1
|
Zhou Z, Xiang L, Wang X, Jiang G, Cheng J, Cao X, Fan X, Shen H. An in-depth study of the growth inhibition of Vibrio parahaemolyticus by Surfactin and its effects on cell membranes, ROS levels and gene transcription. J Invertebr Pathol 2025; 211:108298. [PMID: 40043904 DOI: 10.1016/j.jip.2025.108298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/24/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
Acute hepatopancreatic necrosis disease (AHPND) caused by Vibrio parahaemolyticus (VpAHPND) poses a significant challenge to the shrimp farming industry. Although lipopeptides produced by Bacillus subtilis have been shown to exert strong inhibitory effects against Vibrio parahaemolyticus, the underlying mechanisms remain largely unexplored. This study reveals that the lipopeptide surfactin, produced by Bacillus subtilis, significantly inhibits the VpAHPND strain JSHY-1669 through multiple mechanisms. Using antagonistic assays and transcriptomic analysis, this paper investigates the molecular mechanisms of surfactin's inhibitory action on VpAHPND strain JSHY-1669. The minimum inhibitory concentration (MIC) of surfactin against JSHY-1669 was determined to be 0.125 mg/mL, with a cumulative inhibitory effect. Exposure to surfactin caused significant structural damage to the bacterial cells, markedly inhibiting their growth and virulence gene expression. Transcriptomic analysis identified 64 genes with significant differential expression, including upregulation of genes involved in key metabolic pathways such as carbohydrate transport, and downregulation of non-essential pathways like amino acid and sulfur metabolism. Surfactin affects JSHY-1669 by disrupting key physiological processes. Specifically, it increases cell membrane depolarization, reactive oxygen species (ROS) production, and malondialdehyde (MDA) levels. These changes collectively lead to the loss of membrane integrity, which ultimately inhibits bacterial growth. Additionally, the study found downregulation of slyA, a key regulatory factor related to DNA-binding transcription, virulence regulation, and carbohydrate metabolism. Surfactin may expand its inhibitory range by affecting the slyA regulatory network, providing a basis for surfactin's broader antibacterial targets. These findings elucidate the inhibitory mechanisms of surfactin on VpAHPND strain JSHY-1669, laying a foundation for its potential applications.
Collapse
Affiliation(s)
- Zijie Zhou
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; Nanjing Normal University, Nanjing 210023, China
| | - Luoping Xiang
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; Nanjing Normal University, Nanjing 210023, China
| | | | - Ge Jiang
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Jie Cheng
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Xiaohui Cao
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Xianping Fan
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Hui Shen
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China.
| |
Collapse
|
2
|
Bookout T, Shideler S, Cooper E, Goff K, Headley JV, Gieg LM, Lewenza S. Construction of Whole Cell Bacterial Biosensors as an Alternative Environmental Monitoring Technology to Detect Naphthenic Acids in Oil Sands Process-Affected Water. ACS Synth Biol 2024; 13:3197-3211. [PMID: 39312753 PMCID: PMC11495318 DOI: 10.1021/acssynbio.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
After extraction of bitumen from oil sands deposits, the oil sand process-affected water (OSPW) is stored in tailings ponds. Naphthenic acids (NA) in tailings ponds have been identified as the primary contributor to toxicity to aquatic life. As an alternative to other analytical methods, here we identify bacterial genes induced after growth in naphthenic acids and use synthetic biology approaches to construct a panel of candidate biosensors for NA detection in water. The main promoters of interest were the atuAR promoters from a naphthenic acid degradation operon and upstream TetR regulator, the marR operon which includes a MarR regulator and downstream naphthenic acid resistance genes, and a hypothetical gene with a possible role in fatty acid biology. Promoters were printed and cloned as transcriptional lux reporter plasmids that were introduced into a tailings pond-derived Pseudomonas species. All candidate biosensor strains were tested for transcriptional responses to naphthenic acid mixtures and individual compounds. The three priority promoters respond in a dose-dependent manner to simple, acyclic, and complex NA mixtures, and each promoter has unique NA specificities. The limits of NA detection from the various NA mixtures ranged between 1.5 and 15 mg/L. The atuA and marR promoters also detected NA in small volumes of OSPW samples and were induced by extracts of the panel of OSPW samples. While biosensors have been constructed for other hydrocarbons, here we describe a biosensor approach that could be employed in environmental monitoring of naphthenic acids in oil sands mining wastewater.
Collapse
Affiliation(s)
- Tyson Bookout
- Department
of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Steve Shideler
- Department
of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Evan Cooper
- Faculty
of Science and Technology, Athabasca University, Athabasca, Alberta, Canada T9S 3A3
- Department
of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Kira Goff
- Faculty
of Science and Technology, Athabasca University, Athabasca, Alberta, Canada T9S 3A3
- Department
of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - John V. Headley
- Environment
and Climate Change Canada, National Hydrology Research Centre, Saskatoon, Saskatchewan, Canada S7N 3H5
| | - Lisa M. Gieg
- Biological
Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Shawn Lewenza
- Faculty
of Science and Technology, Athabasca University, Athabasca, Alberta, Canada T9S 3A3
- Department
of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
3
|
Goh KJ, Altuvia Y, Argaman L, Raz Y, Bar A, Lithgow T, Margalit H, Gan YH. RIL-seq reveals extensive involvement of small RNAs in virulence and capsule regulation in hypervirulent Klebsiella pneumoniae. Nucleic Acids Res 2024; 52:9119-9138. [PMID: 38804271 PMCID: PMC11347178 DOI: 10.1093/nar/gkae440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) can infect healthy individuals, in contrast to classical strains that commonly cause nosocomial infections. The recent convergence of hypervirulence with carbapenem-resistance in K. pneumoniae can potentially create 'superbugs' that are challenging to treat. Understanding virulence regulation of hvKp is thus critical. Accumulating evidence suggest that posttranscriptional regulation by small RNAs (sRNAs) plays a role in bacterial virulence, but it has hardly been studied in K. pneumoniae. We applied RIL-seq to a prototypical clinical isolate of hvKp to unravel the Hfq-dependent RNA-RNA interaction (RRI) network. The RRI network is dominated by sRNAs, including predicted novel sRNAs, three of which we validated experimentally. We constructed a stringent subnetwork composed of RRIs that involve at least one hvKp virulence-associated gene and identified the capsule gene loci as a hub target where multiple sRNAs interact. We found that the sRNA OmrB suppressed both capsule production and hypermucoviscosity when overexpressed. Furthermore, OmrB base-pairs within kvrA coding region and partially suppresses translation of the capsule regulator KvrA. This agrees with current understanding of capsule as a major virulence and fitness factor. It emphasizes the intricate regulatory control of bacterial phenotypes by sRNAs, particularly of genes critical to bacterial physiology and virulence.
Collapse
Affiliation(s)
- Kwok Jian Goh
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Yael Altuvia
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Liron Argaman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yair Raz
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Amir Bar
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yunn-Hwen Gan
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
4
|
Tang M, Chen Q, Zhong H, Liu S, Sun W. CPR bacteria and DPANN archaea play pivotal roles in response of microbial community to antibiotic stress in groundwater. WATER RESEARCH 2024; 251:121137. [PMID: 38246077 DOI: 10.1016/j.watres.2024.121137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
The accumulation of antibiotics in the natural environment can disrupt microbial population dynamics. However, our understanding of how microbial communities adapt to the antibiotic stress in groundwater ecosystems remains limited. By recovering 2675 metagenome-assembled genomes (MAGs) from 66 groundwater samples, we explored the effect of antibiotics on bacterial, archaeal, and fungal communities, and revealed the pivotal microbes and their mechanisms in coping with antibiotic stress. The results indicated that antibiotics had the most significant influence on bacterial and archaeal communities, while the impact on the fungal community was minimal. Analysis of co-occurrence networks between antibiotics and microbes revealed the critical roles of Candidate Phyla Radiation (CPR) bacteria and DPANN archaea, two representative microbial groups in groundwater ecosystem, in coping with antibiotic resistance and enhancing network connectivity and complexity. Further genomic analysis demonstrated that CPR bacteria carried approximately 6 % of the identified antibiotic resistance genes (ARGs), indicating their potential to withstand antibiotics on their own. Meanwhile, the genomes of CPR bacteria and DPANN archaea were found to encode diverse biosynthetic gene clusters (BGCs) responsible for producing antimicrobial metabolites, which could not only assist CPR and DPANN organisms but also benefit the surrounding microbes in combating antibiotic stress. These findings underscore the significant impact of antibiotics on prokaryotic microbial communities in groundwater, and highlight the importance of CPR bacteria and DPANN archaea in enhancing the overall resilience and functionality of the microbial community in the face of antibiotic stress.
Collapse
Affiliation(s)
- Moran Tang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Qian Chen
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China.
| | - Haohui Zhong
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Shufeng Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China.
| |
Collapse
|
5
|
Cancino-Diaz ME, Guerrero-Barajas C, Betanzos-Cabrera G, Cancino-Diaz JC. Nucleotides as Bacterial Second Messengers. Molecules 2023; 28:7996. [PMID: 38138485 PMCID: PMC10745434 DOI: 10.3390/molecules28247996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
In addition to comprising monomers of nucleic acids, nucleotides have signaling functions and act as second messengers in both prokaryotic and eukaryotic cells. The most common example is cyclic AMP (cAMP). Nucleotide signaling is a focus of great interest in bacteria. Cyclic di-AMP (c-di-AMP), cAMP, and cyclic di-GMP (c-di-GMP) participate in biological events such as bacterial growth, biofilm formation, sporulation, cell differentiation, motility, and virulence. Moreover, the cyclic-di-nucleotides (c-di-nucleotides) produced in pathogenic intracellular bacteria can affect eukaryotic host cells to allow for infection. On the other hand, non-cyclic nucleotide molecules pppGpp and ppGpp are alarmones involved in regulating the bacterial response to nutritional stress; they are also considered second messengers. These second messengers can potentially be used as therapeutic agents because of their immunological functions on eukaryotic cells. In this review, the role of c-di-nucleotides and cAMP as second messengers in different bacterial processes is addressed.
Collapse
Affiliation(s)
- Mario E. Cancino-Diaz
- Departamentos Microbiología and Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, Ciudad de México 11350, Mexico
| | - Claudia Guerrero-Barajas
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto, La Laguna Ticoman, Gustavo A. Madero, Ciudad de México 07340, Mexico;
| | - Gabriel Betanzos-Cabrera
- Área Académica de Nutrición y Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Actopan Camino a Tilcuautla s/n, Pueblo San Juan Tilcuautla, Pachuca Hidalgo 42160, Mexico;
| | - Juan C. Cancino-Diaz
- Departamentos Microbiología and Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, Ciudad de México 11350, Mexico
| |
Collapse
|
6
|
Hamamura R, Yen H, Tobe T. SlyA regulates virulence gene expressions through activation of pchA regulatory gene in enterohemorrhagic Escherichia coli. Microbiol Immunol 2022; 66:501-509. [PMID: 36083830 DOI: 10.1111/1348-0421.13027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
Abstract
SlyA is a DNA-binding protein that alters the nucleoid complex composed of histone-like nucleoid-structuring protein (H-NS) and activates gene expression. In enterohemorrhagic Escherichia coli (EHEC), the expression of virulence genes is repressed by H-NS but is upregulated in response to environmental factors by releasing a nucleoid complex. In this study, we examined the effect of slyA deletion mutation in EHEC and discovered that the production of LEE (locus of enterocyte effacement)-encoded EspB and Tir, as well as cell adherence ability, was reduced in the mutant compared to wild type. The promoter activity of the LEE1 operon, including the regulatory gene, ler, was reduced by slyA mutation, but tac promoter-controlled expression of pchA, which is a regulatory gene of LEE1, abolished the effect. The promoter activity of pchA was downregulated by the slyA mutation. Furthermore, the coding region was required for its regulation and was bound to SlyA, which indicates the direct regulation of pchA by SlyA. However, the slyA mutation did not affect the butyrate-induced increase in pchA promoter activity. Additionally, pchA promoter activity was increased via induction of lrp, a regulatory gene for butyrate response, in the slyA mutant and, conversely, by introducing high copies of slyA into the lrp mutant. These results indicate that SlyA is a positive regulator of pchA and is independent of the Lrp regulatory system. SlyA may be involved in virulence expression in EHEC, maintaining a certain level of expression in the absence of butyrate response. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Riho Hamamura
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hilo Yen
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toru Tobe
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
7
|
Comparative transcriptome analysis reveals the contribution of membrane transporters to acid tolerance in Lactococcus lactis. J Biotechnol 2022; 357:9-17. [PMID: 35963594 DOI: 10.1016/j.jbiotec.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 04/08/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022]
Abstract
Acid stress caused by the accumulation of acidic metabolites severely affects the fermentation performance of lactic acid bacteria. In this study, to overcome the impact of acid stress during growth, nine membrane transporters were introduced in Lactococcus lactis NZ9000 to study their effects on acid tolerance. The engineered strains that overexpressed the metal ATP-binding cassette (ABC) transporters zitP (metal ABC transporter permease) and zitQ (metal ABC transporter ATP-binding protein) exhibited 14.5 and 9.5-fold higher survival rates, respectively, at pH 4.0 for 4 h than the control strain. During acid stress, the two recombinant strains maintained relatively higher ATP concentrations, i.e., 7.7- and 11.7-fold higher, respectively, than the control strain at pH 4.0 for 3 h. Subsequently, transcriptome analysis revealed that genes associated with ABC transporters, metal ion transport, transcriptional regulation, and stress response exhibited differentially expressed. The transcriptional level of ecfA2 gene (energy-coupling factor transporter ATPase) was substantially higher in L. lactis (ZitQ) during acid stress, and the ecfA2 gene was overexpressed in L. lactis. This recombinant strain L. lactis (EcfA2) exhibited a 598.7-fold higher survival rate than the control strain at pH 4.0 for 4 h. This study showed that the membrane transporters ZitP and ZitQ could increase acid tolerance and provided a strategy for constructing robust strains that can be used in food industry.
Collapse
|
8
|
Xu S, Wang X, Zhang F, Jiang Y, Zhang Y, Cheng M, Yan X, Hong Q, He J, Qiu J. PicR as a MarR Family Transcriptional Repressor Multiply Controls the Transcription of Picolinic Acid Degradation Gene Cluster pic in Alcaligenes faecalis JQ135. Appl Environ Microbiol 2022; 88:e0017222. [PMID: 35604228 PMCID: PMC9195942 DOI: 10.1128/aem.00172-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
Picolinic acid (PA) is a natural toxic pyridine derivative as well as an important intermediate used in the chemical industry. In a previous study, we identified a gene cluster, pic, that responsible for the catabolism of PA in Alcaligenes faecalis JQ135. However, the transcriptional regulation of the pic cluster remains known. This study showed that the entire pic cluster was composed of 17 genes and transcribed as four operons: picR, picCDEF, picB4B3B2B1, and picT1A1A2A3T2T3MN. Deletion of picR, encoding a putative MarR-type regulator, greatly shortened the lag phase of PA degradation. An electrophoretic mobility shift assay and DNase I footprinting showed that PicR has one binding site in the picR-picC intergenic region and two binding sites in the picB-picT1 intergenic region. The DNA sequences of the three binding sites have the palindromic characteristics of TCAG-N4-CTNN: the space consists of four nonspecific bases, and the four palindromic bases on the left and the first two palindromic bases on the right are strictly conserved, while the last two bases on the right vary among the three binding sites. An in vivo β-galactosidase activity reporter assay indicated that 6-hydroxypicolinic acid but not PA acted as a ligand of PicR, preventing PicR from binding to promoter regions and thus derepressing the transcription of the pic cluster. This study revealed the negative transcriptional regulation mechanism of PA degradation by PicR in A. faecalis JQ135 and provides new insights into the structure and function of the MarR-type regulator. IMPORTANCE The pic gene cluster was found to be responsible for PA degradation and widely distributed in Alpha-, Beta-, and Gammaproteobacteria. Thus, it is very necessary to understand the regulation mechanism of the pic cluster in these strains. This study revealed that PicR binds to three sites of the promoter regions of the pic cluster to multiply regulate the transcription of the pic cluster, which enables A. faecalis JQ135 to efficiently utilize PA. Furthermore, the study also found a unique palindrome sequence for binding of the MarR-type regulator. This study enhanced our understanding of microbial catabolism of environmental toxic pyridine derivatives.
Collapse
Affiliation(s)
- Siqiong Xu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiao Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fuyin Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yinhu Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yanting Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Minggen Cheng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Aldawood E, Roberts IS. Regulation of Escherichia coli Group 2 Capsule Gene Expression: A Mini Review and Update. Front Microbiol 2022; 13:858767. [PMID: 35359738 PMCID: PMC8960920 DOI: 10.3389/fmicb.2022.858767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/21/2022] [Indexed: 11/22/2022] Open
Abstract
The expression of a group 2 capsule (K antigen), such as the K1 or K5 antigen, is a key virulence factor of Escherichia coli responsible for extra-intestinal infections. Capsule expression confers resistance to innate host defenses and plays a critical role in invasive disease. Capsule expression is temperature-dependent being expressed at 37°C but not at 20°C when outside the host. Group 2 capsule gene expression involves two convergent promoters PR1 and PR3, the regulation of which is critical to capsule expression. Temperature-dependent expression is controlled at transcriptional level directly by the binding of H-NS to PR1 and PR3 and indirectly through BipA with additional input from IHF and SlyA. More recently, other regulatory proteins, FNR, Fur, IHF, MprA, and LrhA, have been implicated in regulating capsule gene expression in response to other environmental stimuli and there is merging data for the growth phase-dependent regulation of the PR1 and PR3 promoters. The aim of the present Mini Review is to provide a unified update on the latest data on how the expression of group 2 capsules is regulated in response to a number of stimuli and the growth phase something that has not to date been addressed.
Collapse
Affiliation(s)
- Esraa Aldawood
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Clinical Laboratory Science, Collage of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Ian S. Roberts
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- *Correspondence: Ian S. Roberts,
| |
Collapse
|
10
|
Xiang T, Zhou W, Xu C, Xu J, Liu R, Wang N, Xu L, Zhao Y, Luo M, Mo X, Mao Z, Wan Y. Transcriptomic Analysis Reveals Competitive Growth Advantage of Non-pigmented Serratia marcescens Mutants. Front Microbiol 2022; 12:793202. [PMID: 35058908 PMCID: PMC8764370 DOI: 10.3389/fmicb.2021.793202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/26/2021] [Indexed: 11/26/2022] Open
Abstract
Serratia marcescens is a common bacterium well-known for the red secondary metabolite prodigiosin. However, color mutants have long been described. Non-pigmented strains can be found to exist both naturally and under laboratory conditions. It is unclear why S. marcescens loses prodigiosin synthesis capacity in certain conditions. In the present study, we find that the spontaneous color mutants arise within a few generations (about five passages) and rapidly replace the wild-type parent cells (about 24 passages), which indicates a growth advantage of the former. Although, the loss of prodigiosin synthesis genes (pigA-N) is frequently reported as the major reason for pigment deficiency, it was unexpected that the whole gene cluster is completely preserved in the different color morphotypes. Comparative transcriptomic analysis indicates a dramatic variation at the transcriptional level. Most of the pig genes are significantly downregulated in the color morphotypes which directly lead to prodigiosin dyssynthesis. Besides, the transcriptional changes of several other genes have been noticed, of which transcriptional regulators, membrane proteins, and nearly all type VI secretion system (T6SS) components are generally downregulated, while both amino acid metabolite and transport systems are activated. In addition, we delete the transcription regulator slyA to generate a non-pigmented mutant. The ΔslyA strain loses prodigiosin synthesis capacity, but has a higher cell density, and surprisingly enhances the virulence as an entomopathogen. These data indicate that S. marcescens shuts down several high-cost systems and activates the amino acid degradation and transport pathways at the transcriptional level to obtain extra resources, which provides new insights into the competitive growth advantage of bacterial spontaneous color mutants.
Collapse
Affiliation(s)
- Tingting Xiang
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Wei Zhou
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Cailing Xu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Jing Xu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Rui Liu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Nuo Wang
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Liang Xu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Yu Zhao
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Minhui Luo
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Xiaoxin Mo
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Zeyang Mao
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Yongji Wan
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Skåne A, Loose JSM, Vaaje-Kolstad G, Askarian F. Comparative proteomic profiling reveals specific adaption of Vibrio anguillarum to oxidative stress, iron deprivation and humoral components of innate immunity. J Proteomics 2022; 251:104412. [PMID: 34737109 DOI: 10.1016/j.jprot.2021.104412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
The gram-negative bacterium Vibrio (Listonella) anguillarum (VA) is the causative agent of vibriosis, a terminal hemorrhagic septicemia affecting the aquacultural industry across the globe. In the current study we used label-free quantitative proteomics to investigate how VA adapts to conditions that mimic defined aspects of vibriosis-related stress such as exposure to oxidative stress (H2O2), exposure to humoral factors of innate immunity through incubation with Atlantic salmon serum, and iron deprivation upon supplementation of 2,2'-dipyridyl (DIP) to the growth medium. We also investigated how regulation of virulence factors may be governed by the VA growth phase and availability of nutrients. All experimental conditions explored revealed stress-specific proteomic adaption of VA and only nine proteins were found to be commonly regulated in all conditions. A general observation made for all stress-related conditions was regulation of multiple metabolic pathways. Notably, iron deprivation and exposure to Atlantic salmon serum evoked upregulation of iron acquisition mechanisms. The findings made in the present study represent a source of potential virulence determinants that can be of use in the search for means to understand vibriosis. SIGNIFICANCE: Vibriosis in fish and shellfish caused by V. anguillarum (VA) is responsible for large economic losses in the aquaculture sector across the globe. However, not much is known about the defense mechanism of this pathogen to percept and adapt to the imposed stresses during infection. Analyzing the response of VA to multiple host-related physiochemical stresses, the quantitative proteomic analysis of the present study indicates modulation of several virulence determinants and key defense networks of this pathogen. Our findings provide a theoretical basis to enhance our understanding of VA pathogenesis and can be employed to improve current intervention strategies to control vibriosis in aquaculture.
Collapse
Affiliation(s)
- Anna Skåne
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jennifer S M Loose
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Fatemeh Askarian
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway; Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
Mauran S, Perera NT, Perera IC. MxyR of Mycobacterium tuberculosis Responds to Xylan; an Unusual Ligand for a MarR Family Transcriptional Regulator. Mol Biol 2021. [DOI: 10.1134/s0026893321050162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Alves JA, Previato-Mello M, Barroso KCM, Koide T, da Silva Neto JF. The MarR family regulator OsbR controls oxidative stress response, anaerobic nitrate respiration, and biofilm formation in Chromobacterium violaceum. BMC Microbiol 2021; 21:304. [PMID: 34736409 PMCID: PMC8567585 DOI: 10.1186/s12866-021-02369-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022] Open
Abstract
Background Chromobacterium violaceum is an environmental opportunistic pathogen that causes rare but deadly infections in humans. The transcriptional regulators that C. violaceum uses to sense and respond to environmental cues remain largely unknown. Results Here, we described a novel transcriptional regulator in C. violaceum belonging to the MarR family that we named OsbR (oxidative stress response and biofilm formation regulator). Transcriptome profiling by DNA microarray using strains with deletion or overexpression of osbR showed that OsbR exerts a global regulatory role in C. violaceum, regulating genes involved in oxidative stress response, nitrate reduction, biofilm formation, and several metabolic pathways. EMSA assays showed that OsbR binds to the promoter regions of several OsbR-regulated genes, and the in vitro DNA binding activity was inhibited by oxidants. We demonstrated that the overexpression of osbR caused activation of ohrA even in the presence of the repressor OhrR, which resulted in improved growth under organic hydroperoxide treatment, as seem by growth curve assays. We showed that the proper regulation of the nar genes by OsbR ensures optimal growth of C. violaceum under anaerobic conditions by tuning the reduction of nitrate to nitrite. Finally, the osbR overexpressing strain showed a reduction in biofilm formation, and this phenotype correlated with the OsbR-mediated repression of two gene clusters encoding putative adhesins. Conclusions Together, our data indicated that OsbR is a MarR-type regulator that controls the expression of a large number of genes in C. violaceum, thereby contributing to oxidative stress defense (ohrA/ohrR), anaerobic respiration (narK1K2 and narGHJI), and biofilm formation (putative RTX adhesins). Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02369-x.
Collapse
Affiliation(s)
- Júlia A Alves
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Maristela Previato-Mello
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Kelly C M Barroso
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Tie Koide
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - José F da Silva Neto
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
14
|
The sRNA MicC downregulates hilD translation to control the SPI1 T3SS in Salmonella enterica serovar Typhimurium. J Bacteriol 2021; 204:e0037821. [PMID: 34694902 DOI: 10.1128/jb.00378-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Salmonella enterica serovar Typhimurium invades the intestinal epithelium and induces inflammatory diarrhea using the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS). Expression of the SPI1 T3SS is controlled by three AraC-like regulators, HilD, HilC and RtsA, which form a feed-forward regulatory loop that leads to activation of hilA, encoding the main transcriptional regulator of the T3SS structural genes. This complex system is affected by numerous regulatory proteins and environmental signals, many of which act at the level of hilD mRNA translation or HilD protein function. Here, we show that the sRNA MicC blocks translation of the hilD mRNA by base pairing near the ribosome binding site. MicC does not induce degradation of the hilD message. Our data indicate that micC is transcriptionally activated by SlyA, and SlyA feeds into the SPI1 regulatory network solely through MicC. Transcription of micC is negatively regulated by the OmpR/EnvZ two-component system, but this regulation is dependent on SlyA. OmpR/EnvZ control SPI1 expression partially through MicC, but also affect expression through other pathways, including an EnvZ-dependent, OmpR-independent mechanism. MicC-mediated regulation plays a role during infection, as evidenced by a SPI1 T3SS-dependent increase in Salmonella fitness in the intestine in the micC deletion mutant. These results further elucidate the complex regulatory network controlling SPI1 expression and add to the list of sRNAs that control this primary virulence factor. IMPORTANCE The Salmonella SPI1 T3SS is the primary virulence factor required for causing intestinal disease and initiating systemic infection. The system is regulated in response to a large variety of environmental and physiological factors such that the T3SS is expressed at only the appropriate time and place in the host during infection. Here we show how the sRNA MicC affects expression of the system. This work adds to our detailed mechanistic studies aimed at a complete understanding of the regulatory circuit.
Collapse
|
15
|
Wang D, Xu P, Sun J, Yuan J, Zhao J. Effects of ethanol stress on epsilon-poly-l-lysine (ε-PL) biosynthesis in Streptomyces albulus X-18. Enzyme Microb Technol 2021; 153:109907. [PMID: 34670188 DOI: 10.1016/j.enzmictec.2021.109907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023]
Abstract
The aim of the study was to reveal the effects of ethanol stress on the production of epsilon-poly-l-lysine (ε-PL) in Streptomyces albulus X-18. The results showed that biomass and the utilization of glucose were respectively increased by ethanol stress. The ε-PL yield was increased by 41.42 % in the shake flask and 37.02 % in 10 L fermenter with 1% (v/v) ethanol. The morphology of colonies and mycelia showed significant differences. The intracellular reactive oxygen species level was increased by about 100 %. The ratio of unsaturated fatty acids to saturated fatty acids in the cell membrane was increased by ethanol stress. Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) proteomic profile showed that 265 identified proteins were differentially expressed. The differentially expressed proteins (DEPs) were mainly involved in biological processes. The up-regulated DEPs were mainly involved in the redox reaction and stress response. The metabolic flux of l-Asp was shifted to l-Lys biosynthesis, and the DAP pathway was strengthened. Protein-protein interaction analysis showed that 30 DEPs interacted with l-Lys biosynthesis. The changes of ten proteins by Parallel Reaction Monitoring (PRM) were consistent with those by iTRAQ. The study provided valuable clues to better understand the mechanism of ε-PL biosynthesis improvement by ethanol stress.
Collapse
Affiliation(s)
- Dahong Wang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, China; Henan Engineering Research Center of Food Microbiology, Luoyang, China.
| | - Peng Xu
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, China
| | - Jianrui Sun
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, China
| | - Jiangfeng Yuan
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, China; National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, China
| | - Junfeng Zhao
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, China
| |
Collapse
|
16
|
Nishinaga M, Sugimoto H, Nishitani Y, Nagai S, Nagatoishi S, Muraki N, Tosha T, Tsumoto K, Aono S, Shiro Y, Sawai H. Heme controls the structural rearrangement of its sensor protein mediating the hemolytic bacterial survival. Commun Biol 2021; 4:467. [PMID: 33850260 PMCID: PMC8044140 DOI: 10.1038/s42003-021-01987-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 03/16/2021] [Indexed: 02/01/2023] Open
Abstract
Hemes (iron-porphyrins) are critical for biological processes in all organisms. Hemolytic bacteria survive by acquiring b-type heme from hemoglobin in red blood cells from their animal hosts. These bacteria avoid the cytotoxicity of excess heme during hemolysis by expressing heme-responsive sensor proteins that act as transcriptional factors to regulate the heme efflux system in response to the cellular heme concentration. Here, the underlying regulatory mechanisms were investigated using crystallographic, spectroscopic, and biochemical studies to understand the structural basis of the heme-responsive sensor protein PefR from Streptococcus agalactiae, a causative agent of neonatal life-threatening infections. Structural comparison of heme-free PefR, its complex with a target DNA, and heme-bound PefR revealed that unique heme coordination controls a >20 Å structural rearrangement of the DNA binding domains to dissociate PefR from the target DNA. We also found heme-bound PefR stably binds exogenous ligands, including carbon monoxide, a by-product of the heme degradation reaction.
Collapse
Affiliation(s)
- Megumi Nishinaga
- grid.266453.00000 0001 0724 9317Graduate School of Life Science, University of Hyogo, Ako, Hyogo Japan
| | - Hiroshi Sugimoto
- grid.266453.00000 0001 0724 9317Graduate School of Life Science, University of Hyogo, Ako, Hyogo Japan ,RIKEN SPring-8 Center, Sayo, Hyogo Japan
| | - Yudai Nishitani
- grid.266453.00000 0001 0724 9317Graduate School of Life Science, University of Hyogo, Ako, Hyogo Japan
| | - Seina Nagai
- grid.266453.00000 0001 0724 9317Graduate School of Life Science, University of Hyogo, Ako, Hyogo Japan
| | - Satoru Nagatoishi
- grid.26999.3d0000 0001 2151 536XThe Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Norifumi Muraki
- grid.250358.90000 0000 9137 6732Institute of Molecular Science, National Institute of Natural Sciences, Okazaki, Aichi Japan
| | - Takehiko Tosha
- grid.266453.00000 0001 0724 9317Graduate School of Life Science, University of Hyogo, Ako, Hyogo Japan ,RIKEN SPring-8 Center, Sayo, Hyogo Japan
| | - Kouhei Tsumoto
- grid.26999.3d0000 0001 2151 536XThe Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Bioengineering, School of Engineering, The University of Tokyo, Minato-ku, Tokyo Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Shigetoshi Aono
- grid.250358.90000 0000 9137 6732Institute of Molecular Science, National Institute of Natural Sciences, Okazaki, Aichi Japan
| | - Yoshitsugu Shiro
- grid.266453.00000 0001 0724 9317Graduate School of Life Science, University of Hyogo, Ako, Hyogo Japan
| | - Hitomi Sawai
- grid.266453.00000 0001 0724 9317Graduate School of Life Science, University of Hyogo, Ako, Hyogo Japan ,RIKEN SPring-8 Center, Sayo, Hyogo Japan
| |
Collapse
|
17
|
Regulatory Control of Rishirilide(s) Biosynthesis in Streptomyces bottropensis. Microorganisms 2021; 9:microorganisms9020374. [PMID: 33673359 PMCID: PMC7917814 DOI: 10.3390/microorganisms9020374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/27/2022] Open
Abstract
Streptomycetes are well-known producers of numerous bioactive secondary metabolites widely used in medicine, agriculture, and veterinary. Usually, their genomes encode 20-30 clusters for the biosynthesis of natural products. Generally, the onset and production of these compounds are tightly coordinated at multiple regulatory levels, including cluster-situated transcriptional factors. Rishirilides are biologically active type II polyketides produced by Streptomyces bottropensis. The complex regulation of rishirilides biosynthesis includes the interplay of four regulatory proteins encoded by the rsl-gene cluster: three SARP family regulators (RslR1-R3) and one MarR-type transcriptional factor (RslR4). In this work, employing gene deletion and overexpression experiments we revealed RslR1-R3 to be positive regulators of the biosynthetic pathway. Additionally, transcriptional analysis indicated that rslR2 is regulated by RslR1 and RslR3. Furthermore, RslR3 directly activates the transcription of rslR2, which stems from binding of RslR3 to the rslR2 promoter. Genetic and biochemical analyses demonstrated that RslR4 represses the transcription of the MFS transporter rslT4 and of its own gene. Moreover, DNA-binding affinity of RslR4 is strictly controlled by specific interaction with rishirilides and some of their biosynthetic precursors. Altogether, our findings revealed the intricate regulatory network of teamworking cluster-situated regulators governing the biosynthesis of rishirilides and strain self-immunity.
Collapse
|
18
|
Yuan X, Yu M, Yang CH. Innovation and Application of the Type III Secretion System Inhibitors in Plant Pathogenic Bacteria. Microorganisms 2020; 8:microorganisms8121956. [PMID: 33317075 PMCID: PMC7764658 DOI: 10.3390/microorganisms8121956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Many Gram-negative pathogenic bacteria rely on a functional type III secretion system (T3SS), which injects multiple effector proteins into eukaryotic host cells, for their pathogenicity. Genetic studies conducted in different host-microbe pathosystems often revealed a sophisticated regulatory mechanism of their T3SSs, suggesting that the expression of T3SS is tightly controlled and constantly monitored by bacteria in response to the ever-changing host environment. Therefore, it is critical to understand the regulation of T3SS in pathogenic bacteria for successful disease management. This review focuses on a model plant pathogen, Dickeyadadantii, and summarizes the current knowledge of its T3SS regulation. We highlight the roles of several T3SS regulators that were recently discovered, including the transcriptional regulators: FlhDC, RpoS, and SlyA; the post-transcriptional regulators: PNPase, Hfq with its dependent sRNA ArcZ, and the RsmA/B system; and the bacterial second messenger cyclic-di-GMP (c-di-GMP). Homologs of these regulatory components have also been characterized in almost all major bacterial plant pathogens like Erwiniaamylovora, Pseudomonassyringae, Pectobacterium spp., Xanthomonas spp., and Ralstonia spp. The second half of this review shifts focus to an in-depth discussion of the innovation and development of T3SS inhibitors, small molecules that inhibit T3SSs, in the field of plant pathology. This includes T3SS inhibitors that are derived from plant phenolic compounds, plant coumarins, and salicylidene acylhydrazides. We also discuss their modes of action in bacteria and application for controlling plant diseases.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Manda Yu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
- Correspondence: (M.Y.); (C.-H.Y.)
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
- Correspondence: (M.Y.); (C.-H.Y.)
| |
Collapse
|
19
|
Zaide G, Elia U, Cohen-Gihon I, Israeli M, Rotem S, Israeli O, Ehrlich S, Cohen H, Lazar S, Beth-Din A, Shafferman A, Zvi A, Cohen O, Chitlaru T. Comparative Analysis of the Global Transcriptomic Response to Oxidative Stress of Bacillus anthracis htrA-Disrupted and Parental Wild Type Strains. Microorganisms 2020; 8:microorganisms8121896. [PMID: 33265965 PMCID: PMC7760947 DOI: 10.3390/microorganisms8121896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022] Open
Abstract
We previously demonstrated that the HtrA (High Temperature Requirement A) protease/chaperone active in the quality control of protein synthesis, represents an important virulence determinant of Bacillus anthracis. Virulence attenuation of htrA-disrupted Bacillus anthracis strains was attributed to susceptibility of ΔhtrA strains to stress insults, as evidenced by affected growth under various stress conditions. Here, we report a comparative RNA-seq transcriptomic study generating a database of differentially expressed genes in the B. anthracishtrA-disrupted and wild type parental strains under oxidative stress. The study demonstrates that, apart from protease and chaperone activities, HtrA exerts a regulatory role influencing expression of more than 1000 genes under stress. Functional analysis of groups or individual genes exhibiting strain-specific modulation, evidenced (i) massive downregulation in the ΔhtrA and upregulation in the WT strains of various transcriptional regulators, (ii) downregulation of translation processes in the WT strain, and (iii) downregulation of metal ion binding functions and upregulation of sporulation-associated functions in the ΔhtrA strain. These modulated functions are extensively discussed. Fifteen genes uniquely upregulated in the wild type strain were further interrogated for their modulation in response to other stress regimens. Overexpression of one of these genes, encoding for MazG (a nucleoside triphosphate pyrophosphohydrolase involved in various stress responses in other bacteria), in the ΔhtrA strain resulted in partial alleviation of the H2O2-sensitive phenotype.
Collapse
|
20
|
Bartoli J, Viala JP, Bouveret E. SlyA Transcriptional Regulator Is Not Directly Affected by ppGpp Levels. Front Microbiol 2020; 11:1856. [PMID: 32849447 PMCID: PMC7417354 DOI: 10.3389/fmicb.2020.01856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
The SlyA transcriptional regulator controls the expression of genes involved in virulence and production of surface components in S. Typhimurium and E. coli. Its mode of action is mainly explained by its antagonism with the H-NS repressor for the same DNA binding regions. Interestingly, it has been reported that the alarmone ppGpp promotes SlyA dimerization and DNA binding at the promoter of pagC, enhancing the expression of this gene in Salmonella. A recurring problem in the field of stringent response has been to find a way of following ppGpp levels in vivo in real time. We thought that SlyA, as a ppGpp responsive ligand, was a perfect candidate for the development of a specific ppGpp biosensor. Therefore, we decided to characterize in depth this SlyA control by ppGpp. However, using various genes whose expression is activated by SlyA, as reporters, we showed that ppGpp does not affect SlyA regulation in vivo. In addition, modulating ppGpp levels did not affect SlyA dimerization in vivo, and did not impact its binding to DNA in vitro. We finally showed that ppGpp is required for the expression of hlyE in E. coli, a gene also activated by SlyA, and propose that both regulators are independently required for hlyE expression. The initial report of ppGpp action on SlyA might be explained by a similar action of SlyA and ppGpp on pagC expression, and the complexity of promoters controlled by several global regulators, such as the promoters of pagC in Salmonella or hlyE in E. coli.
Collapse
Affiliation(s)
- Julia Bartoli
- LISM, Institut de Microbiologie de la Méditerranée, CNRS, Aix-Marseille University, Marseille, France
| | - Julie Pamela Viala
- LISM, Institut de Microbiologie de la Méditerranée, CNRS, Aix-Marseille University, Marseille, France
| | | |
Collapse
|
21
|
Hiraide Y, Yamamoto H, Kawajiri Y, Yamakawa H, Wada K, Fujita Y. Super-activator variants of the cyanobacterial transcriptional regulator ChlR essential for tetrapyrrole biosynthesis under low oxygen conditions. Biosci Biotechnol Biochem 2020; 84:481-490. [DOI: 10.1080/09168451.2019.1687281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
ABSTRACT
ChlR is a MarR-type transcriptional regulator that activates the transcription of the chlAII-ho2-hemN operon in response to low oxygen conditions in the cyanobacterium Synechocystis sp. PCC 6803. Upon exposure to low oxygen conditions, ChlR activates transcription of the operon that encodes enzymes critical to tetrapyrrole biosynthesis under low oxygen conditions. We previously identified a super-activator variant, D35H, of ChlR that constitutively activates transcription of the operon. To gain insight into the low-oxygen induced activation of ChlR, we obtained eight additional super-activator variants of ChlR including D35H from pseudorevertants of a chlAI-disrupted mutant. Most substitutions were located in the N-terminal region of ChlR. Mapping of the substituted amino acid residues provided valuable structural insights that uncovered the activation mechanism of ChlR.
Collapse
Affiliation(s)
- Yuto Hiraide
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yasushi Kawajiri
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hisanori Yamakawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
22
|
Booth WT, Davis RR, Deora R, Hollis T. Structural mechanism for regulation of DNA binding of BpsR, a Bordetella regulator of biofilm formation, by 6-hydroxynicotinic acid. PLoS One 2019; 14:e0223387. [PMID: 31697703 PMCID: PMC6837509 DOI: 10.1371/journal.pone.0223387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
Bordetella bacteria are respiratory pathogens of humans, birds, and livestock. Bordetella pertussis the causative agent of whopping cough remains a significant health issue. The transcriptional regulator, BpsR, represses a number of Bordetella genes relating to virulence, cell adhesion, cell motility, and nicotinic acid metabolism. DNA binding of BpsR is allosterically regulated by interaction with 6-hydroxynicotinic acid (6HNA), the first product in the nicotinic acid degradation pathway. To understand the mechanism of this regulation, we have determined the crystal structures of BpsR and BpsR in complex with 6HNA. The structures reveal that BpsR binding of 6HNA induces a conformational change in the protein to prevent DNA binding. We have also identified homologs of BpsR in other Gram negative bacteria in which the amino acids involved in recognition of 6HNA are conserved, suggesting a similar mechanism for regulating nicotinic acid degradation.
Collapse
Affiliation(s)
- William T. Booth
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Ryan R. Davis
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Rajendar Deora
- Department of Microbial Infection and Immunity, and Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas Hollis
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- * E-mail:
| |
Collapse
|
23
|
Fan S, Tian F, Fang L, Yang CH, He C. Transcriptional responses of Xanthomonas oryzae pv. oryzae to type III secretion system inhibitor ortho-coumaric acid. BMC Microbiol 2019; 19:163. [PMID: 31307395 PMCID: PMC6631524 DOI: 10.1186/s12866-019-1532-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/26/2019] [Indexed: 11/23/2022] Open
Abstract
Background We previously identified a plant-derived phenolic compound ortho-coumaric acid (OCA) as an inhibitor of type III secretion system (T3SS) of Xanthomonas oryzae pv. oryzae (Xoo), the pathogen causing bacterial leaf blight of rice, one of the most devastating bacterial diseases of this staple crop worldwide. However, the molecular mechanisms by which OCA suppresses T3SS and the transcriptional responses to the OCA treatments in Xoo remains unclear. Results The present study conducted the RNA-seq-based transcriptomic analysis to reveal changes in gene expression in Xoo in response to 30 min, 1 h, 3 h, and 6 h of OCA treatment. Results showed that OCA significantly inhibited the expression of T3SS genes after 30 min, and the inhibition also existed after 1 h, 3 h, and 6 h. After treatment for 30 min, membrane proteins in the functional category of cellular process was the predominant group affected, indicating that Xoo was in the early stress stage. Over time, more differentially-expressed genes (DEGs) gathered in the functional category of biological process. Analysis of common DEGs at all four of time points revealed the core elements of Xoo during the response to OCA treatment. Notable, a multidrug transporter cluster that consisted of a MarR-family protein (PXO_RS13760), a multidrug RND transporter (PXO_RS13755), a multidrug transporter (PXO_RS13750), and an MFS transporter (PXO_RS13745) were significantly up-regulated at all four of the time points. Although these three transporter genes were not upregulated by OCA in the PXO_RS13760 deletion mutant, the deficiency of PXO_RS13760 in Xoo did not affect T3SS transcript, and OCA still had the ability to inhibit the expression of T3SS in the mutant, suggesting that the MarR-family protein was involved in bacterial responses to OCA, but not direct OCA inhibition of T3SS in Xoo. Conclusions We analyzed the transcriptome of Xoo during OCA treatment at both early and late stages, which revealed the landscape of Xoo responses to OCA at the whole-genome transcription level. A multidrug transporter cluster was identified to be involved in the response process, but had no direct relation to T3SS in Xoo. Electronic supplementary material The online version of this article (10.1186/s12866-019-1532-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susu Fan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Shandong Academy of Sciences, Jinan, 250014, Shandong Province, China
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Liwei Fang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Chenyang He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
24
|
Thanikkal EJ, Gahlot DK, Liu J, Fredriksson Sundbom M, Gurung JM, Ruuth K, Francis MK, Obi IR, Thompson KM, Chen S, Dersch P, Francis MS. The Yersinia pseudotuberculosis Cpx envelope stress system contributes to transcriptional activation of rovM. Virulence 2019; 10:37-57. [PMID: 30518290 PMCID: PMC6298763 DOI: 10.1080/21505594.2018.1556151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Gram-negative enteropathogen Yersinia pseudotuberculosis possesses a number of regulatory systems that detect cell envelope damage caused by noxious extracytoplasmic stresses. The CpxA sensor kinase and CpxR response regulator two-component regulatory system is one such pathway. Active Cpx signalling upregulates various factors designed to repair and restore cell envelope integrity. Concomitantly, this pathway also down-regulates key determinants of virulence. In Yersinia, cpxA deletion accumulates high levels of phosphorylated CpxR (CpxR~P). Accumulated CpxR~P directly repressed rovA expression and this limited expression of virulence-associated processes. A second transcriptional regulator, RovM, also negatively regulates rovA expression in response to nutrient stress. Hence, this study aimed to determine if CpxR~P can influence rovA expression through control of RovM levels. We determined that the active CpxR~P isoform bound to the promoter of rovM and directly induced its expression, which naturally associated with a concurrent reduction in rovA expression. Site-directed mutagenesis of the CpxR~P binding sequence in the rovM promoter region desensitised rovM expression to CpxR~P. These data suggest that accumulated CpxR~P inversely manipulates the levels of two global transcriptional regulators, RovA and RovM, and this would be expected to have considerable influence on Yersinia pathophysiology and metabolism.
Collapse
Affiliation(s)
- Edvin J Thanikkal
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Dharmender K Gahlot
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Junfa Liu
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | | | - Jyoti M Gurung
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Kristina Ruuth
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Monika K Francis
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Ikenna R Obi
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Karl M Thompson
- c Department of Microbiology , College of Medicine, Howard University , Washington , DC , USA.,d Interdisciplinary Research Building , Howard University , Washington , DC , USA
| | - Shiyun Chen
- e Key Laboratory of Special Pathogens and Biosafety , Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan , China
| | - Petra Dersch
- f Department of Molecular Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Matthew S Francis
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| |
Collapse
|
25
|
Marques Da Silva W, Oliveira LC, Soares SC, Sousa CS, Tavares GC, Resende CP, Pereira FL, Ghosh P, Figueiredo H, Azevedo V. Quantitative Proteomic Analysis of the Response of Probiotic Putative Lactococcus lactis NCDO 2118 Strain to Different Oxygen Availability Under Temperature Variation. Front Microbiol 2019; 10:759. [PMID: 31031733 PMCID: PMC6470185 DOI: 10.3389/fmicb.2019.00759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Lactococcus lactis is a gram positive facultative anaerobe widely used in the dairy industry and human health. L. lactis subsp. lactis NCDO 2118 is a strain that exhibits anti-inflammatory and immunomodulatory properties. In this study, we applied a label-free shotgun proteomic approach to characterize and quantify the NCDO 2118 proteome in response to variations of temperature and oxygen bioavailability, which constitute the environmental conditions found by this bacterium during its passage through the host gastro-intestinal tract and in other industrial processes. From this proteomic analysis, a total of 1,284 non-redundant proteins of NCDO 2118 were characterized, which correspond to approximately 54% of its predicted proteome. Comparative proteomic analysis identified 149 and 136 proteins in anaerobic (30°C and 37°C) and non-aerated (30°C and 37°C) conditions, respectively. Our label-free proteomic analysis quantified a total of 1,239 proteins amongst which 161 proteins were statistically differentially expressed. Main differences were observed in cellular metabolism, stress response, transcription and proteins associated to cell wall. In addition, we identified six strain-specific proteins of NCDO 2118. Altogether, the results obtained in our study will help to improve the understanding about the factors related to both physiology and adaptive processes of L. lactis NCDO 2118 under changing environmental conditions.
Collapse
Affiliation(s)
- Wanderson Marques Da Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leticia Castro Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triangulo Mineiro, Uberaba, Brazil
| | - Siomar Castro Soares
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triangulo Mineiro, Uberaba, Brazil
| | - Cassiana Severiano Sousa
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Felipe Luis Pereira
- AQUACEN, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Henrique Figueiredo
- AQUACEN, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
26
|
SlyA and HilD Counteract H-NS-Mediated Repression on the ssrAB Virulence Operon of Salmonella enterica Serovar Typhimurium and Thus Promote Its Activation by OmpR. J Bacteriol 2019; 201:JB.00530-18. [PMID: 30718301 DOI: 10.1128/jb.00530-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/26/2019] [Indexed: 02/03/2023] Open
Abstract
H-NS-mediated repression of acquired genes and the subsequent adaptation of regulatory mechanisms that counteract this repression have played a central role in the Salmonella pathogenicity evolution. The Salmonella pathogenicity island 2 (SPI-2) is an acquired chromosomal region containing genes necessary for Salmonella enterica to colonize and replicate in different niches of hosts. The ssrAB operon, located in SPI-2, encodes the two-component system SsrA-SsrB, which positively controls the expression of the SPI-2 genes but also other many genes located outside SPI-2. Several regulators have been involved in the expression of ssrAB, such as the ancestral regulators SlyA and OmpR, and the acquired regulator HilD. In this study, we show how SlyA, HilD, and OmpR coordinate to induce the expression of ssrAB under different growth conditions. We found that when Salmonella enterica serovar Typhimurium is grown in nutrient-rich lysogeny broth (LB), SlyA and HilD additively counteract H-NS-mediated repression on ssrAB, whereas in N-minimal medium (N-MM), SlyA antagonizes H-NS-mediated repression on ssrAB independently of HilD. Interestingly, our results indicate that OmpR is required for the expression of ssrAB independently of the growth conditions, even in the absence of repression by H-NS. Therefore, our data support two mechanisms adapted for the expression of ssrAB under different growth conditions. One involves the additive action of SlyA and HilD, whereas the other involves SlyA, but not HilD, to counteract H-NS-mediated repression on ssrAB, thus favoring in both cases the activation of ssrAB by OmpR.IMPORTANCE The global regulator H-NS represses the expression of acquired genes and thus avoids possible detrimental effects on bacterial fitness. Regulatory mechanisms are adapted to induce expression of the acquired genes in particular niches to obtain a benefit from the information encoded in the foreign DNA, as for pathogenesis. Here, we show two mechanisms that were integrated for the expression of virulence genes in Salmonella Typhimurium. One involves the additive action of the regulators SlyA and HilD, whereas the other involves SlyA, but not HilD, to counteract H-NS-mediated repression on the ssrAB operon, thus favoring its activation by the OmpR regulator. To our knowledge, this is the first report involving the coordinated action of two regulators to counteract H-NS-mediated repression.
Collapse
|
27
|
Regulatory Effect of SlyA on rcsB Expression in Salmonella enterica Serovar Typhimurium. J Bacteriol 2019; 201:JB.00673-18. [PMID: 30510144 DOI: 10.1128/jb.00673-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 11/20/2022] Open
Abstract
The Salmonella enterica serovar Typhimurium RcsCDB system regulates the synthesis of colanic acid and the flagellum as well as the expression of virulence genes. We previously demonstrated that the rcsC11 mutant, which constitutively activates the RcsB regulator, attenuates Salmonella virulence in an animal model. This attenuated phenotype was also produced by deletion of the slyA gene. In this work, we investigated if this antagonistic behavior is produced by modulating the expression of both regulator-encoding genes. We demonstrated that SlyA overproduction negatively regulates rcsB transcription. A bioinformatics analysis enabled us to identify putative SlyA binding sites on both promoters, P rcsDB and P rcsB , which control rcsB transcriptional levels. We also determined that SlyA is able to recognize and bind to these predicted sites to modulate the activity of both rcsB promoters. According to these results, SlyA represses rcsB transcription by direct binding to specific sites located on the rcsB promoters, thus accounting for the attenuated/virulence antagonistic behaviors. Moreover, we showed that the opposite effect between both regulators also physiologically affects the Salmonella motility phenotype. In this sense, we observed that under SlyA overproduction, P rcsB is repressed, and consequently, bacterial motility is increased. On the basis of these results, we suggest that during infection, the different RcsB levels produced act as a switch between the virulent and attenuated forms of Salmonella Thereby, we propose that higher concentrations of RcsB tilt the balance toward the attenuated form, while absence or low concentrations resulting from SlyA overproduction tilt the balance toward the virulent form.IMPORTANCE The antagonistic behavior of RcsB and SlyA on virulence gene expression led us to hypothesize that there is interplay between both regulators in a regulatory network and these could be considered coordinators of this process. Here, we report that the SlyA virulence factor influences motility behavior by controlling rcsB transcription from the P rcsB promoter. We also demonstrate that SlyA negatively affects the expression of the rcsB gene by direct binding to P rcsDB and P rcsB promoters. We suggest that different levels of RcsB act as a switch between the virulent and attenuated forms of Salmonella, where high concentrations of the regulator tend to tilt the balance toward the attenuated form and low concentrations or its absence tilt it toward the virulent form.
Collapse
|
28
|
Abstract
Communication between and within communities of cells or independent organisms is a crucial prerequisite for species survival. In response to variations in the extracellular environment, the collective behavior of cell populations can be coordinated by regulating community-level gene expression. This mechanism is strongly conserved during evolution, being shared both by bacterial communities and central nervous system cells. Notably, cyclic dipeptides (CDPs) are molecules that are implicated in these quorum sensing behaviors in both settings. Bacteria coordinate their collective behavior by producing CDPs (quorum sensing inducers) that enhance the capacity of individual members of the community to detect these signals and thus amplify the community-level response. In this review, we highlight recent data indicating that strikingly similar molecular mechanisms control communications between glial and neuronal cells to maintain homeostasis in the central nervous system, with a specific focus on the role of the thyrotropin-releasing hormone—derived CDP cyclo(His-Pro) in the protection against neurotoxic insults.
Collapse
|
29
|
CosR is an oxidative stress sensing a MarR-type transcriptional repressor in Corynebacterium glutamicum. Biochem J 2018; 475:3979-3995. [PMID: 30478154 DOI: 10.1042/bcj20180677] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/12/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023]
Abstract
The MarR family is unique to both bacteria and archaea. The members of this family, one of the most prevalent families of transcriptional regulators in bacteria, enable bacteria to adapt to changing environmental conditions, such as the presence of antibiotics, toxic chemicals, or reactive oxygen species (ROS), mainly by thiol-disulfide switches. Although the genome of Corynebacterium glutamicum encodes a large number of the putative MarR-type transcriptional regulators, their physiological and biochemical functions have so far been limited to only two proteins, regulator of oxidative stress response RosR and quinone oxidoreductase regulator QosR. Here, we report that the ncgl2617 gene (cosR) of C. glutamicum encoding an MarR-type transcriptional regulator plays an important role in oxidative stress resistance. The cosR null mutant is found to be more resistant to various oxidants and antibiotics, accompanied by a decrease in ROS production and protein carbonylation levels under various stresses. Protein biochemical function analysis shows that two Cys residues presenting at 49 and 62 sites in CosR are redox-active. They form intermolecular disulfide bonds in CosR under oxidative stress. This CosR oxidation leads to its dissociation from promoter DNA, depression of the target DNA, and increased oxidative stress resistance of C. glutamicum. Together, the results reveal that CosR is a redox-sensitive regulator that senses peroxide stress to mediate oxidative stress resistance in C. glutamicum.
Collapse
|
30
|
Capdevila DA, Huerta F, Edmonds KA, Le MT, Wu H, Giedroc DP. Tuning site-specific dynamics to drive allosteric activation in a pneumococcal zinc uptake regulator. eLife 2018; 7:37268. [PMID: 30328810 PMCID: PMC6224198 DOI: 10.7554/elife.37268] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/16/2018] [Indexed: 11/25/2022] Open
Abstract
MarR (multiple antibiotic resistance repressor) family proteins are bacterial repressors that regulate transcription in response to a wide range of chemical signals. Although specific features of MarR family function have been described, the role of atomic motions in MarRs remains unexplored thus limiting insights into the evolution of allostery in this ubiquitous family of repressors. Here, we provide the first experimental evidence that internal dynamics play a crucial functional role in MarR proteins. Streptococcus pneumoniae AdcR (adhesin-competence repressor) regulates ZnII homeostasis and ZnII functions as an allosteric activator of DNA binding. ZnII coordination triggers a transition from somewhat independent domains to a more compact structure. We identify residues that impact allosteric activation on the basis of ZnII-induced perturbations of atomic motions over a wide range of timescales. These findings appear to reconcile the distinct allosteric mechanisms proposed for other MarRs and highlight the importance of conformational dynamics in biological regulation.
Collapse
Affiliation(s)
| | - Fidel Huerta
- Department of Chemistry, Indiana University, Bloomington, United States.,Graduate Program in Biochemistry, Indiana University, Bloomington, United States
| | | | - My Tra Le
- Department of Chemistry, Indiana University, Bloomington, United States
| | - Hongwei Wu
- Department of Chemistry, Indiana University, Bloomington, United States
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, United States.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
| |
Collapse
|
31
|
Zhang B, Ran L, Wu M, Li Z, Jiang J, Wang Z, Cheng S, Fu J, Liu X. Shigellaflexneri Regulator SlyA Controls Bacterial Acid Resistance by Directly Activating the Glutamate Decarboxylation System. Front Microbiol 2018; 9:2071. [PMID: 30233544 PMCID: PMC6128205 DOI: 10.3389/fmicb.2018.02071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/14/2018] [Indexed: 01/02/2023] Open
Abstract
Shigella flexneri is an important foodborne bacterial pathogen with infectious dose as low as 10–100 cells. SlyA, a transcriptional regulator of the MarR family, has been shown to regulate virulence in a closely related bacterial pathogen, Salmonella Typhimurium. However, the regulatory role of SlyA in S. flexneri is less understood. Here we applied unbiased proteomic profiling to define the SlyA regulon in S. flexneri. We found that the genetic ablation of slyA led to the alteration of 18 bacterial proteins among over 1400 identifications. Intriguingly, most down-regulated proteins (whose expression is SlyA-dependent) were associated with bacterial acid resistance such as the glutamate decarboxylation system. We further demonstrated that SlyA directly regulates the expression of GadA, a glutamate decarboxylase, by binding to the promotor region of its coding gene. Importantly, overexpression of GadA was able to rescue the survival defect of the ΔslyA mutant under acid stress. Therefore, our study highlights a major role of SlyA in controlling S. flexneri acid resistance and provides a molecular mechanism underlying such regulation as well.
Collapse
Affiliation(s)
- Buyu Zhang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Longhao Ran
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Mei Wu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zezhou Li
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jiezhang Jiang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhen Wang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Sen Cheng
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jiaqi Fu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|
32
|
Cabezas CE, Briones AC, Aguirre C, Pardo-Esté C, Castro-Severyn J, Salinas CR, Baquedano MS, Hidalgo AA, Fuentes JA, Morales EH, Meneses CA, Castro-Nallar E, Saavedra CP. The transcription factor SlyA from Salmonella Typhimurium regulates genes in response to hydrogen peroxide and sodium hypochlorite. Res Microbiol 2018; 169:263-278. [DOI: 10.1016/j.resmic.2018.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 03/29/2018] [Accepted: 04/21/2018] [Indexed: 11/15/2022]
|
33
|
Guragain M, Jennings-Gee J, Cattelan N, Finger M, Conover MS, Hollis T, Deora R. The Transcriptional Regulator BpsR Controls the Growth of Bordetella bronchiseptica by Repressing Genes Involved in Nicotinic Acid Degradation. J Bacteriol 2018; 200:JB.00712-17. [PMID: 29581411 PMCID: PMC5971473 DOI: 10.1128/jb.00712-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Many of the pathogenic species of the genus Bordetella have an absolute requirement for nicotinic acid (NA) for laboratory growth. These Gram-negative bacteria also harbor a gene cluster homologous to the nic cluster of Pseudomonas putida which is involved in the aerobic degradation of NA and its transcriptional control. We report here that BpsR, a negative regulator of biofilm formation and Bps polysaccharide production, controls the growth of Bordetella bronchiseptica by repressing the expression of nic genes. The severe growth defect of the ΔbpsR strain in Stainer-Scholte medium was restored by supplementation with NA, which also functioned as an inducer of nic genes at low micromolar concentrations that are usually present in animals and humans. Purified BpsR protein bound to the nic promoter region, and its DNA binding activity was inhibited by 6-hydroxynicotinic acid (6-HNA), the first metabolite of the NA degradative pathway. Reporter assays with the isogenic mutant derivative of the wild-type (WT) strain harboring deletion in nicA, which encodes a putative nicotinic acid hydroxylase responsible for conversion of NA to 6-HNA, showed that 6-HNA is the actual inducer of the nic genes in the bacterial cell. Gene expression profiling further showed that BpsR dually activated and repressed the expression of genes associated with pathogenesis, transcriptional regulation, metabolism, and other cellular processes. We discuss the implications of these findings with respect to the selection of pyridines such as NA and quinolinic acid for optimum bacterial growth depending on the ecological niche.IMPORTANCE BpsR, the previously described regulator of biofilm formation and Bps polysaccharide production, controls Bordetella bronchiseptica growth by regulating the expression of genes involved in the degradation of nicotinic acid (NA). 6-Hydroxynicotinic acid (6-HNA), the first metabolite of the NA degradation pathway prevented BpsR from binding to DNA and was the actual in vivo inducer. We hypothesize that BpsR enables Bordetella bacteria to efficiently and selectively utilize NA for their survival depending on the environment in which they reside. The results reported herein lay the foundation for future investigations of how BpsR and the alteration of its activity by NA orchestrate the control of Bordetella growth, metabolism, biofilm formation, and pathogenesis.
Collapse
Affiliation(s)
- Manita Guragain
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jamie Jennings-Gee
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Natalia Cattelan
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI, CONICET-CCT-La Plata), Universidad Nacional de La Plata, La Plata, Argentina
| | - Mary Finger
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Matt S Conover
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Thomas Hollis
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Rajendar Deora
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Microbiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
34
|
Pan Y, Liang F, Li RJ, Qian W. MarR-Family Transcription Factor HpaR Controls Expression of the vgrR-vgrS Operon of Xanthomonas campestris pv. campestris. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:299-310. [PMID: 29077520 DOI: 10.1094/mpmi-07-17-0187-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
MarR (multiple antibiotic resistance regulator)-family transcription factors (TFs), which regulate the expression of virulence factors and other physiological pathways in pathogenic bacteria, are regarded as ideal molecular targets for the development of novel antimicrobial strategies. In the plant bacterial pathogen Xanthomonas campestris pv. campestris, HpaR, a typical MarR-family TF, is associated with bacterial virulence, but its mechanism of virulence regulation remains unclear. Here, we dissected the HpaR regulon using high-throughput RNA sequencing and chromatin immunoprecipitation sequencing. HpaR directly or indirectly controls the expression of approximately 448 genes; it acts both as a transcriptional activator and a repressor to control the expression of downstream genes by directly binding to their promoter regions. The consensus HpaR-binding DNA motifs contain imperfect palindromic sequences similar to [G/T]CAACAATT[C/T]TTG. In-depth analysis revealed that HpaR positively modulates transcription level of the vgrR-vgrS operon that encodes an important two-component signal transduction system to sense iron depletion and regulate bacterial virulence. Epistasis analysis demonstrated that vgrR-vgrS is a core downstream component of HpaR regulation, as overexpression of vgrR restored the phenotypic deficiencies caused by a hpaR mutation. This dissection of the HpaR regulon should facilitate future studies focused on the activating mechanism of HpaR during bacterial infection.
Collapse
Affiliation(s)
- Yue Pan
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- 2 School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; and
| | - Fang Liang
- 3 Beijing Institute of Genomics, Chinese Academy of Sciences
| | - Ru-Jiao Li
- 3 Beijing Institute of Genomics, Chinese Academy of Sciences
| | - Wei Qian
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
35
|
Abstract
Antibiotics have saved millions of lives over the past decades. However, the accumulation of so many antibiotic resistance genes by some clinically relevant pathogens has begun to lead to untreatable infections worldwide. The current antibiotic resistance crisis will require greater efforts by governments and the scientific community to increase the research and development of new antibacterial drugs with new mechanisms of action. A major challenge is the identification of novel microbial targets, essential for in vivo growth or pathogenicity, whose inhibitors can overcome the currently circulating resistome of human pathogens. In this article, we focus on the potential high value of bacterial transcriptional regulators as targets for the development of new antibiotics, discussing in depth the molecular role of these regulatory proteins in bacterial physiology and pathogenesis. Recent advances in the search for novel compounds that inhibit the biological activity of relevant transcriptional regulators in pathogenic bacteria are reviewed.
Collapse
|
36
|
Transcriptomic Studies of the Effect of nod Gene-Inducing Molecules in Rhizobia: Different Weapons, One Purpose. Genes (Basel) 2017; 9:genes9010001. [PMID: 29267254 PMCID: PMC5793154 DOI: 10.3390/genes9010001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 12/16/2022] Open
Abstract
Simultaneous quantification of transcripts of the whole bacterial genome allows the analysis of the global transcriptional response under changing conditions. RNA-seq and microarrays are the most used techniques to measure these transcriptomic changes, and both complement each other in transcriptome profiling. In this review, we exhaustively compiled the symbiosis-related transcriptomic reports (microarrays and RNA sequencing) carried out hitherto in rhizobia. This review is specially focused on transcriptomic changes that takes place when five rhizobial species, Bradyrhizobium japonicum (=diazoefficiens) USDA 110, Rhizobium leguminosarum biovar viciae 3841, Rhizobium tropici CIAT 899, Sinorhizobium (=Ensifer) meliloti 1021 and S. fredii HH103, recognize inducing flavonoids, plant-exuded phenolic compounds that activate the biosynthesis and export of Nod factors (NF) in all analysed rhizobia. Interestingly, our global transcriptomic comparison also indicates that each rhizobial species possesses its own arsenal of molecular weapons accompanying the set of NF in order to establish a successful interaction with host legumes.
Collapse
|
37
|
Bando SY, Iamashita P, Guth BE, dos Santos LF, Fujita A, Abe CM, Ferreira LR, Moreira-Filho CA. A hemolytic-uremic syndrome-associated strain O113:H21 Shiga toxin-producing Escherichia coli specifically expresses a transcriptional module containing dicA and is related to gene network dysregulation in Caco-2 cells. PLoS One 2017; 12:e0189613. [PMID: 29253906 PMCID: PMC5734773 DOI: 10.1371/journal.pone.0189613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/29/2017] [Indexed: 01/22/2023] Open
Abstract
Shiga toxin-producing (Stx) Escherichia coli (STEC) O113:H21 strains are associated with human diarrhea and some of these strains may cause hemolytic uremic syndrome (HUS). The molecular mechanism underlying this capacity and the differential host cell response to HUS-causing strains are not yet completely understood. In Brazil O113:H21 strains are commonly found in cattle but, so far, were not isolated from HUS patients. Here we conducted comparative gene co-expression network (GCN) analyses of two O113:H21 STEC strains: EH41, reference strain, isolated from HUS patient in Australia, and Ec472/01, isolated from cattle feces in Brazil. These strains were cultured in fresh or in Caco-2 cell conditioned media. GCN analyses were also accomplished for cultured Caco-2 cells exposed to EH41 or Ec472/01. Differential transcriptome profiles for EH41 and Ec472/01 were not significantly changed by exposure to fresh or Caco-2 conditioned media. Conversely, global gene expression comparison of both strains cultured in conditioned medium revealed a gene set exclusively expressed in EH41, which includes the dicA putative virulence factor regulator. Network analysis showed that this set of genes constitutes an EH41 specific transcriptional module. PCR analysis in Ec472/01 and in other 10 Brazilian cattle-isolated STEC strains revealed absence of dicA in all these strains. The GCNs of Caco-2 cells exposed to EH41 or to Ec472/01 presented a major transcriptional module containing many hubs related to inflammatory response that was not found in the GCN of control cells. Moreover, EH41 seems to cause gene network dysregulation in Caco-2 as evidenced by the large number of genes with high positive and negative covariance interactions. EH41 grows slowly than Ec472/01 when cultured in Caco-2 conditioned medium and fitness-related genes are hypoexpressed in that strain. Therefore, EH41 virulence may be derived from its capacity for dysregulating enterocyte genome functioning and its enhanced enteric survival due to slow growth.
Collapse
Affiliation(s)
- Silvia Yumi Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Priscila Iamashita
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Beatriz E. Guth
- Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Luis F. dos Santos
- Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - André Fujita
- Department of Computer Science, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cecilia M. Abe
- Laboratory of Bacteriology, Butantan Institute, São Paulo, SP, Brazil
| | - Leandro R. Ferreira
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Carlos Alberto Moreira-Filho
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
38
|
De San Eustaquio-Campillo A, Cornilleau C, Guérin C, Carballido-López R, Chastanet A. PamR, a new MarR-like regulator affecting prophages and metabolic genes expression in Bacillus subtilis. PLoS One 2017; 12:e0189694. [PMID: 29240826 PMCID: PMC5730154 DOI: 10.1371/journal.pone.0189694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022] Open
Abstract
B. subtilis adapts to changing environments by reprogramming its genetic expression through a variety of transcriptional regulators from the global transition state regulators that allow a complete resetting of the cell genetic expression, to stress specific regulators controlling only a limited number of key genes required for optimal adaptation. Among them, MarR-type transcriptional regulators are known to respond to a variety of stresses including antibiotics or oxidative stress, and to control catabolic or virulence gene expression. Here we report the characterization of the ydcFGH operon of B. subtilis, containing a putative MarR-type transcriptional regulator. Using a combination of molecular genetics and high-throughput approaches, we show that this regulator, renamed PamR, controls directly its own expression and influence the expression of large sets of prophage-related and metabolic genes. The extent of the regulon impacted by PamR suggests that this regulator reprograms the metabolic landscape of B. subtilis in response to a yet unknown signal.
Collapse
Affiliation(s)
| | - Charlène Cornilleau
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Cyprien Guérin
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Arnaud Chastanet
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
39
|
Yu Y, Qian Y, Du D, Li Q, Xu C, Liu H, Chen M, Yao H, Lu C, Zhang W. Infection and adaption-based proteomic changes of Streptococcus suis serotype 2 in a pig model. J Proteomics 2017; 180:41-52. [PMID: 29247804 DOI: 10.1016/j.jprot.2017.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 11/10/2017] [Accepted: 12/01/2017] [Indexed: 12/28/2022]
Abstract
Streptococcus suis (S. suis) is an emerging zoonotic agent that is responsible for significant economic losses to the porcine industry worldwide. However, most research regarding the pathogenic mechanisms has used in vitro cultures of S. suis, which may not provide an accurate representation of the in vivo biological activities. In this study, 188 differential abundance S. suis proteins were identified in in vivo samples obtained from the blood of the infected pigs. These were compared with in vitro samples by a Tandem Mass Tags (TMT) experiment. Thus, a virulence associated network was established using the enriched differential abundance proteins (obtained via bioinformatics analysis in this study) and the previously reported putative virulence factors associated with in vivo infection. One of the most important up-regulated hubs in this network, adhE (an acetaldehyde-CoA/alcohol dehydrogenase) was found. Furthermore, knocking out adhE in S. suis serotype 2 strain ZY05719 decreased virulence. Cell culture experiments and far-western blot analysis showed that adhE is involved in adhesion to Caco-2 cells; Hsp60 could be one of the receptors for this protein. SIGNIFICANCE This study is a systematical research to identify in vivo regulated virulence associated proteins of S. suis in pigs. It constructs a network consisting of in vivo infection related factors for the first time to get to know the coordinated actions of a multitude of factors that lead to host pathogenicity and filter the most important hubs. The individual factors that contribute to infection is also identified. A novel differential protein adhE which is one of the most important hubs of this network and is up-regulated in abundance in vivo is found to moonlight as an important adhesion by binding Hsp60 and finally contributes to virulence.
Collapse
Affiliation(s)
- Yanfei Yu
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Yunyun Qian
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dechao Du
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Quan Li
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chenyang Xu
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hanze Liu
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mianmian Chen
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Huochun Yao
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chengping Lu
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wei Zhang
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
40
|
Allosteric histidine switch for regulation of intracellular zinc(II) fluctuation. Proc Natl Acad Sci U S A 2017; 114:13661-13666. [PMID: 29229866 DOI: 10.1073/pnas.1708563115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Metalloregulators allosterically control transcriptional activity through metal binding-induced reorganization of ligand residues and/or hydrogen bonding networks, while the coordination atoms on the same ligand residues remain seldom changed. Here we show that the MarR-type zinc transcriptional regulator ZitR switches one of its histidine nitrogen atoms for zinc coordination during the allosteric control of DNA binding. The Zn(II)-coordination nitrogen on histidine 42 within ZitR's high-affinity zinc site (site 1) switches from Nε2 to Nδ1 upon Zn(II) binding to its low-affinity zinc site (site 2), which facilitates ZitR's conversion from the nonoptimal to the optimal DNA-binding conformation. This histidine switch-mediated cooperation between site 1 and site 2 enables ZitR to adjust its DNA-binding affinity in response to a broad range of zinc fluctuation, which may allow the fine tuning of transcriptional regulation.
Collapse
|
41
|
Mishra AK, Choi J, Choi SJ, Baek KH. Cyclodipeptides: An Overview of Their Biosynthesis and Biological Activity. Molecules 2017; 22:molecules22101796. [PMID: 29065531 PMCID: PMC6151668 DOI: 10.3390/molecules22101796] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 01/06/2023] Open
Abstract
Cyclodipeptides (CDP) represent a diverse family of small, highly stable, cyclic peptides that are produced as secondary functional metabolites or side products of protein metabolism by bacteria, fungi, and animals. They are widespread in nature, and exhibit a broad variety of biological and pharmacological activities. CDP synthases (CDPSs) and non-ribosomal peptide synthetases (NRPSs) catalyze the biosynthesis of the CDP core structure, which is further modified by tailoring enzymes often associated with CDP biosynthetic gene clusters. In this review, we provide a comprehensive summary of CDP biosynthetic pathways and modifying enzymes. We also discuss the biological properties of some known CDPs and their possible applications in metabolic engineering.
Collapse
Affiliation(s)
- Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea.
| | - Jaehyuk Choi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea.
| | - Seong-Jin Choi
- Department of Biotechnology, Daegu Catholic University, Gyeongsan 38430, Korea.
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea.
| |
Collapse
|
42
|
Silva CMG, Silva DNDS, Costa SBD, Almeida JSDS, Boente RF, Teixeira FL, Domingues RMCP, Lobo LA. Inactivation of MarR gene homologs increases susceptibility to antimicrobials in Bacteroides fragilis. Braz J Microbiol 2017; 49:200-206. [PMID: 28847541 PMCID: PMC5790583 DOI: 10.1016/j.bjm.2017.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/18/2017] [Accepted: 05/06/2017] [Indexed: 01/05/2023] Open
Abstract
Bacteroides fragilis is the strict anaerobic bacteria most commonly found in human infections, and has a high mortality rate. Among other virulence factors, the remarkable ability to acquire resistance to a variety of antimicrobial agents and to tolerate nanomolar concentrations of oxygen explains in part their success in causing infection and colonizing the mucosa. Much attention has been given to genes related to multiple drug resistance derived from plasmids, integrons or transposon, but such genes are also detected in chromosomal systems, like the mar (multiple antibiotic resistance) locus, that confer resistance to a range of drugs. Regulators like MarR, that control expression of the locus mar, also regulate resistance to organic solvents, disinfectants and oxygen reactive species are important players in these events. Strains derived from the parental strain 638R, with mutations in the genes hereby known as marRI (BF638R_3159) and marRII (BF638R_3706) were constructed by gene disruption using a suicide plasmid. Phenotypic response of the mutant strains to hydrogen peroxide, cell survival assay against exposure to oxygen, biofilm formation, resistance to bile salts and resistance to antibiotics was evaluated. The results showed that the mutant strains exhibit statistically significant differences in their response to oxygen stress, but no changes were observed in survival when exposed to bile salts. Biofilm formation was not affected by either gene disruption. Both mutant strains however, became more sensitive to multiple antimicrobial drugs tested. This indicates that as observed in other bacterial species, MarR are an important resistance mechanism in B. fragilis.
Collapse
Affiliation(s)
| | | | | | | | - Renata Ferreira Boente
- Universidade Federal do Rio de Janeiro, Medical Microbiology Department, Rio de Janeiro, RJ, Brazil
| | - Felipe Lopes Teixeira
- Universidade Federal do Rio de Janeiro, Medical Microbiology Department, Rio de Janeiro, RJ, Brazil
| | | | - Leandro Araujo Lobo
- Universidade Federal do Rio de Janeiro, Medical Microbiology Department, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
43
|
Structural analysis of the regulatory mechanism of MarR protein Rv2887 in M. tuberculosis. Sci Rep 2017; 7:6471. [PMID: 28743871 PMCID: PMC5526998 DOI: 10.1038/s41598-017-01705-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/30/2017] [Indexed: 11/20/2022] Open
Abstract
MarR family proteins are transcriptional regulators that control expression of bacterial proteins involved in metabolism, virulence, stress responses and multi-drug resistance, mainly via ligand-mediated attenuation of DNA binding. Greater understanding of their underlying regulatory mechanism may open up new avenues for the effective treatment of bacterial infections. To gain molecular insight into the mechanism of Rv2887, a MarR family protein in M. tuberculosis, we first showed that it binds salicylate (SA) and para-aminosalicylic acid (PAS), its structural analogue and an antitubercular drug, in a 1:1 stoichiometry with high affinity. Subsequent determination and analysis of Rv2887 crystal structures in apo form, and in complex with SA, PAS and DNA showed that SA and PAS bind to Rv2887 at similar sites, and that Rv2887 interacts with DNA mainly by insertion of helix α4 into the major groove. Ligand binding triggers rotation of the wHTH domain of Rv2887 toward the dimerization domain, causing changes in protein conformation such that it can no longer bind to a 27 bp recognition sequence in the upstream region of gene Rv0560c. The structures provided here lay a foundation for the design of small molecules that target Rv2887, a potential new approach for the development of anti-mycobacterials.
Collapse
|
44
|
Deochand DK, Perera IC, Crochet RB, Gilbert NC, Newcomer ME, Grove A. Histidine switch controlling pH-dependent protein folding and DNA binding in a transcription factor at the core of synthetic network devices. MOLECULAR BIOSYSTEMS 2017; 12:2417-26. [PMID: 27282811 DOI: 10.1039/c6mb00304d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Therapeutic strategies have been reported that depend on synthetic network devices in which a urate-sensing transcriptional regulator detects pathological levels of urate and triggers production or release of urate oxidase. The transcription factor involved, HucR, is a member of the multiple antibiotic resistance (MarR) protein family. We show that protonation of stacked histidine residues at the pivot point of long helices that form the scaffold of the dimer interface leads to reversible formation of a molten globule state and significantly attenuated DNA binding at physiological temperatures. We also show that binding of urate to symmetrical sites in each protein lobe is communicated via the dimer interface. This is the first demonstration of regulation of a MarR family transcription factor by pH-dependent interconversion between a molten globule and a compact folded state. Our data further suggest that HucR may be utilized in synthetic devices that depend on detection of pH changes.
Collapse
Affiliation(s)
- D K Deochand
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - I C Perera
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - R B Crochet
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - N C Gilbert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - M E Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - A Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
45
|
Dorman CJ, Dorman MJ. Control of virulence gene transcription by indirect readout in Vibrio cholerae and Salmonella enterica serovar Typhimurium. Environ Microbiol 2017. [PMID: 28631437 PMCID: PMC5655915 DOI: 10.1111/1462-2920.13838] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Indirect readout mechanisms of transcription control rely on the recognition of DNA shape by transcription factors (TFs). TFs may also employ a direct readout mechanism that involves the reading of the base sequence in the DNA major groove at the binding site. TFs with winged helix-turn-helix (wHTH) motifs use an alpha helix to read the base sequence in the major groove while inserting a beta sheet 'wing' into the adjacent minor groove. Such wHTH proteins are important regulators of virulence gene transcription in many pathogens; they also control housekeeping genes. This article considers the cases of the non-invasive Gram-negative pathogen Vibrio cholerae and the invasive pathogen Salmonella enterica serovar Typhimurium. Both possess clusters of A + T-rich horizontally acquired virulence genes that are silenced by the nucleoid-associated protein H-NS and regulated positively or negatively by wHTH TFs: for example, ToxR and LeuO in V. cholerae; HilA, LeuO, SlyA and OmpR in S. Typhimurium. Because of their relatively relaxed base sequence requirements for target recognition, indirect readout mechanisms have the potential to engage regulatory proteins with many more targets than might be the case using direct readout, making indirect readout an important, yet often ignored, contributor to the expression of pathogenic phenotypes.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Matthew J Dorman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| |
Collapse
|
46
|
Grove A. Regulation of Metabolic Pathways by MarR Family Transcription Factors. Comput Struct Biotechnol J 2017; 15:366-371. [PMID: 28694934 PMCID: PMC5487221 DOI: 10.1016/j.csbj.2017.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 01/24/2023] Open
Abstract
Bacteria have evolved sophisticated mechanisms for regulation of metabolic pathways. Such regulatory circuits ensure that anabolic pathways remain repressed unless final products are in short supply and that catabolic enzymes are not produced in absence of their substrates. The precisely tuned gene activity underlying such circuits is in the purview of transcription factors that may bind pathway intermediates, which in turn modulate transcription factor function and therefore gene expression. This review focuses on the role of ligand-responsive MarR family transcription factors in controlling expression of genes encoding metabolic enzymes and the mechanisms by which such control is exerted. Prospects for exploiting these transcription factors for optimization of gene expression for metabolic engineering and for the development of biosensors are considered.
Collapse
Affiliation(s)
- Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
47
|
Pagliai FA, Coyle JF, Kapoor S, Gonzalez CF, Lorca GL. LdtR is a master regulator of gene expression in Liberibacter asiaticus. Microb Biotechnol 2017; 10:896-909. [PMID: 28503858 PMCID: PMC5481520 DOI: 10.1111/1751-7915.12728] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 02/02/2023] Open
Abstract
Huanglongbing or citrus greening disease is causing devastation to the citrus industry. Liberibacter asiaticus, an obligate intracellular pathogen of citrus, is one the causative agents of the disease. Most of the knowledge about this bacterium has been deduced from the in silico exploration of its genomic sequence. L. asiaticus differentially expresses genes during its transmission from the psyllid vector, Diaphorina citri, to the plant. However, the regulatory mechanisms for the adaptation of the bacterium into either hosts remain unknown. Here we show that LdtR, a MarR family transcriptional regulator, activates or represses transcription genome-wide. We performed a double approach to identify the components of the LdtR regulon: a transcriptome analysis in both the related bacterium Liberibacter crescens and citrus-infected leaves, strengthened with an in silico prediction of LdtR regulatory sites. Our results demonstrated that LdtR controls the expression of nearly 180 genes in L. asiaticus, distributed in processes such as cell motility, cell wall biogenesis, energy production, and transcription. These results provide new evidence about the regulatory network of L. asiaticus, where the differential expression of genes from these functional categories could be of great importance during the adaptation of the bacterium to either hosts.
Collapse
Affiliation(s)
- Fernando A Pagliai
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Janelle F Coyle
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Sharan Kapoor
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| |
Collapse
|
48
|
Novel genes associated with enhanced motility of Escherichia coli ST131. PLoS One 2017; 12:e0176290. [PMID: 28489862 PMCID: PMC5425062 DOI: 10.1371/journal.pone.0176290] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 04/07/2017] [Indexed: 12/20/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the cause of ~75% of all urinary tract infections (UTIs) and is increasingly associated with multidrug resistance. This includes UPEC strains from the recently emerged and globally disseminated sequence type 131 (ST131), which is now the dominant fluoroquinolone-resistant UPEC clone worldwide. Most ST131 strains are motile and produce H4-type flagella. Here, we applied a combination of saturated Tn5 mutagenesis and transposon directed insertion site sequencing (TraDIS) as a high throughput genetic screen and identified 30 genes associated with enhanced motility of the reference ST131 strain EC958. This included 12 genes that repress motility of E. coli K-12, four of which (lrhA, ihfA, ydiV, lrp) were confirmed in EC958. Other genes represented novel factors that impact motility, and we focused our investigation on characterisation of the mprA, hemK and yjeA genes. Mutation of each of these genes in EC958 led to increased transcription of flagellar genes (flhD and fliC), increased expression of the FliC flagellin, enhanced flagella synthesis and a hyper-motile phenotype. Complementation restored all of these properties to wild-type level. We also identified Tn5 insertions in several intergenic regions (IGRs) on the EC958 chromosome that were associated with enhanced motility; this included flhDC and EC958_1546. In both of these cases, the Tn5 insertions were associated with increased transcription of the downstream gene(s), which resulted in enhanced motility. The EC958_1546 gene encodes a phage protein with similarity to esterase/deacetylase enzymes involved in the hydrolysis of sialic acid derivatives found in human mucus. We showed that over-expression of EC958_1546 led to enhanced motility of EC958 as well as the UPEC strains CFT073 and UTI89, demonstrating its activity affects the motility of different UPEC strains. Overall, this study has identified and characterised a number of novel factors associated with enhanced UPEC motility.
Collapse
|
49
|
Multipath colourimetric assay for copper(II) ions utilizing MarR functionalized gold nanoparticles. Sci Rep 2017; 7:41557. [PMID: 28155905 PMCID: PMC5290744 DOI: 10.1038/srep41557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/21/2016] [Indexed: 12/27/2022] Open
Abstract
We use the multiple antibiotic resistance regulator (MarR), as a highly selective biorecognition elements in a multipath colourimetric sensing strategy for the fast detection of Cu2+ in water samples. The colourimetric assay is based on the aggregation of MarR-coated gold nanoparticles in the presence of Cu2+ ions, which induces a red-to-purple colour change of the solution. The colour variation in the gold nanoparticle aggregation process can be used for qualitative and quantitative detection of Cu2+ by the naked eye, and with UV–vis and smartphone-based approaches. The three analysis techniques used in the multipath colourimetric assay complement each other and provide greater flexibility for differing requirements and conditions, making the assay highly applicable for Cu2+ detection. Under optimal conditions, the Cu2+ concentration was quantified in less than 5 min with limits of detection for the naked eye, UV–vis and smartphone-based approaches of 1 μM, 405 nM and 61 nM, respectively. Moreover, the sensing system exhibited excellent selectivity and practical application for Cu2+ detection in real water samples. Thus, our strategy has great potential for application in on-site monitoring of Cu2+, and the unique response of MarR towards copper ions may provide a new approach to Cu2+ sensing.
Collapse
|
50
|
Zhou J, Zhang H, Lv M, Chen Y, Liao L, Cheng Y, Liu S, Chen S, He F, Cui Z, Jiang Z, Chang C, Zhang L. SlyA regulates phytotoxin production and virulence in Dickeya zeae EC1. MOLECULAR PLANT PATHOLOGY 2016; 17:1398-1408. [PMID: 26814706 PMCID: PMC6638372 DOI: 10.1111/mpp.12376] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/23/2016] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
Dickeya zeae is a causal agent of rice root rot disease. The pathogen is known to produce a range of virulence factors, including phytotoxic zeamines and extracellular enzymes, but the mechanisms of virulence regulation remain vague. In this study, we identified a SlyA/MarR family transcription factor SlyA in D. zeae strain EC1. Disruption of slyA significantly decreased zeamine production, enhanced swimming and swarming motility, reduced biofilm formation and significantly decreased pathogenicity on rice. Quantitative polymerase chain reaction (qPCR) analysis confirmed the role of SlyA in transcriptional modulation of a range of genes associated with bacterial virulence. In trans expression of slyA in expI mutants recovered the phenotypes of motility and biofilm formation, suggesting that SlyA is downstream of the acylhomoserine lactone-mediated quorum sensing pathway. Taken together, the findings from this study unveil a key transcriptional regulatory factor involved in the modulation of virulence factor production and overall pathogenicity of D. zeae EC1.
Collapse
Affiliation(s)
- Jia‐Nuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Hai‐Bao Zhang
- Institute of Molecular and Cell Biology 61 Biopolis DriveSingapore138673
| | - Ming‐Fa Lv
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Yu‐Fan Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Li‐Sheng Liao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Ying‐Ying Cheng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Shi‐Yin Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Shao‐Hua Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Fei He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Zi‐Ning Cui
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Zi‐De Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Chang‐Qing Chang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Lian‐Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
- Institute of Molecular and Cell Biology 61 Biopolis DriveSingapore138673
| |
Collapse
|