| | - Jawad Kadhim Ahmed
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
5
|
Elsabrouty MH, Elwakil BH, Salam SA, Olama ZA. Nano-phytosome loaded Retama raetam extract/colistin: antibacterial, antioxidant activities and in vivo lipopolysaccharide-induced-neurotoxicity inhibition. Braz J Microbiol 2024; 55:3781-3795. [PMID: 39302630 PMCID: PMC11711430 DOI: 10.1007/s42770-024-01510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
Antibiotics are misused nowadays, leading to the prevalence of antibiotic resistant bacterial strains; causing the world to move towards natural medicine. Retama raetam had wide medicinal use. In the present study, R. raetam ethanolic extract proved to be active against Pseudomonas aeruginosa with MIC values ranged from 15.62 to 250 µg/ml. Antioxidant analysis showed that the extract had high scavenging activity reached 92.40%. GC/MS analysis revealed that Sparteine and Tributyl acetylcitrate represent the extract major components. Furthermore, the combination between Retama raetam extract and colistin showed a synergistic effect. Moreover, nano-phytosome was designated and optimized to encapsulate Retama raetam extract/Colistin. Nano-phytosome characterized by particle size, Zeta potential, polydispersity index and Entrapment efficiency percentage of 16.92-32.85 nm, -30.40 mV, 0.26 and 89% respectively. The antibacterial activity of the prepared nano-phytosome formula against P. aeruginosa showed promising MIC, MBC, MIC index, and IZ diameter reaching 7.81, 15.62 µg/ml, 2, and 39 mm, respectively. While TEM examination of P. aeruginosa cells treated with nano-phytosome formula revealed cell wall breakage which led to cell death. Finally, P. aeruginosa LPS was used to induce neurodegenerative disease in rat model. Rats treated with nano-phytosome formula showed normal histoarchitecture organization and the cerebral cortex was partially restored compared to control groups.
Collapse
Affiliation(s)
- Mohab H Elsabrouty
- Department of Botany & Microbiology, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt.
| | - Bassma H Elwakil
- Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Sherine Abdel Salam
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt
| | - Zakia A Olama
- Department of Botany & Microbiology, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt
| |
Collapse
|
6
|
Li C, Stebbins RC, Noppert GA, Carney CX, Liu C, Sapp ARM, Watson EJ, Aiello AE. Peripheral immune function and Alzheimer's disease: a living systematic review and critical appraisal. Mol Psychiatry 2024; 29:1895-1905. [PMID: 38102484 PMCID: PMC11483233 DOI: 10.1038/s41380-023-02355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND A growing body of literature examines the relationship between peripheral immune function and Alzheimer's Disease (AD) in human populations. Our living systematic review summarizes the characteristics and findings of these studies, appraises their quality, and formulates recommendations for future research. METHODS We searched the electronic databases PubMed, PsycINFO, and Web of Science, and reviewed references of previous reviews and meta-analyses to identify human studies examining the relationship between any peripheral immune biomarkers and AD up to September 7th, 2023. We examined patterns of reported statistical associations (positive, negative, and null) between each biomarker and AD across studies. Evidence for each biomarker was categorized into four groups based on the proportion of studies reporting different associations: corroborating a positive association with AD, a negative association, a null association, and presenting contradictory findings. A modified Newcastle-Ottawa scale (NOS) was employed to assess the quality of the included studies. FINDINGS In total, 286 studies were included in this review. The majority were cross-sectional (n = 245, 85.7%) and hospital-based (n = 248, 86.7%), examining relationships between 187 different peripheral immune biomarkers and AD. Cytokines were the most frequently studied group of peripheral immune biomarkers. Evidence supported a positive association with AD for six biomarkers, including IL-6, IL-1β, IFN-γ, ACT, IL-18, and IL-12, and a negative association for two biomarkers, including lymphocytes and IL-6R. Only a small proportion of included studies (n = 22, 7.7%) were deemed to be of high quality based on quality assessment. INTERPRETATION Existing research on peripheral immune function and AD exhibits substantial methodological variations and limitations, with a notable lack of longitudinal, population-based studies investigating a broad range of biomarkers with prospective AD outcomes. The extent and manner in which peripheral immune function can contribute to AD pathophysiology remain open questions. Given the biomarkers that we identified to be associated with AD, we posit that targeting peripheral immune dysregulation may present a promising intervention point to reduce the burden of AD.
Collapse
Affiliation(s)
- Chihua Li
- Social Environment and Health Program, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
- Department of Epidemiology, School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Rebecca C Stebbins
- Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York City, NY, USA
| | - Grace A Noppert
- Social Environment and Health Program, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Constanza X Carney
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Chunyu Liu
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Ashley R M Sapp
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elijah J Watson
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Allison E Aiello
- Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York City, NY, USA
- Department of Epidemiology, Mailman School of Public, Columbia University, New York City, NY, USA
| |
Collapse
|
7
|
Reyes-Reyes EM, Brown J, Trial MD, Chinnasamy D, Wiegand JP, Bradford D, Brinton RD, Rodgers KE. Vivaria housing conditions expose sex differences in brain oxidation, microglial activation, and immune system states in aged hAPOE4 mice. Exp Brain Res 2024; 242:543-557. [PMID: 38206365 PMCID: PMC10894770 DOI: 10.1007/s00221-023-06763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Apolipoprotein E ε4 allele (APOE4) is the predominant genetic risk factor for late-onset Alzheimer's disease (AD). APOE4 mouse models have provided advances in the understanding of disease pathogenesis, but unaccounted variables like rodent housing status may hinder translational outcomes. Non-sterile aspects like food and bedding can be major sources of changes in rodent microflora. Alterations in intestinal microbial ecology can cause mucosal barrier impairment and increase pro-inflammatory signals. The present study examined the role of sterile and non-sterile food and housing on redox indicators and the immune status of humanized-APOE4 knock-in mice (hAPOe4). hAPOE4 mice were housed under sterile conditions until 22 months of age, followed by the transfer of a cohort of mice to non-sterile housing for 2 months. At 24 months of age, the redox/immunologic status was evaluated by flow cytometry/ELISA. hAPOE4 females housed under non-sterile conditions exhibited: (1) higher neuronal and microglial oxygen radical production and (2) lower CD68+ microglia (brain) and CD8+ T cells (periphery) compared to sterile-housed mice. In contrast, hAPOE4 males in non-sterile housing exhibited: (1) higher MHCII+ microglia and CD11b+CD4+ T cells (brain) and (2) higher CD11b+CD4+ T cells and levels of lipopolysaccharide-binding protein and inflammatory cytokines in the periphery relative to sterile-housed mice. This study demonstrated that sterile vs. non-sterile housing conditions are associated with the activation of redox and immune responses in the brain and periphery in a sex-dependent manner. Therefore, housing status may contribute to variable outcomes in both the brain and periphery.
Collapse
Affiliation(s)
- E M Reyes-Reyes
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - J Brown
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - M D Trial
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - D Chinnasamy
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - J P Wiegand
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - D Bradford
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - R D Brinton
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - K E Rodgers
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA.
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
8
|
Davidson TL, Stevenson RJ. Vulnerability of the Hippocampus to Insults: Links to Blood-Brain Barrier Dysfunction. Int J Mol Sci 2024; 25:1991. [PMID: 38396670 PMCID: PMC10888241 DOI: 10.3390/ijms25041991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The hippocampus is a critical brain substrate for learning and memory; events that harm the hippocampus can seriously impair mental and behavioral functioning. Hippocampal pathophysiologies have been identified as potential causes and effects of a remarkably diverse array of medical diseases, psychological disorders, and environmental sources of damage. It may be that the hippocampus is more vulnerable than other brain areas to insults that are related to these conditions. One purpose of this review is to assess the vulnerability of the hippocampus to the most prevalent types of insults in multiple biomedical domains (i.e., neuroactive pathogens, neurotoxins, neurological conditions, trauma, aging, neurodegenerative disease, acquired brain injury, mental health conditions, endocrine disorders, developmental disabilities, nutrition) and to evaluate whether these insults affect the hippocampus first and more prominently compared to other brain loci. A second purpose is to consider the role of hippocampal blood-brain barrier (BBB) breakdown in either causing or worsening the harmful effects of each insult. Recent research suggests that the hippocampal BBB is more fragile compared to other brain areas and may also be more prone to the disruption of the transport mechanisms that act to maintain the internal milieu. Moreover, a compromised BBB could be a factor that is common to many different types of insults. Our analysis indicates that the hippocampus is more vulnerable to insults compared to other parts of the brain, and that developing interventions that protect the hippocampal BBB may help to prevent or ameliorate the harmful effects of many insults on memory and cognition.
Collapse
Affiliation(s)
- Terry L. Davidson
- Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016, USA
| | | |
Collapse
|
9
|
Whitfield JF, Rennie K, Chakravarthy B. Alzheimer's Disease and Its Possible Evolutionary Origin: Hypothesis. Cells 2023; 12:1618. [PMID: 37371088 PMCID: PMC10297544 DOI: 10.3390/cells12121618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The enormous, 2-3-million-year evolutionary expansion of hominin neocortices to the current enormity enabled humans to take over the planet. However, there appears to have been a glitch, and it occurred without a compensatory expansion of the entorhinal cortical (EC) gateway to the hippocampal memory-encoding system needed to manage the processing of the increasing volume of neocortical data converging on it. The resulting age-dependent connectopathic glitch was unnoticed by the early short-lived populations. It has now surfaced as Alzheimer's disease (AD) in today's long-lived populations. With advancing age, processing of the converging neocortical data by the neurons of the relatively small lateral entorhinal cortex (LEC) inflicts persistent strain and high energy costs on these cells. This may result in their hyper-release of harmless Aβ1-42 monomers into the interstitial fluid, where they seed the formation of toxic amyloid-β oligomers (AβOs) that initiate AD. At the core of connectopathic AD are the postsynaptic cellular prion protein (PrPC). Electrostatic binding of the negatively charged AβOs to the positively charged N-terminus of PrPC induces hyperphosphorylation of tau that destroys synapses. The spread of these accumulating AβOs from ground zero is supported by Aβ's own production mediated by target cells' Ca2+-sensing receptors (CaSRs). These data suggest that an early administration of a strongly positively charged, AβOs-interacting peptide or protein, plus an inhibitor of CaSR, might be an effective AD-arresting therapeutic combination.
Collapse
Affiliation(s)
- James F. Whitfield
- Human Health Therapeutics, National Research Council, Ottawa, ON K1A 0R6, Canada
| | | | | |
Collapse
|
10
|
Inflammasome activation in traumatic brain injury and Alzheimer's disease. Transl Res 2023; 254:1-12. [PMID: 36070840 DOI: 10.1016/j.trsl.2022.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022]
Abstract
Traumatic brain injury (TBI) and Alzheimer's disease (AD) represent 2 of the largest sources of death and disability in the United States. Recent studies have identified TBI as a potential risk factor for AD development, and numerous reports have shown that TBI is linked with AD associated protein expression during the acute phase of injury, suggesting an interplay between the 2 pathologies. The inflammasome is a multi-protein complex that plays a role in both TBI and AD pathologies, and is characterized by inflammatory cytokine release and pyroptotic cell death. Products of inflammasome signaling pathways activate microglia and astrocytes, which attempt to resolve pathological inflammation caused by inflammatory cytokine release and phagocytosis of cellular debris. Although the initial phase of the inflammatory response in the nervous system is beneficial, recent evidence has emerged that the heightened inflammatory response after trauma is self-perpetuating and results in additional damage in the central nervous system. Inflammasome-induced cytokines and inflammasome signaling proteins released from activated microglia interact with AD associated proteins and exacerbate AD pathological progression and cellular damage. Additionally, multiple genetic mutations associated with AD development alter microglia inflammatory activity, increasing and perpetuating inflammatory cell damage. In this review, we discuss the pathologies of TBI and AD and how they are impacted by and potentially interact through inflammasome activity and signaling proteins. We discuss current clinical trials that target the inflammasome to reduce heightened inflammation associated with these disorders.
Collapse
|
11
|
Zhou T, Chen H, Huang Y, Wang B, Zheng Y, Wang L, Rong S, Ma Y, Yuan C. Longitudinal body weight dynamics in relation to cognitive decline over two decades: A prospective cohort study. Obesity (Silver Spring) 2023; 31:852-860. [PMID: 36782381 DOI: 10.1002/oby.23671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/07/2022] [Accepted: 11/03/2022] [Indexed: 02/15/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the associations of body weight change (BWC) and body weight variability (BWV) with changes in cognitive function. METHODS In 10,340 Health and Retirement Study participants (mean age: 68.0 years), body weight was reported biennially from 1993/1994 to 2016, and cognitive function was measured biennially from 1998 to 2016. We calculated BWC and BWV as the slope and root-mean-square error by regressing body weight on time for each individual. BWC was categorized by quintiles (Q): stable weight (Q2 to Q4), weight loss (Q1), and weight gain (Q5). BWV was categorized by tertiles. We used linear mixed regression models to assess associations with cognitive change. RESULTS Compared with stable weight (median: 0 kg/y), weight loss (median: -1.3 kg/y) predicted faster cognitive decline as demonstrated by mean difference of -0.023 (95% CI: -0.027 to -0.019) in cognitive change z score per year, whereas weight gain (median: 1 kg/y) was related to slower cognitive decline (β = 0.006; 95% CI: 0.003 to 0.009). Larger BWV was also associated with faster cognitive decline (β comparing the top with bottom tertile = -0.003; 95% CI: -0.006 to -0.0002). Similar associations were observed for episodic and working memory. CONCLUSIONS Weight loss and large BWV over a long time independently predicted faster cognitive decline in middle-aged and older adults, underscoring the importance of long-term dynamic body weight monitoring.
Collapse
Affiliation(s)
- Tianjing Zhou
- School of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Chen
- School of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuhui Huang
- School of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Binghan Wang
- School of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Zheng
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - Liang Wang
- Department of Public Health, Robbins College of Health and Human Sciences, Baylor University, Waco, Texas, USA
| | - Shuang Rong
- Department of Nutrition, School of Public Health, Wuhan University, Wuhan, China
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Ma
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Changzheng Yuan
- School of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Intili G, Paladino L, Rappa F, Alberti G, Plicato A, Calabrò F, Fucarino A, Cappello F, Bucchieri F, Tomasello G, Carini F, Pitruzzella A. From Dysbiosis to Neurodegenerative Diseases through Different Communication Pathways: An Overview. BIOLOGY 2023; 12:biology12020195. [PMID: 36829474 PMCID: PMC9952972 DOI: 10.3390/biology12020195] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
The microbiome research field has rapidly evolved over the last few decades, becoming a major topic of scientific and public interest. The gut microbiota (GM) is the microbial population living in the gut. The GM has many functions, such as maintaining gut homeostasis and host health, providing defense against enteric pathogens, and involvement in immune system development. Several studies have shown that GM is implicated in dysbiosis and is presumed to contribute to neurodegeneration. This review focuses mainly on describing the connection between the intestinal microbiome alterations (dysbiosis) and the onset of neurodegenerative diseases to explore the mechanisms that link the GM to nervous system health, such as the gut-brain axis, as well as the mitochondrial, the adaptive humoral immunity, and the microvesicular pathways. The gut-brain communication depends on a continuous bidirectional flow of molecular signals exchanged through the neural and the systemic circulation. These pathways represent a possible new therapeutic target against neuroinflammation and neurodegeneration. Progress in this context is desperately needed, considering the severity of most neurodegenerative diseases and the current lack of effective treatments.
Collapse
Affiliation(s)
- Giorgia Intili
- Biomedicine, Neuroscience, and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Letizia Paladino
- Biomedicine, Neuroscience, and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy
| | - Francesca Rappa
- Biomedicine, Neuroscience, and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Giusi Alberti
- Biomedicine, Neuroscience, and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Alice Plicato
- Biomedicine, Neuroscience, and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Federica Calabrò
- Biomedicine, Neuroscience, and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Alberto Fucarino
- Biomedicine, Neuroscience, and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Biomedicine, Neuroscience, and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy
| | - Fabio Bucchieri
- Biomedicine, Neuroscience, and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Giovanni Tomasello
- Biomedicine, Neuroscience, and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Carini
- Biomedicine, Neuroscience, and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Alessandro Pitruzzella
- Biomedicine, Neuroscience, and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy
- Universitary Consortium of Caltanissetta, University of Palermo, 93100 Caltanissetta, Italy
- Correspondence:
| |
Collapse
|
13
|
Alkahtani S, AL-Johani NS, Alarifi S. Mechanistic Insights, Treatment Paradigms, and Clinical Progress in Neurological Disorders: Current and Future Prospects. Int J Mol Sci 2023; 24:1340. [PMID: 36674852 PMCID: PMC9865061 DOI: 10.3390/ijms24021340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Neurodegenerative diseases (NDs) are a major cause of disability and are related to brain development. The neurological signs of brain lesions can vary from mild clinical shortfalls to more delicate and severe neurological/behavioral symptoms and learning disabilities, which are progressive. In this paper, we have tried to summarize a collective view of various NDs and their possible therapeutic outcomes. These diseases often occur as a consequence of the misfolding of proteins post-translation, as well as the dysfunctional trafficking of proteins. In the treatment of neurological disorders, a challenging hurdle to cross regarding drug delivery is the blood-brain barrier (BBB). The BBB plays a unique role in maintaining the homeostasis of the central nervous system (CNS) by exchanging components between the circulations and shielding the brain from neurotoxic pathogens and detrimental compounds. Here, we outline the current knowledge about BBB deterioration in the evolving brain, its origin, and therapeutic interventions. Additionally, we summarize the physiological scenarios of the BBB and its role in various cerebrovascular diseases. Overall, this information provides a detailed account of BBB functioning and the development of relevant treatments for neurological disorders. This paper will definitely help readers working in the field of neurological scientific communities.
Collapse
Affiliation(s)
- Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
14
|
Xia ZD, Ma RX, Wen JF, Zhai YF, Wang YQ, Wang FY, Liu D, Zhao XL, Sun B, Jia P, Zheng XH. Pathogenesis, Animal Models, and Drug Discovery of Alzheimer's Disease. J Alzheimers Dis 2023; 94:1265-1301. [PMID: 37424469 DOI: 10.3233/jad-230326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is a chronic neurodegenerative disease induced by multiple factors. The high incidence and the aging of the global population make it a growing global health concern with huge implications for individuals and society. The clinical manifestations are progressive cognitive dysfunction and lack of behavioral ability, which not only seriously affect the health and quality of life of the elderly, but also bring a heavy burden to the family and society. Unfortunately, almost all the drugs targeting the classical pathogenesis have not achieved satisfactory clinical effects in the past two decades. Therefore, the present review provides more novel ideas on the complex pathophysiological mechanisms of AD, including classical pathogenesis and a variety of possible pathogenesis that have been proposed in recent years. It will be helpful to find out the key target and the effect pathway of potential drugs and mechanisms for the prevention and treatment of AD. In addition, the common animal models in AD research are outlined and we examine their prospect for the future. Finally, Phase I, II, III, and IV randomized clinical trials or on the market of drugs for AD treatment were searched in online databases (Drug Bank Online 5.0, the U.S. National Library of Medicine, and Alzforum). Therefore, this review may also provide useful information in the research and development of new AD-based drugs.
Collapse
Affiliation(s)
- Zhao-Di Xia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Ruo-Xin Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Jin-Feng Wen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Yu-Fei Zhai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Yu-Qi Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Feng-Yun Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Dan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Xiao-Long Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Bao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, PR China
| | - Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Xiao-Hui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| |
Collapse
|
15
|
Liu XG. Normalization of Neuroinflammation: A New Strategy for Treatment of Persistent Pain and Memory/Emotional Deficits in Chronic Pain. J Inflamm Res 2022; 15:5201-5233. [PMID: 36110505 PMCID: PMC9469940 DOI: 10.2147/jir.s379093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/18/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic pain, which affects around 1/3 of the world population and is often comorbid with memory deficit and mood depression, is a leading source of suffering and disability. Studies in past decades have shown that hyperexcitability of primary sensory neurons resulting from abnormal expression of ion channels and central sensitization mediated pathological synaptic plasticity, such as long-term potentiation in spinal dorsal horn, underlie the persistent pain. The memory/emotional deficits are associated with impaired synaptic connectivity in hippocampus. Dysregulation of numerous endogenous proteins including receptors and intracellular signaling molecules is involved in the pathological processes. However, increasing knowledge contributes little to clinical treatment. Emerging evidence has demonstrated that the neuroinflammation, characterized by overproduction of pro-inflammatory cytokines and glial activation, is reliably detected in humans and animals with chronic pain, and is sufficient to induce persistent pain and memory/emotional deficits. The abnormal expression of ion channels and pathological synaptic plasticity in spinal dorsal horn and in hippocampus are resulting from neuroinflammation. The neuroinflammation is initiated and maintained by the interactions of circulating monocytes, glial cells and neurons. Obviously, unlike infectious diseases and cancer, which are caused by pathogens or malignant cells, chronic pain is resulting from alterations of cells and molecules which have numerous physiological functions. Therefore, normalization (counterbalance) but not simple inhibition of the neuroinflammation is the right strategy for treating neuronal disorders. Currently, no such agent is available in clinic. While experimental studies have demonstrated that intracellular Mg2+ deficiency is a common feature of chronic pain in animal models and supplement Mg2+ are capable of normalizing the neuroinflammation, activation of upregulated proteins that promote recovery, such as translocator protein (18k Da) or liver X receptors, has a similar effect. In this article, relevant experimental and clinical evidence is reviewed and discussed.
Collapse
Affiliation(s)
- Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
16
|
Dow CT, Greenblatt CL, Chan ED, Dow JF. Evaluation of BCG Vaccination and Plasma Amyloid: A Prospective, Pilot Study with Implications for Alzheimer’s Disease. Microorganisms 2022; 10:microorganisms10020424. [PMID: 35208878 PMCID: PMC8880735 DOI: 10.3390/microorganisms10020424] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
BCG vaccine has been used for 100 years to prevent tuberculosis. Not all countries, including the United States, adopted the initial World Health Organization recommendation to use BCG. Moreover, many Western countries that had routinely used BCG have discontinued its use. Recent population studies demonstrate lower prevalence of Alzheimer’s disease (AD) in countries with high BCG coverage. Intravesicular instillation of BCG is also used to treat bladder cancer that has not invaded the bladder muscle wall and has been shown to reduce recurrence. Several retrospective studies of bladder cancer patients demonstrated that BCG treatment was associated with a significantly reduced risk of developing AD. Plasma amyloid β assessment has become a fertile area of study for an AD biomarker that is predictive of a positive amyloid PET scan. Mass spectrometry-based plasma amyloid 42/40 ratio has proven to be accurate and robust, and when combined with age and ApoE, is shown to accurately predict current and future brain amyloid status. These parameters, amyloid 42/40 ratio, age and ApoE genotype are incorporated into an Amyloid Probability Score (APS)–a score that identifies low, intermediate or high risk of having a PET scan positive for cerebral amyloid. Community recruitment was used for this open-label pilot study. Forty-nine BCG-naïve, immunocompetent individuals completed our study: prior to BCG prime and boost, as determined by the APS, 34 had low risk (APS 0–35), 5 had intermediate risk (APS 36–57) and 10 had high risk (APS 58–100). The APS range for the participant group was 0 to 94. Follow-up plasma amyloid testing 9 months after vaccination revealed a reduction in the APS in all the risk groups: low risk group (p = 0. 37), intermediate risk group (p = 0.13) and the high-risk group (statistically significant, p = 0.016). Greater benefit was seen in younger participants and those with the highest risk. The small number of participants and the nascent status of plasma amyloid testing will rightfully temper embracement of these results. However, both the favorable direction of change after BCG as well as the utility of the APS—a valuable surrogate AD biomarker—may prompt a definitive large-scale multicenter investigation of BCG and AD risk as determined by plasma amyloid peptide ratios and APS.
Collapse
Affiliation(s)
- Coad Thomas Dow
- Department of Ophthalmology and Visual Sciences, McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
- Mindful Diagnostics and Therapeutics, Eau Claire, WI 54701, USA
- Correspondence:
| | - Charles L. Greenblatt
- Department of Microbiology and Molecular Genetics, Hebrew University, Jerusalem 9103401, Israel;
| | - Edward D. Chan
- Department of Academic Affairs, National Jewish Health, Denver, CO 80218, USA;
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80217, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
| | - Jordan F. Dow
- Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
- Northwestern Wisconsin Region Mayo Clinic Health System, Eau Claire, WI 54703, USA
| |
Collapse
|
17
|
Lewis LA, Urban CM, Hashim SA. A Non-Invasive Determination of Ketosis-Induced Elimination of Chronic Daytime Somnolence in a Patient with Late-Stage Dementia (Assessed with Type 3 Diabetes): A Potential Role of Neurogenesis. J Alzheimers Dis Rep 2022; 5:827-846. [PMID: 35088033 PMCID: PMC8764628 DOI: 10.3233/adr-210315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/20/2021] [Indexed: 11/15/2022] Open
Abstract
Background The study involved a female patient diagnosed with late-stage dementia, with chronic daytime somnolence (CDS) as a prominent symptom. Objective To explore whether her dementia resulted from Type 3 diabetes, and whether it could be reversed through ketosis therapy. Methods A ketogenic diet (KD) generating low-dose 100 μM Blood Ketone Levels (BKL) enhanced by a brief Ketone Mono Ester (KME) regimen with high-dose 2-4 mM BKLs was used. Results Three sets of data describe relief (assessed by % days awake) from CDS: 1) incremental, slow, time-dependent KD plus KME-induced sigmoid curve responses which resulted in partial wakefulness (0-40% in 255 days) and complete wakefulness (40-85% in 50 days); 2) both levels of wakefulness were shown to be permanent; 3) initial permanent relief from CDS with low-dose ketosis from 6.7% to 40% took 87 days. Subsequent low-dose recovery from illness-induced CDS (6.9% to 40%) took 10 days. We deduce that the first restoration involved permanent repair, and the second energized the repaired circuits. Conclusion The results suggest a role for ketosis in the elimination of CDS with the permanent functional restoration of the awake neural circuits of the Sleep-Wake cycle. We discuss whether available evidence supports ketosis-induced bioenergetics alone or whether other mechanisms of functional renewal were the basis for the elimination of CDS. Given evidence for permanent repair, two direct links between ketosis and neurogenesis in the adult mammalian brain are discussed: Ketosis-induced 1) brain-derived neurotrophic factor, resulting in neural progenitor/stem cell proliferation, and 2) mitochondrial bioenergetics-induced stem cell biogenesis.
Collapse
Affiliation(s)
- Leslie A Lewis
- York College of the City University of New York, Jamaica, NY, USA
| | - Carl M Urban
- Department of Medicine, The Dr. James J. Rahal, Jr. Division of Infectious Diseases, New York Presbyterian/Queens, Flushing, NY, USA
| | - Sami A Hashim
- Division of Endocrinology, Mt. Sinai Morningside, New York, NY, USA
| |
Collapse
|
18
|
Stebbins RC, Edwards JK, Plassman BL, Yang YC, Noppert GA, Haan M, Aiello AE. Immune function, cortisol, and cognitive decline & dementia in an aging latino population. Psychoneuroendocrinology 2021; 133:105414. [PMID: 34563836 PMCID: PMC8600484 DOI: 10.1016/j.psyneuen.2021.105414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/06/2021] [Accepted: 09/05/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The etiology of dementias and cognitive decline remain largely unknown. It is widely accepted that inflammation in the central nervous system plays a critical role in the pathogenesis of dementia. However, less is known about the role of the peripheral immune system and interactions with cortisol, though evidence suggests that these, too, may play a role. METHODS Using data from 1337 participants aged 60+ years from the Sacramento Area Latino Study of Aging (observational cohort) we investigated variation in trajectories of cognitive decline by pathogen IgG and cytokine levels. Linear mixed effects models were used to examine the association between baseline Interleukin (IL)-6, C-reactive protein, tumor necrosis factor (TNF)-α, and five persistent pathogens' IgG response and trajectories of cognition over 10 years, and to examine interactions between immune biomarkers and cortisol. Stratified cumulative incidence functions were used to assess the relation between biomarkers and incident dementia. Inverse probability weights accounted for loss-to-follow-up and confounding. RESULTS IL-6, TNF-α, and CMV IgG were statistically significantly associated with a higher log of Modified Mini-Mental State Examination errors (IL-6, β=0.0935 (95%CI: 0.055, 0.13), TNF-alpha β= 0.0944 (95%CI: 0.032, 0.157), and CMV, β= 0.0409 (95%CI: 0.013, 0.069)). Furthermore, cortisol interacted with HSV-1 and IL-6, and CRP for both cross-sectional cognitive function and rate of decline. No statistically significant relationship was detected between biomarkers and incidence of dementia. CONCLUSIONS These findings support the theory that the peripheral immune system may play a role in cognitive decline but not incident dementia. Furthermore, they identify specific markers amenable for intervention for slowing decline.
Collapse
Affiliation(s)
- Rebecca C Stebbins
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Social, Genetic, & Developmental Psychiatry CentreInstitute of Psychiatry, Psychology, and Neuroscience King's College London, London, United Kingdom.
| | - Jessie K Edwards
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Brenda L Plassman
- Departments of Psychiatry and Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Y Claire Yang
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Sociology, Lineberger Cancer Center University of North Carolina at Chapel Hill, United States
| | - Grace A Noppert
- Social Environment and Health, Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - Mary Haan
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Allison E Aiello
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
19
|
Sun Y, Xu S, Jiang M, Liu X, Yang L, Bai Z, Yang Q. Role of the Extracellular Matrix in Alzheimer's Disease. Front Aging Neurosci 2021; 13:707466. [PMID: 34512308 PMCID: PMC8430252 DOI: 10.3389/fnagi.2021.707466] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/04/2021] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with complex pathological characteristics, whose etiology and pathogenesis are still unclear. Over the past few decades, the role of the extracellular matrix (ECM) has gained importance in neurodegenerative disease. In this review, we describe the role of the ECM in AD, focusing on the aspects of synaptic transmission, amyloid-β-plaque generation and degradation, Tau-protein production, oxidative-stress response, and inflammatory response. The function of ECM in the pathological process of AD will inform future research on the etiology and pathogenesis of AD.
Collapse
Affiliation(s)
- Yahan Sun
- College of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Sen Xu
- College of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Ming Jiang
- College of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Xia Liu
- College of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Liang Yang
- College of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Zhantao Bai
- College of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Qinghu Yang
- College of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, China
| |
Collapse
|
20
|
Xu X, Du L, Jiang J, Yang M, Wang Z, Wang Y, Tang T, Fu X, Hao J. Microglial TREM2 Mitigates Inflammatory Responses and Neuronal Apoptosis in Angiotensin II-Induced Hypertension in Middle-Aged Mice. Front Aging Neurosci 2021; 13:716917. [PMID: 34489683 PMCID: PMC8417947 DOI: 10.3389/fnagi.2021.716917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/16/2021] [Indexed: 11/15/2022] Open
Abstract
Growing evidence suggests that hypertension and aging are prominent risk factors for the development of late-onset Alzheimer's disease (LOAD) by inducement of neuroinflammation. Recent study showed that neuroinflammation via activated microglia induces reactive astrocytes, termed A1 astrocytes, that highly upregulate numerous classical complement cascade genes that are destructive to neurons in neurodegeneration diseases. Moreover, triggering receptor expressed on myeloid cells 2 (TREM2) is considered as one of the strongest single-allele genetic risk factors and plays important roles in neuroinflammation for LOAD. However, the mechanisms of microglia in the regulation of A1 astrocytic activation are still not clear. We introduced angiotensin II-induced hypertension in middle-aged mice and found that hypertension-upregulated TREM2 expression and A1 astrocytic activation were involved in neuroinflammation in the animal models used in this study. The in vitro results revealed that overexpression of microglial TREM2 not only mitigated microglial inflammatory response but also had salutary effects on reverse A1 astrocytic activation and neuronal toxicity.
Collapse
Affiliation(s)
- Xiaotian Xu
- Department of Neurology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Lin Du
- Department of Cardiology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ming Yang
- Department of Neurology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Zhaoxia Wang
- Department of Neurology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Yingge Wang
- Department of Neurology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Tieyu Tang
- Department of Neurology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Xuetao Fu
- Department of Neurology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Jiukuan Hao
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| |
Collapse
|
21
|
Huang Y, Huang W, Yang G, Wang R, Ma L. Design and synthesis of novel diosgenin-triazole hybrids targeting inflammation as potential neuroprotective agents. Bioorg Med Chem Lett 2021; 43:128092. [PMID: 33964436 DOI: 10.1016/j.bmcl.2021.128092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 12/09/2022]
Abstract
Alzheimer's disease is a progressive neurodegenerative disease, and its incidence is expected to increase as the global population ages. Recent studies provide increasing evidence that inflammation plays a key role in the pathogenesis and progression of AD. Diosgenin, an active ingredient in Dioscorea nipponica Makino, is a promising bioactive lead compound in the treatment of Alzheimer's disease, which exhibited anti-inflammatory activity. To search for more efficient anti-Alzheimer agents, a series of novel diosgenin-triazolyl hybrids were designed, synthesized, and their neuroprotective effects against oxygen-glucose deprivation-induced neurotoxicity and LPS-induced NO production were evaluated. Most of these new hybrids displayed better activities than DIO. In particular, the promising compound L6 not only demonstrated an excellent neuroprotective effect but also showed the best anti-inflammatory activity. The structure-activity relationship study illustrated that the introduction of benzyl or phenyl triazole did improve the activity, and the introduction of benzyl triazole was better than that of phenyl triazole. The results we obtained showed that the diosgenin skeleton could be a promising structural template for the development of new anti-Alzheimer drug candidates, and compound L6 has the potential to be an important lead compound for further research.
Collapse
Affiliation(s)
- Yi Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weiwei Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guixiang Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
22
|
Stebbins RC, Noppert GA, Yang YC, Dowd JB, Simanek A, Aiello AE. Association Between Immune Response to Cytomegalovirus and Cognition in the Health and Retirement Study. Am J Epidemiol 2021; 190:786-797. [PMID: 33094810 DOI: 10.1093/aje/kwaa238] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022] Open
Abstract
Chronic infections and the subsequent immune response have recently been shown to be risk factors for cognitive decline and Alzheimer disease and related dementias (ADRD). While some studies have shown an association between cytomegalovirus (CMV), a chronic and highly prevalent infection, and cognition and/or ADRD, these studies have been limited by nonrepresentative and small samples. Using 2016 data on 5,617 adults aged 65 years or more from the Health and Retirement Study, we investigated the cross-sectional associations of both CMV serostatus and immunoglobulin G (IgG) antibody response with cognitive function using linear regression models adjusting for age, sex, race/ethnicity, and educational attainment. We further investigated potential effect-measure modification by educational attainment. Overall, both CMV seropositivity and higher IgG antibody response were associated with lower cognitive function, though the relationship was not statistically significant in adjusted models. Among participants with less than a high school diploma, CMV seropositivity and being in the first tertile of IgG response, relative to seronegative persons, were associated with lower scores on the Telephone Interview for Cognitive Status (-0.56 points (95% confidence interval: -1.63, 0.52) and -0.89 points (95% confidence interval: -2.07, 0.29), respectively), and the relationship was attenuated among those with higher education. Our results suggest that CMV may be a risk factor for cognitive impairment, particularly among persons with fewer educational resources.
Collapse
|
23
|
Jung YJ, Tweedie D, Scerba MT, Kim DS, Palmas MF, Pisanu A, Carta AR, Greig NH. Repurposing Immunomodulatory Imide Drugs (IMiDs) in Neuropsychiatric and Neurodegenerative Disorders. Front Neurosci 2021; 15:656921. [PMID: 33854417 PMCID: PMC8039148 DOI: 10.3389/fnins.2021.656921] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation represents a common trait in the pathology and progression of the major psychiatric and neurodegenerative disorders. Neuropsychiatric disorders have emerged as a global crisis, affecting 1 in 4 people, while neurological disorders are the second leading cause of death in the elderly population worldwide (WHO, 2001; GBD 2016 Neurology Collaborators, 2019). However, there remains an immense deficit in availability of effective drug treatments for most neurological disorders. In fact, for disorders such as depression, placebos and behavioral therapies have equal effectiveness as antidepressants. For neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease, drugs that can prevent, slow, or cure the disease have yet to be found. Several non-traditional avenues of drug target identification have emerged with ongoing neurological disease research to meet the need for novel and efficacious treatments. Of these novel avenues is that of neuroinflammation, which has been found to be involved in the progression and pathology of many of the leading neurological disorders. Neuroinflammation is characterized by glial inflammatory factors in certain stages of neurological disorders. Although the meta-analyses have provided evidence of genetic/proteomic upregulation of inflammatory factors in certain stages of neurological disorders. Although the mechanisms underpinning the connections between neuroinflammation and neurological disorders are unclear, and meta-analysis results have shown high sensitivity to factors such as disorder severity and sample type, there is significant evidence of neuroinflammation associations across neurological disorders. In this review, we summarize the role of neuroinflammation in psychiatric disorders such as major depressive disorder, generalized anxiety disorder, post-traumatic stress disorder, and bipolar disorder, as well as in neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease, and introduce current research on the potential of immunomodulatory imide drugs (IMiDs) as a new treatment strategy for these disorders.
Collapse
Affiliation(s)
- Yoo Jin Jung
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
- Stanford Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA, United States
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Michael T Scerba
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Dong Seok Kim
- AevisBio, Inc., Gaithersburg, MD, United States
- Aevis Bio, Inc., Daejeon, South Korea
| | | | - Augusta Pisanu
- National Research Council, Institute of Neuroscience, Cagliari, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
24
|
Severini C, Barbato C, Di Certo MG, Gabanella F, Petrella C, Di Stadio A, de Vincentiis M, Polimeni A, Ralli M, Greco A. Alzheimer's Disease: New Concepts on the Role of Autoimmunity and NLRP3 Inflammasome in the Pathogenesis of the Disease. Curr Neuropharmacol 2021; 19:498-512. [PMID: 32564756 PMCID: PMC8206463 DOI: 10.2174/1570159x18666200621204546] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD), recognized as the most common neurodegenerative disorder, is clinically characterized by the presence of extracellular beta-amyloid (Aβ) plaques and by intracellular neurofibrillary tau tangles, accompanied by glial activation and neuroinflammation. Increasing evidence suggests that self-misfolded proteins stimulate an immune response mediated by glial cells, inducing the release of inflammatory mediators and the recruitment of peripheral macrophages into the brain, which in turn aggravate AD pathology. The present review aims to update the current knowledge on the role of autoimmunity and neuroinflammation in the pathogenesis of the disease, indicating a new target for therapeutic intervention. We mainly focused on the NLRP3 microglial inflammasome as a critical factor in stimulating innate immune responses, thus sustaining chronic inflammation. Additionally, we discussed the involvement of the NLRP3 inflammasome in the gut-brain axis. Direct targeting of the NLRP3 inflammasome and the associated receptors could be a potential pharmacological strategy since its inhibition would selectively reduce AD neuroinflammation.
Collapse
Affiliation(s)
- Cinzia Severini
- Address correspondence to this author at the Institute of Biochemistry and Cell Biology, National Research Council of Italy, Viale del Policlinico, 155, 00161 Rome, Italy; E-mail:
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Howard R, Zubko O, Bradley R, Harper E, Pank L, O'Brien J, Fox C, Tabet N, Livingston G, Bentham P, McShane R, Burns A, Ritchie C, Reeves S, Lovestone S, Ballard C, Noble W, Nilforooshan R, Wilcock G, Gray R. Minocycline at 2 Different Dosages vs Placebo for Patients With Mild Alzheimer Disease: A Randomized Clinical Trial. JAMA Neurol 2020; 77:164-174. [PMID: 31738372 PMCID: PMC6865324 DOI: 10.1001/jamaneurol.2019.3762] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Question Can 2 years of minocycline treatment modify the course of mild Alzheimer disease? Findings In this randomized clinical trial that included 544 participants, 24 months of minocycline treatment did not significantly delay progression of functional and cognitive impairment compared with placebo. Meaning Minocycline is not a candidate for disease modification for patients with symptomatic Alzheimer disease. Importance There are no disease-modifying treatments for Alzheimer disease (AD), the most common cause of dementia. Minocycline is anti-inflammatory, protects against the toxic effects of β-amyloid in vitro and in animal models of AD, and is a credible repurposed treatment candidate. Objective To determine whether 24 months of minocycline treatment can modify cognitive and functional decline in patients with mild AD. Design, Setting, and Participants Participants were recruited into a double-blind randomized clinical trial from May 23, 2014, to April 14, 2016, with 24 months of treatment and follow-up. This multicenter study in England and Scotland involved 32 National Health Service memory clinics within secondary specialist services for people with dementia. From 886 screened patients, 554 patients with a diagnosis of mild AD (Standardised Mini-Mental State Examination [sMMSE] score ≥24) were randomized. Interventions Participants were randomly allocated 1:1:1 in a semifactorial design to receive minocycline (400 mg/d or 200 mg/d) or placebo for 24 months. Main Outcomes and Measures Primary outcome measures were decrease in sMMSE score and Bristol Activities of Daily Living Scale (BADLS), analyzed by intention-to-treat repeated-measures regression. Results Of 544 eligible participants (241 women and 303 men), the mean (SD) age was 74.3 (8.2) years, and the mean (SD) sMMSE score was 26.4 (1.9). Fewer participants completed 400-mg minocycline hydrochloride treatment (28.8% [53 of 184]) than 200-mg minocycline treatment (61.9% [112 of 181]) or placebo (63.7% [114 of 179]; P < .001), mainly because of gastrointestinal symptoms (42 in the 400-mg group, 15 in the 200-mg group, and 10 in the placebo group; P < .001), dermatologic adverse effects (10 in the 400-mg group, 5 in the 200-mg group, and 1 in the placebo group; P = .02), and dizziness (14 in the 400-mg group, 3 in the 200-mg group, and 1 in the placebo group; P = .01). Assessment rates were lower in the 400-mg group: 68.4% (119 of 174 expected) for sMMSE at 24 months compared with 81.8% (144 of 176) for the 200-mg group and 83.8% (140 of 167) for the placebo group. Decrease in sMMSE scores over 24 months in the combined minocycline group was similar to that in the placebo group (4.1 vs 4.3 points). The combined minocycline group had mean sMMSE scores 0.1 points higher than the placebo group (95% CI, −1.1 to 1.2; P = .90). The decrease in mean sMMSE scores was less in the 400-mg group than in the 200-mg group (3.3 vs 4.7 points; treatment effect = 1.2; 95% CI, −0.1 to 2.5; P = .08). Worsening of BADLS scores over 24 months was similar in all groups: 5.7 in the 400-mg group, 6.6 in the 200-mg group, and 6.2 in the placebo groups (treatment effect for minocycline vs placebo = –0.53; 95% CI, −2.4 to 1.3; P = .57; treatment effect for 400 mg vs 200 mg of minocycline = –0.31; 95% CI, −0.2 to 1.8; P = .77). Results were similar in different patient subgroups and in sensitivity analyses adjusting for missing data. Conclusions and Relevance Minocycline did not delay the progress of cognitive or functional impairment in people with mild AD during a 2-year period. This study also found that 400 mg of minocycline is poorly tolerated in this population. Trial Registration isrctn.org Identifier: ISRCTN16105064
Collapse
Affiliation(s)
- Robert Howard
- Division of Psychiatry, University College London, London, United Kingdom
| | - Olga Zubko
- Old Age Psychiatry, King's College London, London, United Kingdom
| | - Rosie Bradley
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, United Kingdom
| | - Emma Harper
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Lynn Pank
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - John O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Chris Fox
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Naji Tabet
- Department of Old Age Psychiatry, University of Sussex, Brighton, United Kingdom
| | - Gill Livingston
- Division of Psychiatry, University College London, London, United Kingdom
| | - Peter Bentham
- Birmingham and Solihull Mental Health National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Rupert McShane
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Alistair Burns
- Department of Old Age Psychiatry, University of Manchester, Manchester, United Kingdom
| | - Craig Ritchie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Suzanne Reeves
- Division of Psychiatry, University College London, London, United Kingdom
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Clive Ballard
- Medical School, University of Exeter, Exeter, United Kingdom
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, King's College London, London, United Kingdom
| | - Ramin Nilforooshan
- Surrey and Borders Partnership National Health Service Foundation Trust, United Kingdom
| | - Gordon Wilcock
- Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Richard Gray
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
26
|
Silverstein AR, Flores MK, Miller B, Kim SJ, Yen K, Mehta HH, Cohen P. Mito-Omics and immune function: Applying novel mitochondrial omic techniques to the context of the aging immune system. TRANSLATIONAL MEDICINE OF AGING 2020; 4:132-140. [PMID: 32844137 PMCID: PMC7441040 DOI: 10.1016/j.tma.2020.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/01/2022] Open
Abstract
Recent advancements in genomic, transcriptomic, proteomic, and metabolomic techniques have prompted fresh inquiry in the field of aging. Here, we outline the application of these techniques in the context of the mitochondrial genome and suggest their potential for use in exploring the biological mechanisms of the aging immune system.
Collapse
Affiliation(s)
- Ana R Silverstein
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Melanie K Flores
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
27
|
Mongan D, Sabherwal S, Susai SR, Föcking M, Cannon M, Cotter DR. Peripheral complement proteins in schizophrenia: A systematic review and meta-analysis of serological studies. Schizophr Res 2020; 222:58-72. [PMID: 32456884 PMCID: PMC7594643 DOI: 10.1016/j.schres.2020.05.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/30/2020] [Accepted: 05/15/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND There is renewed focus on the complement system in the pathogenesis of schizophrenia. In addition to providing aetiological insights, consistently dysregulated complement proteins in serum or plasma may have clinical utility as biomarkers. METHODS We performed a systematic literature review searching PubMed, Embase and PsycINFO for studies measuring complement system activity or complement protein concentrations in serum or plasma from patients with schizophrenia compared to controls. Random-effects meta-analyses were performed to calculate pooled effect estimates (Hedges' g standardised mean difference [SMD]) for complement proteins whose concentrations were measured in three or more studies. The review was pre-registered on the PROSPERO database (CRD42018109012). RESULTS Database searching identified 1146 records. Fifty-eight full-text articles were assessed for eligibility and 24 studies included. Seven studies measured complement system activity. Activity of the classical pathway did not differ between cases and controls in four of six studies, and conflicting results were noted in two studies of alternative pathway activity. Twenty studies quantified complement protein concentrations of which complement components 3 (C3) and 4 (C4) were measured in more than three studies. Meta-analyses showed no evidence of significant differences between cases and controls for 11 studies of C3 (SMD 0.04, 95% confidence interval [CI] -0.29-0.36) and 10 studies of C4 (SMD 0.10, 95% CI -0.21-0.41). CONCLUSIONS Serological studies provide mixed evidence regarding dysregulation of the complement system in schizophrenia. Larger studies of a longitudinal nature, focusing on early phenotypes, could provide further insights regarding the potential role of the complement system in psychotic disorders.
Collapse
Affiliation(s)
- David Mongan
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|
28
|
Mongan D, Ramesar M, Föcking M, Cannon M, Cotter D. Role of inflammation in the pathogenesis of schizophrenia: A review of the evidence, proposed mechanisms and implications for treatment. Early Interv Psychiatry 2020; 14:385-397. [PMID: 31368253 DOI: 10.1111/eip.12859] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/13/2019] [Accepted: 07/14/2019] [Indexed: 12/28/2022]
Abstract
AIM Over the past several decades, there has been a growing research interest in the role of inflammation in the pathogenesis of schizophrenia. This review aims to summarize evidence in support of this relationship, to discuss biological mechanisms that might explain it, and to explore the translational impact by examining evidence from trials of anti-inflammatory and immunomodulatory agents in the treatment of schizophrenia. METHODS This narrative review of the literature summarizes evidence from observational studies, clinical trials and meta-analyses to evaluate the role of inflammation in the pathogenesis of schizophrenia and to discuss associated implications for treatment. RESULTS Epidemiological evidence and animal models support a hypothesis of maternal immune activation during pregnancy, which increases the risk of schizophrenia in the offspring. Several biomarker studies have found associations between classical pro-inflammatory cytokines and schizophrenia. The precise biological mechanisms by which inflammatory processes might contribute to the pathogenesis of schizophrenia remain unclear, but likely include the actions of microglia and the complement system. Importantly, several trials provide evidence that certain anti-inflammatory and immunomodulatory agents show beneficial effects in the treatment of schizophrenia. Nevertheless, there is a need for further precision-focused basic science and translational research. CONCLUSIONS Increasing our understanding of the role of inflammation in schizophrenia will enable novel opportunities for therapeutic and preventative interventions that are informed by the underlying pathogenesis of this complex disorder.
Collapse
Affiliation(s)
- David Mongan
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | - Mary Cannon
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Cotter
- Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
29
|
Uddin MS, Kabir MT, Jeandet P, Mathew B, Ashraf GM, Perveen A, Bin-Jumah MN, Mousa SA, Abdel-Daim MM. Novel Anti-Alzheimer's Therapeutic Molecules Targeting Amyloid Precursor Protein Processing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7039138. [PMID: 32411333 PMCID: PMC7206886 DOI: 10.1155/2020/7039138] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia among older people, and the prevalence of this disease is estimated to rise quickly in the upcoming years. Unfortunately, almost all of the drug candidates tested for AD until now have failed to exhibit any efficacy. Henceforth, there is an increased necessity to avert and/or slow down the advancement of AD. It is known that one of the major pathological characteristics of AD is the presence of senile plaques (SPs) in the brain. These SPs are composed of aggregated amyloid beta (Aβ), derived from the amyloid precursor protein (APP). Pharmaceutical companies have conducted a number of studies in order to identify safe and effective anti-Aβ drugs to combat AD. It is known that α-, β-, and γ-secretases are the three proteases that are involved in APP processing. Furthermore, there is a growing interest in these proteases, as they have a contribution to the modulation and production of Aβ. It has been observed that small compounds can be used to target these important proteases. Indeed, these compounds must satisfy the common strict requirements of a drug candidate targeted for brain penetration and selectivity toward different proteases. In this article, we have focused on the auspicious molecules which are under development for targeting APP-processing enzymes. We have also presented several anti-AD molecules targeting Aβ accumulation and phosphorylation signaling in APP processing. This review highlights the structure-activity relationship and other physicochemical features of several pharmacological candidates in order to successfully develop new anti-AD drugs.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, New York, NY 12144, USA
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
30
|
Uddin MS, Kabir MT, Mamun AA, Barreto GE, Rashid M, Perveen A, Ashraf GM. Pharmacological approaches to mitigate neuroinflammation in Alzheimer's disease. Int Immunopharmacol 2020; 84:106479. [PMID: 32353686 DOI: 10.1016/j.intimp.2020.106479] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/13/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases characterized by the formation of extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs). Growing evidence suggested that there is an association between neuronal dysfunction and neuroinflammation (NI) in AD, coordinated by the chronic activation of astrocytes and microglial cells along with the subsequent excessive generation of the proinflammatory molecule. Therefore, a better understanding of the relationship between the nervous and immune systems is important in order to delay or avert the neurodegenerative events of AD. The inflammatory/immune pathways and the mechanisms to control these pathways may provide a novel arena to develop new drugs in order to target NI in AD. In this review, we represent the influence of cellular mediators which are involved in the NI process, with regards to the progression of AD. We also discuss the processes and the current status of multiple anti-inflammatory agents which are used in AD and have gone through or going through clinical trials. Moreover, new prospects for targeting NI in the development of AD drugs have also been highlighted.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | | | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Mamunur Rashid
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Asma Perveen
- School of Life Sciences, The Glocal University, Saharanpur, Uttar Pradesh 247121, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
31
|
Nenasheva VV, Tarantul VZ. Many Faces of TRIM Proteins on the Road from Pluripotency to Neurogenesis. Stem Cells Dev 2019; 29:1-14. [PMID: 31686585 DOI: 10.1089/scd.2019.0152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tripartite motif (TRIM) proteins participate in numerous biological processes. They are the key players in immune system and are involved in the oncogenesis. Moreover, TRIMs are the highly conserved regulators of developmental pathways in both vertebrates and invertebrates. In particular, numerous data point to the participation of TRIMs in the determination of stem cell fate, as well as in the neurogenesis. TRIMs apply various mechanisms to perform their functions. Their common feature is the ability to ubiquitinate proteins mediated by the Really Interesting New Gene (RING) domain. Different C-terminal domains of TRIMs are involved in DNA and RNA binding, protein/protein interactions, and chromatin-mediated transcriptional regulation. Mutations and alterations of TRIM expression cause significant disturbances in the stem cells' self-renewal and neurogenesis, which result in the various pathologies of the nervous system (neurodegeneration, neuroinflammation, and malignant transformation). This review discusses the diverse molecular mechanisms of participation of TRIMs in stem cell maintenance and self-renewal as well as in neural differentiation processes and neuropathology.
Collapse
Affiliation(s)
- Valentina V Nenasheva
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vyacheslav Z Tarantul
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
32
|
Gofrit ON, Klein BY, Cohen IR, Ben-Hur T, Greenblatt CL, Bercovier H. Bacillus Calmette-Guérin (BCG) therapy lowers the incidence of Alzheimer's disease in bladder cancer patients. PLoS One 2019; 14:e0224433. [PMID: 31697701 PMCID: PMC6837488 DOI: 10.1371/journal.pone.0224433] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) affects one in ten people older than 65 years. Thus far, there is no cure or even disease-modifying treatment for this disease. The immune system is a major player in the pathogenesis of AD. Bacillus Calmette-Guérin (BCG), developed as a vaccine against tuberculosis, modulates the immune system and reduces recurrence of non-muscle invasive bladder cancer. Theoretical considerations suggested that treatment with BCG may decrease the risk of AD. We tested this hypothesis on a natural population of bladder cancer patients. METHODS AND FINDINGS After removing all bladder cancer patients presenting with AD or developing AD within one-year following diagnosis of bladder cancer, we collected data on a total of 1371 patients (1134 males and 237 females) who were followed for at least one year after the diagnosis of bladder cancer. The mean age at diagnosis of bladder cancer was 68.1 years (SD 13.0). Adjuvant post-operative intra-vesical treatment with BCG was given to 878 (64%) of these patients. The median period post-operative follow-up was 8 years. During follow-up, 65 patients developed AD at a mean age of 84 years (SD 5.9), including 21 patients (2.4%) who had been treated with BCG and 44 patients (8.9%) who had not received BCG. Patients who had been treated with BCG manifested more than 4-fold less risk for AD than those not treated with BCG. The Cox proportional hazards regression model and the Kaplan-Meier analysis of AD free survival both indicated high significance: patients not treated with BCG had a significantly higher risk of developing AD compared to BCG treated patients (HR 4.778, 95%CI: 2.837-8.046, p = 4.08x10-9 and Log Rank Chi-square 42.438, df = 1, p = 7.30x10-11, respectively). Exposure to BCG did not modify the prevalence of Parkinson's disease, 1.9% in BCG treated patients and 1.6% in untreated (Fisher's Exact Test, p = 1). CONCLUSIONS Bladder cancer patients treated with BCG were significantly less likely to develop AD at any age than patients who were not so treated. This finding of a retrospective study suggests that BCG treatment might also reduce the incidence of AD in the general population. Confirmation of such effects of BCG in other retrospective studies would support prospective studies of BCG in AD.
Collapse
Affiliation(s)
- Ofer N. Gofrit
- Department of Urology, Hadassah- Hebrew University Medical Center, Jerusalem, Israel
- * E-mail: (HB); (ONG)
| | - Benjamin Y. Klein
- Department of Microbiology and Molecular Genetics, Hebrew University Jerusalem, Israel
| | - Irun R. Cohen
- Department of Immunology, Weizmann Institute, Rehovot, Israel
| | - Tamir Ben-Hur
- Department of Neurology Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Charles L. Greenblatt
- Department of Microbiology and Molecular Genetics, Hebrew University Jerusalem, Israel
| | - Hervé Bercovier
- Department of Microbiology and Molecular Genetics, Hebrew University Jerusalem, Israel
- * E-mail: (HB); (ONG)
| |
Collapse
|
33
|
Abstract
The endotoxin hypothesis of neurodegeneration is the hypothesis that endotoxin causes or contributes to neurodegeneration. Endotoxin is a lipopolysaccharide (LPS), constituting much of the outer membrane of gram-negative bacteria, present at high concentrations in gut, gums and skin and in other tissue during bacterial infection. Blood plasma levels of endotoxin are normally low, but are elevated during infections, gut inflammation, gum disease and neurodegenerative disease. Adding endotoxin at such levels to blood of healthy humans induces systemic inflammation and brain microglial activation. Adding high levels of endotoxin to the blood or body of rodents induces microglial activation, priming and/or tolerance, memory deficits and loss of brain synapses and neurons. Endotoxin promotes amyloid β and tau aggregation and neuropathology, suggesting the possibility that endotoxin synergises with different aggregable proteins to give different neurodegenerative diseases. Blood and brain endotoxin levels are elevated in Alzheimer's disease, which is accelerated by systemic infections, including gum disease. Endotoxin binds directly to APOE, and the APOE4 variant both sensitises to endotoxin and predisposes to Alzheimer's disease. Intestinal permeability increases early in Parkinson's disease, and injection of endotoxin into mice induces α-synuclein production and aggregation, as well as loss of dopaminergic neurons in the substantia nigra. The gut microbiome changes in Parkinson's disease, and changing the endotoxin-producing bacterial species can affect the disease in patients and mouse models. Blood endotoxin is elevated in amyotrophic lateral sclerosis, and endotoxin promotes TDP-43 aggregation and neuropathology. Peripheral diseases that elevate blood endotoxin, such as sepsis, AIDS and liver failure, also result in neurodegeneration. Endotoxin directly and indirectly activates microglia that damage neurons via nitric oxide, oxidants and cytokines, and by phagocytosis of synapses and neurons. The endotoxin hypothesis is unproven, but if correct, then neurodegeneration may be reduced by decreasing endotoxin levels or endotoxin-induced neuroinflammation.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| |
Collapse
|
34
|
Sochocka M, Ochnik M, Sobczyński M, Siemieniec I, Orzechowska B, Naporowski P, Leszek J. New therapeutic targeting of Alzheimer's disease with the potential use of proline-rich polypeptide complex to modulate an innate immune response - preliminary study. J Neuroinflammation 2019; 16:137. [PMID: 31277647 PMCID: PMC6612126 DOI: 10.1186/s12974-019-1520-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/12/2019] [Indexed: 01/05/2023] Open
Abstract
Background The lack of effective treatment for Alzheimer’s disease (AD) stems mainly from the incomplete understanding of AD causes. Neuroinflammation has emerged as an important component of AD pathology, and a vast number of experimental and clinical data indicated a crucial role for the activation of the innate immune system in disease promotion and symptom progression. Methods Clinical examinations of AD patients in a different stage of disease severity in correlation with the measurement of two innate immune reactions, i.e., peripheral blood leukocyte (PBLs) resistance to viral infection (vesicular stomatitis virus, VSV) ex vivo, and cytokines: TNF-α, IFN-γ, IL-1β, and IL-10, production with enzyme-linked immunosorbent assay (ELISA), have been investigated during this preliminary study before and after 4 weeks of oral treatment with dietary supplement proline-rich polypeptide complex (PRP) (120 μg of PRP/day). The potential effect of PRP on the distribution of PBLs’ subpopulations has been specified. Results We have found a deficiency in innate immune response in AD patients. It was demonstrated for the first time that the degree of PBLs resistance to VSV infection was closely related to the stage of clinical severity of AD. Our study showed significant differences in cytokine production which pointed that in AD patients innate immune mechanisms are impaired. Administration of PRP to our patients increased innate immune response of PBLs and declined pro- and anti-inflammatory cytokine production, thus subduing the excessively developed inflammatory response, especially among patients with high severity of AD. PRP did not exhibit a pro-proliferative activity. It was showed, however, significant influence of PRP on the distribution of PBLs’ subpopulations. Conclusion The findings mentioned above might be crucial in the context of potential application of immunomodulatory therapy in AD patients and indicated PRP as a potential target for future treatments in neuroinflammatory diseases like AD. Electronic supplementary material The online version of this article (10.1186/s12974-019-1520-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Sochocka
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland.
| | - Michał Ochnik
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Maciej Sobczyński
- Department of Genomics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Iwona Siemieniec
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Beata Orzechowska
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Piotr Naporowski
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
35
|
Bavelloni A, Focaccia E, Piazzi M, Raffini M, Cesarini V, Tomaselli S, Orsini A, Ratti S, Faenza I, Cocco L, Gallo A, Blalock WL. AKT-dependent phosphorylation of the adenosine deaminases ADAR-1 and -2 inhibits deaminase activity. FASEB J 2019; 33:9044-9061. [PMID: 31095429 DOI: 10.1096/fj.201800490rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Murine thymoma viral oncogene homolog (AKT) kinases target both cytosolic and nuclear substrates for phosphorylation. Whereas the cytosolic substrates are known to be closely associated with the regulation of apoptosis and autophagy or metabolism and protein synthesis, the nuclear substrates are, for the most part, poorly understood. To better define the role of nuclear AKT, potential AKT substrates were isolated from the nuclear lysates of leukemic cell lines using a phosphorylated AKT substrate antibody and identified in tandem mass spectrometry. Among the proteins identified was adenosine deaminase acting on RNA (ADAR)1p110, the predominant nuclear isoform of the adenosine deaminase acting on double-stranded RNA. Coimmunoprecipitation studies and in vitro kinase assays revealed that AKT-1, -2, and -3 interact with both ADAR1p110 and ADAR2 and phosphorylate these RNA editases. Using site-directed mutagenesis of suspected AKT phosphorylation sites, AKT was found to primarily phosphorylate ADAR1p110 and ADAR2 on T738 and T553, respectively, and overexpression of the phosphomimic mutants ADAR1p110 (T738D) and ADAR2 (T553D) resulted in a 50-100% reduction in editase activity. Thus, activation of AKT has a direct and major impact on RNA editing.-Bavelloni, A., Focaccia, E., Piazzi, M., Raffini, M., Cesarini, V., Tomaselli, S., Orsini, A., Ratti, S., Faenza, I., Cocco, L., Gallo, A., Blalock, W. L. AKT-dependent phosphorylation of the adenosine deaminases ADAR-1 and -2 inhibits deaminase activity.
Collapse
Affiliation(s)
| | - Enrico Focaccia
- IRCSS Istituto Ortopedico Rizzoli (IOR), Bologna, Italy.,National Research Council (CNR) of Italy, Institute of Molecular Genetics (IGM), Bologna, Italy
| | - Manuela Piazzi
- IRCSS Istituto Ortopedico Rizzoli (IOR), Bologna, Italy.,National Research Council (CNR) of Italy, Institute of Molecular Genetics (IGM), Bologna, Italy
| | - Mirco Raffini
- IRCSS Istituto Ortopedico Rizzoli (IOR), Bologna, Italy
| | - Valeriana Cesarini
- Oncohaematology Department, RNA Editing Laboratory, IRCCS-Ospedale Pediatrico Bambino Gesù, Rome, Italy; and
| | - Sara Tomaselli
- Oncohaematology Department, RNA Editing Laboratory, IRCCS-Ospedale Pediatrico Bambino Gesù, Rome, Italy; and
| | - Arianna Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Irene Faenza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Angela Gallo
- Oncohaematology Department, RNA Editing Laboratory, IRCCS-Ospedale Pediatrico Bambino Gesù, Rome, Italy; and
| | - William L Blalock
- IRCSS Istituto Ortopedico Rizzoli (IOR), Bologna, Italy.,National Research Council (CNR) of Italy, Institute of Molecular Genetics (IGM), Bologna, Italy
| |
Collapse
|
36
|
Fu WY, Wang X, Ip NY. Targeting Neuroinflammation as a Therapeutic Strategy for Alzheimer's Disease: Mechanisms, Drug Candidates, and New Opportunities. ACS Chem Neurosci 2019; 10:872-879. [PMID: 30221933 DOI: 10.1021/acschemneuro.8b00402] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disease, and its incidence is expected to increase owing to the aging population worldwide. Current therapies merely provide symptomatic relief. Therefore, interventions for AD that delay the disease onset or progression are urgently required. Recent genomics and functional studies suggest that immune/inflammatory pathways are involved in the pathogenesis of AD. Although many anti-inflammatory drug candidates have undergone clinical trials, most have failed. This might be because of our limited understanding of the pathological mechanisms of neuroinflammation in AD. However, recent advances in the understanding of immune/inflammatory pathways in AD and their regulatory mechanisms could open up new avenues for drug development targeting neuroinflammation. In this Review, we discuss the mechanisms and status of different anti-inflammatory drug candidates for AD that have undergone or are undergoing clinical trials and explore new opportunities for targeting neuroinflammation in AD drug development.
Collapse
Affiliation(s)
| | | | - Nancy Y. Ip
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong, China
| |
Collapse
|
37
|
Phan TX, Malkani RG. Sleep and circadian rhythm disruption and stress intersect in Alzheimer's disease. Neurobiol Stress 2019; 10:100133. [PMID: 30937343 PMCID: PMC6279965 DOI: 10.1016/j.ynstr.2018.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) was discovered and the pathological hallmarks were revealed more than a century ago. Subsequently, many remarkable discoveries and breakthroughs provided us with mechanistic insights into the pathogenesis of AD. The identification of the molecular underpinning of the disease not only provided the framework of AD pathogenesis but also targets for therapeutic inventions. Despite all the initial successes, no effective treatment for AD has emerged yet as all the late stages of clinical trials have failed. Many factors ranging from genetic to environmental factors have been critically appraised as the potential causes of AD. In particular, the role of stress on AD has been intensively studied while the relationship between sleep and circadian rhythm disruption (SCRD) and AD have recently emerged. SCRD has always been thought to be a corollary of AD pathologies until recently, multiple lines of evidence converge on the notion that SCRD might be a contributing factor in AD pathogenesis. More importantly, how stress and SCRD intersect and make their concerted contributions to AD phenotypes has not been reviewed. The goal of this literature review is to examine at multiple levels - molecular, cellular (e.g. microglia, gut microbiota) and holistic - how the interaction between stress and SCRD bi-directionally and synergistically exacerbate AD pathologies and cognitive impairment. AD, in turn, worsens stress and SCRD and forms the vicious cycle that perpetuates and amplifies AD.
Collapse
Affiliation(s)
- Trongha X. Phan
- Department of Neurology, Division of Sleep Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Circadian and Sleep Medicine, Northwestern University, Chicago, IL, USA
| | - Roneil G. Malkani
- Department of Neurology, Division of Sleep Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Circadian and Sleep Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
38
|
Presta I, Vismara M, Novellino F, Donato A, Zaffino P, Scali E, Pirrone KC, Spadea MF, Malara N, Donato G. Innate Immunity Cells and the Neurovascular Unit. Int J Mol Sci 2018; 19:E3856. [PMID: 30513991 PMCID: PMC6321635 DOI: 10.3390/ijms19123856] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies have clarified many still unknown aspects related to innate immunity and the blood-brain barrier relationship. They have also confirmed the close links between effector immune system cells, such as granulocytes, macrophages, microglia, natural killer cells and mast cells, and barrier functionality. The latter, in turn, is able to influence not only the entry of the cells of the immune system into the nervous tissue, but also their own activation. Interestingly, these two components and their interactions play a role of great importance not only in infectious diseases, but in almost all the pathologies of the central nervous system. In this paper, we review the main aspects in the field of vascular diseases (cerebral ischemia), of primitive and secondary neoplasms of Central Nervous System CNS, of CNS infectious diseases, of most common neurodegenerative diseases, in epilepsy and in demyelinating diseases (multiple sclerosis). Neuroinflammation phenomena are constantly present in all diseases; in every different pathological state, a variety of innate immunity cells responds to specific stimuli, differentiating their action, which can influence the blood-brain barrier permeability. This, in turn, undergoes anatomical and functional modifications, allowing the stabilization or the progression of the pathological processes.
Collapse
Affiliation(s)
- Ivan Presta
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Marco Vismara
- Department of Cell Biotechnologies and Hematology, University "La Sapienza" of Rome, 00185 Rome, Italy.
| | - Fabiana Novellino
- Institute of Molecular Bioimaging and Physiology, National Research Council, 88100 Catanzaro, Italy.
| | - Annalidia Donato
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Paolo Zaffino
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Elisabetta Scali
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Krizia Caterina Pirrone
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Maria Francesca Spadea
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Natalia Malara
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Giuseppe Donato
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| |
Collapse
|
39
|
Nakanishi A, Kaneko N, Takeda H, Sawasaki T, Morikawa S, Zhou W, Kurata M, Yamamoto T, Akbar SMF, Zako T, Masumoto J. Amyloid β directly interacts with NLRP3 to initiate inflammasome activation: identification of an intrinsic NLRP3 ligand in a cell-free system. Inflamm Regen 2018; 38:27. [PMID: 30459926 PMCID: PMC6231249 DOI: 10.1186/s41232-018-0085-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
Background Alzheimer’s disease is a neurodegenerative disease characterized by the interstitial deposition of amyloid β (Aβ) plaque, which is thought to be related to chronic neuroinflammation. Aβ is known to make fibrils via oligomers from monomers. Aβ has been reported to activate the NLRP3 inflammasome in infiltrated macrophages. NLRP3, an intracellular pattern recognition receptor, has been reported to recognize numerous pathogens and/or metabolites and form complexes with adopter protein ASC to make the inflammasome, an interleukin (IL)-1β-processing platform. Although reactive oxygen species from mitochondria have been reported to be involved in the activation of the NLRP3 inflammasome in microglial cells upon the deposition of Aβ, whether Aβ directly or indirectly activates the NLRP3 inflammasome remains unclear. Methods We prepared monomers, oligomers, and fibrils of Aβ, which promoted the interaction between NLRP3 and each form of Aβ and analyzed the interaction between NLRP3 and ASC induced by each form of Aβ in a cell-free system with the amplified luminescent proximity homogeneous assay. We also confirmed the physiological relevance in a cell-based assay using human embryonic kidney 293T cells and human peripheral mononuclear cells. Results Monomers, oligomers, and fibrils of Aβ were successfully prepared. Aβ oligomers and fibrils interacted with NLRP3. Aβ oligomers and fibrils induced the interaction between NLRP3 and ASC. However, Aβ monomers did not interact with NLRP3 or induce interaction between NLRP3 and ASC in the cell-free system, and IL-1β was not secreted according to the cell-based assay. Conclusion Oligomerized Aβ originating from non-toxic Aβ monomers directly interacted with NLRP3, leading to the activation of the NLRP3 inflammasome. This may be an attractive target for the treatment of Alzheimer’s disease. Electronic supplementary material The online version of this article (10.1186/s41232-018-0085-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ayaka Nakanishi
- 1Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Centre, Shitsukawa 454, Toon, Ehime 791-0295 Japan.,2Department of Chemistry and Biology, Ehime University Graduate School of Science and Engineering, Bunkyocho 2-5, Matsuyama, Ehime 790-8577 Japan
| | - Naoe Kaneko
- 1Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Centre, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Hiroyuki Takeda
- 3Divison of Proteo-Drug-Discovery Sciences, Ehime University Proteo-Science Center, Bunkyocho 3, Matsuyama, Ehime 790-8577 Japan
| | - Tatsuya Sawasaki
- 4Division of Cell-free Sciences, Ehime University Proteo-Science Center, Bunkyocho 3, Matsuyama, Ehime 790-8577 Japan
| | - Shinnosuke Morikawa
- 1Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Centre, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Wei Zhou
- 1Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Centre, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Mie Kurata
- 1Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Centre, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Toshihiro Yamamoto
- 1Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Centre, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Sheikh Mohammad Fazle Akbar
- 1Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Centre, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Tamotsu Zako
- 2Department of Chemistry and Biology, Ehime University Graduate School of Science and Engineering, Bunkyocho 2-5, Matsuyama, Ehime 790-8577 Japan
| | - Junya Masumoto
- 1Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Centre, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| |
Collapse
|
40
|
Solana C, Tarazona R, Solana R. Immunosenescence of Natural Killer Cells, Inflammation, and Alzheimer's Disease. Int J Alzheimers Dis 2018; 2018:3128758. [PMID: 30515321 PMCID: PMC6236558 DOI: 10.1155/2018/3128758] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) represents the most common cause of dementia in the elderly. AD is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although the aetiology of AD is not clear, both environmental factors and heritable predisposition may contribute to disease occurrence. In addition, inflammation and immune system alterations have been linked to AD. The prevailing hypothesis as cause of AD is the deposition in the brain of amyloid beta peptides (Aβ). Although Aβ have a role in defending the brain against infections, their accumulation promotes an inflammatory response mediated by microglia and astrocytes. The production of proinflammatory cytokines and other inflammatory mediators such as prostaglandins and complement factors favours the recruitment of peripheral immune cells further promoting neuroinflammation. Age-related inflammation and chronic infection with herpes virus such as cytomegalovirus may also contribute to inflammation in AD patients. Natural killer (NK) cells are innate lymphoid cells involved in host defence against viral infections and tumours. Once activated NK cells secrete cytokines such as IFN-γ and TNF-α and chemokines and exert cytotoxic activity against target cells. In the elderly, changes in NK cell compartment have been described which may contribute to the lower capacity of elderly individuals to respond to pathogens and tumours. Recently, the role of NK cells in the immunopathogenesis of AD is discussed. Although in AD patients the frequency of NK cells is not affected, a high NK cell response to cytokines has been described together with NK cell dysregulation of signalling pathways which is in part involved in this altered behaviour.
Collapse
Affiliation(s)
| | | | - Rafael Solana
- Instituto Maimónides de Investigación Biomédica (IMIBIC), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- University of Cordoba, Córdoba, Spain
| |
Collapse
|
41
|
Yang M, Xu W, Wang Y, Jiang X, Li Y, Yang Y, Yuan H. CD11b-activated Src signal attenuates neuroinflammatory pain by orchestrating inflammatory and anti-inflammatory cytokines in microglia. Mol Pain 2018; 14:1744806918808150. [PMID: 30280656 PMCID: PMC6311569 DOI: 10.1177/1744806918808150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neuroinflammation plays an important role in the induction and maintenance of chronic pain. Orchestra of pattern-recognition receptor-induced pro-inflammatory and anti-inflammatory cytokines is critical for inflammation homeostasis. CD11b on macrophages could inhibit toll-like receptor (TLR) activation-induced inflammatory responses. However, the function of CD11b on microglia remains unknown. In the current study, we demonstrated that CD11b-deficient microglia cells produced more inflammatory cytokines, such as interleukin-6 and tumor necrosis factor alpha, while less anti-inflammatory cytokines. Signal transduction assay confirmed that nuclear factor-κB activation was increased in CD11b-deficient microglia cells, which resulted from decreased activation of Src. Inhibition of Src by PP1 increased inflammation in wild-type microglia cells significantly, but not in CD11b-deficient microglia cells. In vivo, CD11b-deficient mice were more susceptible to chronic constrictive injury-induced allodynia and hyperalgesia with significantly more inflammatory cytokines expression. All these results indicated that the regulatory function of CD11b-Src signal pathway on both inflammatory and anti-inflammatory cytokines in microglia cells is a potential target in neuropathic pain treatment.
Collapse
Affiliation(s)
- Mei Yang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Wenyun Xu
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yiru Wang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Xin Jiang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yingke Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yajuan Yang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
42
|
Xu X, Zhang A, Zhu Y, He W, Di W, Fang Y, Shi X. MFG-E8 reverses microglial-induced neurotoxic astrocyte (A1) via NF-κB and PI3K-Akt pathways. J Cell Physiol 2018; 234:904-914. [PMID: 30076715 DOI: 10.1002/jcp.26918] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 06/13/2018] [Indexed: 12/28/2022]
Abstract
Recent evidence have suggested that neuroinflammation and ischemia induce the activation of two different types of reactive astrocytes, termed A1 and A2. Additionally, A1 astrocytes contribute to the death of neurons and oligodendrocytes in neurodegenerative diseases, such as Alzheimer's disease (AD). In the current study, we constructed an Aβ42-activated microglia-conditioned medium to induce A1 astrocytic activation via secretion of interleukin 1α, tumor necrosis factor, and complement component 1q in vitro, and indicated the regulatory role of milk fat globule epidermal growth factor 8 (MFG-E8) on A1/A2 astrocytic alteration through the downregulation of nuclear factor-κB and the upregulation of PI3K-Akt. This study showed that MFG-E8 suppressed A1 astrocytes and holds great potential for the treatment of AD.
Collapse
Affiliation(s)
- Xiaotian Xu
- Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Aiwu Zhang
- Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wen He
- Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Di
- Department of Neurology, Shanxi Provincial People's Hospital, Xi'an, China.,Department of Neurology, Third Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Yannan Fang
- Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaolei Shi
- Department of Neurology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, People's Republic of China.,Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
43
|
Branca C, Ferreira E, Nguyen TV, Doyle K, Caccamo A, Oddo S. Genetic reduction of Nrf2 exacerbates cognitive deficits in a mouse model of Alzheimer's disease. Hum Mol Genet 2018; 26:4823-4835. [PMID: 29036636 DOI: 10.1093/hmg/ddx361] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/07/2017] [Indexed: 12/20/2022] Open
Abstract
Aging is the major risk factor for several neurodegenerative diseases, including Alzheimer's disease (AD). However, the mechanisms by which aging contributes to neurodegeneration remain elusive. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a transcription factor that regulates expression of a vast number of genes by binding to the antioxidant response element. Nrf2 levels decrease as a function of age, and reduced Nrf2 levels have been reported in postmortem human brains and animal models of AD. Nevertheless, it is still unknown whether Nrf2 plays a role in the cognitive deficits associated with AD. To address this question, we used a genetic approach to remove the Nrf2 gene from APP/PS1 mice, a widely used animal model of AD. We found that the lack of Nrf2 significantly exacerbates cognitive deficits in APP/PS1, without altering gross motor function. Specifically, we found an exacerbation of deficits in spatial learning and memory, as well as in working and associative memory. Different brain regions control these behavioral tests, indicating that the lack of Nrf2 has a global effect on brain function. The changes in cognition were linked to an increase in Aβ and interferon-gamma (IFNγ) levels, and microgliosis. The changes in IFNγ levels are noteworthy as previously published evidence indicates that IFNγ can increase microglia activation and induce Aβ production. Our data suggest a clear link between Nrf2 and AD-mediated cognitive decline and further strengthen the connection between Nrf2 and AD.
Collapse
Affiliation(s)
- Caterina Branca
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Eric Ferreira
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Thuy-Vi Nguyen
- Department of Immunobiology and Department of Neurology, University of Arizona, Tucson, AZ 85719, USA
| | - Kristian Doyle
- Department of Immunobiology and Department of Neurology, University of Arizona, Tucson, AZ 85719, USA.,The Arizona Center on Aging, University of Arizona, Tucson, AZ 85719, USA
| | - Antonella Caccamo
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Salvatore Oddo
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.,School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
44
|
Chen HH, Perng WT, Chiou JY, Wang YH, Huang JY, Wei JCC. Risk of dementia among patients with Sjogren's syndrome: A nationwide population-based cohort study in Taiwan. Semin Arthritis Rheum 2018; 48:895-899. [PMID: 30075989 DOI: 10.1016/j.semarthrit.2018.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/28/2018] [Accepted: 06/15/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Autoimmunity may play a role in early-stage dementia. The association between Sjogren's syndrome (SS) and dementia remains unknown. This study was conducted to provide epidemiologic evidence for this relationship. METHODS This 12-year, nationwide, population-based, retrospective cohort study analyzed the risk of dementia in the SS cohort. We also investigated the incidence of dementia among patients with SS by using data from the Longitudinal Health Insurance Database 2000, maintained by the Taiwan National Health Research Institutes. To balance the prevalence of characteristics in the cohorts, we used the propensity score to match selected comorbidities in the two cohorts. We also analyzed the association between SS and dementia among patients with different potential risks by using a Cox proportional hazard model. RESULTS According to the analysis of data obtained from follow-up conducted during 2000-2012, the incidence of dementia in the SS cohort was 1.21-fold that in the control cohort (95% confidence interval [CI] = 1.02-1.45, p < 0.05). In the group older than 65years, the incidence of dementia was significantly high (adjusted hazard ratio [aHR] = 5.30, 95% CI = 4.26-6.60, p < 0.01). After adjustment for comorbidities, including Parkinson's disease (aHR = 2.98, 95% CI = 1.80-4.94), insomnia (aHR = 1.45, 95% CI = 1.14-1.85), and hypertension (aHR = 1.43, 95% CI = 1.19-1.71), the association between SS and dementia was still significant. CONCLUSION This 13-year, nationwide, population-based retrospective cohort study revealed patients with SS to have a higher risk of dementia.
Collapse
Affiliation(s)
- Huang-Hsi Chen
- Institute of Medicine, Taichung, Chung Shan Medical University, Taiwan; Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital
| | - Wuu-Tsun Perng
- Institute of Medicine, Taichung, Chung Shan Medical University, Taiwan; Department of Recreation Sport & Health Promotion, National Pingtung University of Science and Technology
| | - Jeng-Yuan Chiou
- School of Health Policy and Management, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hsun Wang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jing-Yang Huang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - James Cheng-Chung Wei
- Institute of Medicine, Taichung, Chung Shan Medical University, Taiwan; Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital; Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
45
|
Kiyota T, Machhi J, Lu Y, Dyavarshetty B, Nemati M, Yokoyama I, Mosley RL, Gendelman HE. Granulocyte-macrophage colony-stimulating factor neuroprotective activities in Alzheimer's disease mice. J Neuroimmunol 2018; 319:80-92. [PMID: 29573847 PMCID: PMC5916331 DOI: 10.1016/j.jneuroim.2018.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/27/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022]
Abstract
We investigated the effects of granulocyte-macrophage colony stimulating factor (GM-CSF) on behavioral and pathological outcomes in Alzheimer's disease (AD) and non-transgenic mice. GM-CSF treatment in AD mice reduced brain amyloidosis, increased plasma Aβ, and rescued cognitive impairment with increased hippocampal expression of calbindin and synaptophysin and increased levels of doublecortin-positive cells in the dentate gyrus. These data extend GM-CSF pleiotropic neuroprotection mechanisms in AD and include regulatory T cell-mediated immunomodulation of microglial function, Aβ clearance, maintenance of synaptic integrity, and induction of neurogenesis. Together these data support further development of GM-CSF as a neuroprotective agent for AD.
Collapse
Affiliation(s)
- Tomomi Kiyota
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bhagyalaxmi Dyavarshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maryam Nemati
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Izumi Yokoyama
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - R L Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
46
|
Gabin JM, Saltvedt I, Tambs K, Holmen J. The association of high sensitivity C-reactive protein and incident Alzheimer disease in patients 60 years and older: The HUNT study, Norway. IMMUNITY & AGEING 2018; 15:4. [PMID: 29387136 PMCID: PMC5776764 DOI: 10.1186/s12979-017-0106-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/28/2017] [Indexed: 01/20/2023]
Abstract
Background With ageing, long-standing inflammation can be destructive, contributing to development of several disorders, among these Alzheimer’s disease (AD). C-reactive protein (CRP) is a relatively stable peripheral inflammatory marker, but in previous studies the association between highly sensitive CRP (hsCRP) and AD have shown inconsistent results. This study examines the association between AD and hsCRP in blood samples taken up to 15 years prior to the diagnoses of 52 persons with AD amongst a total of 2150 persons ≥60 years of age. Results Data from Norway’s Nord-Trøndelag Health Study (HUNT 2) and the Health and Memory Study (HMS) were linked. The participants had an average age of 73 years, and diagnosed with AD up to 15 years [mean 8.0 (±3.9)] following hsCRP measurement. Logistic regression models showed an adverse association between hsCRP and AD in participants aged 60-70.5 (odds ratio: 2.37, 95% CI: 1.01-5.58). Conversely, in participants aged 70.6-94, there was an inverse association between hsCRP and AD (odds ratio: 0.39, 95% CI: 0.19-0.84). When applying multivariate models the findings were significant in individuals diagnosed 0.4-7 years after the hsCRP was measured; and attenuated when AD was diagnosed more than seven years following hsCRP measurement. Conclusions Our study is in line with previous studies indicating a shift in the association between hsCRP and AD by age: in adults (60-70.5 years) there is an adverse association, while in seniors (>70.6 years) there is an inverse association. If our findings can be replicated, a focus on why a more active peripheral immune response may have a protective role in individuals ≥70 years should be further examined.
Collapse
Affiliation(s)
- Jessica Mira Gabin
- 1HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Forskningsveien 2, 7600 Levanger, Norway
| | - Ingvild Saltvedt
- 2Department of Neuromedicine and Movement science, NTNU, the Faculty of Medicine and Health, Post Office Box 8905, 7491 Trondheim, Norway.,3Department of Geriatrics, St. Olav University Hospital, Post Office Box 3250, 7006 Trondheim, Norway
| | - Kristian Tambs
- 4Division of Mental Health, Norwegian Institute of Public Health, Post Office Box 4404, Nydalen, 0403 Oslo, Norway
| | - Jostein Holmen
- 1HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Forskningsveien 2, 7600 Levanger, Norway
| |
Collapse
|
47
|
Gu Y, Ma LJ, Bai XX, Jie J, Zhang XF, Chen D, Li XP. Mitogen-activated protein kinase phosphatase 1 protects PC12 cells from amyloid beta-induced neurotoxicity. Neural Regen Res 2018; 13:1842-1850. [PMID: 30136701 PMCID: PMC6128043 DOI: 10.4103/1673-5374.238621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathway plays an important role in the regulation of cell growth, proliferation, differentiation, transformation and death. Mitogen-activated protein kinase phosphatase 1 (MKP1) has an inhibitory effect on the p38MAPK and JNK pathways, but it is unknown whether it plays a role in Aβ-induced oxidative stress and neuronal inflammation. In this study, PC12 cells were infected with MKP1 shRNA, MKP1 lentivirus or control lentivirus for 12 hours, and then treated with 0.1, 1, 10 or 100 μM amyloid beta 42 (Aβ42). The cell survival rate was measured using the cell counting kit-8 assay. MKP1, tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) mRNA expression levels were analyzed using quantitative real time-polymerase chain reaction. MKP1 and phospho-c-Jun N-terminal kinase (JNK) expression levels were assessed using western blot assay. Reactive oxygen species (ROS) levels were detected using 2′,7′-dichlorofluorescein diacetate. Mitochondrial membrane potential was measured using flow cytometry. Superoxide dismutase activity and malondialdehyde levels were evaluated using the colorimetric method. Lactate dehydrogenase activity was measured using a microplate reader. Caspase-3 expression levels were assessed by enzyme-linked immunosorbent assay. Apoptosis was evaluated using the terminal deoxynucleotidyl transferase dUTP nick end labeling method. MKP1 overexpression inhibited Aβ-induced JNK phosphorylation and the increase in ROS levels. It also suppressed the Aβ-induced increase in TNF-α and IL-1β levels as well as apoptosis in PC12 cells. In contrast, MKP1 knockdown by RNA interference aggravated Aβ-induced oxidative stress, inflammation and cell damage in PC12 cells. Furthermore, the JNK-specific inhibitor SP600125 abolished this effect of MKP1 knockdown on Aβ-induced neurotoxicity. Collectively, these results show that MKP1 mitigates Aβ-induced apoptosis, oxidative stress and neuroinflammation by inhibiting the JNK signaling pathway, thereby playing a neuroprotective role.
Collapse
Affiliation(s)
- Yue Gu
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lian-Jun Ma
- Endoscopy Center, the China-Japan Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiao-Xue Bai
- Cadre's Wards, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jing Jie
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiu-Fang Zhang
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Dong Chen
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiao-Ping Li
- Department of Pediatrics, the First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
48
|
Role of the peripheral innate immune system in the development of Alzheimer's disease. Exp Gerontol 2017; 107:59-66. [PMID: 29275160 DOI: 10.1016/j.exger.2017.12.019] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/27/2017] [Accepted: 12/20/2017] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease is one of the most devastating neurodegenerative diseases. The exact cause of the disease is still not known although many scientists believe in the beta amyloid hypothesis which states that the accumulation of the amyloid peptide beta (Aβ) in brain is the initial cause which consequently leads to pathological neuroinflammation. However, it was recently shown that Aβ may have an important role in defending the brain against infections. Thus, the balance between positive and negative impact of Aβ may determine disease progression. Microglia in the brain are innate immune cells, and brain-initiated inflammatory responses reflected in the periphery suggests that Alzheimer's disease is to some extent also a systemic inflammatory disease. Greater permeability of the blood brain barrier facilitates the transport of peripheral immune cells to the brain and vice versa so that a vicious circle originating on the periphery may contribute to the development of overt clinical AD. Persistent inflammatory challenges by pathogens in the periphery, increasing with age, may also contribute to the central propagation of the pathological changes seen clinically. Therefore, the activation status of peripheral innate immune cells may represent an early biomarker of the upcoming impact on the brain. The modulation of these cells may thus become a useful mechanism for modifying disease progression.
Collapse
|
49
|
Zhao Y, Cong L, Lukiw WJ. Lipopolysaccharide (LPS) Accumulates in Neocortical Neurons of Alzheimer's Disease (AD) Brain and Impairs Transcription in Human Neuronal-Glial Primary Co-cultures. Front Aging Neurosci 2017; 9:407. [PMID: 29311897 PMCID: PMC5732913 DOI: 10.3389/fnagi.2017.00407] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/24/2017] [Indexed: 11/26/2022] Open
Abstract
Several independent laboratories have recently reported the detection of bacterial nucleic acid sequences or bacterial-derived neurotoxins, such as highly inflammatory lipopolysaccharide (LPS), within Alzheimer’s disease (AD) affected brain tissues. Whether these bacterial neurotoxins originate from the gastrointestinal (GI) tract microbiome, a possible brain microbiome or some dormant pathological microbiome is currently not well understood. Previous studies indicate that the co-localization of pro-inflammatory LPS with AD-affected brain cell nuclei suggests that there may be a contribution of this neurotoxin to genotoxic events that support inflammatory neurodegeneration and failure in homeostatic gene expression. In this report we provide evidence that in sporadic AD, LPS progressively accumulates in neuronal parenchyma and appears to preferentially associate with the periphery of neuronal nuclei. Run-on transcription studies utilizing [α-32P]-uridine triphosphate incorporation into newly synthesized total RNA further indicates that human neuronal-glial (HNG) cells in primary co-culture incubated with LPS exhibit significantly reduced output of DNA transcription products. These studies suggest that in AD LPS may impair the efficient readout of neuronal genetic information normally required for the homeostatic operation of brain cell function and may contribute to a progressive disruption in the read-out of genetic information.
Collapse
Affiliation(s)
- Yuhai Zhao
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Departments of Anatomy and Cell Biology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Lin Cong
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Neurology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Walter J Lukiw
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Neurology, Shengjing Hospital, China Medical University, Shenyang, China.,Department of Neurology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Ophthalmology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
50
|
Xia M, Li X, Yang L, Ren J, Sun G, Qi S, Verkhratsky A, Li B. The ameliorative effect of fluoxetine on neuroinflammation induced by sleep deprivation. J Neurochem 2017; 146:63-75. [PMID: 29222907 DOI: 10.1111/jnc.14272] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023]
Abstract
It is well known that sleep disorders are harmful to people's health and performance, and growing evidence suggests that sleep deprivation (SD) can trigger neuroinflammation in the brain. The nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasome is reported to be relevant to the neuroinflammation induced by SD, but the regulatory signaling that governs the NLRP3 inflammasome in SD is still unknown. Meanwhile, whether the regulatory action of antidepressants in astrocytes could affect the neuroinflammation induced by SD also remains obscure. In this study, we were the first to discover that the antidepressant fluoxetine, a type of specific serotonin reuptake inhibitor widely used in clinical practice, could suppress the neuroinflammation and neuronal apoptosis induced by SD. The main findings from this study are as follows: (i) SD stimulated the expression of activated NLRP3 inflammasomes and the maturation of IL-1β/18 via suppressing the phosphorylation of STAT3 in astrocytes; (ii) SD decreased the activation of AKT and stimulated the phosphorylation of GSK-3β, which inhibited the phosphorylation of STAT3; (iii) the NLRP3 inflammasome expression stimulated by SD was partly mediated by the P2X7 receptor; (iv) an agonist of STAT3 could significantly abolish the expression of NLRP3 inflammasomes induced by an agonist of the P2X7 receptor in primary cultured astrocytes; (v) the administration of fluoxetine could reverse the stimulation of NLRP3 inflammasome expression and function by SD through elevating the activation of STAT3. In conclusion, our present research suggests the promising possibility that fluoxetine could ameliorate the neuronal impairment induced by SD.
Collapse
Affiliation(s)
- Maosheng Xia
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China
| | - Xiaowei Li
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Li Yang
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Jiaan Ren
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China
| | - Guangfeng Sun
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China
| | - Shuang Qi
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Baoman Li
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China
| |
Collapse
|