1
|
Safaei S, Derakhshan-sefidi M, Karimi A. Wolbachia: A bacterial weapon against dengue fever- a narrative review of risk factors for dengue fever outbreaks. New Microbes New Infect 2025; 65:101578. [PMID: 40176883 PMCID: PMC11964561 DOI: 10.1016/j.nmni.2025.101578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/10/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Arboviruses constitute the largest known group of viruses and are responsible for various infections that impose significant socioeconomic burdens worldwide, particularly due to their link with insect-borne diseases. The increasing incidence of dengue fever in non-endemic regions underscores the urgent need for innovative strategies to combat this public health threat. Wolbachia, a bacterium, presents a promising biological control method against mosquito vectors, offering a novel approach to managing dengue fever. We systematically investigated biomedical databases (PubMed, Web of Science, Google Scholar, Science Direct, and Embase) using "AND" as a Boolean operator with keywords such as "dengue fever," "dengue virus," "risk factors," "Wolbachia," and "outbreak." We prioritized articles that offered significant insights into the risk factors contributing to the outbreak of dengue fever and provided an overview of Wolbachia's characteristics and functions in disease management, considering studies published until December 25, 2024. Field experiments have shown that introducing Wolbachia-infected mosquitoes can effectively reduce mosquito populations and lower dengue transmission rates, signifying its potential as a practical approach for controlling this disease.
Collapse
Affiliation(s)
- Sahel Safaei
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | |
Collapse
|
2
|
Kang SF, Chen Y, Chen J. Wolbachia of phylogenetic supergroup K identified in oribatid mite Nothrus anauniensis (Acari: Oribatida: Nothridae). EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:803-815. [PMID: 39266798 DOI: 10.1007/s10493-024-00961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/23/2024] [Indexed: 09/14/2024]
Abstract
Heritable endosymbionts widely occur in arthropod and nematode hosts. Among these endosymbionts, Wolbachia has been extensively detected in many arthropods, such as insects and crustaceans. Maternal inheritance is the most basic and dominant mode of transmission of Wolbachia, and it might regulate the reproductive system of the host in four ways: feminization, parthenogenesis, male killing, and cytoplasmic incompatibility. There is a relatively high percentage (10%) of thelytokous species in Oribatida, a suborder under the subclass Acari of arthropods, but the study of the endosymbionts in oribatid mites is almost negligible. In this paper, we detected endosymbiotic bacteria in two parthenogenetic oribatid species, Nothrus anauniensis Canestrini and Fanzago, 1877, which has never been tested for endosymbionts, and Oppiella nova, in which Wolbachia and Cardinium have been reported before. The results showed that Wolbachia was first found in N. anauniensis with an infection rate of 100% across three populations. Phylogenetic analysis showed that Wolbachia in N. anauniensis belonged to the supergroup K, marking the second supergroup of Wolbachia found in oribatid mites. Unlike previous studies, our study did not detect Wolbachia in O. nova, leading to the exclusion of Wolbachia's role in mediating thelytoky in this species.
Collapse
Affiliation(s)
- Shuo-Fang Kang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Higashi CHV, Patel V, Kamalaker B, Inaganti R, Bressan A, Russell JA, Oliver KM. Another tool in the toolbox: Aphid-specific Wolbachia protect against fungal pathogens. Environ Microbiol 2024; 26:e70005. [PMID: 39562330 DOI: 10.1111/1462-2920.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024]
Abstract
Aphids harbor nine common facultative symbionts, most mediating one or more ecological interactions. Wolbachia pipientis, well-studied in other arthropods, remains poorly characterized in aphids. In Pentalonia nigronervosa and P. caladii, global pests of banana, Wolbachia was initially hypothesized to function as a co-obligate nutritional symbiont alongside the traditional obligate Buchnera. However, genomic analyses failed to support this role. Our sampling across numerous populations revealed that more than 80% of Pentalonia aphids carried an M-supergroup strain of Wolbachia (wPni). The lack of fixation further supports a facultative status for Wolbachia, while high infection frequencies in these entirely asexual aphids strongly suggest Wolbachia confers net fitness benefits. Finding no correlation between Wolbachia presence and food plant use, we challenged Wolbachia-infected aphids with common natural enemies. Bioassays revealed that Wolbachia conferred significant protection against a specialized fungal pathogen (Pandora neoaphidis) but not against generalist pathogens or parasitoids. Wolbachia also improved aphid fitness in the absence of enemy challenge. Thus, we identified the first clear benefits for aphid-associated Wolbachia and M-supergroup strains specifically. Aphid-Wolbachia systems provide unique opportunities to merge key models of symbiosis to better understand infection dynamics and mechanisms underpinning symbiont-mediated phenotypes.
Collapse
Affiliation(s)
- Clesson H V Higashi
- Department of Entomology, University of Georgia, Athens, GA, USA
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Vilas Patel
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Bryan Kamalaker
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Rahul Inaganti
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Alberto Bressan
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, GA, USA
| |
Collapse
|
4
|
Abdelhafiz I, Gerth S, Claussen J, Weule M, Hufnagel E, Vilcinskas A, Lee KZ. Radioactivity and GMO-Free Sterile Insect Technology for the Sustainable Control of the Invasive Pest Drosophila suzukii. Adv Biol (Weinh) 2024; 8:e2400100. [PMID: 38797923 DOI: 10.1002/adbi.202400100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Indexed: 05/29/2024]
Abstract
Drosophila suzukii (D. suzukii), commonly known as the spotted wing drosophila, is a highly invasive crop pest that is difficult to control using chemical insecticides. To address the urgent need for alternative and more sustainable control strategies, the sterile insect technique (SIT) is improved, which involves the release of sterilized male insects to mate with fertile conspecifics, thereby reducing the size of the pest population in the subsequent generation. The three critical aspects that influence the success of SIT programs in D. suzukii are addressed. First, an accurate and nondestructive method is established to determine the sex of individual insects based on the differential weight of male and female pupae. Second, conditions for X-ray sterilization are systematically tested and an optimal dose (90 kV/40 Gy) is identified that ensures the efficient production of sterile D. suzukii for release. Finally, the inherent thermosensitivity of D. suzukii males is exploited to develop a temperature-based sterilization technique, offering an alternative or additional SIT method for this pest. These advances will contribute to the development of a comprehensive and effective strategy for the management of D. suzukii populations, reducing their impact on agriculture and helping to safeguard crop yields.
Collapse
Affiliation(s)
- Ibrahim Abdelhafiz
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, D-35394, Giessen, Germany
| | - Stefan Gerth
- Fraunhofer Institute for Integrated Circuits, Flugplatzstrasse 75, D-90768, Fuerth, Germany
| | - Joelle Claussen
- Fraunhofer Institute for Integrated Circuits, Flugplatzstrasse 75, D-90768, Fuerth, Germany
| | - Mareike Weule
- Fraunhofer Institute for Integrated Circuits, Flugplatzstrasse 75, D-90768, Fuerth, Germany
| | - Eva Hufnagel
- Fraunhofer Institute for Integrated Circuits, Flugplatzstrasse 75, D-90768, Fuerth, Germany
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, D-35394, Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany
| | - Kwang-Zin Lee
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, D-35394, Giessen, Germany
| |
Collapse
|
5
|
Hyder M, Lodhi AM, Wang Z, Bukero A, Gao J, Mao R. Wolbachia Interactions with Diverse Insect Hosts: From Reproductive Modulations to Sustainable Pest Management Strategies. BIOLOGY 2024; 13:151. [PMID: 38534421 DOI: 10.3390/biology13030151] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/28/2024]
Abstract
Effective in a variety of insect orders, including dipteran, lepidopteran, and hemipteran, Wolbachia-based control tactics are investigated, noting the importance of sterile and incompatible insect techniques. Encouraging approaches for controlling Aedes mosquitoes are necessary, as demonstrated by the evaluation of a new SIT/IIT combination and the incorporation of SIT into Drosophila suzukii management. For example, Wolbachia may protect plants from rice pests, demonstrating its potential for agricultural biological vector management. Maternal transmission and cytoplasmic incompatibility dynamics are explored, while Wolbachia phenotypic impacts on mosquito and rice pest management are examined. The importance of host evolutionary distance is emphasised in recent scale insect research that addresses host-shifting. Using greater information, a suggested method for comprehending Wolbachia host variations in various contexts emphasises ecological connectivity. Endosymbionts passed on maternally in nematodes and arthropods, Wolbachia are widely distributed around the world and have evolved both mutualistic and parasitic traits. Wolbachia is positioned as a paradigm for microbial symbiosis due to advancements in multiomics, gene functional assays, and its effect on human health. The challenges and opportunities facing Wolbachia research include scale issues, ecological implications, ethical conundrums, and the possibility of customising strains through genetic engineering. It is thought that cooperative efforts are required to include Wolbachia-based therapies into pest management techniques while ensuring responsible and sustainable ways.
Collapse
Affiliation(s)
- Moazam Hyder
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Abdul Mubeen Lodhi
- Department Plant Protection, Sindh Agriculture University, Tandojam 70080, Pakistan
| | - Zhaohong Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Aslam Bukero
- Department of Entomology, Sindh Agriculture University, Tandojam 70080, Pakistan
| | - Jing Gao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Runqian Mao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| |
Collapse
|
6
|
Li J, Dong B, Zhong Y, Li Z. Transinfected Wolbachia strains induce a complex of cytoplasmic incompatibility phenotypes: Roles of CI factor genes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:370-382. [PMID: 37194361 PMCID: PMC10472523 DOI: 10.1111/1758-2229.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Wolbachia can modulate the reproductive development of their hosts in multiple modes, and cytoplasmic incompatibility (CI) is the most well-studied phenotype. The whitefly Bemisia tabaci is highly receptive to different Wolbachia strains: wCcep strain from the rice moth Corcyra cephalonica and wMel strain from the fruit fly Drosophila melanogaster could successfully establish and induce CI in transinfected whiteflies. Nevertheless, it is unknown what will happen when these two exogenous Wolbachia strains are co-transinfected into a new host. Here, we artificially transinferred wCcep and wMel into the whitefly and established double- and singly-transinfected B. tabaci isofemale lines. Reciprocal crossing experiments showed that wCcep and wMel induced a complex of CI phenotypes in the recipient host, including unidirectional and bidirectional CI. We next sequenced the whole genome of wCcep and performed a comparative analysis of the CI factor genes between wCcep and wMel, indicating that their cif genes were phylogenetically and structurally divergent, which can explain the crossing results. The amino acid sequence identity and structural features of Cif proteins may be useful parameters for predicting their function. Structural comparisons between CifA and CifB provide valuable clues for explaining the induction or rescue of CI observed in crossing experiments between transinfected hosts.
Collapse
Affiliation(s)
- Jing Li
- Department of Entomology and Key Laboratory of Pest Monitoring and Green Management, MOA, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Bei Dong
- Jinan Academy of Agricultural SciencesJinanChina
| | - Yong Zhong
- Pingxiang Customs Comprehensive Technical Service CenterPingxiangChina
| | - Zheng‐Xi Li
- Department of Entomology and Key Laboratory of Pest Monitoring and Green Management, MOA, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| |
Collapse
|
7
|
Towett-Kirui S, Morrow JL, Close S, Royer JE, Riegler M. Bacterial Communities Are Less Diverse in a Strepsipteran Endoparasitoid than in Its Fruit Fly Hosts and Dominated by Wolbachia. MICROBIAL ECOLOGY 2023; 86:2120-2132. [PMID: 37103495 PMCID: PMC10497669 DOI: 10.1007/s00248-023-02218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Microbiomes play vital roles in insect fitness and health and can be influenced by interactions between insects and their parasites. Many studies investigate the microbiome of free-living insects, whereas microbiomes of endoparasitoids and their interactions with parasitised insects are less explored. Due to their development in the constrained environment within a host, endoparasitoids are expected to have less diverse yet distinct microbiomes. We used high-throughput 16S rRNA gene amplicon sequencing to characterise the bacterial communities of Dipterophagus daci (Strepsiptera) and seven of its tephritid fruit fly host species. Bacterial communities of D. daci were less diverse and contained fewer taxa relative to the bacterial communities of the tephritid hosts. The strepsipteran's microbiome was dominated by Pseudomonadota (formerly Proteobacteria) (> 96%), mainly attributed to the presence of Wolbachia, with few other bacterial community members, indicative of an overall less diverse microbiome in D. daci. In contrast, a dominance of Wolbachia was not found in flies parasitised by early stages of D. daci nor unparasitised flies. Yet, early stages of D. daci parasitisation resulted in structural changes in the bacterial communities of parasitised flies. Furthermore, parasitisation with early stages of D. daci with Wolbachia was associated with a change in the relative abundance of some bacterial taxa relative to parasitisation with early stages of D. daci lacking Wolbachia. Our study is a first comprehensive characterisation of bacterial communities in a Strepsiptera species together with the more diverse bacterial communities of its hosts and reveals effects of concealed stages of parasitisation on host bacterial communities.
Collapse
Affiliation(s)
- Sharon Towett-Kirui
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jennifer L Morrow
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Shannon Close
- Queensland Department of Agriculture and Fisheries, EcoSciences Precinct, Boggo Road, Dutton Park, QLD, 4102, Australia
| | - Jane E Royer
- Queensland Department of Agriculture and Fisheries, EcoSciences Precinct, Boggo Road, Dutton Park, QLD, 4102, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
8
|
Remmal I, Bel Mokhtar N, Maurady A, Reda Britel M, El Fakhouri K, Asimakis E, Tsiamis G, Stathopoulou P. Characterization of the Bacterial Microbiome in Natural Populations of Barley Stem Gall Midge, Mayetiola hordei, in Morocco. Microorganisms 2023; 11:microorganisms11030797. [PMID: 36985370 PMCID: PMC10051481 DOI: 10.3390/microorganisms11030797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Mayetiola hordei (Kieffer), known as barley stem gall midge, is one of the most destructive barley pests in many areas around the world, inflicting significant qualitative and quantitative damage to crop production. In this study, we investigate the presence of reproductive symbionts, the effect of geographical origin on the bacterial microbiome's structure, and the diversity associated with natural populations of M. hordei located in four barley-producing areas in Morocco. Wolbachia infection was discovered in 9% of the natural populations using a precise 16S rDNA PCR assay. High-throughput sequencing of the V3-V4 region of the bacterial 16S rRNA gene indicated that the native environments of samples had a substantial environmental impact on the microbiota taxonomic assortment. Briefly, 5 phyla, 7 classes, and 42 genera were identified across all the samples. To our knowledge, this is the first report on the bacterial composition of M. hordei natural populations. The presence of Wolbachia infection may assist in the diagnosis of ideal natural populations, providing a new insight into the employment of Wolbachia in the control of barley midge populations, in the context of the sterile insect technique or other biological control methods.
Collapse
Affiliation(s)
- Imane Remmal
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, BP 1818 Tanger Principal, Tanger 90000, Morocco
- Faculty of Sciences and Technology of Tangier, Abdelmalek Essâadi University, Tétouan 93000, Morocco
| | - Naima Bel Mokhtar
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, BP 1818 Tanger Principal, Tanger 90000, Morocco
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, BP 1818 Tanger Principal, Tanger 90000, Morocco
- Faculty of Sciences and Technology of Tangier, Abdelmalek Essâadi University, Tétouan 93000, Morocco
| | - Mohammed Reda Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, BP 1818 Tanger Principal, Tanger 90000, Morocco
| | - Karim El Fakhouri
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| |
Collapse
|
9
|
Kil EJ, Kim D. The small brown planthopper (Laodelphax striatellus) as a vector of the rice stripe virus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21992. [PMID: 36575628 DOI: 10.1002/arch.21992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The small brown planthopper, Laodelphax striatellus, is a destructive pest insect found in rice fields. L. striatellus not only directly feeds on the phloem sap of rice but also transmits various viruses, such as rice stripe virus (RSV) and rice black-streaked dwarf virus, resulting in serious loss of rice production. RSV is a rice-infecting virus that is found mainly in Korea, China, and Japan. To develop novel strategies to control L. striatellus and L. striatellus-transmitted viruses, various studies have been conducted, based on vector biology, interactions between vectors and pathogens, and omics, including transcriptomics, proteomics, and metabolomics. In this review, we discuss the roles of saliva proteins during phloem sap-sucking and virus transmission, the diversity and role of the microbial community in L. striatellus, the profile and molecular mechanisms of insecticide resistance, classification of L. striatellus-transmitted RSV, its host range and symptoms, its genome composition and roles of virus-derived proteins, its distribution, interactions with L. striatellus, and resistance and control, to suggest future directions for integrated pest management to control L. striatellus and L. striatellus-transmitted viruses.
Collapse
Affiliation(s)
- Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| | - Donghun Kim
- Department of Entomology, Kyungpook National University, Sangju, Republic of Korea
- Department of Vector Entomology, Kyungpook National University, Sangju, Republic of Korea
- Research Institute of Invertebrate Vector, Kyungpook National University, Sangju, Republic of Korea
| |
Collapse
|
10
|
Ou D, Qiu JH, Su ZQ, Wang L, Qiu BL. The phylogeny and distribution of Wolbachia in two pathogen vector insects, Asian citrus psyllid and Longan psyllid. Front Cell Infect Microbiol 2023; 13:1121186. [PMID: 36949814 PMCID: PMC10025399 DOI: 10.3389/fcimb.2023.1121186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Background Wolbachia is the most abundant bacterial endosymbiont among insects. It can play a prominent role in the development, reproduction and immunity of its given insect host. To date, Wolbachia presence is well studied within aphids, whiteflies and planthoppers, but relatively few studies have investigated its presence in psyllids. Methods Here, the infection status of Wolbachia in five species of psyllid, including Asian citrus psyllid Diaphorina citri and longan psyllid Cornegenapsylla sinica was investigated. The phylogenetic relationships of different Wolbachia lines and their infection density and patterns in D. citri and C. sinica from different countries was also examined. Results The infection rates of Wolbachia in D. citri and C. sinica were both 100%, and their sequencing types are ST173 and ST532 respectively. Phylogenetic analysis revealed that the Wolbachia lines in D. citri and C. sinica both belong to the Con subgroup of Wolbachia supergroup B. In addition, Wolbachia displayed a scattered localization pattern in the 5th instar nymphs and in the reproductive organs of both D. citri and C. sinica but differed in other tissues; it was highest in the midgut, lowest in the salivary glands and medium in both the testes and ovaries. Conclusion Our findings assist in further understanding the coevolution of Wolbachia and its psyllid hosts. Given that Wolbachia could play an important role in insect pest control and pathogen transmission inhibition, our findings may also provide new insights for development of control strategies for D. citri and C. sinica.
Collapse
Affiliation(s)
- Da Ou
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jun-Hong Qiu
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zheng-Qin Su
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lei Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Bao-Li Qiu
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou, China
- *Correspondence: Bao-Li Qiu,
| |
Collapse
|
11
|
Alarcón ME, Polo PG, Akyüz SN, Rafiqi AM. Evolution and ontogeny of bacteriocytes in insects. Front Physiol 2022; 13:1034066. [PMID: 36505058 PMCID: PMC9732443 DOI: 10.3389/fphys.2022.1034066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022] Open
Abstract
The ontogenetic origins of the bacteriocytes, which are cells that harbour bacterial intracellular endosymbionts in multicellular animals, are unknown. During embryonic development, a series of morphological and transcriptional changes determine the fate of distinct cell types. The ontogeny of bacteriocytes is intimately linked with the evolutionary transition of endosymbionts from an extracellular to an intracellular environment, which in turn is linked to the diet of the host insect. Here we review the evolution and development of bacteriocytes in insects. We first classify the endosymbiotic occupants of bacteriocytes, highlighting the complex challenges they pose to the host. Then, we recall the historical account of the discovery of bacteriocytes. We then summarize the molecular interactions between the endosymbiont and the host. In addition, we illustrate the genetic contexts in which the bacteriocytes develop, with examples of the genetic changes in the hosts and endosymbionts, during specific endosymbiotic associations. We finally address the evolutionary origin as well as the putative ontogenetic or developmental source of bacteriocytes in insects.
Collapse
|
12
|
Andrianto E, Kasai A. Wolbachia in Black Spiny Whiteflies and Their New Parasitoid Wasp in Japan: Evidence of the Distinct Infection Status on Aleurocanthus camelliae Cryptic Species Complex. INSECTS 2022; 13:insects13090788. [PMID: 36135489 PMCID: PMC9502694 DOI: 10.3390/insects13090788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/12/2022] [Accepted: 08/27/2022] [Indexed: 05/21/2023]
Abstract
Wolbachia, an alphaproteobacterial reproductive parasite, can cause profound mitochondrial divergence in insects, which might eventually be a part of cryptic speciation. Aleurocanthus camelliae is a cryptic species complex consisting of several morphospecies and/or haplotypes that are genetically different but morphologically indistinctive. However, little is known about the Wolbachia infection status in these tea and Citrus pests. Thus, this study aimed to profile the diversity and phenotypic characteristics of Wolbachia natural infections in the A. camelliae cryptic species complex. A monophyletic strain of Wolbachia that infected the A. camelliae cryptic species complex (wAlec) with different patterns was discovered. Whiteflies that are morphologically identical to Aleurocanthus spiniferus (Aleurocanthus cf. A. spiniferus in Eurya japonica and A. spiniferus in Citrus) were grouped into uninfected populations, whereas the fixed infection was detected in A. camelliae B1 from Theaceae. The rapid evolution of wAlec was also found to occur through a high recombination event, which produced subgroups A and B in wAlec. It may also be associated with the non-cytoplasmic incompatibility (CI) phenotype of wAlec due to undetectable CI-related genes from phage WO (WOAlec). The current discovery of a novel cryptic species of A. camelliae led to a discussion about the oscillation hypothesis, which may provide insights on cryptic speciation, particularly on how specialization and host expansion have been recorded among these species. This study also identified a parasitoid wasp belonging to the genus Eretmocerus in A. camelliae, for the first time in Japan.
Collapse
Affiliation(s)
- Eko Andrianto
- Science of Biological Environment, The United Graduate School of Agricultural Science (UGSAS), Gifu University, Gifu City 501-1193, Japan
- Correspondence: ; Tel./Fax: +81-054-238-4790
| | - Atsushi Kasai
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka City 422-8528, Japan
| |
Collapse
|
13
|
Gharabigloozare Y, Bleidorn C. Effect of high temperature on Wolbachia density and impact on cytoplasmic incompatibility in confused flour beetle, Tribolium confusum (Coleoptera: Tenebrionidae). BMC Res Notes 2022; 15:240. [PMID: 35799282 PMCID: PMC9264519 DOI: 10.1186/s13104-022-06123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/17/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Environmental constraints, especially temperature, have been identified as a key in understanding host-symbiont relationships, as they can directly impact the fitness of the symbiont population and the host development. Here we investigated the effect of temperature during the host development on the density of intracellular bacteria of the Wolbachia, wTcon strain within the confused flour beetle, Tribolium confusum. The wTcon can induce a complete cytoplasmic incompatibility (CI) in T. confusum beetles; therefore, we observed the effect of heat stress on the symbiont-mediated CI. RESULTS The density of CI inducing Wolbachia in the Tribolium confusum is temperature-specific. Our observation of the beetles reared in five different temperatures (30-34 °C) measured the highest Wolbachia density at 30-31 °C and lowest at 34 °C within a single insect generation. In this species, changes in the density of Wolbachia related to higher temperature did not influence CI. However, the fertility of beetles reared in higher temperatures showed a substantial decrease in the number of laid and hatched eggs. Thus, we can confirm the effect of high temperature on lowering the wTcon density and no impact on induction of cytoplasmic incompatibility (CI) in T. confusum beetles.
Collapse
Affiliation(s)
- Yeganeh Gharabigloozare
- Department of Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany.
| | - Christoph Bleidorn
- Department of Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Gouvi G, Gariou-Papalexiou A, Augustinos AA, Drosopoulou E, Tsiamis G, Bourtzis K, Zacharopoulou A. The Chromosomes of Zeugodacus tau and Zeugodacus cucurbitae: A Comparative Analysis. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.854723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Availability of polytene chromosomes and development of polytene chromosome maps have greatly facilitated genetic analysis in Diptera and understanding of chromosomal organization. In tephritids, following the first polytene chromosome maps constructed for the Mediterranean fruit fly, Ceratitis capitata, additional maps have been developed for only few species belonging to the main genera of agricultural importance that are Anastrepha, Bactrocera, Ceratitis, Dacus, Rhagoletis, and Zeugodacus. Comparison of the polytene chromosomes of these species has pointed to the presence of chromosomal rearrangements that can, at least partially, shed light to the chromosomal evolution in this family. Up to now, polytene chromosome maps are available only for one Zeugodacus species, that is Zeugodacus cucurbitae. Here we report the cytogenetic analysis of the mitotic and polytene chromosomes of the pumpkin fly, Zeugodacus tau, along with a comparative analysis with polytene chromosomes of Zeugodacus cucurbitae as well as other tephritids. In situ hybridization experiments resulting to chromosomal localization of selected genes in both species are also presented. The genes used as markers are hsp70, hsp83, scarlet and white pupae. The established homologies presented in this study verify that the two Zeugodacus species are genetically close and support the current taxonomic placement of the Zeugodacus genus. The differences in polytene chromosome level, in combination with results of in situ hybridization experiments, reveal the presence of chromosomal rearrangements, mainly inversions, to both closely and distantly related species, which could potentially be a useful diagnostic tool.
Collapse
|
15
|
Kaavya K, Tharakan J, Joshi CO, Aneesh EM. Role of vertically transmitted viral and bacterial endosymbionts of Aedes mosquitoes. Does Paratransgenesis influence vector-borne disease control? Symbiosis 2022. [DOI: 10.1007/s13199-022-00836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Konecka E. Fifty shades of bacterial endosymbionts and some of them still remain a mystery: Wolbachia and Cardinium in oribatid mites (Acari: Oribatida). J Invertebr Pathol 2022; 189:107733. [DOI: 10.1016/j.jip.2022.107733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/28/2022]
|
17
|
Wittlin S, Mäser P. From Magic Bullet to Magic Bomb: Reductive Bioactivation of Antiparasitic Agents. ACS Infect Dis 2021; 7:2777-2786. [PMID: 34472830 DOI: 10.1021/acsinfecdis.1c00118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Paul Ehrlich coined the term "magic bullet" to describe how a drug kills the parasite inside its human host without harming the host itself. Ehrlich concluded that the drug must have a greater affinity to the parasite than to human cells. Today, the specificity of drug action is understood in terms of the drug target. An ideal target is a protein that is essential for the proliferation of the pathogen but absent in human cells. Examples are the enzymes of folate synthesis or of the nonmevalonate pathway in the malaria parasites. However, there are other ways how a drug can kill selectively. Of particular relevance is the specific activation of a prodrug inside the pathogen but not in the host, as this is how the current frontrunners of parasite chemotherapy work. Artemisinins for malaria, fexinidazole for human African trypanosomiasis, benznidazole for Chagas' disease, metronidazole for intestinal protozoa: these molecules are "magic bombs" that are triggered selectively. They are prodrugs that need to be activated by chemical reduction, i.e., the acquisition of an electron, which occurs in the parasite. Such a mode of action is shared by the novel antimalarial peroxides arterolane and artefenomel, which are activated by reduction of the endoperoxide bond with ferrous heme as the likely electron donor, a metabolic end-product of Plasmodium falciparum. Here we provide an overview on the molecular basis of selectivity of antiparasitic drug action with particular reference to the ozonides, the new generation of antimalarial peroxides designed by Jonathan Vennerstrom.
Collapse
Affiliation(s)
- Sergio Wittlin
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Pascal Mäser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
- University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
18
|
Nanetti A, Bortolotti L, Cilia G. Pathogens Spillover from Honey Bees to Other Arthropods. Pathogens 2021; 10:1044. [PMID: 34451508 PMCID: PMC8400633 DOI: 10.3390/pathogens10081044] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Honey bees, and pollinators in general, play a major role in the health of ecosystems. There is a consensus about the steady decrease in pollinator populations, which raises global ecological concern. Several drivers are implicated in this threat. Among them, honey bee pathogens are transmitted to other arthropods populations, including wild and managed pollinators. The western honey bee, Apis mellifera, is quasi-globally spread. This successful species acted as and, in some cases, became a maintenance host for pathogens. This systematic review collects and summarizes spillover cases having in common Apis mellifera as the mainteinance host and some of its pathogens. The reports are grouped by final host species and condition, year, and geographic area of detection and the co-occurrence in the same host. A total of eighty-one articles in the time frame 1960-2021 were included. The reported spillover cases cover a wide range of hymenopteran host species, generally living in close contact with or sharing the same environmental resources as the honey bees. They also involve non-hymenopteran arthropods, like spiders and roaches, which are either likely or unlikely to live in close proximity to honey bees. Specific studies should consider host-dependent pathogen modifications and effects on involved host species. Both the plasticity of bee pathogens and the ecological consequences of spillover suggest a holistic approach to bee health and the implementation of a One Health approach.
Collapse
Affiliation(s)
| | - Laura Bortolotti
- Council for Agricultural Research and Agricultural Economics Analysis, Centre for Agriculture and Environment Research (CREA-AA), Via di Saliceto 80, 40128 Bologna, Italy; (A.N.); (G.C.)
| | | |
Collapse
|
19
|
Growth and Maintenance of Wolbachia in Insect Cell Lines. INSECTS 2021; 12:insects12080706. [PMID: 34442272 PMCID: PMC8396524 DOI: 10.3390/insects12080706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary Wolbachia is an intracellular bacterium that occurs in arthropods and in filarial worms. First described nearly a century ago in the reproductive tissues of Culex pipiens mosquitoes, Wolbachia is now known to occur in roughly 50% of insect species, and has been considered the most abundant intracellular bacterium on earth. In insect hosts, Wolbachia modifies reproduction in ways that facilitate spread of the microbe within the host population, but otherwise is relatively benign. In this “gene drive” capacity, Wolbachia provides a tool for manipulating mosquito populations. In mosquitoes, Wolbachia causes cytoplasmic incompatibility, in which the fusion of egg and sperm nuclei is disrupted, and eggs fail to hatch, depending on the presence/absence of Wolbachia in the parent insects. Recent findings demonstrate that Wolbachia from infected insects can be transferred into mosquito species that do not host a natural infection. When transinfected into Aedes aegypti, an important vector of dengue and Zika viruses, Wolbachia causes cytoplasmic incompatibility and, in addition, decreases the mosquito’s ability to transmit viruses to humans. This review addresses the maintenance of Wolbachia in insect cell lines, which provide a tool for high-level production of infectious bacteria. In vitro technologies will improve use of Wolbachia for pest control, and provide the microbiological framework for genetic engineering of this promising biocontrol agent. Abstract The obligate intracellular microbe, Wolbachia pipientis (Rickettsiales; Anaplasmataceae), is a Gram-negative member of the alpha proteobacteria that infects arthropods and filarial worms. Although closely related to the genera Anaplasma and Ehrlichia, which include pathogens of humans, Wolbachia is uniquely associated with invertebrate hosts in the clade Ecdysozoa. Originally described in Culex pipiens mosquitoes, Wolbachia is currently represented by 17 supergroups and is believed to occur in half of all insect species. In mosquitoes, Wolbachia acts as a gene drive agent, with the potential to modify vector populations; in filarial worms, Wolbachia functions as a symbiont, and is a target for drug therapy. A small number of Wolbachia strains from supergroups A, B, and F have been maintained in insect cell lines, which are thought to provide a more permissive environment than the natural host. When transferred back to an insect host, Wolbachia produced in cultured cells are infectious and retain reproductive phenotypes. Here, I review applications of insect cell lines in Wolbachia research and describe conditions that facilitate Wolbachia infection and replication in naive host cells. Progress in manipulation of Wolbachia in vitro will enable genetic and biochemical advances that will facilitate eventual genetic engineering of this important biological control agent.
Collapse
|
20
|
Native Wolbachia influence bacterial composition in the major vector mosquito Aedes aegypti. Arch Microbiol 2021; 203:5225-5240. [PMID: 34351459 DOI: 10.1007/s00203-021-02506-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022]
Abstract
Bacterial species that inhabit mosquito microbiota play an essential role in determining vector competence. In addition to critical factors such as host genotype, feeding habit and geography, intracellular endosymbiont Wolbachia pipientis modulates microbial composition considerably. In the present study, we assessed the midgut bacterial diversity of Aedes aegypti mosquitoes that is either naturally carrying Wolbachia (wAegB+) or antibiotic cured (wAegB-) through a culture-independent approach. Towards this, 16S rRNA gene libraries were constructed from midgut bacterial DNA of laboratory-reared larvae and adult female mosquitoes fed with sugar or blood. Among them 33 genera comprising 65 distinct species were identified, where > 75% of bacterial taxa were commonly shared by both groups (wAegB+ and wAegB-), implying a subtle shift in the bacterial composition influenced by Wolbachia. Though the change was mostly restricted to minimally represented species, predominant taxa were observed unaltered except for certain genera. While Serratia sp. was abundant in Wolbachia carrying mosquitoes, Pseudomonas sp. and Acinetobacter sp. were predominant in Wolbachia free mosquitoes. This result demonstrates the influence of Wolbachia that could modulate the colonization of certain resident bacterial taxa through competitive interactions. Overall, this study shed more light on the impact of wAegB in altering the gut microbiota of Ae. aegypti mosquito, which might challenge host fitness and vector competence.
Collapse
|
21
|
Demirbas-Uzel G, Augustinos AA, Doudoumis V, Parker AG, Tsiamis G, Bourtzis K, Abd-Alla AMM. Interactions Between Tsetse Endosymbionts and Glossina pallidipes Salivary Gland Hypertrophy Virus in Glossina Hosts. Front Microbiol 2021; 12:653880. [PMID: 34122367 PMCID: PMC8194091 DOI: 10.3389/fmicb.2021.653880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Tsetse flies are the sole cyclic vector for trypanosomosis, the causative agent for human African trypanosomosis or sleeping sickness and African animal trypanosomosis or nagana. Tsetse population control is the most efficient strategy for animal trypanosomosis control. Among all tsetse control methods, the Sterile Insect Technique (SIT) is one of the most powerful control tactics to suppress or eradicate tsetse flies. However, one of the challenges for the implementation of SIT is the mass production of target species. Tsetse flies have a highly regulated and defined microbial fauna composed of three bacterial symbionts (Wigglesworthia, Sodalis and Wolbachia) and a pathogenic Glossina pallidipes Salivary Gland Hypertrophy Virus (GpSGHV) which causes reproduction alterations such as testicular degeneration and ovarian abnormalities with reduced fertility and fecundity. Interactions between symbionts and GpSGHV might affect the performance of the insect host. In the present study, we assessed the possible impact of GpSGHV on the prevalence of tsetse endosymbionts under laboratory conditions to decipher the bidirectional interactions on six Glossina laboratory species. The results indicate that tsetse symbiont densities increased over time in tsetse colonies with no clear impact of the GpSGHV infection on symbionts density. However, a positive correlation between the GpSGHV and Sodalis density was observed in Glossina fuscipes species. In contrast, a negative correlation between the GpSGHV density and symbionts density was observed in the other taxa. It is worth noting that the lowest Wigglesworthia density was observed in G. pallidipes, the species which suffers most from GpSGHV infection. In conclusion, the interactions between GpSGHV infection and tsetse symbiont infections seems complicated and affected by the host and the infection density of the GpSGHV and tsetse symbionts.
Collapse
Affiliation(s)
- Güler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Antonios A Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Vangelis Doudoumis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|
22
|
Vreysen MJB, Abd-Alla AMM, Bourtzis K, Bouyer J, Caceres C, de Beer C, Oliveira Carvalho D, Maiga H, Mamai W, Nikolouli K, Yamada H, Pereira R. The Insect Pest Control Laboratory of the Joint FAO/IAEA Programme: Ten Years (2010-2020) of Research and Development, Achievements and Challenges in Support of the Sterile Insect Technique. INSECTS 2021; 12:346. [PMID: 33924539 PMCID: PMC8070182 DOI: 10.3390/insects12040346] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
The Joint FAO/IAEA Centre (formerly called Division) of Nuclear Techniques in Food and Agriculture was established in 1964 and its accompanying laboratories in 1961. One of its subprograms deals with insect pest control, and has the mandate to develop and implement the sterile insect technique (SIT) for selected key insect pests, with the goal of reducing the use of insecticides, reducing animal and crop losses, protecting the environment, facilitating international trade in agricultural commodities and improving human health. Since its inception, the Insect Pest Control Laboratory (IPCL) (formerly named Entomology Unit) has been implementing research in relation to the development of the SIT package for insect pests of crops, livestock and human health. This paper provides a review of research carried out between 2010 and 2020 at the IPCL. Research on plant pests has focused on the development of genetic sexing strains, characterizing and assessing the performance of these strains (e.g., Ceratitis capitata), elucidation of the taxonomic status of several members of the Bactrocera dorsalis and Anastrepha fraterculus complexes, the use of microbiota as probiotics, genomics, supplements to improve the performance of the reared insects, and the development of the SIT package for fruit fly species such as Bactrocera oleae and Drosophila suzukii. Research on livestock pests has focused on colony maintenance and establishment, tsetse symbionts and pathogens, sex separation, morphology, sterile male quality, radiation biology, mating behavior and transportation and release systems. Research with human disease vectors has focused on the development of genetic sexing strains (Anopheles arabiensis, Aedes aegypti and Aedes albopictus), the development of a more cost-effective larvae and adult rearing system, assessing various aspects of radiation biology, characterizing symbionts and pathogens, studying mating behavior and the development of quality control procedures, and handling and release methods. During the review period, 13 coordinated research projects (CRPs) were completed and six are still being implemented. At the end of each CRP, the results were published in a special issue of a peer-reviewed journal. The review concludes with an overview of future challenges, such as the need to adhere to a phased conditional approach for the implementation of operational SIT programs, the need to make the SIT more cost effective, to respond with demand driven research to solve the problems faced by the operational SIT programs and the use of the SIT to address a multitude of exotic species that are being introduced, due to globalization, and established in areas where they could not survive before, due to climate change.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hanano Yamada
- Insect Pest Control Subprogramme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, A-1400 Vienna, Austria; (M.J.B.V.); (A.M.M.A.-A.); (K.B.); (J.B.); (C.C.); (C.d.B.); (D.O.C.); (H.M.); (W.M.); (K.N.); (R.P.)
| | | |
Collapse
|
23
|
Dada N, Jupatanakul N, Minard G, Short SM, Akorli J, Villegas LM. Considerations for mosquito microbiome research from the Mosquito Microbiome Consortium. MICROBIOME 2021; 9:36. [PMID: 33522965 PMCID: PMC7849159 DOI: 10.1186/s40168-020-00987-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/28/2020] [Indexed: 05/17/2023]
Abstract
In the past decade, there has been increasing interest in mosquito microbiome research, leading to large amounts of data on different mosquito species, with various underlying physiological characteristics, and from diverse geographical locations. However, guidelines and standardized methods for conducting mosquito microbiome research are lacking. To streamline methods in mosquito microbiome research and optimize data quality, reproducibility, and comparability, as well as facilitate data curation in a centralized location, we are establishing the Mosquito Microbiome Consortium, a collaborative initiative for the advancement of mosquito microbiome research. Our overall goal is to collectively work on unraveling the role of the mosquito microbiome in mosquito biology, while critically evaluating its potential for mosquito-borne disease control. This perspective serves to introduce the consortium and invite broader participation. It highlights the issues we view as most pressing to the community and proposes guidelines for conducting mosquito microbiome research. We focus on four broad areas in this piece: (1) sampling/experimental design for field, semi-field, or laboratory studies; (2) metadata collection; (3) sample processing, sequencing, and use of appropriate controls; and (4) data handling and analysis. We finally summarize current challenges and highlight future directions in mosquito microbiome research. We hope that this piece will spark discussions around this area of disease vector biology, as well as encourage careful considerations in the design and implementation of mosquito microbiome research. Video Abstract.
Collapse
Affiliation(s)
- Nsa Dada
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway.
| | - Natapong Jupatanakul
- Protein-Ligand Engineering and Molecular Biology Research Team, National Center for Genetic Engineering and Biotechnology, Khlong Neung, Thailand
| | - Guillaume Minard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Sarah M Short
- Department of Entomology, The Ohio State University, Columbus, USA
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | |
Collapse
|
24
|
Heliconius Butterflies Host Characteristic and Phylogenetically Structured Adult-Stage Microbiomes. Appl Environ Microbiol 2020; 86:AEM.02007-20. [PMID: 33008816 DOI: 10.1128/aem.02007-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Lepidoptera (butterflies and moths) are diverse and ecologically important, yet we know little about how they interact with microbes as adults. Due to metamorphosis, the form and function of their adult-stage microbiomes might be very different from those of microbiomes in the larval stage (caterpillars). We studied adult-stage microbiomes of Heliconius and closely related passion-vine butterflies (Heliconiini), which are an important model system in evolutionary biology. To characterize the structure and dynamics of heliconiine microbiomes, we used field collections of wild butterflies, 16S rRNA gene sequencing, quantitative PCR, and shotgun metagenomics. We found that Heliconius butterflies harbor simple and abundant bacterial communities that are moderately consistent among conspecific individuals and over time. Heliconiine microbiomes also exhibited a strong signal of the host phylogeny, with a major distinction between Heliconius and other butterflies. These patterns were largely driven by differing relative abundances of bacterial phylotypes shared among host species and genera, as opposed to the presence or absence of host-specific phylotypes. We suggest that the phylogenetic structure in heliconiine microbiomes arises from conserved host traits that differentially filter microbes from the environment. While the relative importance of different traits remains unclear, our data indicate that pollen feeding (unique to Heliconius) is not a primary driver. Using shotgun metagenomics, we also discovered trypanosomatids and microsporidia to be prevalent in butterfly guts, raising the possibility of antagonistic interactions between eukaryotic parasites and colocalized gut bacteria. Our discovery of characteristic and phylogenetically structured microbiomes provides a foundation for tests of adult-stage microbiome function, a poorly understood aspect of lepidopteran biology.IMPORTANCE Many insects host microbiomes with important ecological functions. However, the prevalence of this phenomenon is unclear because in many insect taxa, microbiomes have been studied in only part of the life cycle, if at all. A prominent example is butterflies and moths, in which the composition and functional role of adult-stage microbiomes are largely unknown. We comprehensively characterized microbiomes in adult passion-vine butterflies. Butterfly-associated bacterial communities are generally abundant in guts, consistent within populations, and composed of taxa widely shared among hosts. More closely related butterflies harbor more similar microbiomes, with the most dramatic shift in microbiome composition occurring in tandem with a suite of ecological and life history traits unique to the genus Heliconius Butterflies are also frequently infected with previously undescribed eukaryotic parasites, which may interact with bacteria in important ways. These findings advance our understanding of butterfly biology and insect-microbe interactions generally.
Collapse
|
25
|
Duplouy A, Pranter R, Warren-Gash H, Tropek R, Wahlberg N. Towards unravelling Wolbachia global exchange: a contribution from the Bicyclus and Mylothris butterflies in the Afrotropics. BMC Microbiol 2020; 20:319. [PMID: 33081703 PMCID: PMC7576836 DOI: 10.1186/s12866-020-02011-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/14/2020] [Indexed: 12/31/2022] Open
Abstract
Background Phylogenetically closely related strains of maternally inherited endosymbiotic bacteria are often found in phylogenetically divergent, and geographically distant insect host species. The interspecies transfer of the symbiont Wolbachia has been thought to have occurred repeatedly, facilitating its observed global pandemic. Few ecological interactions have been proposed as potential routes for the horizontal transfer of Wolbachia within natural insect communities. These routes are however likely to act only at the local scale, but how they may support the global distribution of some Wolbachia strains remains unclear. Results Here, we characterize the Wolbachia diversity in butterflies from the tropical forest regions of central Africa to discuss transfer at both local and global scales. We show that numerous species from both the Mylothris (family Pieridae) and Bicyclus (family Nymphalidae) butterfly genera are infected with similar Wolbachia strains, despite only minor interclade contacts across the life cycles of the species within their partially overlapping ecological niches. The phylogenetic distance and differences in resource use between these genera rule out the role of ancestry, hybridization, and shared host-plants in the interspecies transfer of the symbiont. Furthermore, we could not identify any shared ecological factors to explain the presence of the strains in other arthropod species from other habitats, or even ecoregions. Conclusion Only the systematic surveys of the Wolbachia strains from entire species communities may offer the material currently lacking for understanding how Wolbachia may transfer between highly different and unrelated hosts, as well as across environmental scales. Supplementary information Supplementary information accompanies this paper at 10.1186/s12866-020-02011-2.
Collapse
Affiliation(s)
- Anne Duplouy
- Department of Biology, Lund University, Lund, Sweden. .,Organismal and Evolutionary Biology Research Programme, The University of Helsinki, Helsinki, Finland.
| | - Robin Pranter
- Department of Biology, Lund University, Lund, Sweden
| | | | - Robert Tropek
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | | |
Collapse
|
26
|
Qadri M, Short S, Gast K, Hernandez J, Wong ACN. Microbiome Innovation in Agriculture: Development of Microbial Based Tools for Insect Pest Management. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.547751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
27
|
Taghikhani R, Sharomi O, Gumel AB. Dynamics of a two-sex model for the population ecology of dengue mosquitoes in the presence of Wolbachia. Math Biosci 2020; 328:108426. [PMID: 32712316 DOI: 10.1016/j.mbs.2020.108426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/30/2022]
Abstract
The release of Wolbachia-infected mosquitoes into the population of wild mosquitoes is one of the promising biological control method for combating the population abundance of mosquitoes that cause deadly diseases, such as dengue. In this study, a new two-sex mathematical model for the population ecology of dengue mosquitoes and disease is designed and used to assess the population-level impact of the periodic release of Wolbachia-infected mosquitoes. Rigorous analysis of the model, which incorporates many of the lifecycle features of dengue disease and the cytoplasmic incompatibility property of Wolbachia bacterium in mosquitoes, reveal that the disease-free equilibrium of the model is locally-asymptotically stable whenever a certain epidemiological threshold, known as the reproduction number of the model (denoted by R0W), is less than unity. The model is shown, using centre manifold theory, to undergo the phenomenon of backward bifurcation at R0W=1. The consequence of this bifurcation is that Wolbachia may not persist, or dengue disease may not be effectively-controlled, when R0W is less than unity. Such persistence and elimination will depend on the initial sizes of the sub-populations of the model. Two mechanisms were identified for which the backward bifurcation phenomenon can be removed. When backward bifurcation does not occur, the associated non-trivial disease-free equilibrium is shown to be globally-asymptotically stable when the reproduction number of the model is less than unity. Numerical simulations, using data relevant to dengue transmission dynamics in northern Queensland, Australia, shows that releasing Wolbachia-infected mosquitoes every three weeks, for a one-year duration, can lead to the effective control of the population abundance of the local wild mosquitoes, and that such effective control increases with increasing number of Wolbachia-infected mosquitoes released (resulting in the reduction of over 90% of the wild mosquito population from their baseline values). Furthermore, simulations show that releasing only adult male Wolbachia-infected mosquitoes provide more beneficial population-level impact (in terms of reducing the population abundance of the wild mosquitoes), in comparison to releasing adult female Wolbachia-infected mosquitoes. Increasing the frequency of Wolbachia release (e.g., from the default release frequency of every three weeks to weekly) does not significantly affect the effectiveness of the Wolbachia-based control program in curtailing the local abundance of the wild mosquitoes. Finally, it was shown that the cytoplasmic incompatibility property of Wolbachia bacterium does not significantly affect the effectiveness of the Wolbachia-based mosquito control strategy implemented in the community.
Collapse
Affiliation(s)
- Rahim Taghikhani
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Abba B Gumel
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA; Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
28
|
Mateos M, Martinez Montoya H, Lanzavecchia SB, Conte C, Guillén K, Morán-Aceves BM, Toledo J, Liedo P, Asimakis ED, Doudoumis V, Kyritsis GA, Papadopoulos NT, Augustinos AA, Segura DF, Tsiamis G. Wolbachia pipientis Associated With Tephritid Fruit Fly Pests: From Basic Research to Applications. Front Microbiol 2020; 11:1080. [PMID: 32582067 PMCID: PMC7283806 DOI: 10.3389/fmicb.2020.01080] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Members of the true fruit flies (family Tephritidae) are among the most serious agricultural pests worldwide, whose control and management demands large and costly international efforts. The need for cost-effective and environmentally friendly integrated pest management (IPM) has led to the development and implementation of autocidal control strategies. These approaches include the widely used sterile insect technique and the incompatible insect technique (IIT). IIT relies on maternally transmitted bacteria (namely Wolbachia) to cause a conditional sterility in crosses between released mass-reared Wolbachia-infected males and wild females, which are either uninfected or infected with a different Wolbachia strain (i.e., cytoplasmic incompatibility; CI). Herein, we review the current state of knowledge on Wolbachia-tephritid interactions including infection prevalence in wild populations, phenotypic consequences, and their impact on life history traits. Numerous pest tephritid species are reported to harbor Wolbachia infections, with a subset exhibiting high prevalence. The phenotypic effects of Wolbachia have been assessed in very few tephritid species, due in part to the difficulty of manipulating Wolbachia infection (removal or transinfection). Based on recent methodological advances (high-throughput DNA sequencing) and breakthroughs concerning the mechanistic basis of CI, we suggest research avenues that could accelerate generation of necessary knowledge for the potential use of Wolbachia-based IIT in area-wide integrated pest management (AW-IPM) strategies for the population control of tephritid pests.
Collapse
Affiliation(s)
- Mariana Mateos
- Departments of Ecology and Conservation Biology, and Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, United States
| | - Humberto Martinez Montoya
- Laboratorio de Genética y Genómica Comparativa, Unidad Académica Multidisciplinaria Reynosa Aztlan, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Mexico
| | - Silvia B Lanzavecchia
- Instituto de Genética 'Ewald A. Favret' - GV IABIMO (INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | - Claudia Conte
- Instituto de Genética 'Ewald A. Favret' - GV IABIMO (INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | | | | | - Jorge Toledo
- El Colegio de la Frontera Sur, Tapachula, Mexico
| | - Pablo Liedo
- El Colegio de la Frontera Sur, Tapachula, Mexico
| | - Elias D Asimakis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Vangelis Doudoumis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Georgios A Kyritsis
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Larissa, Greece
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Larissa, Greece
| | - Antonios A Augustinos
- Department of Plant Protection, Institute of Industrial and Forage Crops, Hellenic Agricultural Organization - DEMETER, Patras, Greece
| | - Diego F Segura
- Instituto de Genética 'Ewald A. Favret' - GV IABIMO (INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| |
Collapse
|
29
|
Detection of Wolbachia Infections in Natural and Laboratory Populations of the Moroccan Hessian Fly, Mayetiola destructor (Say). INSECTS 2020; 11:insects11060340. [PMID: 32498270 PMCID: PMC7349215 DOI: 10.3390/insects11060340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023]
Abstract
Mayetiola destructor (Hessian fly) is a destructive pest of wheat in several parts of the world. Here, we investigated the presence of reproductive symbionts and the effect of the geographical location on the bacterial community associated to adult Hessian flies derived from four major wheat producing areas in Morocco. Using specific 16S rDNA PCR assay, Wolbachia infection was observed in 3% of the natural populations and 10% of the laboratory population. High throughput sequencing of V3-V4 region of the bacterial 16S rRNA gene revealed that the microbiota of adult Hessian flies was significantly influenced by their native regions. A total of 6 phyla, 10 classes and 79 genera were obtained from all the samples. Confirming the screening results, Wolbachia was identified as well in the natural Hessian flies. Phylogenetic analysis using the sequences obtained in this study indicated that there is one Wolbachia strain belonging to supergroup A. To our knowledge, this is the first report of Wolbachia in Hessian fly populations. The observed low abundance of Wolbachia most likely does not indicate induction of reproductive incompatibility. Yet, this infection may give a new insight into the use of Wolbachia for the fight against Hessian fly populations.
Collapse
|
30
|
Xu P, Yang L, Yang X, Li T, Graham RI, Wu K, Wilson K. Novel partiti-like viruses are conditional mutualistic symbionts in their normal lepidopteran host, African armyworm, but parasitic in a novel host, Fall armyworm. PLoS Pathog 2020; 16:e1008467. [PMID: 32569314 PMCID: PMC7332103 DOI: 10.1371/journal.ppat.1008467] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 07/02/2020] [Accepted: 03/08/2020] [Indexed: 11/18/2022] Open
Abstract
Recent advances in next generation sequencing (NGS) (e.g. metagenomic and transcriptomic sequencing) have facilitated the discovery of a large number of new insect viruses, but the characterization of these viruses is still in its infancy. Here, we report the discovery, using RNA-seq, of three new partiti-like viruses from African armyworm, Spodoptera exempta (Lepidoptera: Noctuidae), which are all vertically-transmitted transovarially from mother to offspring with high efficiency. Experimental studies show that the viruses reduce their host's growth rate and reproduction, but enhance their resistance to a nucleopolyhedrovirus (NPV). Via microinjection, these partiti-like viruses were transinfected into a novel host, a newly-invasive crop pest in sub-Saharan Africa (SSA), the Fall armyworm, S. frugiperda. This revealed that in this new host, these viruses appear to be deleterious without any detectable benefit; reducing their new host's reproductive rate and increasing their susceptibility to NPV. Thus, the partiti-like viruses appear to be conditional mutualistic symbionts in their normal host, S. exempta, but parasitic in the novel host, S. frugiperda. Transcriptome analysis of S. exempta and S. frugiperda infected, or not, with the partiti-like viruses indicates that the viruses may regulate pathways related to immunity and reproduction. These findings suggest a possible pest management strategy via the artificial host-shift of novel viruses discovered by NGS.
Collapse
Affiliation(s)
- Pengjun Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Liyu Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xianming Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tong Li
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Robert I. Graham
- Department of Animal and Agriculture, Hartpury University, Gloucester, United Kingdom
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kenneth Wilson
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
31
|
Li F, Li P, Hua H, Hou M, Wang F. Diversity, Tissue Localization, and Infection Pattern of Bacterial Symbionts of the White-Backed Planthopper, Sogatella furcifera (Hemiptera: Delphacidae). MICROBIAL ECOLOGY 2020; 79:720-730. [PMID: 31595328 DOI: 10.1007/s00248-019-01433-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
The white-backed planthopper (WBPH), Sogatella furcifera (Horváth), is a destructive pest of rice. Bacterial symbionts play an important role in insect hosts, especially hemipteran hosts. This study was designed to examine the bacterial symbionts of the WBPH using 16S rDNA high-throughput sequencing. A total of 63 and 177 operational taxonomic units (OTUs) were identified in females and males of three WBPH populations, respectively. These OTUs included bacteria of 75 genera from 11 phyla, where Wolbachia, Cardinium, and Asaia were the dominant genera, accounting for over 97.99% of all the symbiotic bacteria. Fluorescence in situ hybridization detected Wolbachia, Cardinium, and Asaia in the salivary glands, guts, testes, and eggs of the WBPH, indicating the potential for both horizontal and vertical transmission. Moreover, the infection pattern of the three dominant bacterial symbionts was detected in six WBPH populations. The frequencies of Wolbachia infection of females and Cardinium infection of both sexes were over 96.7%. Wolbachia infection of males ranged between 46.7 and 63.3%, which was significantly lower than that observed for females. Asaia infection of both sexes varied substantially among the populations. These results indicate that the complex host-symbiotic bacteria interaction is influenced by host sex and geographical origin and potentially by the transmission modes of the symbionts.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongxia Hua
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maolin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, 541399, China.
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China.
| | - Fulian Wang
- College of Agriculture, Yangtze University, Jingzhou, 434000, China
| |
Collapse
|
32
|
Balaji S, Jayachandran S, Prabagaran SR. Evidence for the natural occurrence of Wolbachia in Aedes aegypti mosquitoes. FEMS Microbiol Lett 2020; 366:5380775. [PMID: 30869785 DOI: 10.1093/femsle/fnz055] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Wolbachia, a Gram-negative bacterium, is widely known to be present in arthropods and nematodes. Of late, great impetus is given to employ this intracellular bacterium, as an alternative to conventional biocontrol agents for the control of mosquitoes because of its inherent ability to induce sperm-egg incompatibility, feminisation etc. By employing molecular tools, we have shown the presence of Wolbachia from Aedes aegypti mosquito population collected from Coimbatore, India by PCR amplifying the Ae. aegypti mosquito genome with Wolbachia specific 16S rRNA, wsp and ftsZ gene primers. The phylogenetic analysis of these gene sequences incorporating MLST and GenBank reference sequences has confirmed the occurrence of Wolbachia supergroup B in Ae. aegypti. In addition, qRT-PCR results have shown the dynamics of Wolbachia across the developmental stages of mosquito. The absence of Wolbachia in tetracycline-treated Ae. aegypti mosquitoes evidenced by transmission electron microscopy reinforced our finding conclusively. After confirming their persistence through generations, we have designated Wolbachia from Ae. aegypti as wAegB. In our considered view, wAegB could play a dynamic role in impeding mosquito multiplication and consequently impinging transmission of the dreadful dengue.
Collapse
Affiliation(s)
- Sivaraman Balaji
- Molecular Microbiology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
| | | | | |
Collapse
|
33
|
Conte CA, Segura DF, Milla FH, Augustinos A, Cladera JL, Bourtzis K, Lanzavecchia SB. Wolbachia infection in Argentinean populations of Anastrepha fraterculus sp1: preliminary evidence of sex ratio distortion by one of two strains. BMC Microbiol 2019; 19:289. [PMID: 31870290 PMCID: PMC6929328 DOI: 10.1186/s12866-019-1652-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Wolbachia, one of the most abundant taxa of intracellular Alphaproteobacteria, is widespread among arthropods and filarial nematodes. The presence of these maternally inherited bacteria is associated with modifications of host fitness, including a variety of reproductive abnormalities, such as cytoplasmic incompatibility, thelytokous parthenogenesis, host feminization and male-killing. Wolbachia has attracted much interest for its role in biological, ecological and evolutionary processes as well as for its potential use in novel and environmentally-friendly strategies for the control of insect pests and disease vectors including a major agricultural pest, the South American fruit fly, Anastrepha fraterculus Wiedemann (Diptera: Tephritidae). Results We used wsp, 16S rRNA and a multilocus sequence typing (MLST) scheme including gatB, coxA, hcpA, fbpA, and ftsZ genes to detect and characterize the Wolbachia infection in laboratory strains and wild populations of A. fraterculus from Argentina. Wolbachia was found in all A. fraterculus individuals studied. Nucleotide sequences analysis of wsp gene allowed the identification of two Wolbachia nucleotide variants (named wAfraCast1_A and wAfraCast2_A). After the analysis of 76 individuals, a high prevalence of the wAfraCast2_A variant was found both, in laboratory (82%) and wild populations (95%). MLST analysis identified both Wolbachia genetic variants as sequence type 13. Phylogenetic analysis of concatenated MLST datasets clustered wAfraCast1/2_A in the supergroup A. Paired-crossing experiments among single infected laboratory strains showed a phenotype specifically associated to wAfraCast1_A that includes slight detrimental effects on larval survival, a female-biased sex ratio; suggesting the induction of male-killing phenomena, and a decreased proportion of females producing descendants that appears attributable to the lack of sperm in their spermathecae. Conclusions We detected and characterized at the molecular level two wsp gene sequence variants of Wolbachia both in laboratory and wild populations of A. fraterculus sp.1 from Argentina. Crossing experiments on singly-infected A. fraterculus strains showed evidence of a male killing-like mechanism potentially associated to the wAfraCast1_A - A. fraterculus interactions. Further mating experiments including antibiotic treatments and the analysis of early and late immature stages of descendants will contribute to our understanding of the phenotypes elicited by the Wolbachia variant wAfraCast1_A in A. fraterculus sp.1.
Collapse
Affiliation(s)
- Claudia Alejandra Conte
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina
| | - Diego Fernando Segura
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET), Ministerio de Ciencia, Tecnología e Innovación Productiva (MINCyT), Buenos Aires, Argentina
| | - Fabian Horacio Milla
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina
| | - Antonios Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Jorge Luis Cladera
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Silvia Beatriz Lanzavecchia
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
34
|
Devescovi F, Conte CA, Augustinos A, Martinez EIC, Segura DF, Caceres C, Lanzavecchia SB, Bourtzis K. Symbionts do not affect the mating incompatibility between the Brazilian-1 and Peruvian morphotypes of the Anastrepha fraterculus cryptic species complex. Sci Rep 2019; 9:18319. [PMID: 31797888 PMCID: PMC6893037 DOI: 10.1038/s41598-019-54704-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/14/2019] [Indexed: 11/11/2022] Open
Abstract
The South American fruit fly, Anastrepha fraterculus, is clearly undergoing a speciation process. Among others, two of their morphotypes, the Brazilian-1 and Peruvian, have accumulated differences in pre- and post-zygotic mechanisms resulting in a degree of reproductive isolation. Both harbor a different strain of Wolbachia, which is a widespread endosymbiotic bacterium among many invertebrates producing a range of reproductive effects. In this paper, we studied the role of this bacterium as one of the factors involved in such isolation process. Infected and cured laboratory colonies were used to test pre- and post-zygotic effects, with special emphasis in uni- and bi-directional cytoplasmic incompatibility (CI). We showed that Wolbachia is the only known reproductive symbiont present in these morphotypes. Wolbachia reduced the ability for embryonic development in crosses involving cured females and infected males within each morphotype (uni-directional CI). This inhibition showed to be more effective in the Peruvian morphotype. Bi-directional CI was not evidenced, suggesting the presence of compatible Wolbachia strains. We conclude that Wolbachia is not directly involved in the speciation process of these morphotypes. Other mechanisms rather than CI should be explored in order to explain the reduced mating compatibility between the Brazilian-1 and Peruvian morphotypes.
Collapse
Affiliation(s)
- Francisco Devescovi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO-CONICET), Hurlingham, B1686, Buenos Aires, Argentina
- Instituto de Genética "E.A. Favret", Instituto Nacional de Tecnología Agropecuaria, Hurlingham, B1686, Buenos Aires, Argentina
| | - Claudia A Conte
- Instituto de Genética "E.A. Favret", Instituto Nacional de Tecnología Agropecuaria, Hurlingham, B1686, Buenos Aires, Argentina
| | - Antonios Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
- Department of Plant Protection, Institute of Industrial and Forage Crops, Hellenic Agricultural Organization - DEMETER, Patras, Greece
| | - Elena I Cancio Martinez
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Diego F Segura
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO-CONICET), Hurlingham, B1686, Buenos Aires, Argentina
- Instituto de Genética "E.A. Favret", Instituto Nacional de Tecnología Agropecuaria, Hurlingham, B1686, Buenos Aires, Argentina
| | - Carlos Caceres
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Silvia B Lanzavecchia
- Instituto de Genética "E.A. Favret", Instituto Nacional de Tecnología Agropecuaria, Hurlingham, B1686, Buenos Aires, Argentina
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.
| |
Collapse
|
35
|
Chen R, Su X, Chen J, Jiang L, Qiao GX. Wolbachia Infection in Two Species: Novel Views on the Colonization Ability of Wolbachia in Aphids. ENVIRONMENTAL ENTOMOLOGY 2019; 48:1388-1393. [PMID: 31644794 DOI: 10.1093/ee/nvz122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Indexed: 06/10/2023]
Abstract
Wolbachia pipientis (Rickettsiales: Anaplasmataceae) is an intracellular symbiont residing in arthropods and filarial nematodes. Sixteen supergroups have been described from different host taxa. Four supergroups A, B, M, and N were found in aphids according to prior studies. The cotton aphid, Aphis gossypii, and the green peach aphid, Myzus persicae, are typical polyphagous species with global distributions. We conducted an extensive and systematic survey of Wolbachia infections in these aphids from China. High incidences of Wolbachia infection were detected. The total infection incidence was 60% in A. gossypii and 88% in M. persicae. Both aphid species were infected with supergroups A, B and M. Different incidences of infection were observed among the seven geographical regions in China, which suggested a positive relationship between Wolbachia infections and the geographical distribution of aphid species. Furthermore, multiple infection patterns (M, B, A&M, B&M, and A&B&M) were observed. Infection patterns M and B&M were detected in almost all populations. Patterns A&B&M and B showed geographical restriction in North China. Three factors can possibly influence the Wolbachia infection incidences and patterns: the geographical distribution, aphid species, and different supergroup types.
Collapse
Affiliation(s)
- Rui Chen
- Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Xiaomin Su
- Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Jing Chen
- Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Liyun Jiang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Ge-Xia Qiao
- Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
36
|
Augustinos AA, Moraiti CA, Drosopoulou E, Kounatidis I, Mavragani-Tsipidou P, Bourtzis K, Papadopoulos NT. Old residents and new arrivals of Rhagoletis species in Europe. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:701-712. [PMID: 30744707 DOI: 10.1017/s0007485319000063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The genus Rhagoletis (Diptera: Tephritidae) comprises more than 65 species distributed throughout Europe, Asia and America, including many species of high economic importance. Currently, there are three Rhagoletis species that infest fruits and nuts in Europe. The European cherry fruit fly, Rhagoletis cerasi (may have invaded Europe a long time ago from the Caucasian area of West Asia), and two invasive species (recently introduced from North America): the eastern American cherry fruit fly, R. cingulata, and the walnut husk fly, R. completa. The presence of different Rhagoletis species may enhance population dynamics and establish an unpredictable economic risk for several fruit and nut crops in Europe. Despite their excessive economic importance, little is known on population dynamics, genetics and symbiotic associations for making sound pest control decisions in terms of species-specific, environmental friendly pest control methods. To this end, the current paper (a) summarizes recently accumulated genetic and population data for the European Rhagoletis species and their association with the endosymbiont Wolbachia pipientis, and (b) explores the possibility of using the current knowledge for implementing the innovative biological control methods of sterile insect technique and incompatible insect technique.
Collapse
Affiliation(s)
- A A Augustinos
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - C A Moraiti
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, N. Ionia (Volos), Magnesia, Greece
| | - E Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - I Kounatidis
- Cell Biology, Development, and Genetics Laboratory, Department of Biochemistry, University of Oxford, South Park Road, Oxford OX1 3QU, UK
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - P Mavragani-Tsipidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - K Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - N T Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, N. Ionia (Volos), Magnesia, Greece
| |
Collapse
|
37
|
Tseng SP, Wetterer JK, Suarez AV, Lee CY, Yoshimura T, Shoemaker D, Yang CCS. Genetic Diversity and Wolbachia Infection Patterns in a Globally Distributed Invasive Ant. Front Genet 2019; 10:838. [PMID: 31608104 PMCID: PMC6758599 DOI: 10.3389/fgene.2019.00838] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/13/2019] [Indexed: 11/23/2022] Open
Abstract
Understanding the phylogeographic history of an invasive species may facilitate reconstructing the history and routes of its invasion. The longhorn crazy ant, Paratrechina longicornis, is a ubiquitous agricultural and household pest throughout much of the tropics and subtropics, but little is known about the history of its spread. Here, we examine worldwide genetic variation in P. longicornis and its associated Wolbachia bacterial symbionts. Analyses of mtDNA sequences of 248 P. longicornis workers (one per colony) from 13 geographic regions reveal two highly diverged mtDNA clades that co-occur in most of the geographic regions. These two mtDNA clades are associated with different Wolbachia infection patterns, but are not congruent with patterns of nDNA (microsatellite) variation. Multilocus sequence typing reveals two distinct Wolbachia strains in P. longicornis, namely, wLonA and wLonF. The evolutionary histories of these two strains differ; wLonA appears to be primarily transmitted maternally, and patterns of mtDNA and nDNA variation and wLonA infection status are consistent with a relatively recent Wolbachia-induced selective sweep. In contrast, the observed patterns of mtDNA variation and wLonF infections suggest frequent horizontal transfer and losses of wLonF infections. The lack of nDNA structure among sampled geographic regions coupled with the finding that numerous mtDNA haplotypes are shared among regions implies that inadvertent long-distance movement through human commerce is common in P. longicornis and has shaped the genetic structure of this invasive ant worldwide.
Collapse
Affiliation(s)
- Shu-Ping Tseng
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - James K. Wetterer
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| | - Andrew V. Suarez
- Department of Evolution, Ecology and Behavior and Department of Entomology, University of Illinois Urbana-Champaign, IL, United States
| | - Chow-Yang Lee
- Department of Entomology, University of California, Riverside, CA, United States
| | - Tsuyoshi Yoshimura
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - DeWayne Shoemaker
- Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | | |
Collapse
|
38
|
Scolari F, Casiraghi M, Bonizzoni M. Aedes spp. and Their Microbiota: A Review. Front Microbiol 2019; 10:2036. [PMID: 31551973 PMCID: PMC6738348 DOI: 10.3389/fmicb.2019.02036] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
Aedes spp. are a major public health concern due to their ability to be efficient vectors of dengue, Chikungunya, Zika, and other arboviruses. With limited vaccines available and no effective therapeutic treatments against arboviruses, the control of Aedes spp. populations is currently the only strategy to prevent disease transmission. Host-associated microbes (i.e., microbiota) recently emerged as a promising field to be explored for novel environmentally friendly vector control strategies. In particular, gut microbiota is revealing its impact on multiple aspects of Aedes spp. biology, including vector competence, thus being a promising target for manipulation. Here we describe the technological advances, which are currently expanding our understanding of microbiota composition, abundance, variability, and function in the two main arboviral vectors, the mosquitoes Aedes aegypti and Aedes albopictus. Aedes spp. microbiota is described in light of its tight connections with the environment, with which mosquitoes interact during their various developmental stages. Unraveling the dynamic interactions among the ecology of the habitat, the mosquito and the microbiota have the potential to uncover novel physiological interdependencies and provide a novel perspective for mosquito control.
Collapse
Affiliation(s)
- Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Maurizio Casiraghi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
39
|
Carvajal TM, Hashimoto K, Harnandika RK, Amalin DM, Watanabe K. Detection of Wolbachia in field-collected Aedes aegypti mosquitoes in metropolitan Manila, Philippines. Parasit Vectors 2019; 12:361. [PMID: 31340862 PMCID: PMC6657204 DOI: 10.1186/s13071-019-3629-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/19/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Recent reports reveal the presence of Wolbachia in Ae. aegypti. Our study presents additional support for Wolbachia infection in Ae. aegypti by screening field-collected adult mosquitoes using two Wolbachia-specific molecular makers. METHODS A total of 672 Ae. aegypti adult mosquitoes were collected from May 2014 to January 2015 in Metropolitan Manila. Each individual sample was processed and screened for the presence of Wolbachia by selected markers, Wolbachia-specific 16S rDNA and its surface protein (wsp), under optimized PCR conditions and sequenced. RESULTS Totals of 113 (16.8%) and 89 (13.2%) individual mosquito samples were determined to be infected with Wolbachia using the wsp and 16S rDNA markers, respectively. The Ae. aegpyti wsp sample sequences were similar or identical to five known Wolbachia strains belonging to supergroups A and B while the majority of 16S rDNA sample sequences were similar to strains belonging to supergroup B. Overall, 80 (11.90%) individual mosquito samples showed positive amplifications in both markers and 69% showed congruence in supergroup identification (supergroup B). CONCLUSIONS By utilizing two Wolbachia-specific molecular makers, our study demonstrated the presence of Wolbachia from individual Ae. aegypti samples. Our results showed a low Wolbachia infection rate and inferred the detected strains belong to either supergroups A and B.
Collapse
Affiliation(s)
- Thaddeus M. Carvajal
- Department of Civil and Environmental Engineering, Ehime University, Matsuyama, Japan
- Biology Department, De La Salle University, Taft Avenue, Manila, Philippines
- Biological Control Research Unit, Center for Natural Science and Environmental Research, De La Salle University, Taft Avenue, Manila, Philippines
| | - Kazuki Hashimoto
- Department of Civil and Environmental Engineering, Ehime University, Matsuyama, Japan
| | | | - Divina M Amalin
- Biology Department, De La Salle University, Taft Avenue, Manila, Philippines
- Biological Control Research Unit, Center for Natural Science and Environmental Research, De La Salle University, Taft Avenue, Manila, Philippines
| | - Kozo Watanabe
- Department of Civil and Environmental Engineering, Ehime University, Matsuyama, Japan
- Biology Department, De La Salle University, Taft Avenue, Manila, Philippines
- Biological Control Research Unit, Center for Natural Science and Environmental Research, De La Salle University, Taft Avenue, Manila, Philippines
| |
Collapse
|
40
|
Zheng B, Liu X, Tang M, Xi Z, Yu J. Use of age-stage structural models to seek optimal Wolbachia-infected male mosquito releases for mosquito-borne disease control. J Theor Biol 2019; 472:95-109. [PMID: 30991073 DOI: 10.1016/j.jtbi.2019.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/31/2022]
Abstract
Due to the lack of vaccines and effective clinical cures, current methods to control mosquito-borne viral diseases such as dengue and Zika are primarily targeting to eradicate the major mosquito vectors. However, traditional means, including larval source reduction and applications of insecticides etc, are not sufficient to keep vector population density below the epidemic risk threshold. An innovative and operational strategy is to release Wolbachia-infected male mosquitoes into wild areas to sterilize wild female mosquitoes by cytoplasmic incompatibility. To help design optimal release strategies before large scale and expensive operations, we started with an age-stage discrete model to track daily abundances of wild female mosquitoes, which fitted the field data collected by Guangzhou Center for Disease Control and Prevention from 2015 to 2017 with an average Pearson correlation coefficient 0.7283. Then, we modeled the Wolbachia interference by introducing the proportional releases of Wolbachia-infected males, and eight optimal release policies which guarantee more than 95% suppression efficiency were sought. Finally, we assessed the robustness of the optimality of the eight release policies by allowing the migration of females or the contamination of Wolbachia-infected females by two further extended mathematical models.
Collapse
Affiliation(s)
- Bo Zheng
- College of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, PR China; Center for Applied Mathematics, Guangzhou University, Guangzhou 510006, China
| | - Xiaoping Liu
- College of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, PR China; Center for Applied Mathematics, Guangzhou University, Guangzhou 510006, China
| | - Moxun Tang
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Jianshe Yu
- College of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, PR China; Center for Applied Mathematics, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
41
|
Pierzynowska K, Skowron Volponi M, Węgrzyn G. Multiple factors correlating with wing malformations in the population of Parnassius apollo (Lepidoptera: Papilionidae) restituted from a low number of individuals: A mini review. INSECT SCIENCE 2019; 26:380-387. [PMID: 29094498 DOI: 10.1111/1744-7917.12554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 09/22/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
The Apollo butterfly, Parnassius apollo (Linnaeus), was common in Europe over 100 years ago, but currently it is considered as near threatened. Different conservation programs have promoted the persistence of this species; however, it is still endangered. An example of such programs was the action devoted to reestablish the Apollo butterfly population in Pieniny National Park (Poland) from only 20-30 individuals which had survived till the last decade of the 20th century. This reintroduction has been successful; however, unexpected developmental problems appeared. Butterflies with deformed or reduced wings became frequent in the population living in the natural habitat, and particularly among those reared under seminatural conditions (in the same environment, but fenced by a net). Until recently, reasons for these malformations remained unknown. However, reports published during last months indicated that there are genetic, biochemical, and microbiological factors contributing to this phenomenon. In the malformed individuals, lesions in the wingless gene and dysfunctions of laccase 1 and 2 were found to be significantly more frequent than in normal insects. A large fraction of butterflies with deformed or reduced wings was devoid of the prokaryotic symbiont Wolbachia, which was present in most normal individuals. Moreover, Yersinia pseudotuberculosis (Pfeiffer) Smith and Thal, and Serratia sp., bacteria pathogenic to insects, were detected in the biological material from both normal and malformed butterflies from this population. These findings are summarized and discussed in this review, in the light of conservation of insects and restitution of their populations from a low number of individuals.
Collapse
Affiliation(s)
| | | | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
42
|
Martínez-Rodríguez P, Rolán-Alvarez E, Del Mar Pérez-Ruiz M, Arroyo-Yebras F, Carpena-Catoira C, Carvajal-Rodríguez A, Bella JL. Geographic and Temporal Variation of Distinct Intracellular Endosymbiont Strains of Wolbachia sp. in the Grasshopper Chorthippus parallelus: a Frequency-Dependent Mechanism? MICROBIAL ECOLOGY 2019; 77:1036-1047. [PMID: 30762095 DOI: 10.1007/s00248-019-01338-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Wolbachia is an intracellular endosymbiont that can produce a range of effects on host fitness, but the temporal dynamics of Wolbachia strains have rarely been experimentally evaluated. We compare interannual strain frequencies along a geographical region for understanding the forces that shape Wolbachia strain frequency in natural populations of its host, Chorthippus parallelus (Orthoptera, Acrididae). General linear models show that strain frequency changes significantly across geographical and temporal scales. Computer simulation allows to reject the compatibility of the observed patterns with either genetic drift or sampling errors. We use consecutive years to estimate total Wolbachia strain fitness. Our estimation of Wolbachia fitness is significant in most cases, within locality and between consecutive years, following a negatively frequency-dependent trend. Wolbachia spp. B and F strains show a temporal pattern of variation that is compatible with a negative frequency-dependent natural selection mechanism. Our results suggest that such a mechanism should be at least considered in future experimental and theoretical research strategies that attempt to understand Wolbachia biodiversity.
Collapse
Affiliation(s)
- Paloma Martínez-Rodríguez
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | - M Del Mar Pérez-Ruiz
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Francisca Arroyo-Yebras
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | | - José L Bella
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
43
|
Moreira M, Aguiar AMF, Bourtzis K, Latorre A, Khadem M. Wolbachia (Alphaproteobacteria: Rickettsiales) Infections in Isolated Aphid Populations from Oceanic Islands of the Azores Archipelago: Revisiting the Supergroups M and N. ENVIRONMENTAL ENTOMOLOGY 2019; 48:326-334. [PMID: 30668658 DOI: 10.1093/ee/nvy189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Indexed: 06/09/2023]
Abstract
Aphids (Hemiptera: Aphididae) have provided a suitable model to study endosymbionts, their community, and dynamics since the discovery of the obligate endosymbiont Buchnera aphidicola in these organisms. In previous studies, Wolbachia was found in some aphid species. In the present study, we report the prevalence of Wolbachia in aphids sampled from a geographically isolated region (Azores Islands), aiming at a better understanding and characterization of the two newly reported supergroups, M and N. The description of the supergroup M was based on 16S rRNA as well as some protein-coding genes. However, the assignment of the supergroup N was according to 16S rRNA gene sequences of a very few samples. We collected aphid samples and performed phylogenetic analysis of 16S rRNA gene as well as four protein-coding genes (gatB, ftsZ, coxA, and hcpA). The results demonstrate that the 16S rRNA gene data can unambiguously assign the strain supergroup and that the two supergroups, N and M, are equally prevalent in Azorean aphids. The available sequence data for the protein-coding markers can identify supergroup M but the status of supergroup N is inconclusive, requiring further studies. The data suggest that horizontal transmission of Wolbachia (Hertig and Wolbach) between two phylogenetically distant aphid species cohabiting the same plant host.
Collapse
Affiliation(s)
- Marta Moreira
- Banco de Germoplasma, Universidade da Madeira, Funchal, Portugal
| | - António M F Aguiar
- Laboratório de Qualidade agrícola, Núcleo de Fitopatologia, Madeira, Portugal
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Amparo Latorre
- Institute for Integrative Systems Biology (University of Valencia-CSIC), Valencia, Spain
- Joint Unit in Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research (FISABIO) and University of Valencia, Valencia, Spain
| | - Mahnaz Khadem
- Banco de Germoplasma, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
44
|
Tolley SJA, Nonacs P, Sapountzis P. Wolbachia Horizontal Transmission Events in Ants: What Do We Know and What Can We Learn? Front Microbiol 2019; 10:296. [PMID: 30894837 PMCID: PMC6414450 DOI: 10.3389/fmicb.2019.00296] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/04/2019] [Indexed: 11/17/2022] Open
Abstract
While strict vertical transmission insures the durability of intracellular symbioses, phylogenetic incongruences between hosts and endosymbionts suggest horizontal transmission must also occur. These horizontal acquisitions can have important implications for the biology of the host. Wolbachia is one of the most ecologically successful prokaryotes in arthropods, infecting an estimated 50–70% of all insect species. Much of this success is likely due to the fact that, in arthropods, Wolbachia is notorious for manipulating host reproduction to favor transmission through the female germline. However, its natural potential for horizontal transmission remains poorly understood. Here we evaluate the fundamental prerequisites for successful horizontal transfer, including necessary environmental conditions, genetic potential of bacterial strains, and means of mediating transfers. Furthermore, we revisit the relatedness of Wolbachia strains infecting the Panamanian leaf-cutting ant, Acromyrmex echinatior, and its inquiline social parasite, Acromyrmex insinuator, and compare our results to a study published more than 15 years ago by Van Borm et al. (2003). The results of this pilot study prompt us to reevaluate previous notions that obligate social parasitism reliably facilitates horizontal transfer and suggest that not all Wolbachia strains associated with ants have the same genetic potential for horizontal transmission.
Collapse
Affiliation(s)
- Sarah J A Tolley
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Peter Nonacs
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | | |
Collapse
|
45
|
Kittayapong P, Kaeothaisong NO, Ninphanomchai S, Limohpasmanee W. Combined sterile insect technique and incompatible insect technique: sex separation and quality of sterile Aedes aegypti male mosquitoes released in a pilot population suppression trial in Thailand. Parasit Vectors 2018; 11:657. [PMID: 30583749 PMCID: PMC6304762 DOI: 10.1186/s13071-018-3214-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024] Open
Abstract
Background The sterile insect technique (SIT), which is based on irradiation-induced sterility, and incompatible insect technique (IIT), which is based on Wolbachia-induced cytoplasmic incompatibility (a kind of male sterility), have been used as alternative methods to reduce mosquito vector populations. Both methods require the release of males to reduce fertile females and suppress the number of natural populations. Different techniques of sex separation to obtain only males have been investigated previously. Our work involves an application of mechanical larval-pupal glass separators to separate Wolbachia-infected Aedes aegypti males from females at the pupal stage, prior to irradiation, and for use in a pilot field release and to assess the quality of males and females before and after sex separation and sterilization. Results This study was the first to demonstrate the efficiency of mechanical glass separators in separating males for use in an Ae. aegypti suppression trial by a combined SIT/IIT approach. Our results indicated that male and female pupae of Wolbachia-infected Ae. aegypti mosquitoes were significantly different (p < 0.05) in weight, size, and emergence-time, which made it easier for sex separation by this mechanical method. During the pilot field release, the percentage of female contamination was detected to be quite low and significantly different between the first (0.10 ± 0.13) and the second (0.02 ± 0.02) twelve-week period. Both males and females were almost completely sterile after exposure to 70 Gy irradiation dose. We observed that both irradiated Wolbachia-infected males and females survived and lived longer than two weeks, but males could live longer than females (p < 0.05) when they were irradiated at the same irradiation dose. When comparing irradiated mosquitoes with non-irradiated ones, there was no significant difference in longevity and survival-rate between those males, but non-irradiated females lived longer than irradiated ones (p < 0.05). Conclusion Mechanical sex separation by using a larval-pupal glass separator was practically applied to obtain only males for further sterilization and open field release in a pilot population suppression trial of Ae. aegypti in Thailand. Female contamination was detected to be quite low, and skilled personnel can reduce the risk for female release. The irradiated Wolbachia-infected females accidentally released were found to be completely sterile, with shorter life span than males.
Collapse
Affiliation(s)
- Patttamaporn Kittayapong
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom, 73170, Thailand. .,Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Nuanla-Ong Kaeothaisong
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom, 73170, Thailand
| | - Suwannapa Ninphanomchai
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom, 73170, Thailand
| | - Wanitch Limohpasmanee
- Thailand Institute of Nuclear Technology, Ministry of Science and Technology, Nakhon Nayok, 26120, Thailand
| |
Collapse
|
46
|
Abstract
The global economic cost of Aedes-borne diseases, such as dengue, is estimated to be in the billions of dollars annually. In this scenario, a sustained vector control strategy is the only alternative to control dengue, as well as other diseases transmitted by Aedes, including Zika and chikungunya. The use of transgenic mosquitoes is a promising weapon in the improvement of approaches currently applied in Aedes aegypti control. Field trials using genetically modified mosquitoes for population control have been conducted and offer an excellent opportunity to evaluate what can be improved. In a mass-rearing mosquito facility, the absence of a transgenic line that produces male-only progeny is undoubtedly a limiting factor; thus, being able to manipulate sex determination in this species is a fundamental step for the success of this strategy. Likewise, the possibility of manipulation of the sex determination pathway opens-up a new opportunity for disease control.
Collapse
Affiliation(s)
| | - Bianca Burini Kojin
- Department of Entomology, Texas A & M University, Minnie Belle Heep Center, College Station, TX, USA
| | - Margareth Lara Capurro
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brasil.
| |
Collapse
|
47
|
Rull J, Tadeo E, Lasa R, Rodríguez CL, Altuzar-Molina A, Aluja M. Experimental hybridization and reproductive isolation between two sympatric species of tephritid fruit flies in the Anastrepha fraterculus species group. INSECT SCIENCE 2018; 25:1045-1055. [PMID: 28586142 DOI: 10.1111/1744-7917.12489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/18/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Among tephritid fruit flies, hybridization has been found to produce local adaptation and speciation, and in the case of pest species, induce behavioral and ecological alterations that can adversely impact efficient pest management. The fraterculus species group within Anastrepha (Diptera: Tephritidae), is a rapidly radiating aggregate, which includes cryptic species complexes, numerous sister species, and several pest species. Molecular studies have highlighted the possibility of introgression between A. fraterculus and A. obliqua. Reproductive isolation has been studied among morphotypes of the A. fraterculus species complex as a tool for species delimitation. Here we examined the existence and strength of prezygotic and postzygotic isolation between sympatric populations of two closely related species within the highly derived fraterculus group (A. fraterculus and A. obliqua), coexisting in nature. Although adults of both species showed a strong tendency for assortative mating, a small proportion of hybrid pairings in both directions were observed. We also observed asymmetric postzygotic isolation, with one hybrid cross displaying a strong reduction in fecundity and F1 egg fertility. Survival was greater for the progeny of homotypic and hybrid crosses in the maternal host. There was a marked female biased sex ratio distortion for both F1 hybrid adults. Hybridization between A. fraterculus and A. obliqua in nature may be difficult but possible; these two species display stronger reproductive isolation than all pairs of species previously examined in the A. fraterculus species complex. Asymmetric postzygotic isolation is suggestive of Wolbachia mediated cytoplasmic incompatibilities that may be exploited in area-wide pest management.
Collapse
Affiliation(s)
- Juan Rull
- PROIMI Biotecnología-CONICET, LIEMEN-División Control Biológico de Plagas, Tucumán, Argentina
| | - Eduardo Tadeo
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| | - Rodrigo Lasa
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| | - Christian L Rodríguez
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| | - Alma Altuzar-Molina
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| | - Martín Aluja
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| |
Collapse
|
48
|
Dossi FCA, da Silva EP, Cônsoli FL. Shifting the Balance: Heat Stress Challenges the Symbiotic Interactions of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera, Liviidae). THE BIOLOGICAL BULLETIN 2018; 235:195-203. [PMID: 30624116 DOI: 10.1086/699755] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Global warming may impact biodiversity by disrupting biological interactions, including long-term insect-microbe mutualistic associations. Symbiont-mediated insect tolerance to high temperatures is an ecologically important trait that significantly influences an insect's life history. Disruption of microbial symbionts that are required by insects would substantially impact their pest status. Diaphorina citri, a worldwide citrus pest, is associated with the mutualistic symbionts Candidatus Carsonella ruddii and Candidatus Profftella armatura. Wolbachia is also associated with D. citri, but its contribution to the host is unknown. Symbiont density is dependent on a range of factors, including the thermosensitivity of the host and/or symbiont to heat stress. Here, we predicted that short-term heat stress of D. citri would disrupt the host-symbiont phenological synchrony and differentially affect the growth and density of symbionts. We investigated the effects of exposing D. citri eggs to different temperatures for different periods of time on the growth dynamics of symbionts during the nymphal development of D. citri (first instar to fifth instar) by real-time polymerase chain reaction. Symbiont densities were assessed as the number of gene copies, using specific molecular markers: 16S rRNA for Carsonella and Profftella and ftsZ for Wolbachia. Statistical modeling of the copy numbers of symbionts revealed differences in their growth patterns, particularly in the early instars of heat-shocked insects. Wolbachia was the only symbiont to benefit from heat-shock treatment. Although the symbionts responded differently to heat stress, the lack of differences in symbiont densities between treated and control late nymphs suggests the existence of an adaptive genetic process to restore phenological synchrony during the development of immatures in preparation for adult life. Our findings contribute to the understanding of the potential deleterious effects of high temperatures on host-symbiont interactions. Our data also suggest that the effects of host exposure to high temperatures in symbiont growth are highly variable and dependent on the interactions among members of the community of symbionts harbored by a host. Such dependence points to unpredictable consequences for agroecosystems worldwide due to climate change-related effects on the ecological traits of symbiont-dependent insect pests.
Collapse
|
49
|
Augustinos AA, Meki IK, Demirbas-Uzel G, Ouédraogo GMS, Saridaki A, Tsiamis G, Parker AG, Abd-Alla AMM, Bourtzis K. Nuclear and Wolbachia-based multimarker approach for the rapid and accurate identification of tsetse species. BMC Microbiol 2018; 18:147. [PMID: 30470190 PMCID: PMC6251096 DOI: 10.1186/s12866-018-1295-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Tsetse flies (Diptera: Glossinidae) are solely responsible for the transmission of African trypanosomes, causative agents of sleeping sickness in humans and nagana in livestock. Due to the lack of efficient vaccines and the emergence of drug resistance, vector control approaches such as the sterile insect technique (SIT), remain the most effective way to control disease. SIT is a species-specific approach and therefore requires accurate identification of natural pest populations at the species level. However, the presence of morphologically similar species (species complexes and sub-species) in tsetse flies challenges the successful implementation of SIT-based population control. Results In this study, we evaluate different molecular tools that can be applied for the delimitation of different Glossina species using tsetse samples derived from laboratory colonies, natural populations and museum specimens. The use of mitochondrial markers, nuclear markers (including internal transcribed spacer 1 (ITS1) and different microsatellites), and bacterial symbiotic markers (Wolbachia infection status) in combination with relatively inexpensive techniques such as PCR, agarose gel electrophoresis, and to some extent sequencing provided a rapid, cost effective, and accurate identification of several tsetse species. Conclusions The effectiveness of SIT benefits from the fine resolution of species limits in nature. The present study supports the quick identification of large samples using simple and cost effective universalized protocols, which can be easily applied by countries/laboratories with limited resources and expertise. Electronic supplementary material The online version of this article (10.1186/s12866-018-1295-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonios A Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Irene K Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Guler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Gisele M S Ouédraogo
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.,Ecole National de l'Elevage et de la Santé Animale, 03 BP 7026, Ouagadougou 03, Burkina Faso
| | - Aggeliki Saridaki
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.
| |
Collapse
|
50
|
Ouedraogo GMS, Demirbas-Uzel G, Rayaisse JB, Gimonneau G, Traore AC, Avgoustinos A, Parker AG, Sidibe I, Ouedraogo AG, Traore A, Bayala B, Vreysen MJB, Bourtzis K, Abd-Alla AMM. Prevalence of trypanosomes, salivary gland hypertrophy virus and Wolbachia in wild populations of tsetse flies from West Africa. BMC Microbiol 2018; 18:153. [PMID: 30470187 PMCID: PMC6251090 DOI: 10.1186/s12866-018-1287-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Tsetse flies are vectors of African trypanosomes, protozoan parasites that cause sleeping sickness (or human African trypanosomosis) in humans and nagana (or animal African trypanosomosis) in livestock. In addition to trypanosomes, four symbiotic bacteria Wigglesworthia glossinidia, Sodalis glossinidius, Wolbachia, Spiroplasma and one pathogen, the salivary gland hypertrophy virus (SGHV), have been reported in different tsetse species. We evaluated the prevalence and coinfection dynamics between Wolbachia, trypanosomes, and SGHV in four tsetse species (Glossina palpalis gambiensis, G. tachinoides, G. morsitans submorsitans, and G. medicorum) that were collected between 2008 and 2015 from 46 geographical locations in West Africa, i.e. Burkina Faso, Mali, Ghana, Guinea, and Senegal. RESULTS The results indicated an overall low prevalence of SGHV and Wolbachia and a high prevalence of trypanosomes in the sampled wild tsetse populations. The prevalence of all three infections varied among tsetse species and sample origin. The highest trypanosome prevalence was found in Glossina tachinoides (61.1%) from Ghana and in Glossina palpalis gambiensis (43.7%) from Senegal. The trypanosome prevalence in the four species from Burkina Faso was lower, i.e. 39.6% in Glossina medicorum, 18.08%; in Glossina morsitans submorsitans, 16.8%; in Glossina tachinoides and 10.5% in Glossina palpalis gambiensis. The trypanosome prevalence in Glossina palpalis gambiensis was lowest in Mali (6.9%) and Guinea (2.2%). The prevalence of SGHV and Wolbachia was very low irrespective of location or tsetse species with an average of 1.7% for SGHV and 1.0% for Wolbachia. In some cases, mixed infections with different trypanosome species were detected. The highest prevalence of coinfection was Trypanosoma vivax and other Trypanosoma species (9.5%) followed by coinfection of T. congolense with other trypanosomes (7.5%). The prevalence of coinfection of T. vivax and T. congolense was (1.0%) and no mixed infection of trypanosomes, SGHV and Wolbachia was detected. CONCLUSION The results indicated a high rate of trypanosome infection in tsetse wild populations in West African countries but lower infection rate of both Wolbachia and SGHV. Double or triple mixed trypanosome infections were found. In addition, mixed trypanosome and SGHV infections existed however no mixed infections of trypanosome and/or SGHV with Wolbachia were found.
Collapse
Affiliation(s)
- Gisele M S Ouedraogo
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria.,Ecole National de l'Elevage et de la Santé Animale, 03 BP 7026, Ouagadougou 03, Burkina Faso.,Université Ouaga 1 Professeur Joseph Ki-Zerbo, BP 7021, Ouagadougou 01, Burkina Faso
| | - Güler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria
| | - Jean-Baptiste Rayaisse
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), 01 BP 454, Bobo-Dioulasso 01, Burkina Faso
| | - Geoffrey Gimonneau
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), 01 BP 454, Bobo-Dioulasso 01, Burkina Faso.,CIRAD, UMR INTERTRYP, F-34398, Montpellier, France
| | - Astan C Traore
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria.,Pan African Tsetse and Trypanosomosis Eradication Campaign (PATTEC), Bamako, Mali
| | - Antonios Avgoustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria
| | - Issa Sidibe
- Pan African Tsetse and Trypanosomosis Eradication Campaign (PATTEC), Projet de Création de Zones Libérées Durablement de Tsé-tsé et de Trypanosomoses (PCZLD), Bobo-Dioulasso, Burkina Faso
| | - Anicet G Ouedraogo
- Institut du Développement Rural, Université Polytechnique de Bobo-Dioulasso, Bobo-Dioulasso, Burkina Faso
| | - Amadou Traore
- Institut de l'Environnement et des Recherches Agricoles (INERA), BP 8635, Ouagadougou 04, Burkina Faso
| | - Bale Bayala
- Université Ouaga 1 Professeur Joseph Ki-Zerbo, BP 7021, Ouagadougou 01, Burkina Faso
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria.
| |
Collapse
|