1
|
Zhang J, Shen P, Wang Y, Li Z, Xu L, Qiu J, Hu J, Yang Z, Wu Y, Zhu Z, Lin H, Jiang Z, Shui L, Tang M, Jin M, Tong F, Chen K, Wang J. Interaction between walkability and fine particulate matter on ischemic heart disease: A prospective cohort study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117520. [PMID: 39674020 DOI: 10.1016/j.ecoenv.2024.117520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/28/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Previous studies have suggested that neighborhoods characterized by higher walkability are related to a reduced risk of ischemic heart disease (IHD), whereas exposure to PM2.5 is positively associated with risk of IHD. Nevertheless, their joint impact on IHD warrants further investigation. METHODS This prospective cohort study was performed in Yinzhou, Ningbo, China, comprising 47,516 participants. Individual-level walkability and PM2.5 were evaluated using a commercial walkability database and a land use regression (LUR) model, respectively. Hazard ratios (HRs) and 95 % confidence intervals (95 % CIs) were calculated using two Cox proportional hazards models: one based on two-year average PM2.5 levels prior to baseline, and the other incorporating time-varying PM2.5 assessed on a monthly scale. Dose-response relationships were explored using restricted cubic spline (RCS) functions. Interactions on both additive and multiplicative scales were assessed via relative excess risk due to interaction (RERI) and likelihood-ratio tests. Joint effects were explored and visualized using a 3D wireframe plot. RESULTS Over a median follow-up of 5.14 years, 1735 incident cases of IHD were identified. Adjusted HRs (95 % CIs) were 1.56 (1.34-1.81) per 10 μg/m3 increase in PM2.5 and 0.96 (0.94-0.98) per 10-unit increase in walkability, with both exposures exhibiting non-linear dose-response relationships. Walkability and PM2.5 were positively correlated (rs = 0.12, P < 0.001), and a multiplicative interaction was detected (Pinteraction = 0.019). CONCLUSION Walkability was inversely associated with risk of IHD, whereas exposure to PM2.5 was positively associated with IHD. Notably, the pernicious effects of PM2.5 could be attenuated in areas with higher levels of walkability. Our findings underscore the significance of walkable urban design, air quality improvement, as preventive strategies for IHD.
Collapse
Affiliation(s)
- Jiayun Zhang
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Peng Shen
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo 315040, China
| | - Yixing Wang
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zihan Li
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Lisha Xu
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Jie Qiu
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Jingjing Hu
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Zongming Yang
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Yonghao Wu
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Zhanghang Zhu
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hongbo Lin
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo 315040, China
| | - Zhiqin Jiang
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo 315040, China
| | - Liming Shui
- Yinzhou District Health Bureau of Ningbo, Ningbo 315100, China
| | - Mengling Tang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mingjuan Jin
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Feng Tong
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China.
| | - Kun Chen
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Jianbing Wang
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China.
| |
Collapse
|
2
|
Xia L, Zhou S, Han L, Sun W, Sun H. Joint association of air pollutants on cardiometabolic multimorbidity. Sci Rep 2024; 14:26987. [PMID: 39506041 PMCID: PMC11542023 DOI: 10.1038/s41598-024-77886-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
We estimated the association between combined exposure to air pollutants and the development of cardiometabolic multimorbidity (CM) and all-cause mortality. An air pollution score was calculated to determine the combined exposure to five air pollutants. CM was defined as the instance of at least two types of diseases. A genetic risk score (GRS) was calculated for each individual. A multistate regression model was used to investigate the effect of the combined associations of air pollutants on each stage of CM progression. After multivariable adjustment, the air pollution score was related with greater susceptibility of CM and all-cause mortality, and those with a high GRS for cardiovascular disease (CVD) or coronary heart disease (CHD) and a high air pollution score had a greater susceptibility of incident CM and all-cause mortality. The multistate model revealed that the greater air pollution score was connected with the susceptibility of progressing from disease-free baseline to having one cardiometabolic disease, and next to CM, and eventually to death. Combined exposure to five air pollutants were related with greater susceptibility of CM and all-cause mortality in a dose-dependent style and is related with the progression of CM and with all-cause mortality.
Collapse
Affiliation(s)
- Liang Xia
- Department of Gynecology, Ningbo No.2 Hospital, Ningbo, 315010, Zhejiang, China
| | - Shan Zhou
- Department of Endocrinology, Ningbo No.2 Hospital, Ningbo, 315010, Zhejiang, China
| | - Liyuan Han
- Department of Gynecology, Ningbo No.2 Hospital, Ningbo, 315010, Zhejiang, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University, Ningbo, 315000, Zhejiang, China
| | - Weifeng Sun
- Department of Cardiology, Ningbo No. 2 Hospital, Ningbo, 315010, Zhejiang, China.
| | - Hongpeng Sun
- School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
3
|
Chen S, Fei F, Song Y, Dong M, Wu A, Yu H. Composition and Effects of Aerosol Particles Deposited on Urban Plant Leaves in Terrestrial and Aquatic Habitats. PLANTS (BASEL, SWITZERLAND) 2024; 13:3056. [PMID: 39519990 PMCID: PMC11548794 DOI: 10.3390/plants13213056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/28/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Plants play a vital role in mitigating aerosol particles and improving air quality. This study investigated the composition characteristics and potential effects of particles retained on the leaf surfaces of two amphibious plants (i.e., Alternanthera philoxeroides and Hydrocotyle vulgaris) in both terrestrial and aquatic habitats. The results show that plant habitats influenced the composition of aerosol particles retained on leaf surfaces. Specifically, plants in terrestrial habitats retained a higher mass concentration of coarse and large particles rich in inorganic Ca2+, accounting for over 70% of total ions, whereas plants in aquatic habitats retained a greater abundance of fine and secondary particles with high fractions of water-soluble NO3- and SO42-, taking up over 65% of total anions. Secondary particles deposited on the surfaces of plants in aquatic habitats tend to deliquesce and transform from the particle phase to the liquid phase. Terrestrial habitats facilitate the deposition of large particles. Additionally, particle accumulation on leaf surfaces adversely affected the stomatal conductance of plant leaves, leading to reductions in both the transpiration and photosynthetic rates. This study provides insights into the impact and role of plants from different habitats in mitigating urban particulate pollution.
Collapse
Affiliation(s)
- Siqi Chen
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (S.C.); (F.F.); (Y.S.); (M.D.)
| | - Fangmin Fei
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (S.C.); (F.F.); (Y.S.); (M.D.)
| | - Yaobin Song
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (S.C.); (F.F.); (Y.S.); (M.D.)
| | - Ming Dong
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (S.C.); (F.F.); (Y.S.); (M.D.)
| | - Aiping Wu
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China;
| | - Hua Yu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (S.C.); (F.F.); (Y.S.); (M.D.)
| |
Collapse
|
4
|
Wang J, Lei M, Xue Y, Tan Q, He X, Guan J, Song W, Ma H, Wu B, Cui X. Assessment of toxicity changes induced by exposure of human cells to lunar dust simulant. Sci Rep 2024; 14:24781. [PMID: 39433758 PMCID: PMC11494017 DOI: 10.1038/s41598-024-69259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/02/2024] [Indexed: 10/23/2024] Open
Abstract
The toxicity of lunar dust (LD) to astronauts' health has been confirmed in the Apollo missions and subsequent biological experiments. Therefore, it is crucial to understand the biological toxicity of lunar dust for future human missions to the Moon. In this study, we exposed human lung epithelial cells (BEAS-2B) and peripheral blood B lymphocytes (AHH-1) to varying concentrations (0, 500, 1000, and 1500 μg/ml) of a lunar dust simulant (LDS) called CLDS-i for 24 and 48 h. The results provided the following key findings: (1) LDS induction of cell damage occurred through oxidative stress, with the levels of reactive oxygen species (ROS) in BEAS-2B cells being dependent on the duration of exposure. (2) Necrosis and early apoptosis were observed in BEAS-2B cells and AHH-1 cells, respectively. In addition, both cells showed lysosomal damage. (3) Genes CXCL1, SPP1, CSF2, MMP1, and POSTN are implicated in immune response and cytoskeletal arrangement regulation in BEAS-2B cells. Considering the similarities in composition and properties between CLDS-i and real lunar dust, our findings not only enhance the understanding of LDS toxicity, but also contribute to a better comprehension of the genomic alterations and molecular mechanisms underlying cellular toxicity induced by LD. These insights will contribute to the development of a biotoxicology framework aimed at safeguarding the health of astronauts and, consequently, facilitating future human missions to the Moon.
Collapse
Affiliation(s)
- Jintao Wang
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Lei
- China Astronaut Research and Training Center, Beijing, China
| | - Yuan Xue
- China Astronaut Research and Training Center, Beijing, China
| | - Qi Tan
- Department of Respiratory and Critical Care Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinxing He
- China Astronaut Research and Training Center, Beijing, China
| | - Jian Guan
- Aier Eye Hospital, Wuhan University, Wuhan, Hubei, China
| | - Wei Song
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Honglei Ma
- China Astronaut Research and Training Center, Beijing, China.
| | - Bin Wu
- China Astronaut Research and Training Center, Beijing, China.
| | - Xinguang Cui
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Yun M, Kim B. Effects of Scutellaria baicalensis Extract-Induced Exosomes on the Periodontal Stem Cells and Immune Cells under Fine Dust. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1396. [PMID: 39269058 PMCID: PMC11397387 DOI: 10.3390/nano14171396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
In adverse environments, fine dust is linked to a variety of health disorders, including cancers, cardiovascular, neurological, renal, reproductive, motor, systemic, and respiratory diseases. Although PM10 is associated with oral inflammation and cancer, there is limited research on biomaterials that prevent damage caused by fine dust. In this study, we evaluated the effects of biomaterials using microRNA profiling, flow cytometry, conventional PCR, immunocytochemistry, Alizarin O staining, and ELISA. Compared to SBE (Scutellaria baicalensis extract), the preventive effectiveness of SBEIEs (SBE-induced exosomes) against fine dust was approximately two times higher. Furthermore, SBEIEs promoted cellular differentiation of periodontal ligament stem cells (PDLSCs) into osteoblasts, periodontal ligament cells (PDLCs), and pulp progenitor cells (PPCs), enhancing immune modulation for oral health against fine dust. In terms of immune modulation, SBEIEs activated the secretion of cytokines such as IL-10, LL-37, and TGF-β in T cells, B cells, and macrophages, while attenuating the secretion of MCP-1 in macrophages. MicroRNA profiling revealed that significantly modulated miRNAs in SBEIEs influenced four biochemical categories: apoptosis, cellular differentiation, immune activation, and anti-inflammation. These findings suggest that SBEIEs are an optimal biomaterial for developing oral health care products. Additionally, this study proposes functional microRNA candidates for the development of pharmaceutical liposomes.
Collapse
Affiliation(s)
- Mihae Yun
- Department of Dental Hygiene, Andong Science College, Andong-si 36616, Republic of Korea
| | - Boyong Kim
- EVERBIO, 131, Jukhyeon-gil, Gwanghyewon-myeon, Jincheon-gun 27809, Republic of Korea
| |
Collapse
|
6
|
Moreira RP, da Silva CBC, de Sousa TC, Leitão FLBF, Morais HCC, de Oliveira ASS, Duarte-Clíments G, Gómez MBS, Cavalcante TF, Costa AC. The Influence of Climate, Atmospheric Pollution, and Natural Disasters on Cardiovascular Diseases and Diabetes Mellitus in Drylands: A Scoping Review. Public Health Rev 2024; 45:1607300. [PMID: 39176255 PMCID: PMC11338784 DOI: 10.3389/phrs.2024.1607300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
Objectives In the face of escalating global aridification, this study examines the complex relationship between climate variability, air pollution, natural disasters, and the prevalence of cardiovascular disease (CVD) and diabetes mellitus (DM) in arid regions. Methods The study conducted a scoping review of multiple databases using JBI guidelines and included 74 studies. Results The results show that acute myocardial infarction (n = 20) and stroke (n = 13) are the primary CVDs affected by these factors, particularly affecting older adults (n = 34) and persons with hypertension (n = 3). Elevated air temperature and heat waves emerge as critical risk factors for CVD, exacerbating various cardiovascular mechanisms. Atmospheric pollutants and natural disasters increase this risk. Indirect effects of disasters amplify risk factors such as socioeconomic vulnerability (n = 4), inadequate medical care (n = 3), stress (n = 3), and poor diet (n = 2), increasing CVD and DM risk. Conclusion The study underscores the need for nations to adhere to the Paris Agreement, advocating for reduced air pollutants, resilient environments, and collaborative, multidisciplinary research to develop targeted health interventions to mitigate the adverse effects of climate, pollution, and natural disasters.
Collapse
Affiliation(s)
- Rafaella Pessoa Moreira
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| | - Clara Beatriz Costa da Silva
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| | - Tainara Chagas de Sousa
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| | | | | | | | - Gonzalo Duarte-Clíments
- School of Nursing, University of La Laguna, San Cristóbal de La Laguna, Spain
- School of Nursing, Valencian International University, Castelló de la Plana, Spain
| | - María Begoña Sánchez Gómez
- School of Nursing, University of La Laguna, San Cristóbal de La Laguna, Spain
- Department of Nursing, UCAM Catholic University of Murcia, Guadalupe, Spain
| | - Tahissa Frota Cavalcante
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| | - Alexandre Cunha Costa
- Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| |
Collapse
|
7
|
Kim H, Kim B. Osteogenic Protection against Fine Dust with Erucic Acid-Induced Exosomes. J Funct Biomater 2024; 15:215. [PMID: 39194653 DOI: 10.3390/jfb15080215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Fine dust causes various disorders, including cardiovascular, neurological, renal, reproductive, motor, systemic, respiratory, and cancerous diseases. Therefore, it is essential to study functional materials to prevent these issues. This study investigated the beneficial effects of erucic acid against fine dust using methods such as miRNA profiling, quantitative PCR, flow cytometry, ELISA, and Alizarin O staining. Erucic acid effectively suppresses inflammation and upregulates osteogenic activators in fibroblasts exposed to fine dust. Additionally, erucic acid-induced exosomes (EIEs) strongly counteract the negative effects of fine dust on osteocytic differentiation and inflammation. Despite fine dust exposure, EIEs promoted osteocytic differentiation in adipose-derived stem cells (ASCs) and enhanced osteogenesis and phagocytosis in macrophages. The significant upregulation of RunX2 and BMP7 by EIEs indicates its strong role in osteocytic differentiation and protection against the effects of fine dust. EIEs also boosts immune activity and acts as an osteogenic trigger for macrophages. MicroRNA profiling revealed that EIEs dramatically upregulated miRNAs, including hsa-miRNA-1301-3p, hsa-miRNA-1908-5p, hsa-miRNA-423-5p, and hsa-miRNA-122-5p, which are associated with osteogenic differentiation and immunity. Therefore, EIEs show potential as biomaterials to prevent environment-borne diseases.
Collapse
Affiliation(s)
- Hyunjung Kim
- Department of Health and Safety Convergence Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Boyong Kim
- EVERBIO, 131, Jukhyeon-gil, Gwanghyewon-myeon, Jincheon-gun 27809, Republic of Korea
| |
Collapse
|
8
|
Hantrakool S, Sriwichai M, Shaengkhamnang B, Leetrakool N, Niprapan P, Kawichai S, Wannakul S, Panyasit N, Tuntivate P, Wongtagan O, Natesirinilkul R, Koonyosying P, Phinyo P, Punnachet T, Hantrakun N, Piriyakhuntorn P, Rattanathammethee T, Chai-Adisaksopha C, Rattarittamrong E, Tantiworawit A, Norasetthada L, Srichairatanakool S. The effects of ambient particulate matter air pollution on platelets and hemostasis. Front Public Health 2024; 12:1410406. [PMID: 39091522 PMCID: PMC11292950 DOI: 10.3389/fpubh.2024.1410406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Elevated ambient pollution exposure is potentially linked to thromboembolism. However, the mechanisms by which particulate matter (PM) interferes with the balance of hemostatic system remain unclear. This study investigates PM-mediated hemostatic changes in individuals across unique seasonal variations of ambient pollution. Methods This prospective study was conducted between February and July 2020 during alterations in ambient pollution in Chiang Mai, Thailand. Blood tests from 30 healthy subjects were assessed at four-week intervals, four times in total. Various coagulation tests, including prothrombin time (PT), activated partial thromboplastin time (aPTT), von Willebrand factor (vWF), platelet count, and platelet functions, were evaluated. A mixed-effects model was used to analyze the impact of high PM2.5 and PM10 on hemostatic parameters. Results Thirty male subjects with mean age of 38.9 ± 8.2 years, were included. High levels of PM2.5 and PM10 were significantly associated with PT shortening, with no such effect observed in aPTT. PM2.5 and PM10 values also positively correlated with vWF function, while vWF antigen levels remained unchanged. Soluble P-selectin showed a strong positive association with PM2.5 and PM10 levels. Platelet function analysis revealed no correlation with PM values. Conclusion Short-term exposure to elevated PM2.5 and PM10 concentrations was linked to shortened PT and enhanced vWF function in healthy individuals. Exploring the impact of these changes on clinically relevant thrombosis is crucial. Additional studies on the pathogenesis of pollution-related thrombosis are warranted for maintaining good health.
Collapse
Affiliation(s)
- Sasinee Hantrakool
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Maitree Sriwichai
- Blood Bank Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Nipapan Leetrakool
- Blood Bank Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Piangrawee Niprapan
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sawaeng Kawichai
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Sitapak Wannakul
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Noppamas Panyasit
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pakinee Tuntivate
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ornkamon Wongtagan
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Rungrote Natesirinilkul
- Division of Hematology/Oncology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Phichayut Phinyo
- Center for Clinical Epidemiology and Clinical Statistics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Teerachat Punnachet
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nonthakorn Hantrakun
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pokpong Piriyakhuntorn
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thanawat Rattanathammethee
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chatree Chai-Adisaksopha
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ekarat Rattarittamrong
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Adisak Tantiworawit
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Lalita Norasetthada
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | |
Collapse
|
9
|
Yu P, Xu R, Wu Y, Huang W, Coelho MSZS, Saldiva PHN, Ye T, Wen B, Liu Y, Yang Z, Li S, Abramson MJ, Guo Y. Cancer mortality risk from short-term PM 2.5 exposure and temporal variations in Brazil. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134606. [PMID: 38788590 DOI: 10.1016/j.jhazmat.2024.134606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Although some studies have found that short-term PM2.5 exposure is associated with lung cancer deaths, its impact on other cancer sites is unclear. To answer this research question, this time-stratified case-crossover study used individual cancer death data between January 1, 2000, and December 31, 2019, extracted from the Brazilian mortality information system to quantify the associations between short-term PM2.5 exposure and cancer mortality from 25 common cancer sites. Daily PM2.5 concentration was aggregated at the municipality level as the key exposure. The study included a total of 34,516,120 individual death records, with the national daily mean PM2.5 exposure 15.3 (SD 4.3) μg/m3. For every 10-μg/m3 increase in three-day average PM2.5 exposure, the odds ratio (OR) for all-cancer mortality was 1.04 (95% CI 1.03-1.04). Apart from all-cancer deaths, PM2.5 exposure may impact cancers of oesophagus (1.04, 1.00-1.08), stomach (1.05, 1.02-1.08), colon-rectum (1.04, 1.01-1.06), lung (1.04, 1.02-1.06), breast (1.03, 1.00-1.06), prostate (1.07, 1.04-1.10), and leukaemia (1.05, 1.01-1.09). During the study period, acute PM2.5 exposure contributed to an estimated 1,917,994 cancer deaths, ranging from 0 to 6,054 cases in each municipality. Though there has been a consistent downward trend in PM2.5-related all-cancer mortality risks from 2000 to 2019, the impact remains significant, indicating the continued importance of cancer patients avoiding PM2.5 exposure. This nationwide study revealed a notable association between acute PM2.5 exposure and heightened overall and site-specific cancer mortality for the first time to our best knowledge. The findings suggest the importance of considering strategies to minimize such exposure in cancer care guidelines. ENVIRONMENTAL IMPLICATION: The 20-year analysis of nationwide death records in Brazil revealed that heightened short-term exposure to PM2.5 is associated with increased cancer mortality at various sites, although this association has gradually decreased over time. Despite the declining impact, the research highlights the persistent adverse effects of PM2.5 on cancer mortality, emphasizing the importance of continued research and preventive measures to address the ongoing public health challenges posed by air pollution.
Collapse
Affiliation(s)
- Pei Yu
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Rongbin Xu
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yao Wu
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Wenzhong Huang
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Micheline S Z S Coelho
- Laboratory of Urban Health Insper/Faculty of Medicine of the University of São Paulo, Brazil
| | - Paulo H N Saldiva
- Laboratory of Urban Health Insper/Faculty of Medicine of the University of São Paulo, Brazil
| | - Tingting Ye
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bo Wen
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yanming Liu
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Zhengyu Yang
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shanshan Li
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Michael J Abramson
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yuming Guo
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
10
|
Hu B, Feng J, Wang Y, Hou L, Fan Y. Transnational inequities in cardiovascular diseases from 1990 to 2019: exploration based on the global burden of disease study 2019. Front Public Health 2024; 12:1322574. [PMID: 38633238 PMCID: PMC11021694 DOI: 10.3389/fpubh.2024.1322574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Background To describe the burden and examine transnational inequities in overall cardiovascular disease (CVD) and ten specific CVDs across different levels of societal development. Methods Estimates of disability-adjusted life-years (DALYs) for each disease and their 95% uncertainty intervals (UI) were extracted from the Global Burden of Diseases (GBD). Inequalities in the distribution of CVD burdens were quantified using two standard metrics recommended absolute and relative inequalities by the World Health Organization (WHO), including the Slope Index of Inequality (SII) and the relative concentration Index. Results Between 1990 and 2019, for overall CVD, the Slope Index of Inequality changed from 3760.40 (95% CI: 3758.26 to 3756.53) in 1990 to 3400.38 (95% CI: 3398.64 to 3402.13) in 2019. For ischemic heart disease, it shifted from 2833.18 (95% CI: 2831.67 to 2834.69) in 1990 to 1560.28 (95% CI: 1559.07 to 1561.48) in 2019. Regarding hypertensive heart disease, the figures changed from-82.07 (95% CI: -82.56 to-81.59) in 1990 to 108.99 (95% CI: 108.57 to 109.40) in 2019. Regarding cardiomyopathy and myocarditis, the data evolved from 273.05 (95% CI: 272.62 to 273.47) in 1990 to 250.76 (95% CI: 250.42 to 251.09) in 2019. Concerning aortic aneurysm, the index transitioned from 104.91 (95% CI: 104.65 to 105.17) in 1990 to 91.14 (95% CI: 90.94 to 91.35) in 2019. Pertaining to endocarditis, the figures shifted from-4.50 (95% CI: -4.64 to-4.36) in 1990 to 16.00 (95% CI: 15.88 to 16.12) in 2019. As for rheumatic heart disease, the data transitioned from-345.95 (95% CI: -346.47 to-345.42) in 1990 to-204.34 (95% CI: -204.67 to-204.01) in 2019. Moreover, the relative concentration Index for overall CVD and each specific type also varied from 1990 to 2019. Conclusion There's significant heterogeneity in transnational health inequality for ten specific CVDs. Countries with higher levels of societal development may bear a relatively higher CVD burden except for rheumatic heart disease, with the extent of inequality changing over time.
Collapse
Affiliation(s)
- Ben Hu
- Department of Cardiology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
- The Fifth Clinical Medical School of Anhui Medical University, Hefei, Anhui, China
| | - Jun Feng
- Department of Cardiology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Yuhui Wang
- Department of Cardiology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Linlin Hou
- Department of Cardiology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
- The Fifth Clinical Medical School of Anhui Medical University, Hefei, Anhui, China
| | - Yinguang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
11
|
Maftei C, Vaseashta A, Poinareanu I. Toxicity Risk Assessment Due to Particulate Matter Pollution from Regional Health Data: Case Study from Central Romania. TOXICS 2024; 12:137. [PMID: 38393232 PMCID: PMC10891726 DOI: 10.3390/toxics12020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Air pollution poses one of the greatest dangers to public well-being. This article outlines a study conducted in the Central Romania Region regarding the health risks associated with particulate matter (PM) of two sizes, viz., PM10 and PM2.5. The methodology used consists of the following: (i) an analysis of the effects of PM pollutants, (ii) an analysis of total mortality and cardiovascular-related mortality, and (iii) a general health risk assessment. The Central Region of Romania is situated in the Carpathian Mountains' inner arch (consisting of six counties). The total population of the region under investigation is about 2.6 million inhabitants. Health risk assessment is calculated based on the relative risk (RR) formula. During the study period, our simulations show that reducing these pollutants' concentrations below the new WHO guidelines (2021) will prevent over 172 total fatalities in Brasov alone, as an example. Furthermore, the potential benefit of reducing annual PM2.5 levels on total cardiovascular mortality is around 188 persons in Brasov. Although health benefits may also depend upon other physiological parameters, all general health indicators point towards a significant improvement in overall health by a general reduction in particulate matter, as is shown by the toxicity assessment of the particulate matter in the region of interest. The modality can be applied to other locations for similar studies.
Collapse
Affiliation(s)
- Carmen Maftei
- Faculty of Civil Engineering, Transilvania University of Brasov, 900152 Brasov, Romania
| | - Ashok Vaseashta
- Office of Research, International Clean Water Institute, Manassas, VA 20108, USA
- Institute of Biomedical Engineering and Nanotechnologies, Faculty of Mechanical Engineering, Transport and Aeronautics, Ķīpsalas, LV1048 Rīga, Latvia
| | - Ionut Poinareanu
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Clinical Service of Pathology, "St. Apostol Andrei" Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
- Faculty of Materials Science and Engineering, Transilvania University of Brasov, 500036 Brasov, Romania
| |
Collapse
|
12
|
Liu H, Lai W, Shi Y, Tian L, Li K, Bian L, Xi Z, Lin B. One-Step Fast Fabrication of Electrospun Fiber Membranes for Efficient Particulate Matter Removal. Polymers (Basel) 2024; 16:209. [PMID: 38257008 PMCID: PMC10818706 DOI: 10.3390/polym16020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Rapid social and industrial development has resulted in an increasing demand for fossil fuel energy, which increases particulate matter (PM) pollution. In this study, we employed a simple one-step electrospinning technique to fabricate polysulfone (PSF) fiber membranes for PM filtration. A 0.3 g/mL polymer solution with an N,N-dimethylformamide:tetrahydrofuran volume ratio of 3:1 yielded uniform and bead-free PSF fibers with a diameter of approximately 1.17 μm. The PSF fiber membrane exhibited excellent hydrophobicity and mechanical properties, including a tensile strength of 1.14 MPa and an elongation at break of 116.6%. Finally, the PM filtration performance of the PSF fiber membrane was evaluated. The filtration efficiencies of the membrane for PM2.5 and PM1.0 were approximately 99.6% and 99.2%, respectively. The pressure drops were 65.0 and 65.2 Pa, which were significantly lower than those of commercial air filters. Using this technique, PSF fiber membrane filters can be easily fabricated over a large area, which is promising for numerous air filtration systems.
Collapse
Affiliation(s)
- Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; (H.L.); (W.L.); (Y.S.); (L.T.); (K.L.); (L.B.)
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; (H.L.); (W.L.); (Y.S.); (L.T.); (K.L.); (L.B.)
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Yue Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; (H.L.); (W.L.); (Y.S.); (L.T.); (K.L.); (L.B.)
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; (H.L.); (W.L.); (Y.S.); (L.T.); (K.L.); (L.B.)
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; (H.L.); (W.L.); (Y.S.); (L.T.); (K.L.); (L.B.)
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Liping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; (H.L.); (W.L.); (Y.S.); (L.T.); (K.L.); (L.B.)
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; (H.L.); (W.L.); (Y.S.); (L.T.); (K.L.); (L.B.)
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; (H.L.); (W.L.); (Y.S.); (L.T.); (K.L.); (L.B.)
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| |
Collapse
|
13
|
Yu J, Zhu A, Liu M, Dong J, Chen R, Tian T, Liu T, Ma L, Ruan Y. Association Between Air Pollution and Cardiovascular Disease Hospitalizations in Lanzhou City, 2013-2020: A Time Series Analysis. GEOHEALTH 2024; 8:e2022GH000780. [PMID: 38173697 PMCID: PMC10762694 DOI: 10.1029/2022gh000780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Extensive evidence has shown that air pollution increases the risk of cardiovascular disease (CVD) admissions. We aimed to explore the short-term effect of air pollution on CVD admissions in Lanzhou residents and their lag effects. Meteorological data, air pollution data, and a total of 309,561 daily hospitalizations for CVD among urban residents in Lanzhou were collected from 2013 to 2020. Distributed lag non-linear model was used to analyze the relationship between air pollutants and CVD admissions, stratified by gender, age, and season. PM2.5, NO2, and CO have the strongest harmful effects at lag03, while SO2 at lag3. The relative risks of CVD admissions were 1.0013(95% CI: 1.0003, 1.0023), 1.0032(95% CI: 1.0008, 1.0056), and 1.0040(95% CI: 1.0024, 1.0057) when PM2.5, SO2, and NO2 concentrations were increased by 10 μg/m³, respectively. Each 1 mg/m3 increase in CO concentration was associated with a relative risk of cardiovascular hospitalization of risk was 1.0909(95% CI: 1.0367, 1.1479). We observed a relative risk of 0.9981(95% CI: 0.9972, 0.9991) for each 10 μg/m³ increase in O3 for CVD admissions at lag06. We found a significant lag effects of air pollutants on CVD admissions. NO2 and CO pose a greater risk of hospitalization for women, while PM2.5 and SO2 have a greater impact on men. PM2.5, NO2, and CO have a greater impact on CVD admissions in individuals aged <65 years, whereas SO2 affects those aged ≥65 years. Our research indicates a possible short-term impact of air pollution on CVD. Local public health and environmental policies should take these preliminary findings into account.
Collapse
Affiliation(s)
- Jingze Yu
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Anning Zhu
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Miaoxin Liu
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Jiyuan Dong
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Rentong Chen
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Tian Tian
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Tong Liu
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Li Ma
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Ye Ruan
- School of Public HealthLanzhou UniversityLanzhouPR China
| |
Collapse
|
14
|
Fu Z, Ma Y, Yang C, Liu Q, Liang J, Weng Z, Li W, Zhou S, Chen X, Xu J, Xu C, Huang T, Zhou Y, Gu A. Association of air pollution exposure and increased coronary artery disease risk: the modifying effect of genetic susceptibility. Environ Health 2023; 22:85. [PMID: 38062446 PMCID: PMC10704645 DOI: 10.1186/s12940-023-01038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Both genetic factors and air pollution are risk factors for coronary artery disease (CAD), but their combined effects on CAD are uncertain. The study aimed to comprehensively investigate their separate, combined and interaction effects on the onset of CAD. METHODS We utilized data from the UK Biobank with a recruitment of 487,507 participants who were free of CAD at baseline from 2006 to 2010. We explored the separate, combined effect or interaction association among genetic factors, air pollution and CAD with the polygenic risk score (PRS) and Cox proportional hazard models. RESULTS The hazard ratios (HRs) [95% confidence interval (CI)] of CAD for 10-µg/m3 increases in PM2.5, NO2 and NOx concentrations were 1.25 (1.09, 1.44), 1.03 (1.01, 1.05) and 1.01 (1.00, 1.02), respectively. Participants with high PRS and air pollution exposure had a higher risk of CAD than those with the low genetic risk and low air pollution exposure, and the HRs (95% CI) of CAD in the PM2.5, PM10, NO2 and NOx high joint exposure groups were 1.56 (1.48, 1.64), 1.55(1.48, 1.63), 1.57 (1.49, 1.65), and 1.57 (1.49, 1.65), respectively. Air pollution and genetic factors exerted significant additive effects on the development of CAD (relative excess risk due to the interaction [RERI]: 0.12 (0.05, 0.19) for PM2.5, 0.17 (0.10, 0.24) for PM10, 0.14 (0.07, 0.21) for NO2, and 0.17 (0.10, 0.24) for NOx; attributable proportion due to the interaction [AP]: 0.09 (0.04, 0.14) for PM2.5, 0.12 (0.07, 0.18) for PM10, 0.11 (0.06, 0.16) for NO2, and 0.13 (0.08, 0.18) for NOx). CONCLUSION Exposure to air pollution was significantly related to an increased CAD risk, which could be further strengthened by CAD gene susceptibility. Additionally, there were positive additive interactions between genetic factors and air pollution on the onset of CAD. This can provide a more comprehensive, precise and individualized scientific basis for the risk assessment, prevention and control of CAD.
Collapse
Affiliation(s)
- Zuqiang Fu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing, China
- School of Public Health, Southeast University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Yuanyuan Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Changjie Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jingjia Liang
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Wenxiang Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Shijie Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Xiu Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing, China
- Department of Maternal, Child, and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China.
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing, China.
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| | - Yong Zhou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China.
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China.
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing, China.
- School of Public Health, Southeast University, 101 Longmian Avenue, Nanjing, 211166, China.
| |
Collapse
|
15
|
Liang X, Liang L, Fan Y. Two-sample mendelian randomization analysis investigates ambient fine particulate matter's impact on cardiovascular disease development. Sci Rep 2023; 13:20129. [PMID: 37978283 PMCID: PMC10656567 DOI: 10.1038/s41598-023-46816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
PM2.5, a key component of air pollution, significantly threatens public health. Cardiovascular disease is increasingly associated with air pollution, necessitating more research. This study used a meticulous two-sample Mendelian randomization (MR) approach to investigate the potential causal link between elevated PM2.5 levels and 25 types of cardiovascular diseases. Data sourced from the UK Biobank, focusing on individuals of European ancestry, underwent primary analysis using Inverse Variance Weighting. Additional methods such as MR-Egger, weighted median, Simple mode, and Weighted mode provided support. Sensitivity analyses assessed instrument variable heterogeneity, pleiotropy, and potential weak instrument variables. The study revealed a causal link between PM2.5 exposure and higher diagnoses of Atherosclerotic heart disease (primary or secondary, OR [95% CI] 1.0307 [1.0103-1.0516], p-value = 0.003 and OR [95% CI] 1.0179 [1.0028-1.0333], p-value = 0.0202) and Angina pectoris (primary or secondary, OR [95% CI] 1.0303 [1.0160-1.0449], p-value = 3.04e-05 and OR [95% CI] 1.0339 [1.0081-1.0603], p-value = 0.0096). Additionally, PM2.5 exposure increased the likelihood of diagnoses like Other forms of chronic ischaemic heart disease (secondary, OR [95% CI] 1.0193 [1.0042-1.0346], p-value = 0.0121), Essential hypertension (secondary, OR [95% CI] 1.0567 [1.0142-1.1010], p-value = 0.0085), Palpitations (OR [95% CI] 1.0163 [1.0071-1.0257], p-value = 5e-04), and Stroke (OR [95% CI] 1.0208 [1.0020-1.0401], p-value = 0.0301). Rigorous sensitivity analyses confirmed these significant findings' robustness and validity. Our study revealed the causal effect between higher PM2.5 concentrations and increased cardiovascular disease risks. This evidence is vital for policymakers and healthcare providers, urging targeted interventions to reduce PM2.5 levels.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lianjing Liang
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuchao Fan
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of the University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
16
|
Tabaghi S, Sheibani M, Khaheshi I, Miri R, Haji Aghajani M, Safi M, Eslami V, Pishgahi M, Alipour Parsa S, Namazi MH, Beyranvand MR, Sohrabifar N, Hassanian‐Moghaddam H, Pourmotahari F, Khaiat S, Akbarzadeh MA. Associations between short-term exposure to fine particulate matter and acute myocardial infarction: A case-crossover study. Clin Cardiol 2023; 46:1319-1325. [PMID: 37501642 PMCID: PMC10642339 DOI: 10.1002/clc.24111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Previous studies evaluated the impact of particle matters (PM) on the risk of acute myocardial infarction (AMI) based on local registries. HYPOTHESIS This study aimed to evaluate possible short term effect of air pollutants on occurrence of AMI based on a specific case report sheet that was designed for this purpose. METHODS AMI was documented among 982 patients who referred to the emergency departments in Tehran, Iran, between July 2017 to March 2019. For each patient, case period was defined as 24 hour period preceding the time of emergency admission and referent periods were defined as the corresponding time in 1, 2, and 3 weeks before the admission. The associations of particulate matter with an aerodynamic diameter ≤2.5 μm (PM2 .5 ) and particulate matter with an aerodynamic diameter ≤10 μm (PM10 ) with AMI were analyzed using conditional logistic regression in a case-crossover design. RESULT Increase in PM2.5 and PM10 was significantly associated with the occurrence of AMI with and without adjustment for the temperature and humidity. In the adjusted model each 10 μg/m3 increase of PM10 and PM2.5 in case periods was significantly associated with increase myocardial infarction events (95% CI = 1.041-1.099, OR = 1.069 and 95% CI = 1.073-1.196, and OR = 1.133, respectively). Subgroup analysis showed that increase in PM10 did not increase AMI events in diabetic subgroup, but in all other subgroups PM10 and PM2 .5 concentration showed positive associations with increased AMI events. CONCLUSION Acute exposure to ambient air pollution was associated with increased risk of AMI irrespective of temperature and humidity.
Collapse
Affiliation(s)
- Shiva Tabaghi
- Cardiovascular Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Mehdi Sheibani
- Cardiovascular Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Isa Khaheshi
- Cardiovascular Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Reza Miri
- Prevention of Cardiovascular Disease Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Haji Aghajani
- Prevention of Cardiovascular Disease Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Morteza Safi
- Cardiovascular Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Vahid Eslami
- Department of CardiologyShahid Labbafinejad Hospital, Shahid Beheshti University of Medical SciencesTehranIran
| | - Mehdi Pishgahi
- Department of CardiologyShohada‐e Tajrish Hospital, Shahid Beheshti University of Medical SciencesTehranIran
| | - Saeed Alipour Parsa
- Cardiovascular Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | | | - Mohammad Reza Beyranvand
- Department of CardiologyTaleghani Hospital, Shahid Beheshti University of Medical SciencesTehranIran
| | - Nasim Sohrabifar
- Cardiovascular Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | | | - Fatemeh Pourmotahari
- Department of Community MedicineSchool of Medicine, Dezful University of Medical SciencesDezfulIran
| | | | | |
Collapse
|
17
|
Casal B, Rivera B, Currais L. Evidence of the adverse effects of air pollution on the population's health in Spain: analysis of the economic costs of premature deaths. CAD SAUDE PUBLICA 2023; 39:e00145922. [PMID: 37585903 PMCID: PMC10494681 DOI: 10.1590/0102-311xen145922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 08/18/2023] Open
Abstract
Exposure to ambient air pollution increases mortality and morbidity, leading disabilities, and premature deaths. Air pollution has been identified as a leading cause of global disease burden, especially in low- and middle-income countries in 2015 (Global Burden of Diseases, Injuries and Risk Factors Study, 2015). This study explores the relation between mortality rates and particulate matter (PM) concentrations in the 50 Spanish regions for the period 2002-2017. Moreover, we estimated the premature deaths due to PM in Spain according to welfare and production losses in 2017. Random-effects models were developed to evaluate the relation between mortality rates and PM concentrations. The economic cost of premature deaths was assessed using the Willingness to Pay approach to quantify welfare losses and the Human Capital method to estimate production losses. PM10 concentrations are positively related to mortality due to respiratory diseases and stroke. Based on 10,342 premature deaths in 2017, losses in welfare amount to EUR 36,227 million (3.1% of Spanish GDP). The economic value of current and future production losses reached EUR 229 million (0.02% of GDP). From a social perspective, air pollution is a public health concern that greatly impacts health and quality of life. Results highlight the need to implement or strengthen regulatory, fiscal, and health public policies to substantially benefit the population's health by reducing their exposure to air pollution.
Collapse
|
18
|
Meng X, Jin J, Han X, Han B, Bai M, Zhang Z. Effect of Meteorological Factors and Air Pollutants on Daily Hospital Admissions for Ischemic Heart Disease in Lanzhou, China. Cardiology 2023; 149:396-408. [PMID: 37517404 DOI: 10.1159/000532069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
INTRODUCTION Meteorological factors and air pollutants are believed to be associated with cardiovascular disease. Ischemic heart disease (IHD) is a major public health issue worldwide. Few studies have investigated the associations among meteorological factors, air pollutants, and IHD daily hospital admissions in Lanzhou, China. METHODS We conducted a distributed lag nonlinear model on the basis of 5-year data, aiming at disentangling the impact of meteorological factors and air pollutants on IHD hospital admissions. All IHD daily hospital admissions recorded from January 1, 2015, and December 31, 2019, were obtained from three hospitals in Lanzhou, China. Daily air pollutant concentrations and meteorological data were synchronously collected from Gansu Meteorological Administration and Lanzhou Environmental Protection Administration. Stratified analyses were performed by sex and two age groups. RESULTS A total of 23,555 IHD hospital admissions were recorded, of which 10,477 admissions were for coronary artery disease (CAD) and 13,078 admissions were for acute coronary syndrome. Our results showed that there was a nonlinear (J-shaped) relationship between temperature and IHD hospital admissions. The number of IHD hospital admissions was positively correlated with NO2, O3, humidity, and pressure, indicating an increased risk of hospital admissions for IHD under NO2, O3, humidity, and pressure exposure. Meanwhile, both extremely low (-12°C) and high (30°C) temperatures reduced IHD hospital admissions, but the harmful effect increased with the lag time in Lanzhou, China, while the cold effect was more pronounced and long-lasting than the heat effect. Subgroup analysis demonstrated that the risk on CAD hospital admissions increased significantly in females and <65 years of age at -12°C. CONCLUSION Our findings added to the growing evidence regarding the potential impact of meteorological factors and air pollutants on policymaking from the perspective of hospital management efficiency.
Collapse
Affiliation(s)
- Xiaoxue Meng
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Disease of Gansu Province, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
| | - Jianjian Jin
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xia Han
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Disease of Gansu Province, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
| | - Bing Han
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Disease of Gansu Province, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
| | - Ming Bai
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Disease of Gansu Province, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
| | - Zheng Zhang
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Disease of Gansu Province, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
| |
Collapse
|
19
|
Makhoul E, Boulos M, Cretin M, Lesage G, Miele P, Cornu D, Bechelany M. CaCu 3Ti 4O 12 Perovskite Materials for Advanced Oxidation Processes for Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2119. [PMID: 37513130 PMCID: PMC10383651 DOI: 10.3390/nano13142119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The many pollutants detected in water represent a global environmental issue. Emerging and persistent organic pollutants are particularly difficult to remove using traditional treatment methods. Electro-oxidation and sulfate-radical-based advanced oxidation processes are innovative removal methods for these contaminants. These approaches rely on the generation of hydroxyl and sulfate radicals during electro-oxidation and sulfate activation, respectively. In addition, hybrid activation, in which these methods are combined, is interesting because of the synergistic effect of hydroxyl and sulfate radicals. Hybrid activation effectiveness in pollutant removal can be influenced by various factors, particularly the materials used for the anode. This review focuses on various organic pollutants. However, it focuses more on pharmaceutical pollutants, particularly paracetamol, as this is the most frequently detected emerging pollutant. It then discusses electro-oxidation, photocatalysis and sulfate radicals, highlighting their unique advantages and their performance for water treatment. It focuses on perovskite oxides as an anode material, with a particular interest in calcium copper titanate (CCTO), due to its unique properties. The review describes different CCTO synthesis techniques, modifications, and applications for water remediation.
Collapse
Affiliation(s)
- Elissa Makhoul
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
- Laboratoire de Chimie Physique des Matériaux (LCPM/PR2N), EDST, Faculté des Sciences II, Département de Chimie, Université Libanaise, Fanar P.O. Box 90656, Lebanon
| | - Madona Boulos
- Laboratoire de Chimie Physique des Matériaux (LCPM/PR2N), EDST, Faculté des Sciences II, Département de Chimie, Université Libanaise, Fanar P.O. Box 90656, Lebanon
| | - Marc Cretin
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Philippe Miele
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
- Institut Universitaire de France, 1 rue Descartes, CEDEX 05, 75231 Paris, France
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
- Gulf University for Science and Technology (GUST), West Mishref, Hawalli 32093, Kuwait
| |
Collapse
|
20
|
Muruganandam N, Mahalingam S, Narayanan R, Rajadurai E. Meandered and muddled: a systematic review on the impact of air pollution on ocular health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64872-64890. [PMID: 37097565 DOI: 10.1007/s11356-023-27079-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
From the years 1970-2023, a systematic overview of the diverse consequences of particulate matter on eye health and a disease classification according to acute, chronic, and genetic are presented using the PubMed, Research Gate, Google Scholar, and Science Direct databases. Various studies on medical aspects correlate with the eye and health. However, from an application perspective, there is limited research on the ocular surface and air pollution. The main objective of the study is to uncover the relationship between eye health and air pollution, particularly particulate matter, along with other external factors acting as aggravators. The secondary goal of the work is to examine the existing models for mimicking human eyes. The study is followed by a questionnaire survey in a workshop, in which the exposure-based investigation was tagged based on their activity. This paper establishes a relationship between particulate matter and its influence on human health, leading to numerous eye diseases like dry eyes, conjunctivitis, myopia, glaucoma, and trachoma. The results of the questionnaire survey indicate that about 68% of the people working in the workshop are symptomatic with tears, blurred vision, and mood swings, while 32% of the people were asymptomatic. Although there are approaches for conducting experiments, the evaluation is not well defined; empirical and numerical solutions for particle deposition on the eye are needed. There prevails a broad gap in the arena of ocular deposition modeling.
Collapse
Affiliation(s)
- Niveditha Muruganandam
- Department of Civil Engineering, Kumaraguru College of Technology, Anna University, Coimbatore, Tamil Nadu, India
- Department of Civil Engineering, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Sneha Mahalingam
- Department of Civil Engineering, Kumaraguru College of Technology, Anna University, Coimbatore, Tamil Nadu, India
- Department of Civil Engineering, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Ramsundram Narayanan
- Department of Civil Engineering, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India.
| | | |
Collapse
|
21
|
Zhao Q, Liu X, Liu Z. The impact of air pollution on physical disability in a middle-aged and older Chinese population using regression discontinuity design. Health Place 2023; 79:102958. [PMID: 36565540 DOI: 10.1016/j.healthplace.2022.102958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Emerging evidence has shown the association between ambient air pollution exposure and comorbid chronic diseases, which can subsequently impair physical function. However, less is known about the causal and contextual effect of air pollution on physical disability. Using data from the China Health and Retirement Longitudinal Study (CHARLS), this study employs a geographical regression discontinuity design based on the Huai River Policy to estimate the impact of ambient air pollution on physical disability in activities of daily living (ADL) in China. We find that a 10 μg/m3 increase in particulate matter [particulate matter smaller than 10 μm (PM10)] leads to a 5.4% increase in the incidence of physical disability among middle-aged and older adults. This result is robust to using alternative measurement of key variables, different bandwidths and polynomial functions, and adjustment for a set of sociodemographic covariates. Stroke might be one of the potential pathological pathways linking air pollution and physical disability, with a 10 μg/m3 increase in PM10 leading to a 4.7% increase in the incidence of stroke. In heterogeneity analyses, we find that older adults, males, urban residents, and people with lower socioeconomic status are more vulnerable to air pollution. These results contribute to the limited evidence on the causal and contextual effect of air pollution on physical health, and further provide policy implications for air quality control and health protection for vulnerable populations.
Collapse
Affiliation(s)
- Qi Zhao
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Xiaoting Liu
- School of Public Affairs, Zhejiang University, China; Institute of Wenzhou, Zhejiang University, China.
| | - Zuyun Liu
- Department of Big Data in Health Science School of Public Health and Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| |
Collapse
|
22
|
Hirose H, Maekawa M, Ida H, Kuriyama M, Takahashi Y, Futaki S. A noncanonical endocytic pathway is involved in the internalization of 3 μm polystyrene beads into HeLa cells. Biomater Sci 2022; 10:7093-7102. [PMID: 36326722 DOI: 10.1039/d2bm01353c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Extracellular fine particles of various sizes and origins can be taken up by cells, affecting their function. Understanding the cellular uptake processes is crucial for understanding the cellular effects of these particles and the development of means to control their internalization. Although macropinocytosis is a possible pathway for the cellular uptake of particles larger than 0.2 μm, its contribution to cellular uptake in non-phagocytic cells is controversial. Using 3 μm polystyrene beads as a model particle, we aimed to assess the detailed modes of their cellular uptake by non-phagocytic HeLa cells. Cellular uptake was assessed using confocal, scanning electron, and scanning ion conductance microscopy analyses, together with inhibitor studies. Our results revealed that 3 μm beads were taken up by HeLa cells by an actin-, cholesterol-, and membrane protrusions-dependent noncanonical endocytic pathway, different from the canonical macropinocytic and phagocytic pathways. Our work provides a framework for studying the cellular uptake of extracellular fine particles.
Collapse
Affiliation(s)
- Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Masashi Maekawa
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Hiroki Ida
- Department of Electrical Engineering, Graduate School of Engineering, Nagoya University, Aichi 464-8601, Japan.,The Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi 980-8578, Japan.,Precursory Research for Embryonic Science and Technology, Science and Technology Agency (JST), Saitama 332-0012, Japan.,Advanced Institute for Materials Research, Tohoku University, Miyagi 980-8577, Japan.,Graduate School of Environmental Studies, Tohoku University, Miyagi 980-8579, Japan
| | - Masashi Kuriyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Yasufumi Takahashi
- Department of Electrical Engineering, Graduate School of Engineering, Nagoya University, Aichi 464-8601, Japan.,WPI Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Ishikawa 920-1192, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
23
|
Gallego-Cartagena E, Morillas H, Morgado-Gamero W, Fuentes-Gandara F, Vacca-Jimeno V, Salcedo I, Madariaga JM, Maguregui M. Elemental imaging approach to assess the ability of subaerial biofilms growing on constructions located in tropical climates as potential biomonitors of atmospheric heavy metals pollution. CHEMOSPHERE 2022; 309:136743. [PMID: 36209867 DOI: 10.1016/j.chemosphere.2022.136743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Over the last decades, the concern about air pollution has increased significantly, especially in urban areas. Active sampling of air pollutants requires specific instrumentation not always available in all the laboratories. Passive sampling has a lower cost than active alternatives but still requires efforts to cover extensive areas. The use of biological systems as passive samplers might be a solution that provides information about air pollution to assist decision-makers in environmental health and urban planning. This study aims to employ subaerial biofilms (SABs) growing naturally on façades of historical and recent constructions as natural passive biomonitors of atmospheric heavy metals pollution. Concretely, SABs spontaneously growing on constructions located in a tropical climate, like the one of the city of Barranquilla (Colombia), have been used to develop the methodological approach here presented as an alternative to SABS grown under laboratory conditions. After a proper identification of the biocolonizers in the SAB through taxonomic and morphological observations, the study of the particulate matter accumulated on the SABs of five constructions was conducted under a multi-analytical approach based mainly on elemental imaging studies by micro Energy Dispersive X-ray fluorescence spectrometry (μ-EDXRF) and Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectrometry (SEM-EDS) techniques, trying to reduce the time needed and associated costs. This methodology allowed to discriminate metals that are part of the original structure of the SABs, from those coming from the anthropogenic emissions. The whole methodology applied assisted the identification of the main metallic particles that could be associated with nearby anthropogenic sources of emission such as Zn, Fe, Mn, Ni and Ti by SEM-EDS and by μ-EDXRF Ba, Sb, Sn, Cl and Br apart others; revealing that it could be used as a good alternative for a rapid screening of the atmospheric heavy metals pollution.
Collapse
Affiliation(s)
- Euler Gallego-Cartagena
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002, Barranquilla, Colombia; Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain.
| | - Héctor Morillas
- Department of Didactic of Mathematics, Experimental and Social Sciences, Faculty of Education and Sport, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz, Basque Country, Spain
| | - Wendy Morgado-Gamero
- Department of Exact and Natural Sciences, Universidad de la Costa, Calle 58 #55-66, 080002, Barranquilla, Colombia
| | - Fabio Fuentes-Gandara
- Department of Exact and Natural Sciences, Universidad de la Costa, Calle 58 #55-66, 080002, Barranquilla, Colombia
| | - Víctor Vacca-Jimeno
- Faculty of Basic Sciences, Universidad Del Atlántico, Km5 Vía Puerto Colombia, 081007, Atlántico, Colombia
| | - Isabel Salcedo
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain
| | - Juan Manuel Madariaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain
| | - Maite Maguregui
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, P.O. Box 450, 01080, Vitoria-Gasteiz, Basque Country, Spain
| |
Collapse
|
24
|
Zou L, Li B, Xiong L, Wang Y, Xie W, Huang X, Liang Y, Wei T, Liu N, Chang X, Bai C, Wu T, Xue Y, Zhang T, Tang M. Urban fine particulate matter causes cardiac hypertrophy through calcium-mediated mitochondrial bioenergetics dysfunction in mice hearts and human cardiomyocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119236. [PMID: 35367502 DOI: 10.1016/j.envpol.2022.119236] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
In recent years, the cardiovascular toxicity of urban fine particulate matter (PM2.5) has sparked significant alarm. Mitochondria produce 90% of ATP and make up 30% of the volume of cardiomyocytes. Thus knowledge of myocardial mitochondrial dysfunction due to PM2.5 exposure is essential for further cardiotoxic effects. Here, the mechanism of PM2.5-induced cardiac hypertrophy through calcium overload and mitochondrial dysfunction was investigated in vivo and in vitro. Male and female BALB/c mice were given 1.28, 5.5, and 11 mg PM2.5/kg bodyweight weekly through oropharyngeal inhalation for four weeks and were assigned to low, medium, and high dose groups, respectively. PM2.5-induced myocardial edema and cardiac hypertrophy were detected in the high-dose group. Mitochondria were scattered and ruptured with abnormal ultrastructural morphology. In vitro experiments on human cardiomyocyte AC16 showed that exposure to PM2.5 for 24 h caused opened mitochondrial permeability transition pore --leading to excessive calcium production, decreased mitochondrial membrane potential, weakened mitochondrial respiratory metabolism capacity, and decreased ATP production. Nevertheless, the administration of calcium chelator ameliorated the mitochondrial damage in the PM2.5-treated group. Our in vivo and in vitro results confirmed that calcium overload under PM2.5 exposure triggered mTOR/AKT/GSK-3β activation, leading to mitochondrial bioenergetics dysfunction and cardiac hypertrophy.
Collapse
Affiliation(s)
- Lingyue Zou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Binjing Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lilin Xiong
- Department of Environmental Health, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, 210003, China
| | - Yan Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Wenjing Xie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xiaoquan Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ying Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Na Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xiaoru Chang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Changcun Bai
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
25
|
Detampel P, Tehranian S, Mukherjee P, Foret M, Fuerstenhaupt T, Darbandi A, Bogari N, Hlasny M, Jeje A, Olszewski MA, Ganguly A, Amrein M. Caveolin-initiated macropinocytosis is required for efficient silica nanoparticles' transcytosis across the alveolar epithelial barrier. Sci Rep 2022; 12:9474. [PMID: 35676405 PMCID: PMC9178038 DOI: 10.1038/s41598-022-13388-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/24/2022] [Indexed: 12/22/2022] Open
Abstract
Removal of particulate materials that would otherwise cumulate within the airspace and hinder the gas exchange is one of the central processes of maintaining lung homeostasis. While the importance of the particle uptake by alveolar macrophages and their expulsion via the airways mucociliary escalator is well established, very little is known about the alternative route for removing the particles via direct crossing the lung epithelium for transfer into the pulmonary lymph and bloodstream. This study dissected sequential mechanisms involved in nanoparticle transcytosis through the alveolar epithelial cell layer. By a combination of live cell, super resolution, and electron microscopy and RNA interference study, we have dissected temporal steps of nanoparticle transcytosis through alveolar epithelium. Our study revealed that caveolin is essential for the firm adhesion of the silica nanoparticle agglomerates to the apical membrane and their subsequent rapid internalization with the help of macropinocytic elements C-terminal-binding protein1 and Rabankyrin-5 but not dynamin. Actin, but not microtubules, played a major role in nanoparticle uptake and subsequent transportation. The compartments with nanoparticles were tethered to trans-Golgi network to be jointly transported along actin stress fibers across the cytoplasm, employing a myosin-dependent mechanism. The trans-Golgi nanoparticle transport machinery was positive to Rab6A, a marker linked to vesicle exocytosis. Exocytosis was primarily occurring at the basolateral plane of the alveolar epithelial cells. The high-proficiency novel caveolin and Rabankyrin-5 associated uptake and transcellular transport of nanoparticles across the AEC barrier supports its importance in clearance of amorphous silica and other types of non-inflammatory nanoparticles that are rapidly removed from the lungs following their inhalation.
Collapse
Affiliation(s)
- Pascal Detampel
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Sara Tehranian
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Priyanka Mukherjee
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Morgan Foret
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Tobias Fuerstenhaupt
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Ali Darbandi
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Nawaf Bogari
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Magda Hlasny
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Ayodeji Jeje
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Research Service, LTC Charles S. Kettles VA Medical Center, Ann Arbor, MI, USA
| | - Anutosh Ganguly
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.
- Department of Microbiology Immunology and Infectious Diseases, University of Calgary, Cumming School of Medicine, 3330 Hospital Drive, Calgary, AB, T2N4N1, Canada.
- Research Service, LTC Charles S. Kettles VA Medical Center, Ann Arbor, MI, USA.
- Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Matthias Amrein
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
26
|
Zhang Y, Yu G, Jin R, Zhang Y, Dong K, Cheng T, Wang B. Water vapor distribution and particle condensation growth in turbulent pipe flow. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Zhang Z, Wu L, Cui T, Ahmed RZ, Yu H, Zhang R, Wei Y, Li D, Zheng Y, Chen W, Jin X. Oxygen sensors mediated HIF-1α accumulation and translocation: A pivotal mechanism of fine particles-exacerbated myocardial hypoxia injury. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118937. [PMID: 35114305 DOI: 10.1016/j.envpol.2022.118937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/13/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Epidemiological studies have demonstrated a strong association of ambient fine particulate matter (PM2.5) exposure with the increasing mortality by ischemic heart disease (IHD), but the involved mechanisms remain poorly understood. Herein, we found that the chronic exposure of real ambient PM2.5 led to the upregulation of hypoxia-inducible factor-1 alpha (HIF-1α) protein in the myocardium of mice, accompanied by obvious myocardial injury and hypertrophy. Further data from the hypoxia-ischemia cellular model indicated that PM2.5-induced HIF-1α accumulation was responsible for the promotion of myocardial hypoxia injury. Moreover, the declined ATP level due to the HIF-1α-mediated energy metabolism remodeling from β-oxidation to glycolysis had a critical role in the PM2.5-increased myocardial hypoxia injury. The in-depth analysis delineated that PM2.5 exposure decreased the binding of prolyl hydroxylase domain 2 (PHD2) and HIF-1α and subsequent ubiquitin protease levels, thereby leading to the accumulation of HIF-1α. Meanwhile, factor-inhibiting HIF1 (FIH1) expression was down-regulated by PM2.5, resulting in the enhanced translocation of HIF-1α to the nucleus. Overall, our study provides valuable insight into the regulatory role of oxygen sensor-mediated HIF-1α stabilization and translocation in PM-exacerbated myocardial hypoxia injury, we suggest this adds significantly to understanding the mechanisms of haze particles-caused burden of cardiovascular disease.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Liu Wu
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Tenglong Cui
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | | | - Haiyi Yu
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yanhong Wei
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaoting Jin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
28
|
Yin Y, Xu G, Xin Z, Liu Y, He X, Zhang H. Synthesis, characterization and photocatalytic degradation of dyestuffs with a composite material, 3-nOCoPc/SnO 2. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2058396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yanbing Yin
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Guopeng Xu
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Zhaosong Xin
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Yang Liu
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Xifeng He
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Hongbo Zhang
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| |
Collapse
|
29
|
Marble Dust Effect on the Air Quality: An Environmental Assessment Approach. SUSTAINABILITY 2022. [DOI: 10.3390/su14073831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
All over the world, increasing anthropogenic activities, industrialization, and urbanization have intensified the emissions of various pollutants that cause air pollution. Marble quarries in Pakistan are abundant and there is a plethora of small- and large-scale industries, including mining and marble-based industries. The air pollution caused by the dust generated in the process of crushing and extracting marble can cause serious problems to the general physiological functions of plants and it affects human life as well. Therefore, the objectives of this study were to assess the air quality of areas with marble factories and areas without marble factories, where the concentration of particulate matter in terms of total suspended particles (TSP) was determined. For this purpose, EPAM-5000 equipment was used to measure the particulate levels. Besides this, a spectrophotometer was used to analyze the presence of PM2.5 and PM10 in the chemical composition of marble dust. It was observed that the TSP concentrations in Darmangi and Malagori areas of Peshawar, Pakistan—having marble factories—were 626 µg/m3 and 5321 µg/m3 respectively. The (PM2.5, PM10) concentration in Darmangi was (189 µg/m3, 520 µg/m3) and in Malagori, it was recorded as (195 µg/m3, 631 µg/m3), which was significantly higher than the non-marble dust areas and also exceeded WHO recommended standards. It was concluded that the areas with the marble factories were more susceptible to air pollution as the concentration of TSP was significantly higher than the recommended TSP levels. It is recommended that marble factories should be shifted away from residential areas along with strict enforcement. People should be instructed to use protective equipment and waste management should be ensured along with control mechanisms to monitor particulate levels.
Collapse
|
30
|
Lee H, Park C, Kwon DH, Hwangbo H, Kim SY, Kim MY, Ji SY, Kim DH, Jeong JW, Kim GY, Hwang HJ, Choi YH. Schisandrae Fructus ethanol extract attenuates particulate matter 2.5-induced inflammatory and oxidative responses by blocking the activation of the ROS-dependent NF-κB signaling pathway. Nutr Res Pract 2021; 15:686-702. [PMID: 34858548 PMCID: PMC8601940 DOI: 10.4162/nrp.2021.15.6.686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/31/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND/OBJECTIVES Schisandrae Fructus, the fruit of Schisandra chinensis Baill., has traditionally been used as a medicinal herb for the treatment of various diseases, and has proven its various pharmacological effects, including anti-inflammatory and antioxidant activities. In this study, we investigated the inhibitory effect of Schisandrae Fructus ethanol extract (SF) on inflammatory and oxidative stress in particulate matter 2.5 (PM2.5)-treated RAW 264.7 macrophages. MATERIALS/METHODS To investigate the anti-inflammatory and antioxidant effects of SF in PM2.5-stimulated RAW 264.7 cells, the levels of pro-inflammatory mediator such as nitric oxide (NO) and prostaglandin E2 (PGE2), cytokines including interleukin (IL)-6 and IL-1β, and reactive oxygen species (ROS) were measured. To elucidate the mechanism underlying the effect of SF, the expression of genes involved in the generation of inflammatory factors was also investigated. We further evaluated the anti-inflammatory and antioxidant efficacy of SF against PM2.5 in the zebrafish model. RESULTS The results indicated that SF treatment significantly inhibited the PM2.5-induced release of NO and PGE2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. SF also attenuated the PM2.5-induced expression of IL-6 and IL-1β, reducing their extracellular secretion. Moreover, SF suppressed the PM2.5-mediated translocation of nuclear factor-kappa B (NF-κB) from the cytosol into nuclei and the degradation of inhibitor IκB-α, indicating that SF exhibited anti-inflammatory effects by inhibiting the NF-κB signaling pathway. In addition, SF abolished PM2.5-induced generation of ROS, similar to the pretreatment of a ROS scavenger, but not by an inhibitor of NF-κB activity. Furthermore, SF showed strong protective effects against NO and ROS production in PM2.5-treated zebrafish larvae. CONCLUSIONS Our findings suggest that SF exerts anti-inflammatory and antioxidant effects against PM2.5 through ROS-dependent down-regulating the NF-κB signaling pathway, and that SF can be a potential functional substance to prevent PM2.5-mediated inflammatory and oxidative damage.
Collapse
Affiliation(s)
- Hyesook Lee
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea.,Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan 47340, Korea
| | - Da Hye Kwon
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea.,Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea.,Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - So Young Kim
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea.,Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea.,Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea.,Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - Da Hye Kim
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea.,Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - Jin-Woo Jeong
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Hye-Jin Hwang
- Department of Food and Nutrition, Dong-Eui University, Busan 47340, Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea.,Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| |
Collapse
|
31
|
Biondi-Zoccai G, Frati G, Gaspardone A, Mariano E, Di Giosa AD, Bolignano A, Dei Giudici A, Calcagno S, Scappaticci M, Sciarretta S, Valenti V, Casati R, Visconti G, Penco M, Giannico MB, Peruzzi M, Cavarretta E, Budassi S, Cosma J, Federici M, Roever L, Romeo F, Versaci F. Impact of environmental pollution and weather changes on the incidence of ST-elevation myocardial infarction. Eur J Prev Cardiol 2021; 28:1501-1507. [PMID: 34695216 DOI: 10.1177/2047487320928450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/01/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Environmental pollution and weather changes unfavorably impact on cardiovascular disease. However, limited research has focused on ST-elevation myocardial infarction (STEMI), the most severe yet distinctive form of acute coronary syndrome. METHODS AND RESULTS We appraised the impact of environmental and weather changes on the incidence of STEMI, analysing the bivariate and multivariable association between several environmental and atmospheric parameters and the daily incidence of STEMI in two large Italian urban areas. Specifically, we appraised: carbon monoxide (CO), nitrogen dioxide (NO2), nitric oxide (NOX), ozone, particulate matter smaller than 10 μm (PM10) and than 2.5 μm (PM2.5), temperature, atmospheric pressure, humidity and rainfall. A total of 4285 days at risk were appraised, with 3473 cases of STEMI. Specifically, no STEMI occurred in 1920 (44.8%) days, whereas one or more occurred in the remaining 2365 (55.2%) days. Multilevel modelling identified several pollution and weather predictors of STEMI. In particular, concentrations of CO (p = 0.024), NOX (p = 0.039), ozone (p = 0.003), PM10 (p = 0.033) and PM2.5 (p = 0.042) predicted STEMI as early as three days before the event, as well as subsequently, and NO predicted STEMI one day before (p = 0.010), as well as on the same day. A similar predictive role was evident for temperature and atmospheric pressure (all p < 0.05). CONCLUSIONS The risk of STEMI is strongly associated with pollution and weather features. While causation cannot yet be proven, environmental and weather changes could be exploited to predict STEMI risk in the following days.
Collapse
Affiliation(s)
- Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Italy
- Mediterranea Cardiocentro, Italy
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Italy
- IRCCS NEUROMED, Italy
| | | | | | | | | | | | | | | | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Italy
- IRCCS NEUROMED, Italy
| | | | - Rebecca Casati
- Division of Cardiology, Santa Maria Goretti Hospital, Italy
| | | | - Maria Penco
- Division of Cardiology, University of L'Aquila, Italy
| | | | - Mariangela Peruzzi
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Italy
- Mediterranea Cardiocentro, Italy
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Italy
- Mediterranea Cardiocentro, Italy
| | | | - Joseph Cosma
- Division of Cardiology, Tor Vergata University, Italy
| | | | - Leonardo Roever
- Department of Clinical Research, Federal University of Uberlandia, Brazil
| | | | | |
Collapse
|
32
|
Leili M, Nadali A, Karami M, Bahrami A, Afkhami A. Short-term effect of multi-pollutant air quality indexes and PM 2.5 on cardiovascular hospitalization in Hamadan, Iran: a time-series analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53653-53667. [PMID: 34036506 DOI: 10.1007/s11356-021-14386-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Air pollutants are the most important environmental factors that contributed to cardiovascular disease (CVD). The present study aimed to investigate the number of hospitalization due to heart failure (HF) and myocardial infarction (MI) following the air pollutant exposure using a time-series regression analysis with a distributed lag model in Hamadan, Iran (2015-2019). A total of 2091 cases of CVD were registered. Based on the findings, the highest health effects on HF hospitalization were observed with air quality health index (AQHI) at lag 9 (RR = 1.043, 95% CI 0.991-1.098), and air quality index (AQI) at lags 2, 7, and 9 (RR = 1.001, 95% CI 0.998-1.002), for an increase in 1 unit of the indexes, and with PM2.5 at lag 0 (RR = 1.001, 95% CI 0.996-1.004) for 10 μg/m3 increase in PM2.5 levels. The highest health effects on MI hospitalization were calculated with AQHI at lag 10 (RR = 1.059, 95% CI 1.001-1.121) and AQI at lags 1 and 2 (RR = 1.001, 95% CI 0.998-1.002), for an increase in 1 unit of the indexes, and with PM2.5 at lag 8 (RR = 1.002, 95% CI 0.997-1.005) for 10 μg/m3 increase in PM2.5 levels. According to a seasonal classification, results showed that hospitalization in the warm season was higher than that of the cold season. Based on our knowledge, the current study is the first study that investigated the effect of air quality indexes on hospitalization due to HF and MI in Iran. Findings can provide basic information to plan preventive measures for reducing exposure chance and hospitalization rate in high-risk people.
Collapse
Affiliation(s)
- Mostafa Leili
- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Azam Nadali
- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Manoochehr Karami
- Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Bahrami
- Department of Occupational Health, Faculty of Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Fahmideh Av, Hamadan, 65174, Iran
| |
Collapse
|
33
|
Rossner P, Cervena T, Vojtisek-Lom M. In vitro exposure to complete engine emissions - a mini-review. Toxicology 2021; 462:152953. [PMID: 34537260 DOI: 10.1016/j.tox.2021.152953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/14/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Outdoor air pollution is classified as carcinogenic to humans and exposure to it contributes to increased incidence of various diseases, including cardiovascular, neurological or pulmonary disorders. Vehicle engine emissions represent a significant part of outdoor air pollutants, particularly in large cities with high population density. Considering the potentially negative health impacts of engine emissions exposure, the application of reliable test systems allowing assessment of the biological effects of these pollutants is crucial. The exposure systems should use relevant, preferably multicellular, cell models that are treated with the complete engine exhaust (i.e. a realistic mixture of particles, chemical compounds bound to them and gaseous phase) at the air-liquid interface. The controlled delivery and characterization of chemical and/or particle composition of the exhaust should be possible. In this mini-review we report on such exposure systems that have been developed to date. We focus on a brief description and technical characterization of the systems, and discuss the biological parameters detected following exposure to a gasoline/diesel exhaust. Finally, we summarize and compare findings from the individual systems, including their advantages/limitations.
Collapse
Affiliation(s)
- Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Tereza Cervena
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic
| | - Michal Vojtisek-Lom
- Centre of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 160 00, Prague, Czech Republic
| |
Collapse
|
34
|
Zeng Y, He H, Wang X, Zhang M, An Z. Climate and air pollution exposure are associated with thyroid function parameters: a retrospective cross-sectional study. J Endocrinol Invest 2021; 44:1515-1523. [PMID: 33159683 DOI: 10.1007/s40618-020-01461-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/26/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES There are still controversies about the impact of climatic and environmental factors on thyroid function parameters in healthy populations. We investigated the relationships between climate, air pollution exposure, and thyroid function fluctuations. METHODS We retrospectively reviewed 327,913 individuals attending routine health checks from December 2013 to December 2018. We analyzed the associations between thyroid function and climatic factors using Spearman's correlation analysis. We explored the relationships between thyroid function and air pollution exposure using multiple linear regression analysis, after adjusting for age, sex, season, and outdoor temperature. We also performed subgroup analyses by age and sex and sensitivity analyses of different anti-thyroid peroxidase antibody status. RESULTS Thyroid-stimulating hormone (TSH) and free triiodothyronine (FT3) were negatively associated with outdoor temperature (r = - 0.66, P < 0.001; r = - 0.55, P < 0.001), while free thyroxine (FT4) and FT4/FT3 were positively associated with temperature (r = 0.35, P < 0.001; r = 0.79, P < 0.001). An increase of 10 μg/m3 in fine particulate matter ≤ 2.5 μm (PM2.5) was associated with a decrease of 0.12 pmol/L in FT4 and an increase of 0.07 pmol/L in FT3 (both P < 0.01). FT4/FT3 was significantly negatively associated with PM2.5 (coefficient: - 0.06, P < 0.01). These results remained robust in hierarchical analyses and sensitivity analyses. CONCLUSIONS Thyroid function parameters are associated with climate and air pollution exposure. These factors may influence variations in thyroid function. Our results also highlight the importance of public health interventions to reduce air pollution.
Collapse
Affiliation(s)
- Y Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, China
| | - H He
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, China
| | - X Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, China
| | - M Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, China.
| | - Z An
- Department of Endocrine and Metabolism, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, China.
| |
Collapse
|
35
|
Zhang H, Zhang X, Wang Q, Xu Y, Feng Y, Yu Z, Huang C. Ambient air pollution and stillbirth: An updated systematic review and meta-analysis of epidemiological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116752. [PMID: 33689950 DOI: 10.1016/j.envpol.2021.116752] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 05/22/2023]
Abstract
Stillbirth has a great impact on contemporary and future generations. Increasing evidence show that ambient air pollution exposure is associated with stillbirth. However, previous studies showed inconsistent findings. To clarify the effect of maternal air pollution exposure on stillbirth, we searched for studies examining the associations between air pollutants, including particulate matter (diameter ≤ 2.5 μm [PM2.5] and ≤10 μm [PM10]) and gaseous pollutants (sulfur dioxide [SO2], nitrogen dioxide [NO2], carbon monoxide [CO] and ozone [O3]), and stillbirth published in PubMed, Web of Science, Embase and Cochrane Library until December 11, 2020. The pooled effect estimates and 95% confidence intervals (CI) were calculated, and the heterogeneity was evaluated using Cochran's Q test and I2 statistic. Publication bias was assessed using funnel plots and Egger's tests. Of 7546 records, 15 eligible studies were included in this review. Results of long-term exposure showed that maternal third trimester PM2.5 and CO exposure (per 10 μg/m3 increment) increased the odds of stillbirth, with estimated odds ratios (ORs) of 1.094 (95% CI: 1.008-1.180) and 1.0009 (95% CI: 1.0001-1.0017), respectively. Entire pregnancy exposure to PM2.5 was also associated with stillbirth (OR: 1.103, 95% CI: 1.074-1.131). A 10 μg/m3 increment in O3 in the first trimester was associated with stillbirth, and the estimated OR was 1.028 (95% CI: 1.001-1.055). Short-term exposure (on lag day 4) to O3 was also associated with stillbirth (OR: 1.002, 95% CI: 1.001-1.004). PM10, SO2 and NO2 exposure had no significant effects on the incidence of stillbirth. Additional well-designed cohort studies and investigations regarding potential biological mechanisms are warranted to elaborate the suggestive association that may help improve intergenerational inequality.
Collapse
Affiliation(s)
- Huanhuan Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, China; Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China
| | - Xiaoan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuanzhi Xu
- Department of Clinical Medicine, Medical School of Zhengzhou University, Zhengzhou, China
| | - Yang Feng
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zengli Yu
- School of Public Health, Zhengzhou University, Zhengzhou, China.
| | - Cunrui Huang
- School of Public Health, Zhengzhou University, Zhengzhou, China; Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China; School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
36
|
Short and long term exposure to air pollution increases the risk of ischemic heart disease. Sci Rep 2021; 11:5108. [PMID: 33658616 PMCID: PMC7930275 DOI: 10.1038/s41598-021-84587-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/18/2021] [Indexed: 12/22/2022] Open
Abstract
Previous studies have suggested an increased risk of ischemic heart disease related to air pollution. This study aimed to explore both the short-term and long-term effects of air pollutants on the risk of ischemic heart disease after adjusting for meteorological factors. The Korean National Health Insurance Service-Health Screening Cohort from 2002 to 2013 was used. Overall, 2155 participants with ischemic heart disease and 8620 control participants were analyzed. The meteorological data and air pollution data, including SO2 (ppm), NO2 (ppm), O3 (ppm), CO (ppm), and particulate matter (PM)10 (μg/m3), were analyzed using conditional logistic regression. Subgroup analyses were performed according to age, sex, income, and region of residence. One-month exposure to SO2 was related to 1.36-fold higher odds for ischemic heart disease (95% confidence interval [95% CI] 1.06–1.75). One-year exposure to SO2, O3, and PM10 was associated with 1.58- (95% CI 1.01–2.47), 1.53- (95% CI 1.27–1.84), and 1.14 (95% CI 1.02–1.26)-fold higher odds for ischemic heart disease. In subgroup analyses, the ≥ 60-year-old group, men, individuals with low income, and urban groups demonstrated higher odds associated with 1-month exposure to SO2. Short-term exposure to SO2 and long-term exposure to SO2, O3, and PM10 were related to ischemic heart disease.
Collapse
|
37
|
Zhang Y, Liu D, Liu Z. Fine Particulate Matter (PM 2.5) and Chronic Kidney Disease. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 254:183-215. [PMID: 34529145 DOI: 10.1007/398_2020_62] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The impact of ambient particulate matter (PM) on public health has become a great global concern, which is especially prominent in developing countries. For health purposes, PM is typically defined by size, with the smaller particles having more health impacts. Particles with a diameter <2.5 μm are called PM2.5. Initial research studies have focused on the impact of PM2.5 on respiratory and cardiovascular diseases; nevertheless, an increasing number of data suggested that PM2.5 may affect every organ system in the human body, and the kidney is of no exception. The kidney is vulnerable to particulate matter because most environmental toxins are concentrated by the kidney during filtration. According to the high morbidity and mortality related to chronic kidney disease, it is necessary to determine the effect of PM2.5 on kidney disease and its mechanism that needs to be identified. To understand the current status of PM2.5 in the atmosphere and their potential harmful kidney effects in different regions of the world this review article was prepared based on peer-reviewed scientific papers, scientific reports, and database from government organizations published after the year 1998. In this review, we focus on the worldwide epidemiological evidence linking PM2.5 with chronic kidney disease and the effect of PM2.5 on the chronic kidney disease (CKD) progression. At the same time, we also discuss the possible mechanisms of PM2.5 exposure leading to kidney damage, in order to emphasize the contribution of PM2.5 to kidney damage. A global database on PM2.5 and kidney disease should be developed to provide new ideas for the prevention and treatment of kidney disease.
Collapse
Affiliation(s)
- Yilin Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China
- Research Center for Kidney Disease, Zhengzhou, Henan Province, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, P. R. China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.
- Research Center for Kidney Disease, Zhengzhou, Henan Province, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China.
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, P. R. China.
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.
- Research Center for Kidney Disease, Zhengzhou, Henan Province, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China.
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, P. R. China.
| |
Collapse
|
38
|
Demková L, Árvay J, Bobuľská L, Hauptvogl M, Michalko M, Michalková J, Jančo I. Evaluation of Soil and Ambient Air Pollution Around Un-reclaimed Mining Bodies in Nižná Slaná (Slovakia) Post-Mining Area. TOXICS 2020; 8:E96. [PMID: 33137994 PMCID: PMC7712757 DOI: 10.3390/toxics8040096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/05/2023]
Abstract
Thirty soil samples were taken, and the same number of moss (Dicranum scoparium) and lichen (Pseudevernia furfuracea) bags were exposed to detect environmental pollution in the former mining area Nižná Slaná. Soil and ambient air are influenced by hazardous substances, which leak from old mining bodies due to insufficient or completely missing reclamation. The total content of the risk elements (As, Cd, Co, Cu, Fe, Hg, Mn, Ni, Sb, Se, Pb, Zn) was determined in soil, moss, and lichen samples and in the bodies of Leccinum pseudoscabrum. Biological (soil enzymes-urease, acid phosphatase, alkaline phosphatase, fluorescein diacetate (FDA), ß-glucosidase) and chemical properties (pH) were determined in soil samples. Contamination factor (Cf), degree of contamination (Cd), pollution load index (PLI), and enrichment factor (EF) were used for soil and relative accumulation factor (RAF) for air quality evaluation. Contamination factor values show serious pollution by Cd, Fe, Hg, and Mn. Pollution load index confirmed extremely high pollution almost at all evaluated areas. Soil enzymes reacted to soil pollution mostly by decreasing their activity. Mosses and lichens show differences in the accumulation abilities of individual elements. Regular consumption of L. pseudoscabrum would provide the dose of Cd and Hg below the limit of provisional weekly intake. Based on the bioaccumulation index (BAF) values, L. pseudoscabrum can be characterized as an Hg accumulator.
Collapse
Affiliation(s)
- Lenka Demková
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, 17. Novembra 1, 08001 Prešov, Slovakia;
| | - Július Árvay
- Department of Chemistry, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (J.Á.); (I.J.)
| | - Lenka Bobuľská
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, 17. Novembra 1, 08001 Prešov, Slovakia;
| | - Martin Hauptvogl
- Department of Sustainable Development, Faculty of European Studies and Regional Development, Slovak Agricultural University in Nitra, 94976 Nitra, Slovakia;
| | - Miloslav Michalko
- Department of Geography and Applied Geoinformatics, University of Prešov, 17. Novembra 1, 08116 Prešov, Slovakia; (M.M.); (J.M.)
| | - Jana Michalková
- Department of Sustainable Development, Faculty of European Studies and Regional Development, Slovak Agricultural University in Nitra, 94976 Nitra, Slovakia;
| | - Ivona Jančo
- Department of Chemistry, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (J.Á.); (I.J.)
| |
Collapse
|
39
|
Ning R, Shi Y, Jiang J, Liang S, Xu Q, Duan J, Sun Z. Mitochondrial dysfunction drives persistent vascular fibrosis in rats after short-term exposure of PM 2.5. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139135. [PMID: 32438194 DOI: 10.1016/j.scitotenv.2020.139135] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 05/20/2023]
Abstract
Nowadays, the great majority of toxicological studies have focused on immediate cardiovascular effects of simultaneous exposure to long-term or short-term PM2.5; yet, whether the persistent vascular fibrosis will be induced after short-term PM2.5 exposure and its related underlying mechanisms remain unclear. In this study, we adopted SD rats treated with PM2.5 for 1 month and followed by 12 months and 18 months recovery. Results from Doppler ultrasonography and histopathological analysis found that PM2.5-evoked vascular fibrosis was comprised of structural injury, including thickening of aortic media and carotid intima media thickness (CIMT), narrow left common carotid artery (LCCA), collagen deposition, impaired elasticity and functional alterations in aortal stiffness during long-term recovery. The protein expression levels of collagen I, collagen III, proliferating cell nuclear antigen (PNCA), TGF-β and osteopontin (OPN) remained elevated trends in PM2.5-treated groups for the related period than in control groups. Additionally, PM2.5 upregulated the protein expression levels of superoxide dismutase 2 (SOD2), mitochondrial fission related proteins (Drp1 and Fis1), while downregulated the protein expression levels of mitochondrial fusion related proteins (Mfn2 and OPA1). Moreover, PM2.5 significantly activated the mitophagy-related protein expression, including LC3, p62, PINK, Parkin. In summary, our results demonstrated that short-term PM2.5 exposure could trigger mitophagy, further lead to mitochondrial dysfunction which regulated persistent vascular fibrosis during long-term recovery.
Collapse
Affiliation(s)
- Ruihong Ning
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Jinjin Jiang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qing Xu
- Core Facilities for Electrophysiology, Core Facilities Center, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
40
|
Meininger GA, Hill MA. Frontiers in Vascular Physiology Grand Challenges in Vascular Physiology. Front Physiol 2020; 11:852. [PMID: 32848829 PMCID: PMC7426502 DOI: 10.3389/fphys.2020.00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/24/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gerald A Meininger
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Michael A Hill
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
41
|
Almetwally AA, Bin-Jumah M, Allam AA. Ambient air pollution and its influence on human health and welfare: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24815-24830. [PMID: 32363462 DOI: 10.1007/s11356-020-09042-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/23/2020] [Indexed: 05/22/2023]
Abstract
Human health is closely related to his environment. The influence of exposure to air pollutants on human health and well-being has been an interesting subject and gained much volume of research over the last 50 years. In general, polluted air is considered one of the major factors leading to many diseases such as cardiovascular and respiratory disease and lung cancer for the people. Besides, air pollution adversely affects the animals and deteriorates the plant environment. The overarching objective of this review is to explore the previous researches regarding the causes and sources of air pollution, how to control it and its detrimental effects on human health. The definition of air pollution and its sources were introduced extensively. Major air pollutants and their noxious effects were detailed. Detrimental impacts of air pollution on human health and well-being were also presented.
Collapse
Affiliation(s)
- Alsaid Ahmed Almetwally
- Textile Engineering Department, Textile Research Division, National Research Centre, Dokki, Cairo, Egypt.
| | - May Bin-Jumah
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt
| |
Collapse
|
42
|
Abstract
[No abstract available]
Collapse
|
43
|
Genomics of Particulate Matter Exposure Associated Cardiopulmonary Disease: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16224335. [PMID: 31703266 PMCID: PMC6887978 DOI: 10.3390/ijerph16224335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022]
Abstract
Particulate matter (PM) exposure is associated with the development of cardiopulmonary disease. Our group has studied the adverse health effects of World Trade Center particulate matter (WTC-PM) exposure on firefighters. To fully understand the complex interplay between exposure, organism, and resultant disease phenotype, it is vital to analyze the underlying role of genomics in mediating this relationship. A PubMed search was performed focused on environmental exposure, genomics, and cardiopulmonary disease. We included original research published within 10 years, on epigenetic modifications and specific genetic or allelic variants. The initial search resulted in 95 studies. We excluded manuscripts that focused on work-related chemicals, heavy metals and tobacco smoke as primary sources of exposure, as well as reviews, prenatal research, and secondary research studies. Seven full-text articles met pre-determined inclusion criteria, and were reviewed. The effects of air pollution were evaluated in terms of methylation (n = 3), oxidative stress (n = 2), and genetic variants (n = 2). There is evidence to suggest that genomics plays a meditating role in the formation of adverse cardiopulmonary symptoms and diseases that surface after exposure events. Genomic modifications and variations affect the association between environmental exposure and cardiopulmonary disease, but additional research is needed to further define this relationship.
Collapse
|