1
|
Latta O, Weinert EE, Bechthold A. Heme dependent activity of the Streptomyces c-di-GMP-metabolizing enzyme CdgA. J Inorg Biochem 2025; 269:112874. [PMID: 40056506 DOI: 10.1016/j.jinorgbio.2025.112874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
Streptomyces species are vital for producing natural products like antibiotics, with c-di-GMP playing a key role in regulating processes such as differentiation. C-di-GMP metabolism is controlled by diguanylate cyclases (DGCs) and phosphodiesterases (PDEs), which synthesize and hydrolyze c-di-GMP, respectively, to modulate cellular levels. To improve our understanding of c-di-GMP-regulated processes in Streptomyces, we have characterized a c-di-GMP-metabolizing enzyme CdgA from Streptomyces ghanaensis that contains both a diguanylate cyclase and a phosphodiesterase domain. Our studies demonstrate that the enzyme is purified in a form without heme and is only able to degrade c-di-GMP. When reconstituted with heme, it enables c-di-GMP synthesis, and depending on the redox state the synthesis rate is changed. To our knowledge, this is the first heme-dependent activity reported for a c-di-GMP-metabolizing enzyme in Streptomyces and has major implications for understanding the way c-di-GMP is metabolized in vivo in Streptomyces.
Collapse
Affiliation(s)
- Olaf Latta
- Institute for Pharmaceutical Biology and Biotechnology, University of Freiburg, Germany
| | - Emily E Weinert
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andreas Bechthold
- Institute for Pharmaceutical Biology and Biotechnology, University of Freiburg, Germany.
| |
Collapse
|
2
|
Esin JJ, Visick KL, Kroken AR. Calcium signaling controls early stage biofilm formation and dispersal in Vibrio fischeri. J Bacteriol 2025:e0007725. [PMID: 40366159 DOI: 10.1128/jb.00077-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Bacterial dispersal from a biofilm is presently the least-studied step of the biofilm life cycle. The symbiotic bacterial species Vibrio fischeri is a model organism for studying biofilms relevant to a eukaryotic host; however, methodology is lacking to readily study the dispersal of this microbe from biofilms formed in the lab. Here, we adapted a time-lapse assay to visualize biofilm dispersal by V. fischeri. We observed biofilm formation and dispersal for multiple V. fischeri isolates, which displayed a variety of biofilm architecture phenotypes and dispersal dynamics. We then investigated V. fischeri strain ES114 using genetic tools and mutants available for this strain. ES114 exhibited calcium-dependent biofilm formation followed by a rapid (less than 10 min) coordinated dispersal event that occurred approximately 5 h from the experimental start. Biofilm dispersal was largely independent of the dispersal-promoting protease encoded by lapG. Although we found no role under our conditions for either biofilm formation or dispersal for several other factors including polysaccharides and autoinducers, we determined that biofilm formation was enhanced, and dispersal was delayed, with increased concentrations of calcium. Furthermore, biofilm formation depended on the calcium-responsive diguanylate cyclase (DGC) CasA, and dispersal could be modulated by overexpressing CasA. Our work has thus developed a new tool for the V. fischeri field and uncovered a key role for calcium signaling and c-di-GMP in early biofilm formation and dispersal in V. fischeri. IMPORTANCE Biofilm formation and dispersal are critical steps in both symbiotic and pathogenic colonization. Relative to biofilm formation, the process of dispersal in the model symbiont Vibrio fischeri, and other bacteria, is understudied. Here, we adapted an imaging assay to study early biofilm formation and the dispersal process in V. fischeri. We demonstrated that our assay can quantify biofilm formation and dispersal over time, can reveal phenotypic differences in diverse natural wild-type isolates, and is sensitive enough to investigate the impact of environmental factors. Our data confirm that calcium is a potent biofilm formation signal and identify the diguanylate cyclase CasA as a key regulator. This work leads the way for more in-depth research about unknown mechanisms of biofilm dispersal.
Collapse
Affiliation(s)
- Jeremy J Esin
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Karen L Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Abby R Kroken
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
3
|
Li D, Wang Y, Li H, Niu W, Hong J, Jung JH, Lee J. Multifaceted Antipathogenic Activity of Two Novel Natural Products, Chermesiterpenoid B and Chermesiterpenoid B Seco Acid Methyl Ester, Against Pseudomonas aeruginosa. Microb Biotechnol 2025; 18:e70101. [PMID: 39936740 PMCID: PMC11815713 DOI: 10.1111/1751-7915.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that causes both acute and chronic infections due to its virulence factors, biofilm formation and the ability to suppress the host immune system. Quorum sensing (QS) plays a key role in regulating these pathogenic traits and also downregulates the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) in host cells. In this study, we isolated two novel natural products from the jellyfish-derived fungus Penicillium chermesinum, chermesiterpenoid B (Che B) seco acid methyl ester (Che B ester) and Che B. Both compounds act as partial agonists of PPAR-γ and exhibit anti-QS activity. Che B ester and Che B were found to inhibit biofilm formation, reduce the production of proteases and decrease the infectivity of P. aeruginosa, all without affecting bacterial growth. In host cells, Che B ester and Che B reduced P. aeruginosa-induced inflammation by activating PPAR-γ. This multifaceted function makes these compounds promising candidates for developing new antipathogenic agents against bacterial infections with few side effects.
Collapse
Affiliation(s)
- Dan‐Dan Li
- College of PharmacyPusan National UniversityBusanRepublic of Korea
- Research Institute for Drug DevelopmentPusan National UniversityBusanRepublic of Korea
- School of Chinese Materia MedicaTianjin University of Traditional Chinese MedicineTianjinPeople's Republic of China
| | - Ying Wang
- College of PharmacyPusan National UniversityBusanRepublic of Korea
| | - Huiyan Li
- College of PharmacyPusan National UniversityBusanRepublic of Korea
- Research Institute for Drug DevelopmentPusan National UniversityBusanRepublic of Korea
| | - Wen‐Xin Niu
- College of PharmacyPusan National UniversityBusanRepublic of Korea
- Research Institute for Drug DevelopmentPusan National UniversityBusanRepublic of Korea
| | - Jongki Hong
- College of PharmacyKyung Hee UniversitySeoulRepublic of Korea
| | - Jee H. Jung
- College of PharmacyPusan National UniversityBusanRepublic of Korea
- Research Institute for Drug DevelopmentPusan National UniversityBusanRepublic of Korea
| | - Joon‐Hee Lee
- College of PharmacyPusan National UniversityBusanRepublic of Korea
- Research Institute for Drug DevelopmentPusan National UniversityBusanRepublic of Korea
| |
Collapse
|
4
|
Benyamini P. Beyond Antibiotics: What the Future Holds. Antibiotics (Basel) 2024; 13:919. [PMID: 39452186 PMCID: PMC11504868 DOI: 10.3390/antibiotics13100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of multidrug resistance (MDR) and stagnant drug-development pipelines have led to the rapid rise of hard-to-treat antibiotic-resistant bacterial infections. These infectious diseases are no longer just nosocomial but are also becoming community-acquired. The spread of MDR has reached a crisis level that needs immediate attention. The landmark O'Neill report projects that by 2050, mortality rates associated with MDR bacterial infections will surpass mortality rates associated with individuals afflicted with cancer. Since conventional antimicrobials are no longer very reliable, it is of great importance to investigate different strategies to combat these life-threatening infectious diseases. Here, we provide an overview of recent advances in viable alternative treatment strategies mainly targeting a pathogen's virulence capability rather than viability. Topics include small molecule and immune inhibition of virulence factors, quorum sensing (QS) quenching, inhibition of biofilm development, bacteriophage-mediated therapy, and manipulation of an individual's macroflora to combat MDR bacterial infections.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
5
|
Wang X, Chen C, Hu J, Liu C, Ning Y, Lu F. Current strategies for monitoring and controlling bacterial biofilm formation on medical surfaces. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116709. [PMID: 39024943 DOI: 10.1016/j.ecoenv.2024.116709] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Biofilms, intricate microbial communities that attach to surfaces, especially medical devices, form an exopolysaccharide matrix, which enables bacteria to resist environmental pressures and conventional antimicrobial agents, leading to the emergence of multi-drug resistance. Biofilm-related infections associated with medical devices are a significant public health threat, compromising device performance. Therefore, developing effective methods for supervising and managing biofilm growth is imperative. This in-depth review presents a systematic overview of strategies for monitoring and controlling bacterial biofilms. We first outline the biofilm creation process and its regulatory mechanisms. The discussion then progresses to advancements in biosensors for biofilm detection and diverse treatment strategies. Lastly, this review examines the obstacles and new perspectives associated with this domain to facilitate the advancement of innovative monitoring and control solutions. These advancements are vital in combating the spread of multi drug-resistant bacteria and mitigating public health risks associated with infections from biofilm formation on medical instruments.
Collapse
Affiliation(s)
- Xiaoqi Wang
- Department of integrated traditional Chinese and Western Medicine, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Chunjing Chen
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Jue Hu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Chang Liu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China.
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China.
| |
Collapse
|
6
|
Hu XM, Peng L, Wu J, Wu G, Liang X, Yang JL. Bacterial c-di-GMP signaling gene affects mussel larval metamorphosis through outer membrane vesicles and lipopolysaccharides. NPJ Biofilms Microbiomes 2024; 10:38. [PMID: 38575604 PMCID: PMC10994910 DOI: 10.1038/s41522-024-00508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Biofilms serve as crucial cues for settlement and metamorphosis in marine invertebrates. Within bacterial systems, c-di-GMP functions as a pivotal signaling molecule regulating both biofilm formation and dispersion. However, the molecular mechanism of how c-di-GMP modulates biofilm-induced larval metamorphosis remains elusive. Our study reveals that the deletion of a c-di-GMP related gene in Pseudoalteromonas marina led to an increase in the level of bacterial c-di-GMP by knockout technique, and the mutant strain had an enhanced ability to produce more outer membrane vesicles (OMVs) and lipopolysaccharides (LPS). The mutant biofilms had higher induction activity for larval metamorphosis in mussels Mytilus coruscus, and OMVs play a major role in the induction activity. We further explored the function of LPS in OMVs. Extracted LPS induced high larval metamorphosis rate, and LPS content were subject to c-di-GMP and LPS-biosynthesis gene. Thus, we postulate that the impact of c-di-GMP on biofilm-induced metamorphosis is mediated through OMVs and LPS.
Collapse
Affiliation(s)
- Xiao-Meng Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Lihua Peng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Jingxian Wu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Guanju Wu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China.
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China.
| |
Collapse
|
7
|
Sun L, Wang D, Liu X, Zhou Y, Huang W, Guan X, Zhang X, Xie Z. The volatile organic compound acetoin enhances the colonization of Azorhizobium caulinodans ORS571 on Sesbania rostrata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169006. [PMID: 38040356 DOI: 10.1016/j.scitotenv.2023.169006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Chemoreceptors play a crucial role in assisting bacterial sensing and response to environmental stimuli. Genome analysis of Azorhizobium caulinodans ORS571 revealed the presence of 43 putative chemoreceptors, but their biological functions remain largely unknown. In this study, we identified the chemoreceptor AmaP (methyl-accepting protein of A. caulinodans), characterized by the presence of the CHASE3 domain and exhibited a notable response to acetoin. Thus, we investigated the effect of acetoin sensing on its symbiotic association with the host. Our findings uncovered a compelling role for acetoin as a key player in enhancing various facets of A. caulinodans ORS571's performance including biofilm formation, colonization, and nodulation abilities. Notably, acetoin bolstered A. caulinodans ORS571's efficacy in promoting the growth of S. rostrata, even under moderate salt stress conditions. This study not only broadens our understanding of the AmaP protein with its distinctive CHASE3 domain but also highlights the promising potential of acetoin in fortifying the symbiotic relationship between A. caulinodans and Sesbania rostrata.
Collapse
Affiliation(s)
- Li Sun
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Dandan Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Xiaolin Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yanan Zhou
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Weiwei Huang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Xin Guan
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Xuexian Zhang
- School of Natural Sciences, Massey University at Albany, Auckland 0745, New Zealand
| | - Zhihong Xie
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
8
|
Khan F, Jeong GJ, Tabassum N, Kim YM. Functional diversity of c-di-GMP receptors in prokaryotic and eukaryotic systems. Cell Commun Signal 2023; 21:259. [PMID: 37749602 PMCID: PMC10519070 DOI: 10.1186/s12964-023-01263-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 09/27/2023] Open
Abstract
Cyclic bis-(3', 5')-dimeric guanosine monophosphate (c-di-GMP) is ubiquitous in many bacterial species, where it functions as a nucleotide-based secondary messenger and is a vital regulator of numerous biological processes. Due to its ubiquity, most bacterial species possess a wide range of downstream receptors that has a binding affinity to c-di-GMP and elicit output responses. In eukaryotes, several enzymes and riboswitches operate as receptors that interact with c-di-GMP and transduce cellular or environmental signals. This review examines the functional variety of receptors in prokaryotic and eukaryotic systems that exhibit distinct biological responses after interacting with c-di-GMP. Evolutionary relationships and similarities in distance among the c-di-GMP receptors in various bacterial species were evaluated to understand their specificities. Furthermore, residues of receptors involved in c-di-GMP binding are summarized. This review facilitates the understanding of how distinct receptors from different origins bind c-di-GMP equally well, yet fulfill diverse biological roles at the interspecies, intraspecies, and interkingdom levels. Furthermore, it also highlights c-di-GMP receptors as potential therapeutic targets, particularly those found in pathogenic microorganisms. Video Abstract.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
9
|
She W, Cheng A, Ye W, Zeng P, Wang H, Qian PY. Mode of action of antimicrobial agents albofungins in eradicating penicillin- and cephalosporin-resistant Vibrio parahaemolyticus biofilm. Microbiol Spectr 2023; 11:e0156323. [PMID: 37610246 PMCID: PMC10581126 DOI: 10.1128/spectrum.01563-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/28/2023] [Indexed: 08/24/2023] Open
Abstract
Albofungin is a promising broad-spectrum antimicrobial compound against multidrug-resistant bacteria. In the present study, we further investigated albofungin's biofilm eradication activity and its potential mode of action against drug-resistant Vibrio parahaemolyticus. Among all derivatives, albofungin exhibited the best antibiofilm and antibacterial activity with rapid killing effects at 0.12 µg mL-1. Confocal microscopy observation exhibited that albofungin disrupted V. parahaemolyticus biofilms by killing or dispersing biofilm cells. Meanwhile, scanning electron microscope and fluorescent staining experiments demonstrated that albofungin rapidly destroyed the integrity and permeability of the bacterial cell membrane. Moreover, this study revealed an antibiofilm mechanism of albofungin involving inhibition of peptidoglycan biosynthesis, flagella assembly pathways, and secretion system proteins in V. parahaemolyticus by quantitative proteomics and validation experiments. Our results highlighted albofungin's mechanism of action in planktonic cells and biofilms and suggested further development and potential applications of albofungin for treating infections caused by penicillins-and-cephalosporins-resistant V. parahaemolyticus. IMPORTANCE Infections caused by multidrug-resistant bacteria, as well as a scarcity of new antibiotics, have become a major health threat worldwide. To tackle the demand for new and effective treatments, we investigated the mechanism of action of albofungin, a natural product derived from Streptomyces, which exhibits potent antimicrobial activity against multidrug-resistant bacteria. Albofungin showed potent biofilm eradication activity against penicillins-and-cephalosporins-resistant Vibrio parahaemolyticus, which expresses a novel metallo-β-lactamase and, thus, reduces their sensitivity to various antibiotics. We observed membrane disruption and permeation mechanisms in planktonic cells and biofilms after albofungin treatment, while albofungin had a weak interaction with bacterial DNA. Moreover, the antibiofilm mechanism of albofungin included inhibition of peptidoglycan biosynthesis, flagellar assembly pathways, and secretion system proteins. Our finding suggested potential applications of albofungin as an antibacterial and antibiofilm therapeutic agent.
Collapse
Affiliation(s)
- Weiyi She
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Aifang Cheng
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenkang Ye
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ping Zeng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
10
|
Xu LC, Ochetto A, Chen C, Sun D, Allcock HR, Siedlecki CA. Surfaces modified with small molecules that interfere with nucleotide signaling reduce Staphylococcus epidermidis biofilm and increase the efficacy of ciprofloxacin. Colloids Surf B Biointerfaces 2023; 227:113345. [PMID: 37196462 PMCID: PMC10355139 DOI: 10.1016/j.colsurfb.2023.113345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/30/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Staphylococcus epidermidis are common bacteria associated with biofilm related infections on implanted medical devices. Antibiotics are often used in combating such infections, but they may lose their efficacy in the presence of biofilms. Bacterial intracellular nucleotide second messenger signaling plays an important role in biofilm formation, and interference with the nucleotide signaling pathways provides a possible way to control biofilm formation and to increase biofilm susceptibility to antibiotic therapy. This study synthesized small molecule derivates of 4-arylazo-3,5-diamino-1 H-pyrazole (named as SP02 and SP03) and found these molecules inhibited S. epidermidis biofilm formation and induced biofilm dispersal. Analysis of bacterial nucleotide signaling molecules showed that both SP02 and SP03 significantly reduced cyclic dimeric adenosine monophosphate (c-di-AMP) levels in S. epidermidis at doses as low as 25 µM while having significant effects on multiple nucleotides signaling including cyclic dimeric guanosine monophosphate (c-di-GMP), c-di-AMP, and cyclic adenosine monophosphate (cAMP) at high doses (100 µM or greater). We then tethered these small molecules to polyurethane (PU) biomaterial surfaces and investigated biofilm formation on the modified surfaces. Results showed that the modified surfaces significantly inhibited biofilm formation during 24 h and 7-day incubations. The antibiotic ciprofloxacin was used to treat these biofilms and the efficacy of the antibiotic (2 µg/mL) was found to increase from 94.8% on unmodified PU surfaces to > 99.9% on both SP02 and SP03 modified surfaces (>3 log units). Results demonstrated the feasibility of tethering small molecules that interfere with nucleotide signaling onto polymeric biomaterial surfaces and in a way that interrupts biofilm formation and increases antibiotic efficacy for S. epidermidis infections.
Collapse
Affiliation(s)
- Li-Chong Xu
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Alyssa Ochetto
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Chen Chen
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Dongxiao Sun
- Department of Pharmacology, Mass Spectrometry Core Facilities (RRID: SCR_017831), The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Harry R Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Christopher A Siedlecki
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Biomedical Engineering, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
11
|
Van Gundy T, Patel D, Bowler BE, Rothfuss MT, Hall AJ, Davies C, Hall LS, Drecktrah D, Marconi RT, Samuels DS, Lybecker MC. c-di-GMP regulates activity of the PlzA RNA chaperone from the Lyme disease spirochete. Mol Microbiol 2023; 119:711-727. [PMID: 37086029 PMCID: PMC10330241 DOI: 10.1111/mmi.15066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
PlzA is a c-di-GMP-binding protein crucial for adaptation of the Lyme disease spirochete Borrelia (Borreliella) burgdorferi during its enzootic life cycle. Unliganded apo-PlzA is important for vertebrate infection, while liganded holo-PlzA is important for survival in the tick; however, the biological function of PlzA has remained enigmatic. Here, we report that PlzA has RNA chaperone activity that is inhibited by c-di-GMP binding. Holo- and apo-PlzA bind RNA and accelerate RNA annealing, while only apo-PlzA can strand displace and unwind double-stranded RNA. Guided by the crystal structure of PlzA, we identified several key aromatic amino acids protruding from the N- and C-terminal domains that are required for RNA-binding and unwinding activity. Our findings illuminate c-di-GMP as a switch controlling the RNA chaperone activity of PlzA, and we propose that complex RNA-mediated modulatory mechanisms allow PlzA to regulate gene expression during both the vector and host phases of the B. burgdorferi life cycle.
Collapse
Affiliation(s)
- Taylor Van Gundy
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Dhara Patel
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - Bruce E. Bowler
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Michael T. Rothfuss
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
| | - Allie J. Hall
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Christopher Davies
- Department of Biochemistry and Molecular Biology, University of Southern Alabama, Mobile, AL 36688, USA
| | - Laura S. Hall
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - D. Scott Samuels
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Meghan C. Lybecker
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, Fort Collins, CO 80521, USA
- Department of Biology, University of Colorado, 1420 Austin Bluffs Parkway, Colorado Springs CO 80917, USA
| |
Collapse
|
12
|
Kim HS, Ham SY, Ryoo HS, Kim DH, Yun ET, Park HD, Park JH. Inhibiting bacterial biofilm formation by stimulating c-di-GMP regulation using citrus peel extract from Jeju Island. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162180. [PMID: 36775169 DOI: 10.1016/j.scitotenv.2023.162180] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Biofilms consist of single or multiple species of bacteria embedded in extracellular polymeric substances (EPSs), which affect the increase in antibiotic resistance by restricting the transport of antibiotics to the bacterial cells. An alternative approach to treatment with antimicrobial agents is using biofilm inhibitors that regulate biofilm development without inhibiting bacterial growth. In this study, we found that citrus peel extract from Jeju Island (CPEJ) can inhibit bacterial biofilm formation. According to the results, CPEJ concentration-dependently reduces biofilm formation without affecting bacterial growth. Additionally, CPEJ decreased the production of extracellular polymeric substances but increased bacterial swarming motility. These results led to the hypothesis that CPEJ can reduce intracellular bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) concentration. The results showed that CPEJ significantly reduced the c-di-GMP level through increased phosphodiesterase activity. Altogether, these findings suggest that CPEJ as a biofilm inhibitor has new potential for pharmacological (e.g. drug and medication) and industrial applications (e.g. ship hulls, water pipes, and membrane processes biofouling control).
Collapse
Affiliation(s)
- Han-Shin Kim
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, South Korea
| | - So-Young Ham
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| | - Hwa-Soo Ryoo
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Do-Hyung Kim
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju-si 63243, South Korea
| | - Eun-Tae Yun
- Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Jeong-Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju-si 63243, South Korea.
| |
Collapse
|
13
|
Qin T, Chen K, Xi B, Pan L, Xie J, Lu L, Liu K. In Vitro Antibiofilm Activity of Resveratrol against Aeromonas hydrophila. Antibiotics (Basel) 2023; 12:antibiotics12040686. [PMID: 37107048 PMCID: PMC10135085 DOI: 10.3390/antibiotics12040686] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Aeromonas hydrophila is a Gram-negative bacterium that widely exists in various aquatic environments and causes septicemia in fish and humans. Resveratrol, a natural polyterpenoid product, has potential chemo-preventive and antibacterial properties. In this study, we investigated the effect of resveratrol on A. hydrophila biofilm formation and motility. The results demonstrated that resveratrol, at sub-MIC levels, can significantly inhibit the biofilm formation of A. hydrophila, and the biofilm was decreased with increasing concentrations. The motility assay showed that resveratrol could diminish the swimming and swarming motility of A. hydrophila. Transcriptome analyses (RNA-seq) showed that A. hydrophila treated with 50 and 100 μg/mL resveratrol, respectively, presented 230 and 308 differentially expressed genes (DEGs), including 90 or 130 upregulated genes and 130 or 178 downregulated genes. Among them, genes related to flagellar, type IV pilus and chemotaxis were significantly repressed. In addition, mRNA of virulence factors OmpA, extracellular proteases, lipases and T6SS were dramatically suppressed. Further analysis revealed that the major DEGs involved in flagellar assembly and bacterial chemotaxis pathways could be regulated by cyclic-di-guanosine monophosphate (c-di-GMP)- and LysR-Type transcriptional regulator (LTTR)-dependent quorum sensing (QS) systems. Overall, our results indicate that resveratrol can inhibit A. hydrophila biofilm formation by disturbing motility and QS systems, and can be used as a promising candidate drug against motile Aeromonad septicemia.
Collapse
|
14
|
Engin AB, Engin ED, Engin A. Effects of co-selection of antibiotic-resistance and metal-resistance genes on antibiotic-resistance potency of environmental bacteria and related ecological risk factors. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104081. [PMID: 36805463 DOI: 10.1016/j.etap.2023.104081] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/23/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
The inadequate elimination of micropollutants in wastewater treatment plants (WWTP), cause to increase in the incidence of antibiotic resistant bacterial strains. Growth of microbial pathogens in WWTP is one of the serious public health problems. The widespread and simultaneous emergence of antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs) in the environment with heavy metals create persistent and selective pressure for co-selection of both genes on environmental microorganisms. Co-localization of ARGs and HMRGs on the same horizontal mobile genetic elements (MGEs) allows the spreading of numerous antibiotic-resistant strains of bacteria in aquatic and terrestrial environment. The biofilm formation and colonization potential of environmental bacteria leads to the co-selection of multi-antibiotic resistance and multi-metal tolerance. Horizontal gene transfer (HGT), co-localization of both ARGs and HMRGs on the same MGEs, and the shared resistomes are important bacteria-associated ecological risks factors, which reduce the effectiveness of antibiotics against bacterial infections.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| | - Evren Doruk Engin
- Ankara University, Biotechnology Institute, Gumusdere Campus, Kecioren, Ankara, Turkey
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| |
Collapse
|
15
|
Chávez-Jacobo VM, Becerra-Rivera VA, Guerrero G, Dunn MF. The Sinorhizobium meliloti NspS-MbaA system affects biofilm formation, exopolysaccharide production and motility in response to specific polyamines. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001293. [PMID: 36748569 PMCID: PMC9993111 DOI: 10.1099/mic.0.001293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We previously showed that specific polyamines (PAs) present in the extracellular environment markedly affect extracellular polysaccharide (EPS) production, biofilm formation and motility in Sinorhizobium meliloti Rm8530. We hypothesized that extracellular PA signals were sensed and transduced by the NspS and MbaA proteins, respectively, which are homologs of the PA-sensing, c-di-GMP modulating NspS-MbaA proteins described in Vibrio cholerae. Here we show that the decrease in biofilm formation and EPS production in the quorum-sensing (QS)-deficient S. meliloti wild-type strain 1021 in cultures containing putrescine or spermine did not occur in a 1021 nspS mutant (1021 nspS). The transcriptional expression of nspS in strain 1021 was significantly increased in cultures containing either of these polyamines, but not by exogenous cadaverine, 1,3-diaminopropane (DAP), spermidine (Spd) or norspermidine (NSpd). Cell aggregation in liquid cultures did not differ markedly between strain 1021 and 1021 nspS in the presence or absence of PAs. The S. meliloti QS-proficient Rm8530 wild-type and nspS mutant (Rm8530 nspS) produced similar levels of biofilm under control conditions and 3.2- and 2.2-fold more biofilm, respectively, in cultures with NSpd, but these changes did not correlate with EPS production. Cells of Rm8530 nspS aggregated from two- to several-fold more than the wild-type in cultures without PAs or in those containing Spm. NSpd, Spd and DAP differently affected swimming and swarming motility in strains 1021 and Rm8530 and their respective nspS mutants. nspS transcription in strain Rm8530 was greatly reduced by exogenous Spm. Bioinformatic analysis revealed similar secondary structures and functional domains in the MbaA proteins of S. meliloti and V. cholerae, while their NspS proteins differed in some residues implicated in polyamine recognition in the latter species. NspS-MbaA homologs occur in a small subset of soil and aquatic bacterial species that commonly interact with eukaryotes. We speculate that the S. meliloti NspS-MbaA system modulates biofilm formation, EPS production and motility in response to environmental or host plant-produced PAs.
Collapse
Affiliation(s)
- Víctor M Chávez-Jacobo
- Programa en Genómica Funcional de Procariotes, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Víctor A Becerra-Rivera
- Programa en Genómica Funcional de Procariotes, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Gabriela Guerrero
- Unidad de Análisis Bioinformáticos, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Michael F Dunn
- Programa en Genómica Funcional de Procariotes, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| |
Collapse
|
16
|
Zhu T, Wang W, Wang H, Zhao Y, Qu D, Wu Y. Mutation of gdpS gene induces a viable but non-culturable state in Staphylococcus epidermidis and changes in the global transcriptional profile. BMC Microbiol 2022; 22:288. [PMID: 36457079 PMCID: PMC9714401 DOI: 10.1186/s12866-022-02708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND In the genome of staphylococci, only the gdpS gene encodes the conserved GGDEF domain, which is the characteristic of diguanylate cyclases. In our previous study, we have demonstrated that the gdpS gene can modulate biofilm formation by positively regulating the expression of ica operon in Staphylococcus epidermidis. Moreover, this regulation seems to be independent of the c-di-GMP signaling pathway and the protein-coding function of this gene. Therefore, the biological function of the gdpS gene remains to be further investigated. RESULTS In the present study, it was observed that mutation of the gdpS gene induced S. epidermidis to enter into a presumed viable but nonculturable state (VBNC) after cryopreservation with glycerol. Similarly, when moved from liquid to solid culture medium, the gdpS mutant strain also exhibited a VBNC state. Compared with the wild-type strain, the gdpS mutant strain autolyzed more quickly during storage at 4℃, indicating its increased susceptibility to low temperature. Transcriptional profiling analysis showed that the gdpS mutation affected the transcription of 188 genes (92 genes were upregulated and 96 genes were downregulated). Specifically, genes responsible for glycerol metabolism were most markedly upregulated and most of the altered genes in the mutant strain are those involved in nitrogen metabolism. In addition, the most significantly downregulated genes included the betB gene, whose product catalyzes the synthesis of glycine betaine and confers tolerance to cold. CONCLUSION The preliminary results suggest that the gdpS gene may participate in VBNC formation of S. epidermidis in face of adverse environmental factors, which is probably achieved by regulating expression of energy metabolism genes. Besides, the gdpS gene is critical for S. epidermidis to survive low temperature, and the underlying mechanism may be partly explained by its influence on expression of betB gene.
Collapse
Affiliation(s)
- Tao Zhu
- grid.443626.10000 0004 1798 4069Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, 241002 People’s Republic of China
| | - Wei Wang
- grid.443626.10000 0004 1798 4069Department of Pharmacy, Wannan Medical College, Wuhu, 241002 People’s Republic of China
| | - Han Wang
- grid.443626.10000 0004 1798 4069Department of Pharmacy, Wannan Medical College, Wuhu, 241002 People’s Republic of China
| | - Yanfeng Zhao
- grid.452511.6Department of Laboratory Medicine, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011 People’s Republic of China
| | - Di Qu
- grid.11841.3d0000 0004 0619 8943Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032 People’s Republic of China
| | - Yang Wu
- grid.11841.3d0000 0004 0619 8943Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
17
|
Xu LC, Siedlecki CA. Surface Texturing and Combinatorial Approaches to Improve Biocompatibility of Implanted Biomaterials. FRONTIERS IN PHYSICS 2022; 10:994438. [PMID: 38250242 PMCID: PMC10798815 DOI: 10.3389/fphy.2022.994438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Biomaterial associated microbial infection and blood thrombosis are two of the barriers that inhibit the successful use of implantable medical devices in modern healthcare. Modification of surface topography is a promising approach to combat microbial infection and thrombosis without altering bulk material properties necessary for device function and without contributing to bacterial antibiotic resistance. Similarly, the use of other antimicrobial techniques such as grafting poly(ethylene glycol) (PEG) and nitric oxide (NO) release also improve the biocompatibility of biomaterials. In this review, we discuss the development of surface texturing techniques utilizing ordered submicron-size pillars for controlling bacterial adhesion and biofilm formation, and we present combinatorial approaches utilizing surface texturing in combination with poly(ethylene glycol) (PEG) grafting and NO release to improve the biocompatibility of biomaterials. The manuscript also discusses efforts towards understanding the molecular mechanisms of bacterial adhesion responses to the surface texturing and NO releasing biomaterials, focusing on experimental aspects of the approach.
Collapse
Affiliation(s)
- Li-Chong Xu
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
| | - Christopher A. Siedlecki
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
- Department of Biomedical Engineering, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
| |
Collapse
|
18
|
Hu Y, Han X, Shi L, Cao B. Electrochemically active biofilm-enabled biosensors: Current status and opportunities for biofilm engineering. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
A previously uncharacterized gene, PA2146, contributes to biofilm formation and drug tolerance across the ɣ-Proteobacteria. NPJ Biofilms Microbiomes 2022; 8:54. [PMID: 35798749 PMCID: PMC9262955 DOI: 10.1038/s41522-022-00314-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 06/14/2022] [Indexed: 01/11/2023] Open
Abstract
Transcriptomic studies have revealed a large number of uncharacterized genes that are differentially expressed in biofilms, which may be important in regulating biofilm phenotypes such as resistance to antimicrobial agents. To identify biofilm genes of unknown function in P. aeruginosa, we made use of RNA-seq and selected 27 uncharacterized genes that were induced upon biofilm growth. Biofilms by respective mutants were subsequently analyzed for two biofilm characteristics, the biofilm architecture and drug susceptibility. The screen revealed 12 out of 27 genes to contribute to biofilm formation and 13 drug susceptibility, with 8 genes affecting both biofilm phenotypes. Amongst the genes affecting both biofilm phenotypes was PA2146, encoding a small hypothetical protein that exhibited some of the most substantial increases in transcript abundance during biofilm growth by P. aeruginosa PAO1 and clinical isolates. PA2146 is highly conserved in ɣ-proteobacteria. Inactivation of PA2146 affected both biofilm phenotypes in P. aeruginosa PAO1, with inactivation of homologs in Klebsiella pneumoniae and Escherichia coli having similar effects. Heterologous expression of PA2146 homologs complemented the P. aeruginosa ∆PA2146, suggesting that PA2146 homologs substitute for and play a similar role as PA2146 in P. aeruginosa.
Collapse
|
20
|
Abstract
Marine biofilms are ubiquitous in the marine environment. These complex microbial communities rapidly respond to environmental changes and encompass hugely diverse microbial structures, functions and metabolisms. Nevertheless, knowledge is limited on the microbial community structures and functions of natural marine biofilms and their influence on global geochemical cycles. Microbial cues, including secondary metabolites and microbial structures, regulate interactions between microorganisms, with their environment and with other benthic organisms, which affects their community succession and metamorphosis. Furthermore, marine biofilms are key mediators of marine biofouling, which greatly affect marine industries. In this Review, we discuss marine biofilm dynamics, including their diversity, abundance and functions. We also highlight knowledge gaps, areas for future research and potential biotechnological applications of marine biofilms.
Collapse
|
21
|
Bai X, Xu L, Singh AK, Qiu X, Liu M, Abuzeid A, El-Khateib T, Bhunia AK. Inactivation of Polymicrobial Biofilms of Foodborne Pathogens Using Epsilon Poly-L-Lysin Conjugated Chitosan Nanoparticles. Foods 2022; 11:569. [PMID: 35206046 PMCID: PMC8871342 DOI: 10.3390/foods11040569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
A mixed culture (polymicrobial) biofilm provides a favorable environment for pathogens to persist in the food processing environment and to contaminate food products. Inactivation and eradication of such biofilms from food processing environments are achieved by using harsh disinfectants, but their toxicity and environmentally hostile characteristics are unsustainable. This study aims to use food-grade natural nanoparticulated antimicrobials to control mixed-culture biofilms. Chitosan, a natural broad-spectrum antimicrobial biopolymer (polysaccharide) from crustaceans, was derivatized to produce chitosan nanoparticles (ChNP) as a carrier for another broad-spectrum antimicrobial agent, ε-poly-L-lysine (PL), to synthesize ChNP-PL conjugate. The antimicrobial activity of ChNP and ChNP-PL was tested against mixed-culture biofilms. ChNP-PL (~100 nm) exhibited a synergistic antimicrobial and anti-biofilm effect against mono or mixed-culture biofilms of five foodborne pathogens, including Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica serovar Enteritidis, Escherichia coli O157:H7, and Pseudomonas aeruginosa. ChNP-PL treatment prevented biofilm formation by mono or mixed cultures of L. monocytogenes, P. aeruginosa, and E. coli O157:H7, and bacterial counts were either below the detection limit or caused 3.5-5 log reduction. ChNP-PL also inactivated preformed biofilms. In monoculture biofilm, ChNP-PL treatment reduced L. monocytogenes counts by 4.5 logs, S. Enteritidis by 2 logs, E. coli by 2 logs, and S. aureus by 0.5 logs, while ChNP-PL had no inhibitory effect on P. aeruginosa. In vitro mammalian cell-based cytotoxicity analysis confirmed ChNP-PL to have no deleterious effect on intestinal HCT-8 cell line. In conclusion, our results show ChNP-PL has strong potential to prevent the formation or inactivation of preformed polymicrobial biofilms of foodborne pathogens.
Collapse
Affiliation(s)
- Xingjian Bai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (X.B.); (L.X.); (A.K.S.); (X.Q.); (M.L.)
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Luping Xu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (X.B.); (L.X.); (A.K.S.); (X.Q.); (M.L.)
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Atul Kumar Singh
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (X.B.); (L.X.); (A.K.S.); (X.Q.); (M.L.)
- Clear Labs, San Carlos, CA 94070, USA
| | - Xiaoling Qiu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (X.B.); (L.X.); (A.K.S.); (X.Q.); (M.L.)
| | - Mai Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (X.B.); (L.X.); (A.K.S.); (X.Q.); (M.L.)
| | - Ahmed Abuzeid
- Department of Food Hygiene, Assiut University, Assiut 71515, Egypt; (A.A.); (T.E.-K.)
- Animal Health Research Institute, Agriculture Research Center, Giza, Cairo 12618, Egypt
| | - Talaat El-Khateib
- Department of Food Hygiene, Assiut University, Assiut 71515, Egypt; (A.A.); (T.E.-K.)
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (X.B.); (L.X.); (A.K.S.); (X.Q.); (M.L.)
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
22
|
Joshi S, Ghosh P, Barage S, Basu B, Deobagkar DD. Genome-wide lone strand adenine methylation in Deinococcus radiodurans R1: Regulation of gene expression through DR0643-dependent adenine methylation. Microbiol Res 2022; 257:126964. [PMID: 35042054 DOI: 10.1016/j.micres.2022.126964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/19/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
Abstract
DNA methylation is a covalent modification of adenine or cytosine in the genome of an organism and is found in diverse microbes including the radiation resistant bacterium Deinococcus radiodurans R1. Although earlier findings have confirmed repression or de-repression of certain genes in adenine methyltransferase (DR_0643/Dam1DR) deficient D. radiodurans mutant however, the overall regulatory aspects of Dam1DR-mediated adenine methylation remain mostly unexplored. In the present study, we compared the genome-wide methylome and the corresponding transcriptome of D. radiodurans WT and Δdam1 mutant to explore the correlation between methylation and gene expression. In D. radiodurans, deletion of DR_0643 ORF (Δdam1) led to hypomethylation of 512 genes resulting in differential expression of 168 genes (99 genes are upregulated and 69 genes are downregulated). The modification patterns deduced for Dam1DR (DR_0643) and Dam2DR (DR_2267) were non-palindromic and atypical. Moreover, we observed methylation at opportunistic sites that show adenine methylation only in D. radiodurans Δdam1 and not in D. radiodurans WT. Correlation between the methylome and transcriptome suggests that hypomethylation at Dam1DR specific sites had both negative as well as a positive effects on gene expression. Pathways such as amino acid metabolism, transport, oxidative phosphorylation, quorum sensing, signal transduction, two-component system, glycolysis/gluconeogenesis, TCA cycle, glyoxylate and dicarboxylate metabolism were modulated by Dam1DR-mediated adenine methylation in D. radiodurans. Processes such as DNA repair, recombination, ATPase and transmembrane transporter activity were enriched when Dam1DR mutant was subjected to radiation stress. We further evaluated the molecular interactions and mode of binding between Dam1DR protein and S-adenosyl methionine using molecular docking followed by MD simulation. To get a better insight into the methylation mechanism, the Dam1DR-SAM complex was also docked with a DNA molecule to elucidate DNA-Dam1DR structural interaction during methyl-group transfer reaction. In summary, our work presents comprehensive and integrative approaches to investigate both functional and structural aspects of DNA adenine methyltransferase (Dam1DR) in D. radiodurans biology.
Collapse
Affiliation(s)
- Suraj Joshi
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India; Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | - Payel Ghosh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India.
| | - Sagar Barage
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan, Post-Somathne, Panvel, Maharashtra, 410206, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Deepti D Deobagkar
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
23
|
Evstigneeva SS, Telesheva EM, Mokeev DI, Borisov IV, Petrova LP, Shelud’ko AV. Response of Bacteria to Mechanical Stimuli. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721050052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Abstract—
Bacteria adapt rapidly to changes in ambient conditions, constantly inspecting their surroundings by means of their sensor systems. These systems are often thought to respond only to signals of a chemical nature. Yet, bacteria are often affected by mechanical forces, e.g., during transition from planktonic to sessile state. Mechanical stimuli, however, have seldom been considered as the signals bacteria can sense and respond to. Nonetheless, bacteria perceive mechanical stimuli, generate signals, and develop responses. This review analyzes the information on the way bacteria respond to mechanical stimuli and outlines how bacteria convert incoming signals into appropriate responses.
Collapse
|
24
|
Fu Y, Yu Z, Zhu L, Li Z, Yin W, Shang X, Chou SH, Tan Q, He J. The Multiple Regulatory Relationship Between RNA-Chaperone Hfq and the Second Messenger c-di-GMP. Front Microbiol 2021; 12:689619. [PMID: 34335515 PMCID: PMC8323549 DOI: 10.3389/fmicb.2021.689619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022] Open
Abstract
RNA chaperone protein Hfq is an important post-transcriptional regulator in bacteria, while c-di-GMP is a second messenger signaling molecule widely distributed in bacteria. Both factors have been found to play key roles in post-transcriptional regulation and signal transduction pathways, respectively. Intriguingly, the two factors show some common aspects in the regulation of certain physiological functions such as bacterial motility, biofilm formation, pathogenicity and so on. Therefore, there may be regulatory relationship between Hfq and c-di-GMP. For example, Hfq can directly regulate the activity of c-di-GMP metabolic enzymes or alter the c-di-GMP level through other systems, while c-di-GMP can indirectly enhance or inhibit the hfq gene expression through intermediate factors. In this article, after briefly introducing the Hfq and c-di-GMP regulatory systems, we will focus on the direct and indirect regulation reported between Hfq and c-di-GMP, aiming to compare and link the two regulatory systems to further study the complicated physiological and metabolic systems of bacteria, and to lay a solid foundation for drawing a more complete global regulatory network.
Collapse
Affiliation(s)
- Yang Fu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China.,State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoqing Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhou Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaodong Shang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qi Tan
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Kakkar A, Verma RK, Samal B, Chatterjee S. Interplay between the cyclic di-GMP network and the cell-cell signalling components coordinates virulence-associated functions in Xanthomonas oryzae pv. oryzae. Environ Microbiol 2021; 23:5433-5462. [PMID: 34240791 DOI: 10.1111/1462-2920.15664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes a serious disease of rice known as bacterial leaf blight. Several virulence-associated functions have been characterized in Xoo. However, the role of important second messenger c-di-GMP signalling in the regulation of virulence-associated functions still remains elusive in this phytopathogen. In this study we have performed an investigation of 13 c-di-GMP modulating deletion mutants to understand their contribution in Xoo virulence and lifestyle transition. We show that four Xoo proteins, Xoo2331, Xoo2563, Xoo2860 and Xoo2616, are involved in fine-tuning the in vivo c-di-GMP abundance and also play a role in the regulation of virulence-associated functions. We have further established the importance of the GGDEF domain of Xoo2563, a previously characterized c-di-GMP phosphodiesterase, in the virulence-associated functions of Xoo. Interestingly the strain harbouring the GGDEF domain deletion (ΔXoo2563GGDEF ) exhibited EPS deficiency and hypersensitivity to streptonigrin, indicative of altered iron metabolism. This is in contrast to the phenotype exhibited by an EAL overexpression strain wherein, the ΔXoo2563GGDEF exhibited other phenotypes, similar to the strain overexpressing the EAL domain. Taken together, our results indicate a complex interplay of c-di-GMP signalling with the cell-cell signalling to coordinate virulence-associated function in Xoo.
Collapse
Affiliation(s)
- Akanksha Kakkar
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Mangalore, Karnataka, 576104, India
| | - Raj Kumar Verma
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Mangalore, Karnataka, 576104, India
| | - Biswajit Samal
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Mangalore, Karnataka, 576104, India
| | | |
Collapse
|
26
|
A Trigger Phosphodiesterase Modulates the Global c-di-GMP Pool, Motility, and Biofilm Formation in Vibrio parahaemolyticus. J Bacteriol 2021; 203:e0004621. [PMID: 33846117 DOI: 10.1128/jb.00046-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vibrio parahaemolyticus cells transit from free-swimming to surface adapted lifestyles, such as swarming colonies and three-dimensional biofilms. These transitions are regulated by sensory modules and regulatory networks that involve the second messenger cyclic diguanylate monophosphate (c-di-GMP). In this work, we show that a previously uncharacterized c-di-GMP phosphodiesterase (VP1881) from V. parahaemolyticus plays an important role in modulating the c-di-GMP pool. We found that the product of VP1881 promotes its own expression when the levels of c-di-GMP are low or when the phosphodiesterase (PDE) is catalytically inactive. This behavior has been observed in a class of c-di-GMP receptors called trigger phosphodiesterases, and hence we named the product of VP1881 TpdA, for trigger phosphodiesterase A. The absence of tpdA showed a negative effect on swimming motility while, its overexpression from an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible promoter showed a positive effect on both swimming and swarming motility and a negative effect on biofilm formation. Changes in TpdA abundance altered the expression of representative polar and lateral flagellar genes, as well as that of the biofilm-related gene cpsA. Our results also revealed that autoactivation of the native PtpdA promoter is sufficient to alter c-di-GMP signaling responses such as swarming and biofilm formation in V. parahaemolyticus, an observation that could have important implications in the dynamics of these social behaviors. IMPORTANCE c-di-GMP trigger phosphodiesterases (PDEs) could play a key role in controlling the heterogeneity of biofilm matrix composition, a property that endows characteristics that are potentially relevant for sustaining integrity and functionality of biofilms in a variety of natural environments. Trigger PDEs are not always easy to identify based on their sequence, and hence not many examples of these type of signaling proteins have been reported in the literature. Here, we report on the identification of a novel trigger PDE in V. parahaemolyticus and provide evidence suggesting that its autoactivation could play an important role in the progression of swarming motility and biofilm formation, multicellular behaviors that are important for the survival and dissemination of this environmental pathogen.
Collapse
|
27
|
Nitrate Is an Environmental Cue in the Gut for Salmonella enterica Serovar Typhimurium Biofilm Dispersal through Curli Repression and Flagellum Activation via Cyclic-di-GMP Signaling. mBio 2021; 13:e0288621. [PMID: 35130730 PMCID: PMC8822344 DOI: 10.1128/mbio.02886-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Curli, a major component of the bacterial biofilms in the intestinal tract, activates pattern recognition receptors and triggers joint inflammation after infection with Salmonella enterica serovar Typhimurium. The factors that allow S. Typhimurium to disperse from biofilms and invade the epithelium to establish a successful infection during acute inflammation remain unknown. Here, we studied S. Typhimurium biofilms in vitro and in vivo to understand how the inflammatory environment regulates the switch between multicellular and motile S. Typhimurium in the gut. We discovered that nitrate generated by the host is an environmental cue that induces S. Typhimurium to disperse from the biofilm. Nitrate represses production of an important biofilm component, curli, and activates flagella via the modulation of intracellular cyclic-di-GMP levels. We conclude that nitrate plays a central role in pathogen fitness by regulating the sessile-to-motile lifestyle switch during infection. IMPORTANCE Recent studies provided important insight into our understanding of the role of c-di-GMP signaling and the regulation of enteric biofilms. Despite an improved understanding of how c-di-GMP signaling regulates S. Typhimurium biofilms, the processes that affect the intracellular c-di-GMP levels and the formation of multicellular communities in vivo during infections remain unknown. Here, we show that nitrate generated in the intestinal lumen during infection with S. Typhimurium is an important regulator of biofilm formation in vivo.
Collapse
|
28
|
Identification of a Transcriptomic Network Underlying the Wrinkly and Smooth Phenotypes of Vibrio fischeri. J Bacteriol 2021; 203:JB.00259-20. [PMID: 33199286 PMCID: PMC7811199 DOI: 10.1128/jb.00259-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/04/2020] [Indexed: 01/27/2023] Open
Abstract
Vibrio fischeri is a cosmopolitan marine bacterium that oftentimes displays different colony morphologies, switching from a smooth to a wrinkly phenotype in order to adapt to changes in the environment. This wrinkly phenotype has also been associated with increased biofilm formation, an essential characteristic for V. fischeri to adhere to substrates, to suspended debris, and within the light organs of sepiolid squids. Elevated levels of biofilm formation are correlated with increased microbial survival of exposure to environmental stressors and the ability to expand niche breadth. Since V. fischeri has a biphasic life history strategy between its free-living and symbiotic states, we were interested in whether the wrinkly morphotype demonstrated differences in its expression profile in comparison to the naturally occurring and more common smooth variant. We show that genes involved in major biochemical cascades, including those involved in protein sorting, oxidative stress, and membrane transport, play a role in the wrinkly phenotype. Interestingly, only a few unique genes are specifically involved in macromolecule biosynthesis in the wrinkly phenotype, which underlies the importance of other pathways utilized for adaptation under the conditions in which Vibrio bacteria are producing this change in phenotype. These results provide the first comprehensive analysis of the complex form of genetic activation that underlies the diversity in morphologies of V. fischeri when switching between two different colony morphotypes, each representing a unique biofilm ecotype.IMPORTANCE The wrinkly bacterial colony phenotype has been associated with increased squid host colonization in V. fischeri The significance of our research is in identifying the genetic mechanisms that are responsible for heightened biofilm formation in V. fischeri This report also advances our understanding of gene regulation in V. fischeri and brings to the forefront a number of previously overlooked genetic networks. Several loci that were identified in this study were not previously known to be associated with biofilm formation in V. fischeri.
Collapse
|
29
|
Blacutt J, Lan Z, Cosgriff-Hernandez EM, Gordon VD. Quantitative confocal microscopy and calibration for measuring differences in cyclic-di-GMP signalling by bacteria on biomedical hydrogels. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201453. [PMID: 33614081 PMCID: PMC7890475 DOI: 10.1098/rsos.201453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
The growth of bacterial biofilms on implanted medical devices causes harmful infections and device failure. Biofilm development initiates when bacteria attach to and sense a surface. For the common nosocomial pathogen Pseudomonas aeruginosa and many others, the transition to the biofilm phenotype is controlled by the intracellular signal and second messenger cyclic-di-GMP (c-di-GMP). It is not known how biomedical materials might be adjusted to impede c-di-GMP signalling, and there are few extant methods for conducting such studies. Here, we develop such a method. We allowed P. aeruginosa to attach to the surfaces of poly(ethylene glycol) diacrylate (PEGDA) hydrogels. These bacteria contained a plasmid for a green fluorescent protein (GFP) reporter for c-di-GMP. We used laser-scanning confocal microscopy to measure the dynamics of the GFP reporter for 3 h, beginning 1 h after introducing bacteria to the hydrogel. We controlled for the effects of changes in bacterial metabolism using a promoterless plasmid for GFP, and for the effects of light passing through different hydrogels being differently attenuated by using fluorescent plastic beads as 'standard candles' for calibration. We demonstrate that this method can measure statistically significant differences in c-di-GMP signalling associated with different PEGDA gel types and with the surface-exposed protein PilY1.
Collapse
Affiliation(s)
- Jacob Blacutt
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX, USA
| | - Ziyang Lan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | | | - Vernita D. Gordon
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX, USA
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
30
|
Samuels DS, Lybecker MC, Yang XF, Ouyang Z, Bourret TJ, Boyle WK, Stevenson B, Drecktrah D, Caimano MJ. Gene Regulation and Transcriptomics. Curr Issues Mol Biol 2020; 42:223-266. [PMID: 33300497 DOI: 10.21775/cimb.042.223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Borrelia (Borreliella) burgdorferi, along with closely related species, is the etiologic agent of Lyme disease. The spirochete subsists in an enzootic cycle that encompasses acquisition from a vertebrate host to a tick vector and transmission from a tick vector to a vertebrate host. To adapt to its environment and persist in each phase of its enzootic cycle, B. burgdorferi wields three systems to regulate the expression of genes: the RpoN-RpoS alternative sigma factor cascade, the Hk1/Rrp1 two-component system and its product c-di-GMP, and the stringent response mediated by RelBbu and DksA. These regulatory systems respond to enzootic phase-specific signals and are controlled or fine- tuned by transcription factors, including BosR and BadR, as well as small RNAs, including DsrABb and Bb6S RNA. In addition, several other DNA-binding and RNA-binding proteins have been identified, although their functions have not all been defined. Global changes in gene expression revealed by high-throughput transcriptomic studies have elucidated various regulons, albeit technical obstacles have mostly limited this experimental approach to cultivated spirochetes. Regardless, we know that the spirochete, which carries a relatively small genome, regulates the expression of a considerable number of genes required for the transitions between the tick vector and the vertebrate host as well as the adaptation to each.
Collapse
Affiliation(s)
- D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Meghan C Lybecker
- Department of Biology, University of Colorado, Colorado Springs, CO 80918, USA
| | - X Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zhiming Ouyang
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Travis J Bourret
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68105 USA
| | - William K Boyle
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68105 USA
| | - Brian Stevenson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40536, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Melissa J Caimano
- Departments of Medicine, Pediatrics, and Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| |
Collapse
|
31
|
Valentini M, Filloux A. Multiple Roles of c-di-GMP Signaling in Bacterial Pathogenesis. Annu Rev Microbiol 2020; 73:387-406. [PMID: 31500536 DOI: 10.1146/annurev-micro-020518-115555] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The intracellular signaling molecule cyclic di-GMP (c-di-GMP) regulates the lifestyle of bacteria and controls many key functions and mechanisms. In the case of bacterial pathogens, a wide variety of virulence lifestyle factors have been shown to be regulated by c-di-GMP. Evidence of the importance of this molecule for bacterial pathogenesis has become so great that new antimicrobial agents are tested for their capacity of targeting c-di-GMP signaling. This review summarizes the current knowledge on this topic and reveals its application for the development of new antivirulence intervention strategies.
Collapse
Affiliation(s)
- Martina Valentini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland;
| | - Alain Filloux
- MRC Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom;
| |
Collapse
|
32
|
Del Medico L, Cerletti D, Schächle P, Christen M, Christen B. The type IV pilin PilA couples surface attachment and cell-cycle initiation in Caulobacter crescentus. Proc Natl Acad Sci U S A 2020; 117:9546-9553. [PMID: 32295877 PMCID: PMC7196804 DOI: 10.1073/pnas.1920143117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Understanding how bacteria colonize surfaces and regulate cell-cycle progression in response to cellular adhesion is of fundamental importance. Here, we use transposon sequencing in conjunction with fluorescence resonance energy transfer (FRET) microscopy to uncover the molecular mechanism for how surface sensing drives cell-cycle initiation in Caulobacter crescentus We identify the type IV pilin protein PilA as the primary signaling input that couples surface contact to cell-cycle initiation via the second messenger cyclic di-GMP (c-di-GMP). Upon retraction of pili filaments, the monomeric pilin reservoir in the inner membrane is sensed by the 17-amino acid transmembrane helix of PilA to activate the PleC-PleD two-component signaling system, increase cellular c-di-GMP levels, and signal the onset of the cell cycle. We termed the PilA signaling sequence CIP for "cell-cycle initiating pilin" peptide. Addition of the chemically synthesized CIP peptide initiates cell-cycle progression and simultaneously inhibits surface attachment. The broad conservation of the type IV pili and their importance in pathogens for host colonization suggests that CIP peptide mimetics offer strategies to inhibit surface sensing, prevent biofilm formation and control persistent infections.
Collapse
Affiliation(s)
- Luca Del Medico
- Institute of Molecular Systems Biology, Department of Biology, Eidgenössische Technische HochschuleZürich, Zürich 8093, Switzerland
| | - Dario Cerletti
- Institute of Molecular Systems Biology, Department of Biology, Eidgenössische Technische HochschuleZürich, Zürich 8093, Switzerland
| | - Philipp Schächle
- Institute of Molecular Systems Biology, Department of Biology, Eidgenössische Technische HochschuleZürich, Zürich 8093, Switzerland
| | - Matthias Christen
- Institute of Molecular Systems Biology, Department of Biology, Eidgenössische Technische HochschuleZürich, Zürich 8093, Switzerland
| | - Beat Christen
- Institute of Molecular Systems Biology, Department of Biology, Eidgenössische Technische HochschuleZürich, Zürich 8093, Switzerland
| |
Collapse
|
33
|
Transcriptional changes involved in inhibition of biofilm formation by ε-polylysine in Salmonella Typhimurium. Appl Microbiol Biotechnol 2020; 104:5427-5436. [PMID: 32307570 DOI: 10.1007/s00253-020-10575-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/05/2020] [Accepted: 03/22/2020] [Indexed: 01/08/2023]
Abstract
The pathogenicity of Salmonella Typhimurium, a foodborne pathogen, is mainly attributed to its ability to form biofilm on food contact surfaces. ε-polylysine, a polymer of positively charged lysine, is reported to inhibit biofilm formation of both gram-positive and gram-negative bacteria. To elucidate the mechanism underlying ε-polylysine-mediated inhibition of biofilm formation, the transcriptional profiles of ε-polylysine-treated and untreated Salmonella Typhimurium cells were comparatively analysed. The genome-wide DNA microarray analysis was performed using Salmonella Typhimurium incubated with 0.001% ε-polylysine in 0.1% Bacto Soytone at 30 °C for 2 h. The expression levels of genes involved in curli amyloid fibres and cellulose production, quorum sensing, and flagellar motility were downregulated, whereas those of genes associated with colanic acid synthesis were upregulated after treatment with ε-polylysine. The microarray results were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Furthermore, treatment with ε-polylysine decreased the production of colanic acid in Salmonella Typhimurium. The findings of this study improved our understanding of the mechanisms underlying ε-polylysine-mediated biofilm inhibition and may contribute to the development of new disinfectants to control biofilm during food manufacturing and storage.
Collapse
|
34
|
Kaltenpoth M, Flórez LV. Versatile and Dynamic Symbioses Between Insects and Burkholderia Bacteria. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:145-170. [PMID: 31594411 DOI: 10.1146/annurev-ento-011019-025025] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Symbiotic associations with microorganisms represent major sources of ecological and evolutionary innovations in insects. Multiple insect taxa engage in symbioses with bacteria of the genus Burkholderia, a diverse group that is widespread across different environments and whose members can be mutualistic or pathogenic to plants, fungi, and animals. Burkholderia symbionts provide nutritional benefits and resistance against insecticides to stinkbugs, defend Lagria beetle eggs against pathogenic fungi, and may be involved in nitrogen metabolism in ants. In contrast to many other insect symbioses, the known associations with Burkholderia are characterized by environmental symbiont acquisition or mixed-mode transmission, resulting in interesting ecological and evolutionary dynamics of symbiont strain composition. Insect-Burkholderia symbioses present valuable model systems from which to derive insights into general principles governing symbiotic interactions because they are often experimentally and genetically tractable and span a large fraction of the diversity of functions, localizations, and transmission routes represented in insect symbioses.
Collapse
Affiliation(s)
- Martin Kaltenpoth
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; ,
| | - Laura V Flórez
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; ,
| |
Collapse
|
35
|
Hu Y, Liu X, Ren ATM, Gu JD, Cao B. Optogenetic Modulation of a Catalytic Biofilm for the Biotransformation of Indole into Tryptophan. CHEMSUSCHEM 2019; 12:5142-5148. [PMID: 31621183 DOI: 10.1002/cssc.201902413] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/15/2019] [Indexed: 06/10/2023]
Abstract
In green chemical synthesis, biofilms as biocatalysts have shown great promise. Efficient biofilm-mediated biocatalysis requires the modulation of biofilm formation. Optogenetic tools are ideal to control biofilms because light is noninvasive, easily controllable, and cost-efficient. In this study, a gene circuit responsive to near-infrared (NIR) light was used to modulate the cellular level of bis-(3'-5') cyclic dimeric guanosine monophosphate (c-di-GMP), a central regulator of the prokaryote biofilm lifestyle, which allowed the regulation of biofilm formation by using NIR light. The engineered biofilm was applied to catalyze the biotransformation of indole into tryptophan in submerged biofilm reactors and NIR-light-enhanced biofilm formation resulted in an approximately 30 % increase in tryptophan yield, which demonstrates the feasibility of the application of light to modulate the formation and performance of catalytic biofilms for chemical production. The c-di-GMP-targeted optogenetic approach to modulate catalytic biofilms showcases applications for biofilm-mediated biocatalysis.
Collapse
Affiliation(s)
- Yidan Hu
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551, Singapore
| | - Xiaobo Liu
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551, Singapore
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Hong Kong, P.R. China
| | - Aloysius Teng Min Ren
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551, Singapore
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Hong Kong, P.R. China
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore
| |
Collapse
|
36
|
Sugar-mediated regulation of a c-di-GMP phosphodiesterase in Vibrio cholerae. Nat Commun 2019; 10:5358. [PMID: 31767877 PMCID: PMC6877527 DOI: 10.1038/s41467-019-13353-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/31/2019] [Indexed: 01/03/2023] Open
Abstract
Biofilm formation protects bacteria from stresses including antibiotics and host immune responses. Carbon sources can modulate biofilm formation and host colonization in Vibrio cholerae, but the underlying mechanisms remain unclear. Here, we show that EIIAGlc, a component of the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS), regulates the intracellular concentration of the cyclic dinucleotide c-di-GMP, and thus biofilm formation. The availability of preferred sugars such as glucose affects EIIAGlc phosphorylation state, which in turn modulates the interaction of EIIAGlc with a c-di-GMP phosphodiesterase (hereafter referred to as PdeS). In a Drosophila model of V. cholerae infection, sugars in the host diet regulate gut colonization in a manner dependent on the PdeS-EIIAGlc interaction. Our results shed light into the mechanisms by which some nutrients regulate biofilm formation and host colonization.
Collapse
|
37
|
Xiao Y, Liu H, He M, Nie L, Nie H, Chen W, Huang Q. A crosstalk between c-di-GMP and cAMP in regulating transcription of GcsA, a diguanylate cyclase involved in swimming motility in Pseudomonas putida. Environ Microbiol 2019; 22:142-157. [PMID: 31631503 DOI: 10.1111/1462-2920.14832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 01/02/2023]
Abstract
The ubiquitous bacterial second messenger c-di-GMP is synthesized by diguanylate cyclase (DGC) and degraded by phosphodiesterase (PDE). Pseudomonas putida has dozens of DGC/PDE-encoding genes in its genome, but the phenotypical-genotypical correlation and transcriptional regulation of these genes are largely unknown. Herein, we characterize function and transcriptional regulation of a P. putida c-di-GMP-metabolizing enzyme, GcsA. GcsA consists of two per-ARNT-sim (PAS) domains, followed by a canonical conserved central sequence pattern (GGDEF) domain and a truncated EAL domain. In vitro analysis confirmed the DGC activity of GcsA. The phenotypic observation revealed that GcsA inhibited swimming motility in an FlgZ-dependent manner. In terms of transcriptional regulation, gcsA was found to be cooperatively regulated by c-di-GMP and cAMP via their effectors, FleQ and Crp respectively. The transcription of gcsA was promoted by c-di-GMP and inhibited by cAMP. In vitro binding analysis revealed that FleQ indirectly regulated the transcription of gcsA, while Crp directly regulated the transcription of gcsA by binding to its promoter. Besides, an inverse relationship between the cellular c-di-GMP and cAMP levels in P. putida was confirmed. These findings provide basic knowledge regarding the function and transcriptional regulation of GcsA and demonstrate a crosstalk between c-di-GMP and cAMP in the regulation of the expression of GcsA in P. putida.
Collapse
Affiliation(s)
- Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huizhong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meina He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
38
|
Pseudomonas aeruginosa Requires the DNA-Specific Endonuclease EndA To Degrade Extracellular Genomic DNA To Disperse from the Biofilm. J Bacteriol 2019; 201:JB.00059-19. [PMID: 30988033 DOI: 10.1128/jb.00059-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/08/2019] [Indexed: 01/16/2023] Open
Abstract
The dispersion of biofilms is an active process resulting in the release of planktonic cells from the biofilm structure. While much is known about the process of dispersion cue perception and the subsequent modulation of the c-di-GMP pool, little is known about subsequent events resulting in the release of cells from the biofilm. Given that dispersion coincides with void formation and an overall erosion of the biofilm structure, we asked whether dispersion involves degradation of the biofilm matrix. Here, we focused on extracellular genomic DNA (eDNA) due to its almost universal presence in the matrix of biofilm-forming species. We identified two probable nucleases, endA and eddB, and eddA encoding a phosphatase that were significantly increased in transcript abundance in dispersed cells. However, only inactivation of endA but not eddA or eddB impaired dispersion by Pseudomonas aeruginosa biofilms in response to glutamate and nitric oxide (NO). Heterologously produced EndA was found to be secreted and active in degrading genomic DNA. While endA inactivation had little effect on biofilm formation and the presence of eDNA in biofilms, eDNA degradation upon induction of dispersion was impaired. In contrast, induction of endA expression coincided with eDNA degradation and resulted in biofilm dispersion. Thus, released cells demonstrated a hyperattaching phenotype but remained as resistant to tobramycin as biofilm cells from which they egress, indicating EndA-dispersed cells adopted some but not all of the phenotypes associated with dispersed cells. Our findings indicate for the first time a role of DNase EndA in dispersion and suggest weakening of the biofilm matrix is a requisite for biofilm dispersion.IMPORTANCE The finding that exposure to DNase I impairs biofilm formation or leads to the dispersal of early stage biofilms has led to the realization of extracellular genomic DNA (eDNA) as a structural component of the biofilm matrix. However, little is known about the contribution of intrinsic DNases to the weakening of the biofilm matrix and dispersion of established biofilms. Here, we demonstrate for the first time that nucleases are induced in dispersed Pseudomonas aeruginosa cells and are essential to the dispersion response and that degradation of matrix eDNA by endogenously produced/secreted EndA is required for P. aeruginosa biofilm dispersion. Our findings suggest that dispersing cells mediate their active release from the biofilm matrix via the induction of nucleases.
Collapse
|
39
|
Li W, Hu L, Xie Z, Xu H, Li M, Cui T, He ZG. Cyclic di-GMP integrates functionally divergent transcription factors into a regulation pathway for antioxidant defense. Nucleic Acids Res 2019; 46:7270-7283. [PMID: 29982829 PMCID: PMC6101608 DOI: 10.1093/nar/gky611] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/27/2018] [Indexed: 11/14/2022] Open
Abstract
Cyclic diguanylate monophosphate (c-di-GMP) is a global signaling molecule that modulates diverse cellular processes through its downstream receptors. However, no study has fully clarified the mechanisms by which c-di-GMP organizes functionally divergent regulators to drive the gene expression for coping with environmental stress. Here, we reported that c-di-GMP can integrate two functionally opposite receptor transcription factors, namely, LtmA and HpoR, into a pathway to regulate the antioxidant processes in Mycobacterium smegmatis. In contrast to HpoR, LtmA is an activator that positively regulates the expression of redox gene clusters and the mycobacterial H2O2 resistance. LtmA can physically interact with HpoR. A high level of c-di-GMP stimulates the positive regulation of LtmA and boosts the physical interaction between the two regulators, further enhancing the DNA-binding ability of LtmA and reducing the inhibitory activity of HpoR. Therefore, upon exposure to oxidative stress, c-di-GMP can orchestrate functionally divergent transcription factors to trigger antioxidant defense in mycobacteria. This finding presents a noteworthy example of how a bacterium remodels its transcriptional network via c-di-GMP in response to environmental stress.
Collapse
Affiliation(s)
- Weihui Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lihua Hu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiwei Xie
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Xu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Cui
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zheng-Guo He
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
40
|
Zhang S, Song W, Wemheuer B, Reveillaud J, Webster N, Thomas T. Comparative Genomics Reveals Ecological and Evolutionary Insights into Sponge-Associated Thaumarchaeota. mSystems 2019; 4:e00288-19. [PMID: 31409660 PMCID: PMC6697440 DOI: 10.1128/msystems.00288-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/22/2019] [Indexed: 01/25/2023] Open
Abstract
Thaumarchaeota are frequently reported to associate with marine sponges (phylum Porifera); however, little is known about the features that distinguish them from their free-living thaumarchaeal counterparts. In this study, thaumarchaeal metagenome-assembled genomes (MAGs) were reconstructed from metagenomic data sets derived from the marine sponges Hexadella detritifera, Hexadella cf. detritifera, and Stylissa flabelliformis Phylogenetic and taxonomic analyses revealed that the three thaumarchaeal MAGs represent two new species within the genus Nitrosopumilus and one novel genus, for which we propose the names "Candidatus UNitrosopumilus hexadellus," "Candidatus UNitrosopumilus detritiferus," and "Candidatus UCenporiarchaeum stylissum" (the U superscript indicates that the taxon is uncultured). Comparison of these genomes to data from the Sponge Earth Microbiome Project revealed that "Ca UCenporiarchaeum stylissum" has been exclusively detected in sponges and can hence be classified as a specialist, while "Ca UNitrosopumilus detritiferus" and "Ca UNitrosopumilus hexadellus" are also detected outside the sponge holobiont and likely lead a generalist lifestyle. Comparison of the sponge-associated MAGs to genomes of free-living Thaumarchaeota revealed signatures that indicate functional features of a sponge-associated lifestyle, and these features were related to nutrient transport and metabolism, restriction-modification, defense mechanisms, and host interactions. Each species exhibited distinct functional traits, suggesting that they have reached different stages of evolutionary adaptation and/or occupy distinct ecological niches within their sponge hosts. Our study therefore offers new evolutionary and ecological insights into the symbiosis between sponges and their thaumarchaeal symbionts.IMPORTANCE Sponges represent ecologically important models to understand the evolution of symbiotic interactions of metazoans with microbial symbionts. Thaumarchaeota are commonly found in sponges, but their potential adaptations to a host-associated lifestyle are largely unknown. Here, we present three novel sponge-associated thaumarchaeal species and compare their genomic and predicted functional features with those of closely related free-living counterparts. We found different degrees of specialization of these thaumarchaeal species to the sponge environment that is reflected in their host distribution and their predicted molecular and metabolic properties. Our results indicate that Thaumarchaeota may have reached different stages of evolutionary adaptation in their symbiosis with sponges.
Collapse
Affiliation(s)
- Shan Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Center for Marine Science & Innovation, University of New South Wales, Sydney, Australia
| | - Weizhi Song
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Center for Marine Science & Innovation, University of New South Wales, Sydney, Australia
| | - Bernd Wemheuer
- Center for Marine Science & Innovation, University of New South Wales, Sydney, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Julie Reveillaud
- ASTRE, INRA, CIRAD, University of Montpellier, Montpellier, France
| | - Nicole Webster
- Australian Institute of Marine Science, Townsville, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia
| | - Torsten Thomas
- Center for Marine Science & Innovation, University of New South Wales, Sydney, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
41
|
Pfiffer V, Sarenko O, Possling A, Hengge R. Genetic dissection of Escherichia coli's master diguanylate cyclase DgcE: Role of the N-terminal MASE1 domain and direct signal input from a GTPase partner system. PLoS Genet 2019; 15:e1008059. [PMID: 31022167 PMCID: PMC6510439 DOI: 10.1371/journal.pgen.1008059] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/10/2019] [Accepted: 02/28/2019] [Indexed: 11/18/2022] Open
Abstract
The ubiquitous second messenger c-di-GMP promotes bacterial biofilm formation by playing diverse roles in the underlying regulatory networks. This is reflected in the multiplicity of diguanylate cyclases (DGC) and phosphodiesterases (PDE) that synthesize and degrade c-di-GMP, respectively, in most bacterial species. One of the 12 DGCs of Escherichia coli, DgcE, serves as the top-level trigger for extracellular matrix production during macrocolony biofilm formation. Its multi-domain architecture–a N-terminal membrane-inserted MASE1 domain followed by three PAS, a GGDEF and a degenerate EAL domain–suggested complex signal integration and transmission through DgcE. Genetic dissection of DgcE revealed activating roles for the MASE1 domain and the dimerization-proficient PAS3 region, whereas the inhibitory EALdeg domain counteracts the formation of DgcE oligomers. The MASE1 domain is directly targeted by the GTPase RdcA (YjdA), a dimer or oligomer that together with its partner protein RdcB (YjcZ) activates DgcE, probably by aligning and promoting dimerization of the PAS3 and GGDEF domains. This activation and RdcA/DgcE interaction depend on GTP hydrolysis by RdcA, suggesting GTP as an inhibitor and the pronounced decrease of the cellular GTP pool during entry into stationary phase, which correlates with DgcE-dependent activation of matrix production, as a possible input signal sensed by RdcA. Furthermore, DgcE exhibits rapid, continuous and processive proteolytic turnover that also depends on the relatively disordered transmembrane MASE1 domain. Overall, our study reveals a novel GTP/c-di-GMP-connecting signaling pathway through the multi-domain DGC DgcE with a dual role for the previously uncharacterized MASE1 signaling domain. Biofilms represent a multicellular life form of bacteria, in which large numbers of cells live in communities surrounded and protected by a self-generated extracellular polymeric matrix. As biofilms tolerate antibiotics and host immune systems, they are causally associated with chronic infections. Biofilm formation is generally promoted by the ubiquitous bacterial second messenger c-di-GMP. DgcE, one of the 12 diguanylate cyclases that produce c-di-GMP in E. coli, was previously shown to specifically act as a top level trigger in the regulatory network that drives biofilm matrix production in this bacterium. However, signal input into DgcE itself, which is a large six-domain protein, had remained unknown. Here we demonstrate that DgcE activity is controlled by a novel type of dynamin-like GTPase that directly interacts with the N-terminal membrane-intrinsic MASE1 domain of DgcE. Our finding of a dual function of this MASE1 domain, which is essential for both activation and continuous proteolysis of DgcE, is the first characterization of this widespread bacterial signaling domain. Signal input via the dynamin-like GTPase system suggests that c-di-GMP production by DgcE might be stimulated by the decreasing cellular GTP level during entry into stationary phase, which is precisely the time when biofilm matrix production is turned on.
Collapse
Affiliation(s)
- Vanessa Pfiffer
- Institut für Biologie / Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olga Sarenko
- Institut für Biologie / Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexandra Possling
- Institut für Biologie / Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Regine Hengge
- Institut für Biologie / Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
42
|
Zhang Y, Shi W, Song Y, Wang J. Metatranscriptomic analysis of an in vitro biofilm model reveals strain-specific interactions among multiple bacterial species. J Oral Microbiol 2019; 11:1599670. [PMID: 31007867 PMCID: PMC6461087 DOI: 10.1080/20002297.2019.1599670] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023] Open
Abstract
Interactions among bacteria can affect biofilm properties. Method: Here, we investigated the role of different bacteria in functional dysbiosis of an in vitro polymicrobial subgingival plaque model using both 16S rRNA and metatranscriptomic sequencing. Results: We found that high-virulence Porphyromonas gingivalis W83 had greater effects on the symbiotic species than the low-virulence P. gingivalis ATCC33277, and that Prevotella intermedia exacerbated the effects of W83. P. gingivalis significantly influenced the expression of genes related to metabolic pathways and quorum sensing of commensal oral species in a strain-specific manner. P. intermedia exerted synergistic effects with P. gingivalis W83 but antagonistic effects with strain ATCC33277, which may regulate the expression of virulence factors of P. gingivalis through the clp regulator. Discussion: The interaction networks indicated that the strongest correlation was between Fusobacterium nucleatum and Streptococcus mitis, which demonstrated their bridge and cornerstone roles in biofilm. Changes in the expression of genes relating to outer membrane proteins in F. nucleatum indicated that the addition of different bacteria can interfere with the co-adherence among F. nucleatum and other partners. Conclusion: We report here the existence of strain-specific interactions in subgingival plaque, which may enhance our understanding of periodontal micro-ecology and facilitate the development of improved plaque control strategies.
Collapse
Affiliation(s)
- Yifei Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Wenyu Shi
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Yeqing Song
- Central Laboratory, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Jinfeng Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Xu Z, You D, Tang LY, Zhou Y, Ye BC. Metabolic Engineering Strategies Based on Secondary Messengers (p)ppGpp and C-di-GMP To Increase Erythromycin Yield in Saccharopolyspora erythraea. ACS Synth Biol 2019; 8:332-345. [PMID: 30632732 DOI: 10.1021/acssynbio.8b00372] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Secondary messengers (such as (p)ppGpp and c-di-GMP) were proved to play important roles in antibiotic biosynthesis in actinobacteria. In this study, we found that transcription levels of erythromycin-biosynthetic ( ery) genes were upregulated in nutrient limitation, which depended on (p)ppGpp in Saccharopolyspora erythraea. Further study demonstrated that the expression of ery genes and intracellular concentrations of (p)ppGpp showed synchronization during culture process. The erythromycin yield was significantly improved (about 200%) by increasing intracellular concentration of (p)ppGpp through introduction of C-terminally truncated (p)ppGpp synthetase RelA (1.43 kb of the N-terminal segment) from Streptomyces coelicolor into S. erythraea strain NRRL2338 (named as WT/pIB-P BAD- relA1-489). As the intracellular concentration of (p)ppGpp in an industrial erythromycin-high-producing strain E3 was greatly higher (about 10- to 100-fold) than WT strain, the applications of the above-described strategy did not work in E3 strain. Further research revealed that low concentration of 2-oxoglutarate in E3 strain exerted a "nitrogen-rich" pseudosignal, leading to the downregulation of nitrogen metabolism genes, which limited the use of nitrogen sources and thus the high intracellular (p)ppGpp concentration. Furthermore, the secondary messenger, c-di-GMP, was proved to be able to activate ery genes transcription by enhancing binding of BldD to promoters of ery genes. Overexpressing the diguanylate cyclase CdgB from S. coelicolor in S. erythraea increased the intracellular c-di-GMP concentration, and improved erythromycin production. These findings demonstrated that increasing the concentration of intracellular secondary messengers can activate ery genes transcription, and provided new strategies for designing metabolic engineering based on secondary messengers to improve antibiotics yield in actinobacteria.
Collapse
Affiliation(s)
- Zhen Xu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Di You
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li-Ya Tang
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ying Zhou
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
44
|
El-Messery SM, Habib ESE, Al-Rashood STA, Hassan GS. Synthesis, antimicrobial, anti-biofilm evaluation, and molecular modelling study of new chalcone linked amines derivatives. J Enzyme Inhib Med Chem 2018; 33:818-832. [PMID: 29722582 PMCID: PMC6009874 DOI: 10.1080/14756366.2018.1461855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 11/30/2022] Open
Abstract
A series of amide chalcones conjugated with different secondary amines were synthesised and characterised by different spectroscopic techniques 1H NMR, 13C NMR, and ESI-MS. They were screened for in vitro antibacterial activity. Compounds 36, 37, 38, 42, and 44 are the most active among the synthesised series exhibiting MIC value of 2.0-10.0 µg/ml against different bacterial strains. Compound 36 was equipotent to the standard drug Ampicillin displaying MBC value of 2.0 µg/ml against the bacterial strain Staphylococcus aureus. The products were screened for anti-biofilm activity. Compounds 36, 37, and 38 exhibited promising anti-biofilm activity with IC50 value ranges from 2.4 to 8.6 µg. Molecular modelling was performed suggesting parameters of signalling anti-biofilm mechanism. AspB327 HisB340 (arene-arene interaction) and IleB328 amino acid residues seemed of higher importance to inhibit c-di-GMP. Hydrophobicity may be crucial for activity. ADME calculations suggested that compounds 36, 37, and 38 could be used as good orally absorbed anti-biofilm agents.
Collapse
Affiliation(s)
- Shahenda M. El-Messery
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - El-Sayed E. Habib
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Kingdom of Saudi Arabia
- Department of Microbiology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sarah T. A. Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ghada S. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
45
|
Matrix Polysaccharides and SiaD Diguanylate Cyclase Alter Community Structure and Competitiveness of Pseudomonas aeruginosa during Dual-Species Biofilm Development with Staphylococcus aureus. mBio 2018; 9:mBio.00585-18. [PMID: 30401769 PMCID: PMC6222129 DOI: 10.1128/mbio.00585-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacteria in natural and engineered environments form biofilms that include many different species. Microorganisms rely on a number of different strategies to manage social interactions with other species and to access resources, build biofilm consortia, and optimize growth. For example, Pseudomonas aeruginosa and Staphylococcus aureus are biofilm-forming bacteria that coinfect the lungs of cystic fibrosis patients and diabetic and chronic wounds. P. aeruginosa is known to antagonize S. aureus growth. However, many of the factors responsible for mixed-species interactions and outcomes such as infections are poorly understood. Biofilm bacteria are encased in a self-produced extracellular matrix that facilitates interspecies behavior and biofilm development. In this study, we examined the poorly understood roles of the major matrix biopolymers and their regulators in mixed-species biofilm interactions and development. Mixed-species biofilms display a number of emergent properties, including enhanced antimicrobial tolerance and communal metabolism. These properties may depend on interspecies relationships and the structure of the biofilm. However, the contribution of specific matrix components to emergent properties of mixed-species biofilms remains poorly understood. Using a dual-species biofilm community formed by the opportunistic pathogens Pseudomonas aeruginosa and Staphylococcus aureus, we found that whilst neither Pel nor Psl polysaccharides, produced by P. aeruginosa, affect relative species abundance in mature P. aeruginosa and S. aureus biofilms, Psl production is associated with increased P. aeruginosa abundance and reduced S. aureus aggregation in the early stages of biofilm formation. Our data suggest that the competitive effect of Psl is not associated with its structural role in cross-linking the matrix and adhering to P. aeruginosa cells but is instead mediated through the activation of the diguanylate cyclase SiaD. This regulatory control was also found to be independent of the siderophore pyoverdine and Pseudomonas quinolone signal, which have previously been proposed to reduce S. aureus viability by inducing lactic acid fermentation-based growth. In contrast to the effect mediated by Psl, Pel reduced the effective crosslinking of the biofilm matrix and facilitated superdiffusivity in microcolony regions. These changes in matrix cross-linking enhance biofilm surface spreading and expansion of microcolonies in the later stages of biofilm development, improving overall dual-species biofilm growth and increasing biovolume severalfold. Thus, the biofilm matrix and regulators associated with matrix production play essential roles in mixed-species biofilm interactions.
Collapse
|
46
|
Galperin MY. What bacteria want. Environ Microbiol 2018; 20:4221-4229. [PMID: 30187651 DOI: 10.1111/1462-2920.14398] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/27/2022]
Abstract
Bacterial signal transduction systems are responsible for sensing environmental cues and adjusting the cellular behaviour and/or metabolism in response to these cues. They also monitor the intracellular conditions and the status of the cell envelope and the cytoplasmic membrane and trigger various stress responses to counteract adverse changes. This surveillance involves several classes of sensor proteins: histidine kinases; chemoreceptors; membrane components of the sugar phosphotransferase system; adenylate, diadenylate and diguanylate cyclases and certain cAMP, c-di-AMP and c-di-GMP phosphodiesterases; extracytoplasmic function sigma factors and Ser/Thr/Tyr protein kinases and phosphoprotein phosphatases. We have compiled a detailed listing of sensor proteins that are encoded in the genomes of Escherichia coli, Bacillus subtilis and 10 widespread pathogens: Chlamydia trachomatis, Haemophilus influenzae, Helicobacter pylori, Mycobacterium tuberculosis, Mycoplasma pneumoniae, Neisseria gonorrhoeae, Porphyromonas gingivalis, Rickettsia typhi, Streptococcus pyogenes and Treponema pallidum, and checked what, if anything, is known about their functions. This listing shows significant gaps in the understanding of which environmental and intracellular cues are perceived by these bacteria and which cellular responses are triggered by the changes in the respective parameters. A better understanding of bacterial preferences may suggest new ways to modulate the expression of virulence factors and therefore decrease the reliance on antibiotics to fight infection.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
47
|
In silico characterization of a novel putative aerotaxis chemosensory system in the myxobacterium, Corallococcus coralloides. BMC Genomics 2018; 19:757. [PMID: 30340510 PMCID: PMC6194562 DOI: 10.1186/s12864-018-5151-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 11/23/2022] Open
Abstract
Background An efficient signal transduction system allows a bacterium to sense environmental cues and then to respond positively or negatively to those signals; this process is referred to as taxis. In addition to external cues, the internal metabolic state of any bacterium plays a major role in determining its ability to reside and thrive in its current environment. Similar to external signaling molecules, cytoplasmic signals are also sensed by methyl-accepting chemotaxis proteins (MCPs) via diverse ligand binding domains. Myxobacteria are complex soil-dwelling social microbes that can perform a variety of physiologic and metabolic activities ranging from gliding motility, sporulation, biofilm formation, carotenoid and secondary metabolite biosynthesis, predation, and slime secretion. To live such complex lifestyles, they have evolved efficient signal transduction systems with numerous one- and two-component regulatory system along with a large array of chemosensory systems to perceive and integrate both external and internal cues. Results Here we report the in silico characterization of a putative energy taxis cluster, Cc-5, which is present in only one amongst 34 known and sequenced myxobacterial genomes, Corallococcus coralloides. In addition, we propose that this energy taxis cluster is involved in oxygen sensing, suggesting that C. coralloides can sense (either directly or indirectly) and then respond to changing concentrations of molecular oxygen. Conclusions This hypothesis is based on the presence of a unique MCP encoded in this gene cluster that contains two different oxygen-binding sensor domains, PAS and globin. In addition, the two monooxygenases encoded in this cluster may contribute to aerobic respiration via ubiquinone biosynthesis, which is part of the cytochrome bc1 complex. Finally, we suggest that this cluster was acquired from Actinobacteria, Gammaproteobacteria or Cyanobacteria. Overall, this in silico study has identified a potentially innovative and evolved mechanism of energy taxis in only one of the myxobacteria, C. coralloides. Electronic supplementary material The online version of this article (10.1186/s12864-018-5151-6) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Zou L, Qiao Y, Li CM. Boosting Microbial Electrocatalytic Kinetics for High Power Density: Insights into Synthetic Biology and Advanced Nanoscience. ELECTROCHEM ENERGY R 2018. [DOI: 10.1007/s41918-018-0020-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
Giannakopoulou N, Mendis N, Zhu L, Gruenheid S, Faucher SP, Le Moual H. The Virulence Effect of CpxRA in Citrobacter rodentium Is Independent of the Auxiliary Proteins NlpE and CpxP. Front Cell Infect Microbiol 2018; 8:320. [PMID: 30280092 PMCID: PMC6153362 DOI: 10.3389/fcimb.2018.00320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023] Open
Abstract
Citrobacter rodentium is a murine pathogen used to model the intestinal infection caused by Enteropathogenic and Enterohemorrhagic Escherichia coli (EPEC and EHEC), two diarrheal pathogens responsible for morbidity and mortality in developing and developed countries, respectively. During infection, these bacteria must sense and adapt to the gut environment of the host. In order to adapt to changing environmental cues and modulate expression of specific genes, bacteria can use two-component signal transduction systems (TCS). We have shown that the deletion of the Cpx TCS in C. rodentium leads to a marked attenuation in virulence in C3H/HeJ mice. In E. coli, the Cpx TCS is reportedly activated in response to signals from the outer-membrane lipoprotein NlpE. We therefore investigated the role of NlpE in C. rodentium virulence. We also assessed the role of the reported negative regulator of CpxRA, CpxP. We found that as opposed to the ΔcpxRA strain, neither the ΔnlpE, ΔcpxP nor the ΔnlpEΔcpxP strains were significantly attenuated, and had similar in vivo localization to wild-type C. rodentium. The in vitro adherence of the Cpx auxiliary protein mutants, ΔnlpE, ΔcpxP, ΔnlpEΔcpxP, was comparable to wild-type C. rodentium, whereas the ΔcpxRA strain showed significantly decreased adherence. To further elucidate the mechanisms behind the contrasting virulence phenotypes, we performed microarrays in order to define the regulon of the Cpx TCS. We detected 393 genes differentially regulated in the ΔcpxRA strain. The gene expression profile of the ΔnlpE strain is strikingly different than the profile of ΔcpxRA with regards to the genes activated by CpxRA. Further, there is no clear inverse correlation in the expression pattern of the ΔcpxP strain in comparison to ΔcpxRA. Taken together, these data suggest that in these conditions, CpxRA activates gene expression in a largely NlpE- and CpxP-independent manner. Compared to wildtype, 161 genes were downregulated in the ΔcpxRA strain, while being upregulated or unchanged in the Cpx auxiliary protein deletion strains. This group of genes, which we hypothesize may contribute to the loss of virulence of ΔcpxRA, includes T6SS components, ompF, the regulator for colanic acid synthesis, and several genes involved in maltose metabolism.
Collapse
Affiliation(s)
| | - Nilmini Mendis
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Lei Zhu
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Sebastien P Faucher
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Hervé Le Moual
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
50
|
Bharati BK, Mukherjee R, Chatterji D. Substrate-induced domain movement in a bifunctional protein, DcpA, regulates cyclic di-GMP turnover: Functional implications of a highly conserved motif. J Biol Chem 2018; 293:14065-14079. [PMID: 29980599 DOI: 10.1074/jbc.ra118.003917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/26/2018] [Indexed: 11/06/2022] Open
Abstract
In eubacteria, cyclic di-GMP (c-di-GMP) signaling is involved in virulence, persistence, motility and generally orchestrates multicellular behavior in bacterial biofilms. Intracellular c-di-GMP levels are maintained by the opposing activities of diguanylate cyclases (DGCs) and cognate phosphodiesterases (PDEs). The c-di-GMP homeostasis in Mycobacterium smegmatis is supported by DcpA, a conserved, bifunctional protein with both DGC and PDE activities. DcpA is a multidomain protein whose GAF-GGDEF-EAL domains are arranged in tandem and are required for these two activities. To gain insight into how interactions among these three domains affect DcpA activity, here we studied its domain dynamics using real-time FRET. We demonstrate that substrate binding in DcpA results in domain movement that prompts a switch from an "open" to a "closed" conformation and alters its catalytic activity. We found that a single point mutation in the conserved EAL motif (E384A) results in complete loss of the PDE activity of the EAL domain and in a significant decrease in the DGC activity of the GGDEF domain. Structural analyses revealed multiple hydrophobic and aromatic residues around Cys579 that are necessary for proper DcpA folding and maintenance of the active conformation. On the basis of these observations and taking into account additional bioinformatics analysis of EAL domain-containing proteins, we identified a critical putatively conserved motif, GCXXXQGF, that plays an important role in c-di-GMP turnover. We conclude that a substrate-induced conformational switch involving movement of a loop containing a conserved motif in the bifunctional diguanylate cyclase-phosphodiesterase DcpA controls c-di-GMP turnover in M. smegmatis.
Collapse
Affiliation(s)
- Binod K Bharati
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India and
| | - Raju Mukherjee
- Department of Biology, Indian Institute of Science Education and Research, Tirupati 517507, India
| | - Dipankar Chatterji
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India and
| |
Collapse
|