1
|
Rizvi SA, Chowdhury KF, Borsetto C, Travis ER, Saif M, Ahmed V, Carter LJ, Ahmad I, McNally A, Haq QMR. A new method for concomitant evaluation of drug combinations for their antimicrobial properties. MethodsX 2025; 14:103122. [PMID: 39830879 PMCID: PMC11741016 DOI: 10.1016/j.mex.2024.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
Microbial pathogens have developed resistance mechanisms to almost every antibiotic available. There is a need to synthesize or screen new natural compounds to combat the development of drug-resistant pathogens. One of the commonly used methods to evaluate the antimicrobial activity of two or more antibiotics involves a checkerboard assay, which is cumbersome, time-consuming, and expensive. We have developed a quick, reliable, and cost-effective method to evaluate the antimicrobial effect of two or more antibiotics at fixed doses with different concentrations of a novel natural ingredient or test compound. The technique involves the following steps:•Preparation of a bacterial culture of the test strain at 0.5 McFarland standard (0.1 OD at 600 nm), and preparation of stock solutions for the chemical of interest and standard drugs.•The required amount of all three components can be dispensed into respective wells of a microplate using multichannel pipette.•Optical density (OD) values obtained would be directly related to the individual as well as combined effect of compounds on the given bacterial strain.
Collapse
Affiliation(s)
- Syed Ahmed Rizvi
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Kaniz F Chowdhury
- School of Geography, Faculty of Environment, University of Leeds, Leeds, UK
| | - Chiara Borsetto
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Emma R Travis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Mohammad Saif
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Vikar Ahmed
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Laura J Carter
- School of Geography, Faculty of Environment, University of Leeds, Leeds, UK
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, 202002, India
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
2
|
Liao M, Gong H, Ge T, Shen K, Campana M, McBain AJ, Wu C, Hu X, Lu JR. Probing antimicrobial synergy by novel lipopeptides paired with antibiotics. J Colloid Interface Sci 2025; 681:82-94. [PMID: 39591858 DOI: 10.1016/j.jcis.2024.11.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Antimicrobial resistance (AMR) is fast becoming a major global challenge in both hospital and community settings as many current antibiotics and treatment processes are under the threat of being rendered less effective or ineffective. Synergistic combination of an antibiotic and an aiding agent with a different set of properties provides an important but largely unexploited option to 'repurpose' existing biomaterial's space while addressing issues of potency, spectrum, toxicity and resistance in early stages of antimicrobial drug discovery. This work explores how to combine tetracycline/minocycline (TC/MC) with a broad-spectrum antimicrobial lipopeptide that has been designed to improve the efficiency of membrane targeting and intramembrane accumulation, thereby enhancing antimicrobial efficacy. Experimental measurements of fractional inhibition concentration index (FICI) were undertaken from binary antibiotic-lipopeptide combinations. Most FICI values were found to be lower than 0.5 against both Gram-positive and Gram-negative bacterial strains studied including 3 AMR strains, revealing strong synergetic effects via favorable membrane-lytic interactions. The antimicrobial actions of this type of binary combinations are featured by the fast time-killing and high TC/MC uptake, benefited from effective membrane-lytic disruptions by the lipopeptide. This study thus provides an important mechanistic understanding of the combined antibiotic-lipopeptide approach to improve the therapeutic potential of conventional antibiotics by illustrating how amphiphilic lipopeptide-antibiotic combinations interact with biological membranes, providing a promising alternative to combat AMR through rational design of lipopeptide as an aiding agent.
Collapse
Affiliation(s)
- Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK
| | - Haoning Gong
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK
| | - Tianhao Ge
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK
| | - Kangcheng Shen
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK
| | - Mario Campana
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Chunxian Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xuzhi Hu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| | - Jian R Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK.
| |
Collapse
|
3
|
You K, Binte Mohamed Yazid N, Chong LM, Hooi L, Wang P, Zhuang I, Chua S, Lim E, Kok AZX, Marimuthu K, Vasoo S, Ng OT, Chan CEZ, Chow EKH, Ho D. Flash optimization of drug combinations for Acinetobacter baumannii with IDentif.AI-AMR. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:12. [PMID: 39984645 PMCID: PMC11845484 DOI: 10.1038/s44259-025-00079-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/15/2025] [Indexed: 02/23/2025]
Abstract
Antimicrobial resistance (AMR) is an emerging threat to global public health. Specifically, Acinetobacter baumannii (A. baumannii), one of the main pathogens driving the rise of nosocomial infections, is a Gram-negative bacillus that displays intrinsic resistance mechanisms and can also develop resistance by acquiring AMR genes from other bacteria. More importantly, it is resistant to nearly 90% of standard of care (SOC) antimicrobial treatments, resulting in unsatisfactory clinical outcomes and a high infection-associated mortality rate of over 30%. Currently, there is a growing challenge to sustainably develop novel antimicrobials in this ever-expanding arms race against AMR. Therefore, a sustainable workflow that properly manages healthcare resources to ultra-rapidly design optimal drug combinations for effective treatment is needed. In this study, the IDentif.AI-AMR platform was harnessed to pinpoint effective regimens against four A. baumannii clinical isolates from a pool of nine US FDA-approved drugs. Notably, IDentif.AI-pinpointed ampicillin-sulbactam/cefiderocol and cefiderocol/polymyxin B/rifampicin combinations were able to achieve 93.89 ± 5.95% and 92.23 ± 11.89% inhibition against the bacteria, respectively, and they may diversify the reservoir of treatment options for the indication. In addition, polymyxin B in combination with rifampicin exhibited broadly applicable efficacy and strong synergy across all tested clinical isolates, representing a potential treatment strategy for A. baumannii. IDentif.AI-pinpointed combinations may potentially serve as alternative treatment strategies for A. baumannii.
Collapse
Affiliation(s)
- Kui You
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
| | | | - Li Ming Chong
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
| | - Lissa Hooi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Peter Wang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
| | - Isaiah Zhuang
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Stephen Chua
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Ethan Lim
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
| | - Alrick Zi Xin Kok
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | | | - Shawn Vasoo
- National Centre for Infectious Diseases (NCID), Singapore, Singapore.
| | - Oon Tek Ng
- National Centre for Infectious Diseases (NCID), Singapore, Singapore.
| | - Conrad E Z Chan
- National Centre for Infectious Diseases (NCID), Singapore, Singapore.
| | - Edward Kai-Hua Chow
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Dean Ho
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- The Bia-Echo Asia Centre for Reproductive Longevity and Equality (ACRLE), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Granata G, Venditti C, Rotondo C, Dimartino V, D’Arezzo S, Gallo A, Parisi G, Capone A, Fontana C, Cicalini S. Combating Metallo-β-Lactamase-Producing Pseudomonas aeruginosa: The Fractional Inhibitory Concentration Index as a Tool to Evaluate Antibiotic Synergy. Antibiotics (Basel) 2025; 14:210. [PMID: 40001453 PMCID: PMC11851902 DOI: 10.3390/antibiotics14020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Multi-drug-resistant Gram-negative bacteria producing metallo-β-lactamase are an increasing concern. Here, we described three cases of infection due to difficult-to-treat and drug-resistant P. aeruginosa producing metallo-β-lactamases, which were successfully treated with antibiotic combination of cefiderocol plus imipenem-relebactam, and reported on the molecular and epidemiological features of the isolates and the in vitro synergistic effects of different antibiotic combinations guiding antibiotic treatment. Patients and methods: Three P. aeruginosa strains were isolated from respiratory or blood cultures of three different patients. Minimum inhibitory concentrations breakpoints were interpreted according to EUCAST recommendations. Next-generation sequencing data were used for in silico identification of resistance genes and sequence types and for core genome multi-locus sequence typing analysis. The fractional inhibitory concentration index was performed as a measure of synergy of cefiderocol plus imipenem and imipenem-relebactam. Results: The three isolates exhibited different multi-drug-resistant and molecular profiles carrying blaIMP-13 (imipenemase metallo-β-lactamase-13) (isolates named Pse-1 and Pse-3) and blaVIM-2 (Verona integron-encoded metallo-β-lactamase-2) (isolate Pse-2). Typing showed that the isolates did not cluster and belonged to different sequence types. The E-test method showed the presence of synergy of cefiderocol in combination with imipenem-relebactam in the two P. aeruginosa isolates producing IMP-13 (Pse-1 and Pse-3). No synergy was observed in the isolate producing VIM-2 (Pse-2). Conclusions: Cefiderocol in association with imipenem-relebactam exhibited a synergistic effect against IMP-producing P. aeruginosa isolates. Further studies with a range of drugs and an expanded number of isolates are required to ascertain potential novel synergistic associations and the clinical utility of the fractional inhibitory concentration index.
Collapse
Affiliation(s)
- Guido Granata
- Systemic and Immune Depression-Associated Infection Unit, National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, Via Portuense 292, 00149 Rome, Italy
| | - Carolina Venditti
- Laboratory of Microbiology, National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, 00149 Rome, Italy
| | - Claudia Rotondo
- Laboratory of Microbiology, National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, 00149 Rome, Italy
| | - Valentina Dimartino
- Laboratory of Microbiology, National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, 00149 Rome, Italy
| | - Silvia D’Arezzo
- Laboratory of Microbiology, National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, 00149 Rome, Italy
| | - Assunta Gallo
- Laboratory of Microbiology, S. Camillo Hospital, 00149 Rome, Italy
| | - Gabriella Parisi
- Laboratory of Microbiology, S. Camillo Hospital, 00149 Rome, Italy
| | - Alessandro Capone
- Systemic and Immune Depression-Associated Infection Unit, National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, Via Portuense 292, 00149 Rome, Italy
| | - Carla Fontana
- Laboratory of Microbiology, National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, 00149 Rome, Italy
| | - Stefania Cicalini
- Systemic and Immune Depression-Associated Infection Unit, National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, Via Portuense 292, 00149 Rome, Italy
| |
Collapse
|
5
|
Smith WPJ, Armstrong-Bond E, Coyte KZ, Knight CG, Basler M, Brockhurst MA. Multiplicity of type 6 secretion system toxins limits the evolution of resistance. Proc Natl Acad Sci U S A 2025; 122:e2416700122. [PMID: 39786933 PMCID: PMC11745330 DOI: 10.1073/pnas.2416700122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
The bacterial type 6 secretion system (T6SS) is a toxin-injecting nanoweapon that mediates competition in plant- and animal-associated microbial communities. Bacteria can evolve de novo resistance against T6SS attacks, but resistance is far from universal in natural communities, suggesting key features of T6SS weaponry may act to limit its evolution. Here, we combine ecoevolutionary modeling and experimental evolution to examine how toxin type and multiplicity in Acinetobacter baylyi attackers shape resistance evolution in susceptible Escherichia coli competitors. In both our models and experiments, we find that combinations of multiple distinct toxins limit resistance evolution by creating genetic bottlenecks, driving resistant lineages extinct before they can reach high frequency. We also show that, paradoxically, single-toxin attackers can drive the evolution of cross-resistance, protecting bacteria against unfamiliar toxin combinations, even though such evolutionary pathways were inaccessible against multitoxin attackers. Our findings indicate that, comparable to antimicrobial and anticancer combination therapies, multitoxin T6SS arsenals function to limit resistance evolution in competing microbes. This helps us to understand why T6SSs remain widespread and effective weapons in microbial communities, and why many T6SS-armed bacteria encode functionally diverse anticompetitor toxins.
Collapse
Affiliation(s)
- William P. J. Smith
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9NT, United Kingdom
| | - Ewan Armstrong-Bond
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9NT, United Kingdom
| | - Katharine Z. Coyte
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9NT, United Kingdom
| | - Christopher G. Knight
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, ManchesterM13 9NT, United Kingdom
| | - Marek Basler
- Biozentrum Center for Molecular Life Sciences, University of Basel, BaselCH-4056, Switzerland
| | - Michael A. Brockhurst
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9NT, United Kingdom
| |
Collapse
|
6
|
Belay WY, Getachew M, Tegegne BA, Teffera ZH, Dagne A, Zeleke TK, Wondm SA, Abebe RB, Gedif AA, Fenta A, Yirdaw G, Tilahun A, Aschale Y. Antimicrobial resistance with a focus on antibacterial, antifungal, antimalarial, and antiviral drugs resistance, its threat, global priority pathogens, prevention, and control strategies: a review. Ther Adv Infect Dis 2025; 12:20499361251340144. [PMID: 40416942 PMCID: PMC12103682 DOI: 10.1177/20499361251340144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/21/2025] [Indexed: 05/27/2025] Open
Abstract
Antimicrobial resistance (AMR) poses a significant global health threat by diminishing the effectiveness of once-powerful antimicrobial agents, leading to higher rates of illness and death, along with escalating healthcare costs. While bacterial resistance is a primary concern, resistance is also increasing against antifungal, antiparasitic, and antiviral drugs. Many of the last-resort drugs are becoming less effective due to AMR. Projections indicate that by 2050, AMR could cause up to 10 million deaths annually, making it the leading cause of death worldwide, a situation that could result in a post-antibiotic era with substantially increased morbidity and mortality. This review aims to raise awareness about the dangers of AMR and its potential to become a silent global pandemic. It begins by examining antimicrobial drugs, followed by a discussion on AMR, focusing on resistance to antibacterial, antifungal, antimalarial, and antiviral drugs, along with its effects on health, and the economy, and prioritized global pathogens. Finally, it explores preventive measures and innovative strategies to combat AMR.
Collapse
Affiliation(s)
- Wubetu Yihunie Belay
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Samuel Agegnew Wondm
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of Clinical Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Abebaw Abie Gedif
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Fenta
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Getasew Yirdaw
- Department of Environmental Health Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Tilahun
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
7
|
Yuan G, Lian F, Yan Y, Wang Y, Zhang L, Zhu J, Fatima A, Qian Y. One Earth-One Health (OE-OH): Antibacterial Effects of Plant Flavonoids in Combination with Clinical Antibiotics with Various Mechanisms. Antibiotics (Basel) 2024; 14:8. [PMID: 39858294 PMCID: PMC11761287 DOI: 10.3390/antibiotics14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Antimicrobial resistance (AMR) poses a significant threat to human health, and combination therapy has proven effective in combating it. It has been reported that some plant flavonoids can enhance the antibacterial effects of antibiotics and even reverse AMR. This study systematically evaluated the synergistic effects of plant flavonoids and clinical antibiotics. Methods: The antibacterial activities of thirty-seven plant flavonoids and nine clinical antibiotics with various antimicrobial mechanisms were determined using the microbroth dilution method. Subsequently, the combined effects of twelve plant flavonoids presenting definite MICs against Staphylococcus aureus with these nine antibiotics were determined using the checkerboard test, together with those of thirty-two plant flavonoids presenting definite MICs against Escherichia coli with these nine antibiotics. Results: Plant flavonoids in combination with antibiotics present extensive synergistic effects, and 25% of combinations exhibited synergy against S. aureus and 50% against E. coli, particularly with antibiotics affecting cell membranes or ribosomes. Conclusions: The findings align with the drug selection principle of synergistic combinations and suggest that plant flavonoids could extensively enhance antibiotic efficacy. Considering that various metabolites from microorganisms, plants, and animals on the Earth would definitely impact the evolution of AMR, together with the rules, key factors, and important principles of drug combination for preventing AMR, we further propose the "One Earth-One Health (OE-OH)" concept, emphasizing ecosystem interactions in AMR prevention.
Collapse
Affiliation(s)
- Ganjun Yuan
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Fengxian Lian
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yu Yan
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yu Wang
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Li Zhang
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianping Zhu
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Aiman Fatima
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuxing Qian
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
8
|
Abdelaal HFM, Berube BJ, Podell BK, Harband MH, Gary HE, Perez-Jaimes M, Ackart DF, Reese VA, Larsen SE, Pecor T, Wilkins DZ, Parish T, Maloney-Norcross SE, Mecham JB, Hickey AJ, Baldwin SL, Coler RN. Assessment of tuberculosis drug efficacy using preclinical animal models and in vitro predictive techniques. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:49. [PMID: 39843983 PMCID: PMC11721416 DOI: 10.1038/s44259-024-00066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/20/2024] [Indexed: 01/24/2025]
Abstract
Tuberculosis (TB) killed approximately 1.3 million people in 2022 and remains a leading cause of death from the bacteria Mycobacterium tuberculosis (M.tb); this number of deaths was surpassed only by COVID-19, caused by the SARS-CoV-2 virus. The alarming emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) M.tb strains presents an urgent need for effective new treatments. Our study aimed to determine the synergistic effects of antibiotic combinations against M.tb. Using a high-throughput in vitro checkerboard assay, we evaluated the interactions of Bedaquiline (BDQ) and other antibiotics including Capreomycin (CAP), Linezolid (LIN), and Sutezolid (SUT) against M.tb H37Rv. BDQ and CAP demonstrated in vitro enhanced effect, which prompted further investigation in vivo using the murine low dose aerosol (LDA) model. After aerosol challenge with M.tb, C57BL/6 mice were treated with BDQ, CAP, or their combination, starting 28 days post-infection. The antimicrobial treatment lasted four weeks, and the bacterial burden in lung and spleen tissues was assessed at the end of treatment. At 4 weeks post-treatment, a significant reduction in bacterial load was observed within the lungs and spleens of mice given BDQ alone or given as a BDQ/CAP combination compared to the untreated group. In contrast, CAP monotherapy led to an increase in bacterial load within the lung and no significant difference in bacterial burden in the spleen in comparison to the untreated mice. These results were confirmed in the guinea pig model of TB, where both BDQ and the BDQ/CAP combination treatment led to a decrease in bacterial burden in the lung and spleen, whereas CAP had no significant effect on bacterial burden at the 4-week post treatment timepoint. We next determined whether there may be differences in vitro with the BDQ/CAP combination against M.tb lineages 1, 2 and 4. We determined that in vitro enhanced effect was not observed in some representative strains of M.tb lineage 4, indicating variability in drug effectiveness across M.tb lineages. This research underscores the complexity of TB treatment and the critical need for innovative approaches to combat this global health threat.
Collapse
Affiliation(s)
- Hazem F M Abdelaal
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, 98145, USA
| | - Bryan J Berube
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, 98145, USA
- HDT BioCorp, Seattle, WA, 98102, USA
| | - Brendan K Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Matthew H Harband
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, 98145, USA
| | - Hadley E Gary
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Martin Perez-Jaimes
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - David F Ackart
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Valerie A Reese
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, 98145, USA
| | - Sasha E Larsen
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, 98145, USA
| | - Tiffany Pecor
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, 98145, USA
| | - David Z Wilkins
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, 98145, USA
| | - Tanya Parish
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, 98145, USA
| | - Sara E Maloney-Norcross
- Technology Advancement and Commercialization, RTI International, Research Triangle Park, Triangle Park, NC, 27709, USA
| | - Jeffrey B Mecham
- Technology Advancement and Commercialization, RTI International, Research Triangle Park, Triangle Park, NC, 27709, USA
| | - Anthony J Hickey
- Technology Advancement and Commercialization, RTI International, Research Triangle Park, Triangle Park, NC, 27709, USA
| | - Susan L Baldwin
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, 98145, USA
| | - Rhea N Coler
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, 98145, USA.
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA.
- Department of Global Health, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
9
|
Vollenweider V, Roncoroni F, Kümmerli R. Pyoverdine-antibiotic combination treatment: its efficacy and effects on resistance evolution in Escherichia coli. MICROLIFE 2024; 5:uqae021. [PMID: 39502382 PMCID: PMC11536758 DOI: 10.1093/femsml/uqae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/18/2024] [Accepted: 10/13/2024] [Indexed: 11/08/2024]
Abstract
Antibiotic resistance is a growing concern for global health, demanding innovative and effective strategies to combat pathogenic bacteria. Pyoverdines, iron-chelating siderophores produced by environmental Pseudomonas spp., present a novel class of promising compounds to induce growth arrest in pathogens through iron starvation. While we previously demonstrated the efficacy of pyoverdines as antibacterials, our understanding of how these molecules interact with antibiotics and impact resistance evolution remains unknown. Here, we investigated the propensity of three Escherichia coli strains to evolve resistance against pyoverdine, the cephalosporin antibiotic ceftazidime, and their combination. We used a naive E. coli wildtype strain and two isogenic variants carrying the bla TEM-1 β-lactamase gene on either the chromosome or a costly multicopy plasmid to explore the influence of genetic background on selection for resistance. We found that strong resistance against ceftazidime and weak resistance against pyoverdine evolved in all E. coli variants under single treatment. Ceftazidime resistance was linked to mutations in outer membrane porin genes (envZ and ompF), whereas pyoverdine resistance was associated with mutations in the oligopeptide permease (opp) operon. In contrast, ceftazidime resistance phenotypes were attenuated under combination treatment, especially for the E. coli variant carrying bla TEM-1 on the multicopy plasmid. Altogether, our results show that ceftazidime and pyoverdine interact neutrally and that pyoverdine as an antibacterial is particularly potent against plasmid-carrying E. coli strains, presumably because iron starvation compromises both cellular metabolism and plasmid replication.
Collapse
Affiliation(s)
- Vera Vollenweider
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Flavie Roncoroni
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
10
|
Lekhan A, Turner RJ. Exploring antimicrobial interactions between metal ions and quaternary ammonium compounds toward synergistic metallo-antimicrobial formulations. Microbiol Spectr 2024; 12:e0104724. [PMID: 39162494 PMCID: PMC11448152 DOI: 10.1128/spectrum.01047-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/27/2024] [Indexed: 08/21/2024] Open
Abstract
Multi-target antimicrobial agents are considered a viable alternative to target-specific antibiotics, resistance to which emerged as a global threat. Used centuries before the discovery of conventional antibiotics, metal(loid)-based antimicrobials (MBAs), which target multiple biomolecules within the bacterial cell, are regaining research interest. However, there is a significant limiting factor-the balance between cost and efficiency. In this article, we utilize a checkerboard assay approach to explore antimicrobial combinations of MBAs with commonly used quaternary ammonium compound (QAC) antiseptics in order to discover novel combinations with more pronounced antimicrobial properties than would be expected from a simple sum of antimicrobial effects of initial components. This phenomenon, called synergy, was herein demonstrated for several mixtures of Al3+with cetyltrimethylammonium bromide (CTAB) and TeO32- with benzalkonium chloride (BAC) and didecyldimethylammonium bromide (DDAB) against planktonic and biofilm growth of Pseudomonas aeruginosa ATCC27853. Biofilm growth of Escherichia coli ATCC25922 was synergistically inhibited by the Cu2 +and benzalkonium chloride (BAC) mixture. Multiple additive mixtures were identified for both organisms. The current study observed unexpected species and growth state specificities for the synergistic combinations. The benefit of synergistic mixtures will be captured in economy/efficiency optimization for antimicrobial applications in which MBAs and QACs are presently used. IMPORTANCE We are entering the antimicrobial resistance era (AMR), where resistance to antibiotics is becoming more and more prevalent. In order to address this issue, various approaches are being explored. In this article, we explore for synergy between two very different antimicrobials, the antiseptic class of quaternary ammonium compounds and antimicrobial metals. These two antimicrobials have very different actions. Considering a OneHealth approach to the problem, finding synergistic mixtures allows for greater efficacy at lower concentrations, which would also address antimicrobial pollution issues.
Collapse
Affiliation(s)
- Andrii Lekhan
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Raymond J. Turner
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| |
Collapse
|
11
|
Tyagi A, Kumar V, Joshi N, Dhingra HK. Combinatorial Effects of Ursodeoxycholic Acid and Antibiotic in Combating Staphylococcus aureus Biofilm: The Roles of ROS and Virulence Factors. Microorganisms 2024; 12:1956. [PMID: 39458266 PMCID: PMC11509559 DOI: 10.3390/microorganisms12101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Staphylococcus aureus is a biofilm-forming bacterium responsible for various human infections, one particularly challenging to treat due to its antibiotic resistance. Biofilms can form on both soft tissues and medical devices, leading to persistent and hard-to-treat infections. Combining multiple antimicrobials is a potential approach to overcoming this resistance. This study explored the effects of ursodeoxycholic acid (UDCA) combined with the antibiotic ciprofloxacin against S. aureus biofilms, aiming to evaluate any synergistic effects. Results showed that UDCA and ciprofloxacin co-treatment significantly reduced biofilm formation and disrupted pre-formed biofilms more effectively than either agent alone (p < 0.01). The combination also displayed a slight synergistic effect, with a fractional inhibitory concentration of 0.65. Additionally, the treatment reduced the production of extracellular polymeric substances, increased reactive oxygen species production, decreased metabolic activity, altered cell membrane permeability, and lowered cell surface hydrophobicity in S. aureus. Furthermore, it diminished biofilm-associated pathogenic factors, including proteolytic activity and staphyloxanthin production. Overall, the UDCA-ciprofloxacin combination shows considerable promise as a strategy to combat infections related to staphylococcal biofilms, offering a potential solution to the healthcare challenges posed by antibiotic-resistant S. aureus.
Collapse
Affiliation(s)
- Anuradha Tyagi
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh 332311, Rajasthan, India; (A.T.); (N.J.)
| | - Vinay Kumar
- Department of Medicine, Pennsylvania State University, Hershey Medical Center, Hershey, PA 17033, USA
| | - Navneet Joshi
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh 332311, Rajasthan, India; (A.T.); (N.J.)
| | - Harish Kumar Dhingra
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh 332311, Rajasthan, India; (A.T.); (N.J.)
| |
Collapse
|
12
|
Charria-Girón E, Zeng H, Gorelik TE, Pahl A, Truong KN, Schrey H, Surup F, Marin-Felix Y. Arcopilins: A New Family of Staphylococcus aureus Biofilm Disruptors from the Soil Fungus Arcopilus navicularis. J Med Chem 2024; 67:15029-15040. [PMID: 39141525 PMCID: PMC11403616 DOI: 10.1021/acs.jmedchem.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Biofilms represent a key challenge in the treatment of microbial infections; for instance, Staphylococcus aureus causes chronic or fatal infections by forming biofilms on medical devices. Herein, the fungus Arcopilus navicularis was found to produce a novel family of PKS-NRPS metabolites that are able to disrupt preformed biofilms of S. aureus. Arcopilins A-F (1-6), tetramic acids, and arcopilin G (7), a 2-pyridone, were elucidated using HR-ESI-MS and one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy. Their absolute configuration was established by the synthesis of MPTA-esters for 2, analysis of 1H-1H coupling constants, and ROESY correlations, along with comparison with the crystal structure of 7. Arcopilin A (1) not only effectively disrupts preformed biofilms of S. aureus but also potentiates the activity of gentamicin and vancomycin up to 115- and 31-fold times, respectively. Our findings demonstrate the potential application of arcopilins for the conjugated treatment of infections caused by S. aureus with antibiotics unable to disrupt preformed biofilms.
Collapse
Affiliation(s)
- Esteban Charria-Girón
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Haoxuan Zeng
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Tatiana E Gorelik
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
| | - Alexandra Pahl
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Khai-Nghi Truong
- Rigaku Europe SE, Hugenottenallee 167, 63263 Neu-Isenburg, Germany
| | - Hedda Schrey
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Yasmina Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
13
|
Wei X, Zhou D, Xu C, Chen P, Chen S, Cheng Z, Jin Y, Jin S, Wu W. Murepavadin Enhances the Killing Efficacy of Ciprofloxacin against Pseudomonas aeruginosa by Inhibiting Drug Efflux. Antibiotics (Basel) 2024; 13:810. [PMID: 39334985 PMCID: PMC11429200 DOI: 10.3390/antibiotics13090810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Pseudomonas aeruginosa is a multidrug-resistant Gram-negative pathogen and one of the leading causes of ventilator-associated pneumonia and infections in patients with chronic obstructive pulmonary disease and cystic fibrosis. Murepavadin is a peptidomimetic that specifically targets outer-membrane lipopolysaccharide transport protein LptD of P. aeruginosa. In this study, we find that murepavadin enhances the bactericidal efficacy of ciprofloxacin. We further demonstrate that murepavadin increases intracellular accumulation of ciprofloxacin by suppressing drug efflux. In addition, the murepavadin-ciprofloxacin combination exhibits a synergistic bactericidal effect in an acute murine pneumonia model. In conclusion, our results identify an effective drug combination for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Xiaoya Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (X.W.)
| | - Dandan Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (X.W.)
| | - Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (X.W.)
| | - Ping Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (X.W.)
| | - Shuiping Chen
- Department of Laboratory Medicine, 5th Medical Center of PLA General Hospital, Beijing 100071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (X.W.)
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (X.W.)
| | - Shouguang Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (X.W.)
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (X.W.)
| |
Collapse
|
14
|
Hetsa BA, Asante J, Mbanga J, Ismail A, Abia ALK, Amoako DG, Essack SY. Genomic Characterization of Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus Implicated in Bloodstream Infections, KwaZulu-Natal, South Africa: A Pilot Study. Antibiotics (Basel) 2024; 13:796. [PMID: 39334971 PMCID: PMC11429224 DOI: 10.3390/antibiotics13090796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen and a leading cause of bloodstream infections, with its capacity to acquire antibiotic resistance genes posing significant treatment challenges. This pilot study characterizes the genomic profiles of S. aureus isolates from patients with bloodstream infections in KwaZulu-Natal, South Africa, to gain insights into their resistance mechanisms, virulence factors, and clonal and phylogenetic relationships. Six multidrug-resistant (MDR) S. aureus isolates, comprising three methicillin-resistant S. aureus (MRSA) and three methicillin-susceptible S. aureus (MSSA), underwent whole genome sequencing and bioinformatics analysis. These isolates carried a range of resistance genes, including blaZ, aac(6')-aph(2″), ant(9)-Ia, ant(6)-Ia, and fosB. The mecA gene, which confers methicillin resistance, was detected only in MRSA strains. The isolates exhibited six distinct spa types (t9475, t355, t045, t1265, t1257, and t7888) and varied in virulence gene profiles. Panton-Valentine leukocidin (Luk-PV) was found in one MSSA isolate. Two SCCmec types, IVd(2B) and I(1B), were identified, and the isolates were classified into four multilocus sequence types (MLSTs), with ST5 (n = 3) being the most common. These sequence types clustered into two clonal complexes, CC5 and CC8. Notably, two MRSA clones were identified: ST5-CC5-t045-SCCmec_I(1B) and the human-associated endemic clone ST612-CC8-t1257-SCCmec_IVd(2B). Phylogenomic analysis revealed clustering by MLST, indicating strong genetic relationships within clonal complexes. These findings highlight the value of genomic surveillance in guiding targeted interventions to reduce treatment failures and mortality.
Collapse
Affiliation(s)
- Bakoena A. Hetsa
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (J.A.); (J.M.); (A.L.K.A.); (D.G.A.); (S.Y.E.)
| | - Jonathan Asante
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (J.A.); (J.M.); (A.L.K.A.); (D.G.A.); (S.Y.E.)
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Joshua Mbanga
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (J.A.); (J.M.); (A.L.K.A.); (D.G.A.); (S.Y.E.)
- Department of Applied Biology & Biochemistry, National University of Science and Technology, Corner Cecil Avenue & Gwanda Road, Bulawayo 263, Zimbabwe
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa;
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Akebe L. K. Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (J.A.); (J.M.); (A.L.K.A.); (D.G.A.); (S.Y.E.)
| | - Daniel G. Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (J.A.); (J.M.); (A.L.K.A.); (D.G.A.); (S.Y.E.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sabiha Y. Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (J.A.); (J.M.); (A.L.K.A.); (D.G.A.); (S.Y.E.)
- School of Pharmacy, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
15
|
Belay WY, Getachew M, Tegegne BA, Teffera ZH, Dagne A, Zeleke TK, Abebe RB, Gedif AA, Fenta A, Yirdaw G, Tilahun A, Aschale Y. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: a review. Front Pharmacol 2024; 15:1444781. [PMID: 39221153 PMCID: PMC11362070 DOI: 10.3389/fphar.2024.1444781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Antibacterial drug resistance poses a significant challenge to modern healthcare systems, threatening our ability to effectively treat bacterial infections. This review aims to provide a comprehensive overview of the types and mechanisms of antibacterial drug resistance. To achieve this aim, a thorough literature search was conducted to identify key studies and reviews on antibacterial resistance mechanisms, strategies and next-generation antimicrobials to contain antimicrobial resistance. In this review, types of resistance and major mechanisms of antibacterial resistance with examples including target site modifications, decreased influx, increased efflux pumps, and enzymatic inactivation of antibacterials has been discussed. Moreover, biofilm formation, and horizontal gene transfer methods has also been included. Furthermore, measures (interventions) taken to control antimicrobial resistance and next-generation antimicrobials have been discussed in detail. Overall, this review provides valuable insights into the diverse mechanisms employed by bacteria to resist the effects of antibacterial drugs, with the aim of informing future research and guiding antimicrobial stewardship efforts.
Collapse
Affiliation(s)
- Wubetu Yihunie Belay
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of clinical pharmacy, College of medicine and health sciences, University of Gondar, Gondar, Ethiopia
| | - Abebaw Abie Gedif
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Fenta
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Getasew Yirdaw
- Department of environmental health science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Tilahun
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
16
|
Okpala OE, Rondevaldova J, Osei-Owusu H, Kudera T, Kokoskova T, Kokoska L. Susceptibility of Staphylococcus aureus to Anti-Inflammatory Drugs with a Focus on the Combinatory Effect of Celecoxib with Oxacillin In Vitro. Molecules 2024; 29:3665. [PMID: 39125072 PMCID: PMC11314137 DOI: 10.3390/molecules29153665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Musculoskeletal infections (MIs) are among the most difficult-to-treat staphylococcal diseases due to antibiotic resistance. This has encouraged the development of innovative strategies, such as combination therapy, to combat MI. The aim of this study was to investigate the in vitro antistaphylococcal activity of anti-inflammatory drugs and the combined antimicrobial effect of celecoxib and oxacillin. The minimum inhibitory concentrations (MICs) of 17 anti-inflammatory drugs against standard strains and clinical isolates of S. aureus, including methicillin-resistant strains (MRSAs), were determined using the broth microdilution method. The fractional inhibitory concentration indices (FICIs) were evaluated using checkerboard assays. Celecoxib produced the most potent antistaphylococcal effect against all tested strains (MICs ranging from 32 to 64 mg/L), followed by that of diacerein against MRSA3 and MRSA ATCC 33592 (MIC 64 mg/L). Several synergistic effects were observed against the tested S. aureus strains, including MRSA (FICI ranging from 0.087 to 0.471). The strongest synergistic interaction (FICI 0.087) was against MRSA ATCC 33592 at a celecoxib concentration of 2 mg/L, with a 19-fold oxacillin MIC reduction (from 512 to 26.888 mg/L). This is the first report on the combined antistaphylococcal effect of celecoxib and oxacillin. These findings suggest celecoxib and its combination with oxacillin as perspective agents for research focused on the development of novel therapies for MI caused by S. aureus. This study further indicates that celecoxib could resensitize certain MRSA strains, in some cases, to be susceptible to β-lactams (e.g., oxacillin) that were not previously tested. It is essential to mention that the in vitro concentrations of anti-inflammatory drugs are higher than those typically obtained in patients. Therefore, an alternative option for its administration could be the use of a drug delivery system for the controlled slow release from an implant at the infection site.
Collapse
Affiliation(s)
- Onyedika Emmanuel Okpala
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic; (O.E.O.); (J.R.); (H.O.-O.)
| | - Johana Rondevaldova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic; (O.E.O.); (J.R.); (H.O.-O.)
| | - Hayford Osei-Owusu
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic; (O.E.O.); (J.R.); (H.O.-O.)
| | - Tomas Kudera
- Drift-Food Research Centre, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic;
| | - Tersia Kokoskova
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic;
| | - Ladislav Kokoska
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic; (O.E.O.); (J.R.); (H.O.-O.)
| |
Collapse
|
17
|
Al-Fadhli AH, Jamal WY. Recent advances in gene-editing approaches for tackling antibiotic resistance threats: a review. Front Cell Infect Microbiol 2024; 14:1410115. [PMID: 38994001 PMCID: PMC11238145 DOI: 10.3389/fcimb.2024.1410115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Antibiotic resistance, a known global health challenge, involves the flow of bacteria and their genes among animals, humans, and their surrounding environment. It occurs when bacteria evolve and become less responsive to the drugs designated to kill them, making infections harder to treat. Despite several obstacles preventing the spread of genes and bacteria, pathogens regularly acquire novel resistance factors from other species, which reduces their ability to prevent and treat such bacterial infections. This issue requires coordinated efforts in healthcare, research, and public awareness to address its impact on human health worldwide. This review outlines how recent advances in gene editing technology, especially CRISPR/Cas9, unveil a breakthrough in combating antibiotic resistance. Our focus will remain on the relationship between CRISPR/cas9 and its impact on antibiotic resistance and its related infections. Moreover, the prospects of this new advanced research and the challenges of adopting these technologies against infections will be outlined by exploring its different derivatives and discussing their advantages and limitations over others, thereby providing a corresponding reference for the control and prevention of the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Amani H Al-Fadhli
- Laboratory Sciences, Department of Medical, Faculty of Allied Health Sciences, Health Sciences Center (HSC), Kuwait University, Jabriya, Kuwait
| | - Wafaa Yousef Jamal
- Department of Microbiology, College of Medicine, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
18
|
Zeng H, Stadler M, Decock C, Matasyoh JC, Schrey H, Müsken M. Discovery of novel secondary metabolites from the basidiomycete Lentinus cf. sajor-caju and their inhibitory effects on Staphylococcus aureus biofilms. Fitoterapia 2024; 175:105904. [PMID: 38508498 DOI: 10.1016/j.fitote.2024.105904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Three novel derivatives of microporenic acid, microporenic acids H-J, were identified from submerged cultures of a Lentinus species obtained from a basidiome collected during a field trip in the tropical rainforest in Western Kenya. Their structures were elucidated via HR-ESIMS spectra and 1D/2D NMR spectroscopic analyses, as well as by comparison with known derivatives. Applying biofilm assays based on crystal violet staining and confocal microscopy, two of these compounds, microporenic acids H and I, demonstrated the ability to inhibit biofilm formation of the opportunistic pathogen Staphylococcus aureus. Thereby, they were effective in a concentration range that did not affect planktonic growth. Additionally, microporenic acid I enhanced the anti-biofilm activity of the antibiotics vancomycin and gentamicin when used in combination. This opens up possibilities for the use of these compounds in combination therapy to prevent the formation of S. aureus biofilms.
Collapse
Affiliation(s)
- Haoxuan Zeng
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, Braunschweig 38124, Germany; Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, Braunschweig 38106, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, Braunschweig 38124, Germany; Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, Braunschweig 38106, Germany
| | - Cony Decock
- Mycothèque de l'Université Catholique de Louvain (BCCM/MUCL), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Hedda Schrey
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, Braunschweig 38124, Germany; Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, Braunschweig 38106, Germany.
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research GmbH (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, Braunschweig 38124, Germany.
| |
Collapse
|
19
|
Parolina de Carvalho RD, de Andrade Moreno J, Roque SM, Chan DCH, Torrez WB, Stipp RN, Bueno-Silva B, de Lima PO, Cogo-Müller K. Statins and oral biofilm: Simvastatin as a promising drug to control periodontal dysbiosis. Oral Dis 2024; 30:669-680. [PMID: 36416468 DOI: 10.1111/odi.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/10/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVES This study evaluated antimicrobial activity of atorvastatin, pravastatin, rosuvastatin, and simvastatin against oral bacteria, and the interaction of simvastatin with standard antimicrobials (amoxicillin and metronidazole). METHODS Minimal inhibitory concentration assays were performed with Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, Actinomyces odontolyticus, Streptococcus oralis, Streptococcus mitis, Streptococcus salivarius, Streptococcus sanguinis, and Streptococcus gordonii; checkerboard microdilution assays between simvastatin and standard antimicrobials; monospecies and multispecies biofilms. RESULTS Simvastatin showed the best antimicrobial activity against most species (MIC range from 3.12 to 25 μg/ml), highlighting the sensitivity of P. gingivalis. In the checkerboard assay, synergistic interaction was found between simvastatin and amoxicillin against S. oralis and S. sanguinis. P. gingivalis biofilm was inhibited by simvastatin at 10 and 50× Minimal inhibitory concentration, with similar effects to metronidazole. For multispecies biofilm, SMV reduced the biofilm metabolic activity (79%) and total counts (87%), comparable to amoxicillin. Simvastatin also reduced bacterial counts of Veilonnella parvula, P. gingivalis, Streptococcus mutans, Actinomyces naeslundii, P. intermedia, and Capnocytophaga ochracea in the multispecies biofilm. CONCLUSIONS Simvastatin showed antimicrobial and antibiofilm activity against oral bacteria and may contribute to the control of dysbiosis, and may be considered in clinical studies as an adjuvant in the treatment of periodontitis.
Collapse
Affiliation(s)
| | | | - Sindy Magri Roque
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Daniel Cheuk Hong Chan
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Willy Bustillos Torrez
- Dental Research Division, University of Guarulhos (UNG), Guarulhos, Brazil
- Research department, Universidad Franz Tamayo, Cochabamba, Bolivia
| | - Rafael Nóbrega Stipp
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Bruno Bueno-Silva
- Dental Research Division, University of Guarulhos (UNG), Guarulhos, Brazil
| | | | - Karina Cogo-Müller
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
20
|
Cao Y, Han M, Ji S. Four-Arm δ-Ornithine-Based Polypeptoids Resensitize Voriconazole against Azole-Resistant C. albicans. ACS Infect Dis 2024; 10:701-714. [PMID: 38241468 DOI: 10.1021/acsinfecdis.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Worldwide Candida albicans infections cause a huge burden in healthcare and the efficacy of traditional antifungals is diminished because of the rapid development of antifungal resistance. It is necessary to develop new antifungals or new strategies to make multidrug-resistant (MDR) C. albicans to resensitize to existing antifungal drugs. In this work, a series of 4-arm polypeptoids (FAPs) were synthesized through grafting linear ε-l-lysine or δ-ornithine-based oligopeptides to a trimeric lysine core. The most potent 4R-O7 exhibited excellent activities toward three sensitive and two MDR C. albicans strains with MIC values as low as 24-48 μg/mL (vs 375 μg/mL for ε-polylysine, ε-PL). The mechanism studies revealed that 4R-O7 penetrated the cell membrane and generated ROS to kill cells. 4R-O7 exhibited a synergistic effect (FICI < 0.5) with voriconazole (VOR) and also assisted VOR to restore its efficacy to MDR C. albicans. In addition, the combined use of 4R-O7 and VOR significantly improved the elimination efficacy of mature C. albicans biofilms and enhanced the potency in a mouse subcutaneous C. albicans infection model.
Collapse
Affiliation(s)
- Yuanqiao Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Miaomiao Han
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin, P. R. China
| | - Shengxiang Ji
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
21
|
Wang G, Venegas FA, Rueda AM, Weerasinghe NW, Uggowitzer KA, Thibodeaux CJ, Moitessier N, Mittermaier AK. A naturally occurring G11S mutation in the 3C-like protease from the SARS-CoV-2 virus dramatically weakens the dimer interface. Protein Sci 2024; 33:e4857. [PMID: 38058248 PMCID: PMC10731504 DOI: 10.1002/pro.4857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
The 3C-like protease (3CLpro ) is crucial to the replication of SARS-CoV-2, the causative agent of COVID-19, and is the target of several successful drugs including Paxlovid and Xocova. Nevertheless, the emergence of viral resistance underlines the need for alternative drug strategies. 3CLpro only functions as a homodimer, making the protein-protein interface an attractive drug target. Dimerization is partly mediated by a conserved glycine at position 11. However, some naturally occurring SARS-CoV-2 sequences contain a serine at this position, potentially disrupting the dimer. We have used concentration-dependent activity assays and mass spectrometry to show that indeed the G11S mutation reduces the stability of the dimer by 600-fold. This helps to set a quantitative benchmark for the minimum potency required of any future protein-protein interaction inhibitors targeting 3CLpro and raises interesting questions regarding how coronaviruses bearing such weakly dimerizing 3CLpro enzymes are capable of replication.
Collapse
Affiliation(s)
- Guanyu Wang
- Department of ChemistryMcGill UniversityMontrealQuebecCanada
| | | | - Andres M. Rueda
- Department of ChemistryMcGill UniversityMontrealQuebecCanada
| | | | | | | | | | | |
Collapse
|
22
|
MacGillivray KA, Ng SL, Wiesenfeld S, Guest RL, Jubery T, Silhavy TJ, Ratcliff WC, Hammer BK. Trade-offs constrain adaptive pathways to the type VI secretion system survival. iScience 2023; 26:108332. [PMID: 38025790 PMCID: PMC10679819 DOI: 10.1016/j.isci.2023.108332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 08/25/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
The Type VI Secretion System (T6SS) is a nano-harpoon used by many bacteria to inject toxins into neighboring cells. While much is understood about mechanisms of T6SS-mediated toxicity, less is known about the ways that competitors can defend themselves against this attack, especially in the absence of their own T6SS. Here we subjected eight replicate populations of Escherichia coli to T6SS attack by Vibrio cholerae. Over ∼500 generations of competition, isolates of the E. coli populations evolved to survive T6SS attack an average of 27-fold better, through two convergently evolved pathways: apaH was mutated in six of the eight replicate populations, while the other two populations each had mutations in both yejM and yjeP. However, the mutations we identified are pleiotropic, reducing cellular growth rates, and increasing susceptibility to antibiotics and elevated pH. These trade-offs help us understand how the T6SS shapes the evolution of bacterial interactions.
Collapse
Affiliation(s)
- Kathryn A. MacGillivray
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Siu Lung Ng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sophia Wiesenfeld
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Randi L. Guest
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Tahrima Jubery
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Thomas J. Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brian K. Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
23
|
Joshi AA, Patil RH. Metal nanoparticles as inhibitors of enzymes and toxins of multidrug-resistant Staphylococcus aureus. INFECTIOUS MEDICINE 2023; 2:294-307. [PMID: 38205183 PMCID: PMC10774769 DOI: 10.1016/j.imj.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 01/12/2024]
Abstract
Staphylococcus aureus is an aerobic Gram-positive spherical bacterium known to cause a broad range of infections worldwide. It is a major cause of infective skin and soft infections and severe and life-threatening conditions, such as pneumonia, bloodstream infections, and endocarditis. The emergence of drug-resistant strains of S aureus, particularly methicillin-resistant S aureus (MRSA), has become a significant concern in the healthcare community. Antibiotic-resistant S aureus is commonly acquired in hospitals and long-term care facilities. It often affects patients with weakened immune systems, those undergoing invasive medical procedures, or those who have been hospitalized for extended periods. In the US, S aureus is known to cause potentially fatal illnesses, such as toxic shock syndrome (TSS) and acute-onset toxic shock syndrome (TSS), which are characterized by fever and hypotension. It develops resistance to antibiotics through several mechanisms, such as the production of enzymes that inactivate antibiotics, target site modification, efflux pumps, and plasmid-mediated resistance. Therefore, preventing the spread of drug-resistant S aureus is needed, and there is an urgent need to explore novel approaches in the development of anti-staphylococcal agents. This article reviews the principal infections caused by S aureus, major virulence factors, mechanisms of resistance development, and nanotechnology-based solutions for the control of drug-resistant S aureus.
Collapse
Affiliation(s)
- Amruta A. Joshi
- Department of Microbiology and Biotechnology, R. C. Patel Arts, Commerce and Science College, Shirpur, Maharashtra 425405, India
| | - Ravindra H. Patil
- Department of Microbiology and Biotechnology, R. C. Patel Arts, Commerce and Science College, Shirpur, Maharashtra 425405, India
| |
Collapse
|
24
|
Bauer EM, Talone A, Imperatori P, Briancesco R, Bonadonna L, Carbone M. The Addition of Co into CuO-ZnO Oxides Triggers High Antibacterial Activity and Low Cytotoxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2823. [PMID: 37947668 PMCID: PMC10649786 DOI: 10.3390/nano13212823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
In the present work, a simple two-step method is proposed for mixed oxide synthesis aimed at the achievement of antibacterial nanomaterials. In particular, Cu, Zn and Co have been selected to achieve single-, double- and triple-cation oxides. The synthesized samples are characterized by XRD, IR, SEM and EDX, indicating the formation of either crystalline or amorphous hydrocarbonate precursors. The oxides present one or two crystalline phases, depending on their composition; the triple-cation oxides form a solid solution of tenorite. Also, the morphology of the samples varies with the composition, yielding nanoparticles, filaments and hydrangea-like microaggregates. The antibacterial assays are conducted against E. coli and indicate an enhanced efficacy, especially displayed by the oxide containing 3% Co and 9% Zn incorporated into the CuO lattice. The oxides with the highest antibacterial properties are tested for their cytotoxicity, indicating a low toxicity impact, in line with literature data.
Collapse
Affiliation(s)
- Elvira Maria Bauer
- Institute of Structure of Matter-Italian National Research Council (ISM-CNR), Via Salaria Km 29.3, 00015 Monterotondo, Italy; (E.M.B.); (P.I.)
| | - Alessandro Talone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy;
| | - Patrizia Imperatori
- Institute of Structure of Matter-Italian National Research Council (ISM-CNR), Via Salaria Km 29.3, 00015 Monterotondo, Italy; (E.M.B.); (P.I.)
| | - Rossella Briancesco
- National Center for Water Safety, Italian National Health Institute, Viale Regina Elena 299, 00161 Rome, Italy; (R.B.); (L.B.)
| | - Lucia Bonadonna
- National Center for Water Safety, Italian National Health Institute, Viale Regina Elena 299, 00161 Rome, Italy; (R.B.); (L.B.)
| | - Marilena Carbone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy;
| |
Collapse
|
25
|
Canè C, Casciaro B, Di Somma A, Loffredo MR, Puglisi E, Battaglia G, Mellini M, Cappiello F, Rampioni G, Leoni L, Amoresano A, Duilio A, Mangoni ML. The antimicrobial peptide Esc(1-21)-1c increases susceptibility of Pseudomonas aeruginosa to conventional antibiotics by decreasing the expression of the MexAB-OprM efflux pump. Front Chem 2023; 11:1271153. [PMID: 37942400 PMCID: PMC10628714 DOI: 10.3389/fchem.2023.1271153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction: The increase in bacterial strains resistant to conventional antibiotics is an alarming problem for human health and could lead to pandemics in the future. Among bacterial pathogens responsible for a large variety of severe infections there is Pseudomonas aeruginosa. Therefore, there is an urgent need for new molecules with antimicrobial activity or that can act as adjuvants of antibiotics already in use. In this scenario, antimicrobial peptides (AMPs) hold great promise. Recently, we characterized a frog-skin AMP derived from esculentin-1a, namely Esc(1-21)-1c, endowed with antipseudomonal activity without being cytotoxic to human cells. Methods: The combinatorial effect of the peptide and antibiotics was investigated through the checkerboard assay, differential proteomic and transcriptional analysis. Results: Here, we found that Esc(1-21)-1c can synergistically inhibit the growth of P. aeruginosa cells with three different antibiotics, including tetracycline. We therefore investigated the underlying mechanism implemented by the peptide using a differential proteomic approach. The data revealed a significant decrease in the production of three proteins belonging to the MexAB-OprM efflux pump upon treatment with sub-inhibitory concentration of Esc(1-21)-1c. Down-regulation of these proteins was confirmed by transcriptional analysis and direct measurement of their relative levels in bacterial cells by tandem mass spectrometry analysis in multiple reaction monitoring scan mode. Conclusion: These evidences suggest that treatment with Esc(1-21)-1c in combination with antibiotics would increase the intracellular drug content making bacteria more susceptible to the antibiotic. Overall, these results highlight the importance of characterizing new molecules able to synergize with conventional antibiotics, paving the way for the development of alternative therapeutic strategies based on AMP/antibiotic formulations to counteract the emergence of resistant bacterial strains and increase the use of "old" antibiotics in medical practice.
Collapse
Affiliation(s)
- Carolina Canè
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Bruno Casciaro
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Angela Di Somma
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Maria Rosa Loffredo
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Elena Puglisi
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Gennaro Battaglia
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Marta Mellini
- Department of Science, University “Roma Tre”, Rome, Italy
| | - Floriana Cappiello
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Giordano Rampioni
- Department of Science, University “Roma Tre”, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Livia Leoni
- Department of Science, University “Roma Tre”, Rome, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- National Institute of Biostructure and Biosystems (INBB), Rome, Italy
| | - Angela Duilio
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- National Institute of Biostructure and Biosystems (INBB), Rome, Italy
| | - Maria Luisa Mangoni
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
26
|
Cavany S, Nanyonga S, Hauk C, Lim C, Tarning J, Sartorius B, Dolecek C, Caillet C, Newton PN, Cooper BS. The uncertain role of substandard and falsified medicines in the emergence and spread of antimicrobial resistance. Nat Commun 2023; 14:6153. [PMID: 37788991 PMCID: PMC10547756 DOI: 10.1038/s41467-023-41542-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023] Open
Abstract
Approximately 10% of antimicrobials used by humans in low- and middle-income countries are estimated to be substandard or falsified. In addition to their negative impact on morbidity and mortality, they may also be important drivers of antimicrobial resistance. Despite such concerns, our understanding of this relationship remains rudimentary. Substandard and falsified medicines have the potential to either increase or decrease levels of resistance, and here we discuss a range of mechanisms that could drive these changes. Understanding these effects and their relative importance will require an improved understanding of how different drug exposures affect the emergence and spread of resistance and of how the percentage of active pharmaceutical ingredients in substandard and falsified medicines is temporally and spatially distributed.
Collapse
Affiliation(s)
- Sean Cavany
- NDM Centre for Global Health Research, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Stella Nanyonga
- NDM Centre for Global Health Research, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Medicine Quality Research Group, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Infectious Diseases Data Observatory, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Cathrin Hauk
- NDM Centre for Global Health Research, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Medicine Quality Research Group, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Infectious Diseases Data Observatory, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Cherry Lim
- NDM Centre for Global Health Research, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- NDM Centre for Global Health Research, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Infectious Diseases Data Observatory, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Benn Sartorius
- NDM Centre for Global Health Research, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- School of Public Health, Faculty of Medicine, The University of Queensland, St Lucia, Australia
| | - Christiane Dolecek
- NDM Centre for Global Health Research, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Céline Caillet
- NDM Centre for Global Health Research, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Medicine Quality Research Group, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Infectious Diseases Data Observatory, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paul N Newton
- NDM Centre for Global Health Research, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Medicine Quality Research Group, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Infectious Diseases Data Observatory, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ben S Cooper
- NDM Centre for Global Health Research, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
27
|
Rabaan AA, Al Fares MA, Almaghaslah M, Alpakistany T, Al Kaabi NA, Alshamrani SA, Alshehri AA, Almazni IA, Saif A, Hakami AR, Khamis F, Alfaresi M, Alsalem Z, Alsoliabi ZA, Al Amri KAS, Hassoueh AK, Mohapatra RK, Arteaga-Livias K, Alissa M. Application of CRISPR-Cas System to Mitigate Superbug Infections. Microorganisms 2023; 11:2404. [PMID: 37894063 PMCID: PMC10609045 DOI: 10.3390/microorganisms11102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
Multidrug resistance in bacterial strains known as superbugs is estimated to cause fatal infections worldwide. Migration and urbanization have resulted in overcrowding and inadequate sanitation, contributing to a high risk of superbug infections within and between different communities. The CRISPR-Cas system, mainly type II, has been projected as a robust tool to precisely edit drug-resistant bacterial genomes to combat antibiotic-resistant bacterial strains effectively. To entirely opt for its potential, advanced development in the CRISPR-Cas system is needed to reduce toxicity and promote efficacy in gene-editing applications. This might involve base-editing techniques used to produce point mutations. These methods employ designed Cas9 variations, such as the adenine base editor (ABE) and the cytidine base editor (CBE), to directly edit single base pairs without causing DSBs. The CBE and ABE could change a target base pair into a different one (for example, G-C to A-T or C-G to A-T). In this review, we addressed the limitations of the CRISPR/Cas system and explored strategies for circumventing these limitations by applying diverse base-editing techniques. Furthermore, we also discussed recent research showcasing the ability of base editors to eliminate drug-resistant microbes.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Manar Almaghaslah
- Infectious Disease Division, Department of Internal Medicine, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Tariq Alpakistany
- Bacteriology Department, Public Health Laboratory, Taif 26521, Saudi Arabia
| | - Nawal A. Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi 51900, United Arab Emirates
| | - Saleh A. Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ibrahim Abdullah Almazni
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmed Saif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62223, Saudi Arabia
| | - Abdulrahim R. Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62223, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases Unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Mubarak Alfaresi
- Department of Pathology and Laboratory Medicine, Zayed Military Hospital, Abu Dhabi 3740, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Zainab Alsalem
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | | | | | - Amal K. Hassoueh
- Pharmacy Department, King Saud Medical City, Riyadh 7790, Saudi Arabia
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, India
| | - Kovy Arteaga-Livias
- Escuela de Medicina-Filial Ica, Universidad Privada San Juan Bautista, Ica 11000, Peru
- Escuela de Medicina, Universidad Nacional Hermilio Valdizán, Huanuco 10000, Peru
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
28
|
Wei X, Gao J, Xu C, Pan X, Jin Y, Bai F, Cheng Z, Lamont IL, Pletzer D, Wu W. Murepavadin induces envelope stress response and enhances the killing efficacies of β-lactam antibiotics by impairing the outer membrane integrity of Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0125723. [PMID: 37668398 PMCID: PMC10581190 DOI: 10.1128/spectrum.01257-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/08/2023] [Indexed: 09/06/2023] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen that can cause a variety of acute and chronic infections. The bacterium is highly resistant to numerous antibiotics. Murepavadin is a peptidomimetic antibiotic that blocks the function of P. aeruginosa lipopolysaccharide (LPS) transport protein D (LptD), thus inhibiting the insertion of LPS into the outer membrane. In this study, we demonstrated that sublethal concentrations of murepavadin enhance the bacterial outer membrane permeability. Proteomic analyses revealed the alteration of protein composition in bacterial inner and outer membranes following murepavadin treatment. The antisigma factor MucA was upregulated by murepavadin. In addition, the expression of the sigma E factor gene algU and the alginate synthesis gene algD was induced by murepavadin. Deletion of the algU gene reduces bacterial survival following murepavadin treatment, indicating a role of the envelope stress response in bacterial tolerance. We further demonstrated that murepavadin enhances the bactericidal activities of β-lactam antibiotics by promoting drug influx across the outer membrane. In a mouse model of acute pneumonia, the murepavadin-ceftazidime/avibactam combination showed synergistic therapeutic effect against P. aeruginosa infection. In addition, the combination of murepavadin with ceftazidime/avibactam slowed down the resistance development. In conclusion, our results reveal the response mechanism of P. aeruginosa to murepavadin and provide a promising antibiotic combination for the treatment of P. aeruginosa infections.IMPORTANCEThe ever increasing resistance of bacteria to antibiotics poses a serious threat to global public health. Novel antibiotics and treatment strategies are urgently needed. Murepavadin is a novel antibiotic that blocks the assembly of lipopolysaccharide (LPS) into the Pseudomonas aeruginosa outer membrane by inhibiting LPS transport protein D (LptD). Here, we demonstrated that murepavadin impairs bacterial outer membrane integrity, which induces the envelope stress response. We further found that the impaired outer membrane integrity increases the influx of β-lactam antibiotics, resulting in enhanced bactericidal effects. In addition, the combination of murepavadin and a β-lactam/β-lactamase inhibitor mixture (ceftazidime/avibactam) slowed down the resistance development of P. aeruginosa. Overall, this study demonstrates the bacterial response to murepavadin and provides a new combination strategy for effective treatment.
Collapse
Affiliation(s)
- Xiaoya Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiacong Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Iain L. Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
29
|
Rodríguez-Contreras A, Torres D, Piñera-Avellaneda D, Pérez-Palou L, Ortiz-Hernández M, Ginebra MP, Calero JA, Manero JM, Rupérez E. Dual-Action Effect of Gallium and Silver Providing Osseointegration and Antibacterial Properties to Calcium Titanate Coatings on Porous Titanium Implants. Int J Mol Sci 2023; 24:ijms24108762. [PMID: 37240108 DOI: 10.3390/ijms24108762] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Previously, functional coatings on 3D-printed titanium implants were developed to improve their biointegration by separately incorporating Ga and Ag on the biomaterial surface. Now, a thermochemical treatment modification is proposed to study the effect of their simultaneous incorporation. Different concentrations of AgNO3 and Ga(NO3)3 are evaluated, and the obtained surfaces are completely characterized. Ion release, cytotoxicity, and bioactivity studies complement the characterization. The provided antibacterial effect of the surfaces is analyzed, and cell response is assessed by the study of SaOS-2 cell adhesion, proliferation, and differentiation. The Ti surface doping is confirmed by the formation of Ga-containing Ca titanates and nanoparticles of metallic Ag within the titanate coating. The surfaces generated with all combinations of AgNO3 and Ga(NO3)3 concentrations show bioactivity. The bacterial assay confirms a strong bactericidal impact achieved by the effect of both Ga and Ag present on the surface, especially for Pseudomonas aeruginosa, one of the main pathogens involved in orthopedic implant failures. SaOS-2 cells adhere and proliferate on the Ga/Ag-doped Ti surfaces, and the presence of gallium favors cell differentiation. The dual effect of both metallic agents doping the titanium surface provides bioactivity while protecting the biomaterial from the most frequent pathogens in implantology.
Collapse
Affiliation(s)
- Alejandra Rodríguez-Contreras
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Eduard Maristany 16, 08019 Barcelona, Spain
| | - Diego Torres
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Eduard Maristany 16, 08019 Barcelona, Spain
- AMESPMTECH, Carrer de Laureà i Miró, 388, 08980 Sant Feliu de Llobregat, Spain
| | - David Piñera-Avellaneda
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Eduard Maristany 16, 08019 Barcelona, Spain
| | - Lluís Pérez-Palou
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Eduard Maristany 16, 08019 Barcelona, Spain
- AMESPMTECH, Carrer de Laureà i Miró, 388, 08980 Sant Feliu de Llobregat, Spain
| | - Mònica Ortiz-Hernández
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Eduard Maristany 16, 08019 Barcelona, Spain
| | - María Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Eduard Maristany 16, 08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - José Antonio Calero
- AMESPMTECH, Carrer de Laureà i Miró, 388, 08980 Sant Feliu de Llobregat, Spain
| | - José María Manero
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Eduard Maristany 16, 08019 Barcelona, Spain
| | - Elisa Rupérez
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Eduard Maristany 16, 08019 Barcelona, Spain
| |
Collapse
|
30
|
Petrovic Fabijan A, Iredell J, Danis-Wlodarczyk K, Kebriaei R, Abedon ST. Translating phage therapy into the clinic: Recent accomplishments but continuing challenges. PLoS Biol 2023; 21:e3002119. [PMID: 37220114 PMCID: PMC10204993 DOI: 10.1371/journal.pbio.3002119] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Phage therapy is a medical form of biological control of bacterial infections, one that uses naturally occurring viruses, called bacteriophages or phages, as antibacterial agents. Pioneered over 100 years ago, phage therapy nonetheless is currently experiencing a resurgence in interest, with growing numbers of clinical case studies being published. This renewed enthusiasm is due in large part to phage therapy holding promise for providing safe and effective cures for bacterial infections that traditional antibiotics acting alone have been unable to clear. This Essay introduces basic phage biology, provides an outline of the long history of phage therapy, highlights some advantages of using phages as antibacterial agents, and provides an overview of recent phage therapy clinical successes. Although phage therapy has clear clinical potential, it faces biological, regulatory, and economic challenges to its further implementation and more mainstream acceptance.
Collapse
Affiliation(s)
- Aleksandra Petrovic Fabijan
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Health and Medicine, School of Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Jonathan Iredell
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Health and Medicine, School of Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Western Sydney Local Health District, Westmead, New South Wales, Australia
| | - Katarzyna Danis-Wlodarczyk
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Razieh Kebriaei
- P3 Research Laboratory, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Mansfield, Ohio, United States of America
| |
Collapse
|
31
|
Mahoney A, Storek KM, Wuest WM. Structure-Based Design of Promysalin Analogues to Overcome Mechanisms of Bacterial Resistance. ACS OMEGA 2023; 8:12558-12564. [PMID: 37033834 PMCID: PMC10077553 DOI: 10.1021/acsomega.3c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
The search for antibiotics that function through novel mechanisms of action is ongoing, and recent progress in our lab identified the tricarboxylic acid cycle as a viable option. Promysalin is a secondary metabolite capable of species-specific inhibition of Pseudomonas aeruginosa, a common opportunistic pathogen. Promysalin disrupts primary metabolism in this bacterium by competitively inhibiting succinate dehydrogenase at the ubiquinone binding site. However, the activity of promysalin in cellulo is marred potentially by its chemical instability and/or propensity for efflux. To assess the success of these novel analogues, a novel strain of P. aeruginosa harboring gene deletions of eight efflux pumps and porins was developed and implemented. Herein, we disclose the synthesis and biological investigation of six promysalin analogues to overcome these liabilities and demonstrate that efflux likely plays a significant role in tolerating the effect of the inhibitor.
Collapse
Affiliation(s)
- Andrew
R. Mahoney
- Department
of Chemistry, Emory Univers ity, and Emory
Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Kelly M. Storek
- Department
of Infectious Diseases, Genentech, Inc. South San Francisco, California 94080, United States
| | - William M. Wuest
- Department
of Chemistry, Emory Univers ity, and Emory
Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
32
|
Zhao D, Feng W, Kang X, Li H, Liu F, Zheng W, Li G, Wang X. Dual-targeted poly(amino acid) nanoparticles deliver drug combinations on-site: an intracellular synergistic strategy to eliminate intracellular bacteria. J Mater Chem B 2023; 11:2958-2971. [PMID: 36919349 DOI: 10.1039/d3tb00125c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Multi-drug combinations are a common strategy for the treatment of intracellular bacterial infections. However, different internalized pathways and the accumulation of the composite drugs at different subcellular organelles very much reduce their efficacy. Herein, an intracellular synergistic strategy is proposed, which is realized by on-site delivery of a drug combination using a macrophage/intracellular bacterium-dual targeted drug delivery system (DDS). The DDS is fabricated by encapsulating vancomycin (Van) and curcumin (Cur) into poly(α-N-acryloyl-phenylalanine)-block-poly(β-N-acryloyl-D-aminoalanine-co-2-O-acetyl-α-D-mannosyloxy) nanoparticles, denoted by (Van + Cur)@F(AM) NPs. Mannose ligands on (Van + Cur)@F(AM) NPs trigger their specific internalization in macrophages, while aminoalanine moieties subsequently drive the NPs to target intracellular methicillin-resistant Staphylococcus aureus (MRSA). Thereafter, Van and Cur are durably released in a synergistic dose at the residence site of intracellular MRSA. Under this intracellular synergistic effect, (Van + Cur)@F(AM) NPs show superior elimination efficiency in vitro and in vivo compared to the control groups, including free Van, (Van + Cur), the DDS encapsulated Van and the DDSs separately-encapsulated Van and Cur. Furthermore, (Van + Cur)@F(AM) NPs significantly enhance the in vivo antibacterial capacity by modulating the immune response. Therefore, this dual-targeted DDS-assisted intracellular synergistic antibacterial strategy of drug combination is an effective therapeutic against intracellular bacteria.
Collapse
Affiliation(s)
- Dongdong Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Wenli Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xiaoxu Kang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Haofei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Fang Liu
- Department of Oncology of Integrative Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Weitao Zheng
- Hubei Provincial Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
33
|
Skłodowski K, Chmielewska-Deptuła SJ, Piktel E, Wolak P, Wollny T, Bucki R. Metallic Nanosystems in the Development of Antimicrobial Strategies with High Antimicrobial Activity and High Biocompatibility. Int J Mol Sci 2023; 24:2104. [PMID: 36768426 PMCID: PMC9917064 DOI: 10.3390/ijms24032104] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Antimicrobial resistance is a major and growing global problem and new approaches to combat infections caused by antibiotic resistant bacterial strains are needed. In recent years, increasing attention has been paid to nanomedicine, which has great potential in the development of controlled systems for delivering drugs to specific sites and targeting specific cells, such as pathogenic microbes. There is continued interest in metallic nanoparticles and nanosystems based on metallic nanoparticles containing antimicrobial agents attached to their surface (core shell nanosystems), which offer unique properties, such as the ability to overcome microbial resistance, enhancing antimicrobial activity against both planktonic and biofilm embedded microorganisms, reducing cell toxicity and the possibility of reducing the dosage of antimicrobials. The current review presents the synergistic interactions within metallic nanoparticles by functionalizing their surface with appropriate agents, defining the core structure of metallic nanoparticles and their use in combination therapy to fight infections. Various approaches to modulate the biocompatibility of metallic nanoparticles to control their toxicity in future medical applications are also discussed, as well as their ability to induce resistance and their effects on the host microbiome.
Collapse
Affiliation(s)
- Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | | | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Przemysław Wolak
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| |
Collapse
|
34
|
Sinha S, Sehgal A, Ray S, Sehgal R. Benefits of Manuka Honey in the Management of Infectious Diseases: Recent Advances and Prospects. Mini Rev Med Chem 2023; 23:1928-1941. [PMID: 37282661 DOI: 10.2174/1389557523666230605120717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/08/2023]
Abstract
The benefits of honey have been recognized since ancient times for treating numerous diseases. However, in today's modern era, the use of traditional remedies has been rapidly diminishing due to the complexities of modern lifestyles. While antibiotics are commonly used and effective in treating pathogenic infections, their inappropriate use can lead to the development of resistance among microorganisms, resulting in their widespread prevalence. Therefore, new approaches are constantly required to combat drug-resistant microorganisms, and one practical and useful approach is the use of drug combination treatments. Manuka honey, derived from the manuka tree (Leptospermum scoparium) found exclusively in New Zealand, has garnered significant attention for its biological potential, particularly due to its antioxidant and antimicrobial properties. Moreover, when combined with antibiotics, it has demonstrated the ability to enhance their effectiveness. In this review, we delve into the chemical markers of manuka honey that are currently known, as well as detail the impact of manuka honey on the management of infectious diseases up to the present.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - Alka Sehgal
- Department of Obstetrics & Gynaecology, GMCH, Chandigarh, 160030, India
| | - Sudip Ray
- School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
- New Zealand Institute for Minerals to Materials Research, Greymouth, 7805, New Zealand
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| |
Collapse
|
35
|
Heterologous expression of antimicrobial peptides S-thanatin and bovine lactoferricin in the marine diatom Phaeodactylum tricornutum enhances native antimicrobial activity against Gram-negative bacteria. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
The Potential of Antibiotics and Nanomaterial Combinations as Therapeutic Strategies in the Management of Multidrug-Resistant Infections: A Review. Int J Mol Sci 2022; 23:ijms232315038. [PMID: 36499363 PMCID: PMC9736695 DOI: 10.3390/ijms232315038] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
Antibiotic resistance has become a major public health concern around the world. This is exacerbated by the non-discovery of novel drugs, the development of resistance mechanisms in most of the clinical isolates of bacteria, as well as recurring infections, hindering disease treatment efficacy. In vitro data has shown that antibiotic combinations can be effective when microorganisms are resistant to individual drugs. Recently, advances in the direction of combination therapy for the treatment of multidrug-resistant (MDR) bacterial infections have embraced antibiotic combinations and the use of nanoparticles conjugated with antibiotics. Nanoparticles (NPs) can penetrate the cellular membrane of disease-causing organisms and obstruct essential molecular pathways, showing unique antibacterial mechanisms. Combined with the optimal drugs, NPs have established synergy and may assist in regulating the general threat of emergent bacterial resistance. This review comprises a general overview of antibiotic combinations strategies for the treatment of microbial infections. The potential of antibiotic combinations with NPs as new entrants in the antimicrobial therapy domain is discussed.
Collapse
|
37
|
Konwar AN, Hazarika SN, Bharadwaj P, Thakur D. Emerging Non-Traditional Approaches to Combat Antibiotic Resistance. Curr Microbiol 2022; 79:330. [PMID: 36155858 PMCID: PMC9510247 DOI: 10.1007/s00284-022-03029-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022]
Abstract
An increasing number of bacterial pathogens are acquiring resistance to the commonly used antibiotics. This has spurred a global threat leading to a resistance era and has penetrated the consciousness of the common people and the clinicians alike. The delay in discovering new antibiotics has exacerbated the resistance problem, forcing researchers to focus on unconventional antimicrobial therapeutics that differ from conventional antibiotics. Alternative therapies have emerged in recent years, including antimicrobial peptides, phage therapy, efflux pump inhibitors, antibodies, and immunomodulatory agents, which have produced impressive results in both laboratory and in clinical trials. Additionally, ultra-narrow-spectrum therapeutics such as CRISPR-Cas system and peptide nucleic acids aided in the development of sequence-specific antimicrobials. Moreover, combinatorial therapies that combine these new approaches have been efficient enough to get approval for clinical use and have accelerated the discovery of novel combination approaches that enhance the performance of already in-use antibiotics. In this review, we provide an overview of these approaches along with studies that focus on the uncharted microbial territories that have been able to deliver some of the important new antibiotics of recent times. It is hoped that the information gathered in this article will provide an update on the current antibiotic resistance threat and encourage profound research.
Collapse
Affiliation(s)
- Aditya Narayan Konwar
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Studies in Science and Technology, Guwahati, Assam, 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shabiha Nudrat Hazarika
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Studies in Science and Technology, Guwahati, Assam, 781035, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, 781001, India
| | - Pranami Bharadwaj
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Studies in Science and Technology, Guwahati, Assam, 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Studies in Science and Technology, Guwahati, Assam, 781035, India.
| |
Collapse
|
38
|
Irfan M, Almotiri A, AlZeyadi ZA. Antimicrobial Resistance and Its Drivers-A Review. Antibiotics (Basel) 2022; 11:1362. [PMID: 36290020 PMCID: PMC9598832 DOI: 10.3390/antibiotics11101362] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 10/01/2022] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance (AMR) is a critical issue in health care in terms of mortality, quality of services, and financial damage. In the battle against AMR, it is crucial to recognize the impacts of all four domains, namely, mankind, livestock, agriculture, and the ecosystem. Many sociocultural and financial practices that are widespread in the world have made resistance management extremely complicated. Several pathways, including hospital effluent, agricultural waste, and wastewater treatment facilities, have been identified as potential routes for the spread of resistant bacteria and their resistance genes in soil and surrounding ecosystems. The overuse of uncontrolled antibiotics and improper treatment and recycled wastewater are among the contributors to AMR. Health-care organizations have begun to address AMR, although they are currently in the early stages. In this review, we provide a brief overview of AMR development processes, the worldwide burden and drivers of AMR, current knowledge gaps, monitoring methodologies, and global mitigation measures in the development and spread of AMR in the environment.
Collapse
Affiliation(s)
- Mohammad Irfan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Ad Dawadmi 17464, Saudi Arabia
| | | | | |
Collapse
|
39
|
Yi H, Yuan G, Li S, Xu X, Guan Y, Zhang L, Yan Y. Drug Combinations to Prevent Antimicrobial Resistance: Various Correlations and Laws, and Their Verifications, Thus Proposing Some Principles and a Preliminary Scheme. Antibiotics (Basel) 2022; 11:1279. [PMID: 36289938 PMCID: PMC9598766 DOI: 10.3390/antibiotics11101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance (AMR) has been a serious threat to human health, and combination therapy is proved to be an economic and effective strategy for fighting the resistance. However, the abuse of drug combinations conversely accelerates the spread of AMR. In our previous work, we concluded that the mutant selection indexes (SIs) of one agent against a specific bacterial strain are closely related to the proportions of two agents in a drug combination. To discover probable correlations, predictors and laws for further proposing feasible principles and schemes guiding the AMR-preventing practice, here, three aspects were further explored. First, the power function (y = axb, a > 0) correlation between the SI (y) of one agent and the ratio (x) of two agents in a drug combination was further established based on the mathematical and statistical analyses for those experimental data, and two rules a1 × MIC1 = a2 × MIC2 and b1 + b2 = −1 were discovered from both equations of y = a1xb1 and y = a2xb2 respectively for two agents in drug combinations. Simultaneously, it was found that one agent with larger MPC alone for drug combinations showed greater potency for narrowing itself MSW and preventing the resistance. Second, a new concept, mutation-preventing selection index (MPSI) was proposed and used for evaluating the mutation-preventing potency difference of two agents in drug combination; a positive correlation between the MPSI and the mutant prevention concentration (MPC) or minimal inhibitory concentration (MIC) was subsequently established. Inspired by this, the significantly positive correlation, contrary to previous reports, between the MIC and the corresponding MPC of antimicrobial agents against pathogenic bacteria was established using 181 data pairs reported. These results together for the above three aspects indicate that the MPCs in alone and combination are very important indexes for drug combinations to predict the mutation-preventing effects and the trajectories of collateral sensitivity, and while the MPC of an agent can be roughly calculated from its corresponding MIC. Subsequently, the former conclusion was further verified and improved via antibiotic exposure to 43 groups designed as different drug concentrations and various proportions. The results further proposed that the C/MPC for the agent with larger proportion in drug combinations can be considered as a predictor and is the key to judge whether the resistance and the collateral sensitivity occur to two agents. Based on these above correlations, laws, and their verification experiments, some principles were proposed, and a diagram of the mutation-preventing effects and the resistant trajectories for drug combinations with different concentrations and ratios of two agents was presented. Simultaneously, the reciprocal of MPC alone (1/MPC), proposed as the stress factors of two agents in drug combinations, together with their SI in combination, is the key to predict the mutation-preventing potency and control the trajectories of collateral sensitivity. Finally, a preliminary scheme for antimicrobial combinations preventing AMR was further proposed for subsequent improvement research and clinic popularization, based on the above analyses and discussion. Moreover, some similar conclusions were speculated for triple or multiple drug combinations.
Collapse
Affiliation(s)
- Houqin Yi
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ganjun Yuan
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shimin Li
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuejie Xu
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yingying Guan
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Li Zhang
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yu Yan
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
40
|
Cheng X, Qu J, Song S, Bian Z. Neighborhood-based inference and restricted Boltzmann machine for microbe and drug associations prediction. PeerJ 2022; 10:e13848. [PMID: 35990901 PMCID: PMC9387521 DOI: 10.7717/peerj.13848] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/14/2022] [Indexed: 01/18/2023] Open
Abstract
Background Efficient identification of microbe-drug associations is critical for drug development and solving problem of antimicrobial resistance. Traditional wet-lab method requires a lot of money and labor in identifying potential microbe-drug associations. With development of machine learning and publication of large amounts of biological data, computational methods become feasible. Methods In this article, we proposed a computational model of neighborhood-based inference (NI) and restricted Boltzmann machine (RBM) to predict potential microbe-drug association (NIRBMMDA) by using integrated microbe similarity, integrated drug similarity and known microbe-drug associations. First, NI was used to obtain a score matrix of potential microbe-drug associations by using different thresholds to find similar neighbors for drug or microbe. Second, RBM was employed to obtain another score matrix of potential microbe-drug associations based on contrastive divergence algorithm and sigmoid function. Because generalization ability of individual method is poor, we used an ensemble learning to integrate two score matrices for predicting potential microbe-drug associations more accurately. In particular, NI can fully utilize similar (neighbor) information of drug or microbe and RBM can learn potential probability distribution hid in known microbe-drug associations. Moreover, ensemble learning was used to integrate individual predictor for obtaining a stronger predictor. Results In global leave-one-out cross validation (LOOCV), NIRBMMDA gained the area under the receiver operating characteristics curve (AUC) of 0.8666, 0.9413 and 0.9557 for datasets of DrugVirus, MDAD and aBiofilm, respectively. In local LOOCV, AUCs of 0.8512, 0.9204 and 0.9414 were obtained for NIRBMMDA based on datasets of DrugVirus, MDAD and aBiofilm, respectively. For five-fold cross validation, NIRBMMDA acquired AUC and standard deviation of 0.8569 ± -0.0027, 0.9248 ± -0.0014 and 0.9369 ± -0.0020 on the basis of datasets of DrugVirus, MDAD and aBiofilm, respectively. Moreover, case study for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) showed that 13 out of the top 20 predicted drugs were verified by searching literature. The other two case studies indicated that 17 and 17 out of the top 20 predicted microbes for the drug of ciprofloxacin and minocycline were confirmed by identifying published literature, respectively.
Collapse
Affiliation(s)
- Xiaolong Cheng
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, Jiangsu, China
| | - Jia Qu
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, Jiangsu, China
| | - Shuangbao Song
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, Jiangsu, China
| | - Zekang Bian
- School of AI & Computer Science, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
41
|
Nanomaterials-Based Combinatorial Therapy as a Strategy to Combat Antibiotic Resistance. Antibiotics (Basel) 2022; 11:antibiotics11060794. [PMID: 35740200 PMCID: PMC9220075 DOI: 10.3390/antibiotics11060794] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/10/2023] Open
Abstract
Since the discovery of antibiotics, humanity has been able to cope with the battle against bacterial infections. However, the inappropriate use of antibiotics, the lack of innovation in therapeutic agents, and other factors have allowed the emergence of new bacterial strains resistant to multiple antibiotic treatments, causing a crisis in the health sector. Furthermore, the World Health Organization has listed a series of pathogens (ESKAPE group) that have acquired new and varied resistance to different antibiotics families. Therefore, the scientific community has prioritized designing and developing novel treatments to combat these ESKAPE pathogens and other emergent multidrug-resistant bacteria. One of the solutions is the use of combinatorial therapies. Combinatorial therapies seek to enhance the effects of individual treatments at lower doses, bringing the advantage of being, in most cases, much less harmful to patients. Among the new developments in combinatorial therapies, nanomaterials have gained significant interest. Some of the most promising nanotherapeutics include polymers, inorganic nanoparticles, and antimicrobial peptides due to their bactericidal and nanocarrier properties. Therefore, this review focuses on discussing the state-of-the-art of the most significant advances and concludes with a perspective on the future developments of nanotherapeutic combinatorial treatments that target bacterial infections.
Collapse
|
42
|
Dissanayake IH, Zak V, Kaur K, Jaye K, Ayati Z, Chang D, Li CG, Bhuyan DJ. Australian native fruits and vegetables: Chemical composition, nutritional profile, bioactivity and potential valorization by industries. Crit Rev Food Sci Nutr 2022; 63:8511-8544. [PMID: 35491610 DOI: 10.1080/10408398.2022.2057913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Australian native plants have adapted themselves to harsh climatic conditions enabling them to produce unique and high levels of secondary metabolites. Native fruits and vegetables have been an integral part of the Indigenous Australian diet and Bush medicine for centuries. They have recently gained popularity owing to their rich dietary fiber, minerals, polyphenolic and antioxidant contents. This review presents a comprehensive summary and critical assessment of the studies performed in the last few decades to understand the phytochemical and nutritional profiles and therapeutic properties of Australian native fruits and vegetables. Furthermore, the potential of these fruits and vegetables as functional food ingredients and in the prevention and treatment of different diseases is discussed. Research on the nutritional and phytochemical profiles and therapeutic activity of Australian vegetables is limited with most studies focused on native fruits. These fruits have demonstrated promising antioxidant, anticancer, anti-inflammatory and antimicrobial activities mostly in in vitro models. More research to a) identify novel bioactive compounds, b) define optimal post-harvest and extraction methods, and c) understand molecular mechanisms of pharmacological activity through preclinical and clinical studies is prudent for the prospective and wider use of Australian native fruits and vegetables by the food, pharmaceutical, and nutraceutical industries.
Collapse
Affiliation(s)
| | - Valeria Zak
- School of Science, Western Sydney University, Campbelltown, NSW, Australia
| | - Kirandeep Kaur
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Kayla Jaye
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Zahra Ayati
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
43
|
Bhattacharjee B, Das A, Das G, Ramesh A. Urea-Based Ligand as an Efflux Pump Inhibitor: Warhead to Counter Ciprofloxacin Resistance and Inhibit Collagen Adhesion by MRSA. ACS APPLIED BIO MATERIALS 2022; 5:1710-1720. [PMID: 35344332 DOI: 10.1021/acsabm.2c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a frontline human pathogen in which efflux pump activity confers high levels of antibiotic-resistance and poses a therapeutic challenge in the clinics. The present study illustrates the potential of urea-based ligand as an efflux pump inhibitor (EPI) in order to restore the efficacy of ciprofloxacin (CPX) against MRSA. Among eight structurally varying urea-based ligands, the ligand C8 could significantly inhibit efflux pump activity in the clinical MRSA strain S. aureus 4s and was superior to the known EPI reserpine. In combinatorial treatment, C8 enhanced cellular accumulation of CPX, rendered a 16× decrease in the MIC of CPX, and restored the susceptibility of S. aureus 4s to CPX. Notably, C8 downregulated the expression of norA gene coding for the efflux pump in MRSA and treatment with 10 μM C8 and 2.0 μM CPX prevented emergence of the CPX resistance trait and suppressed MRSA cell growth till 120 generations. For potential anti-MRSA therapy, C8-loaded poly(d,l-lactide-co-glycolide) nanocarrier (C8-PNC) was generated, which facilitated facile release of C8 in physiologically relevant fluid. C8-PNC (loaded with 50 μM C8) rendered efflux pump inhibition and eliminated MRSA in combination with only 2.0 μM CPX. Treatment with the non-toxic C8-PNC (loaded with 50 μM C8) and CPX (2.0 μM) also hindered MRSA adhesion on collagen manifold higher as compared to cells treated with 32 μM CPX and significantly downregulated norA gene expression in non-adhered MRSA cells. The urea-based ligand presented herein is a promising biocompatible therapeutic material for effective mitigation of MRSA infections.
Collapse
Affiliation(s)
- Basu Bhattacharjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Asesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Aiyagari Ramesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
44
|
Lu T, Zheng X, Mao F, Cao Q, Cao Q, Zhu J, Li X, Lan L, Li B, Li J. Novel niclosamide-derived adjuvants elevating the efficacy of polymyxin B against MDR Pseudomonas aeruginosa DK2. Eur J Med Chem 2022; 236:114318. [DOI: 10.1016/j.ejmech.2022.114318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
|
45
|
Sengar A, Vijayanandan A. Human health and ecological risk assessment of 98 pharmaceuticals and personal care products (PPCPs) detected in Indian surface and wastewaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150677. [PMID: 34599960 DOI: 10.1016/j.scitotenv.2021.150677] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/07/2021] [Accepted: 09/26/2021] [Indexed: 05/20/2023]
Abstract
The release of pharmaceuticals and personal care products (PPCPs) in environmental waters has become an urgent issue due to their pseudo-persistent traits. The present study was undertaken to conduct a screening-level risk assessment of 98 PPCPs, detected in different water matrices (treated wastewater, surface water, and groundwater) of India, for evaluating ecological risk (risk to fish, daphnia, and algae), human health risk, and antimicrobial resistance (AMR) selection risk by following risk quotient (RQ) based methodology. In the present study, 47% of the detected PPCPs in Indian waters were found to exert a possible risk (RQ > 1) to either aquatic species and human health, or cause AMR selection risk. 17 out of 25 antibiotics detected in the environmental waters were found to pose a threat of AMR selection. 11 out of 49 pharmaceuticals were found to exert human health risk from ingesting contaminated surface water, whereas only 2 pharmaceuticals out of 25 were found to exert risk from the intake of groundwater. Very high RQs (>1000) for few pharmaceuticals were obtained, signifying a great potential of the detected PPCPs in causing severe health concern, aquatic toxicity, and AMR spread. Within India, special attention needs to be given to the pharmaceutical hubs, as the environmental waters in these regions were found to be severely contaminated with drug residues resulting in extremely high RQs. The present study will be helpful in prioritizing the detected PPCPs in the environmental waters of India, for which immediate attention and enforceable guidelines are required.
Collapse
Affiliation(s)
- Ashish Sengar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
46
|
Li F, Liu F, Huang K, Yang S. Advancement of Gallium and Gallium-Based Compounds as Antimicrobial Agents. Front Bioeng Biotechnol 2022; 10:827960. [PMID: 35186906 PMCID: PMC8855063 DOI: 10.3389/fbioe.2022.827960] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/13/2022] [Indexed: 12/30/2022] Open
Abstract
With the abuse and misuse of antibiotics, antimicrobial resistance has become a challenging issue in the medical system. Iatrogenic and non-iatrogenic infections caused by multidrug-resistant (MDR) pathogens pose serious threats to global human life and health because the efficacy of traditional antibiotics has been greatly reduced and the resulting socio-economic burden has increased. It is important to find and develop non-antibiotic-dependent antibacterial strategies because the development of new antibiotics can hardly keep pace with the emergence of resistant bacteria. Gallium (III) is a multi-target antibacterial agent that has an excellent antibacterial activity, especially against MDR pathogens; thus, a gallium (III)-based treatment is expected to become a new antibacterial strategy. However, some limitations of gallium ions as antimicrobials still exist, including low bioavailability and explosive release. In recent years, with the development of nanomaterials and clathrates, the progress of manufacturing technology, and the emergence of synergistic antibacterial strategies, the antibacterial activities of gallium have greatly improved, and the scope of application in medical systems has expanded. This review summarizes the advancement of current optimization for these key factors. This review will enrich the knowledge about the efficiency and mechanism of various gallium-based antibacterial agents and provide strategies for the improvement of the antibacterial activity of gallium-based compounds.
Collapse
Affiliation(s)
| | - Fengxiang Liu
- *Correspondence: Fengxiang Liu, ; Kai Huang, ; Shengbing Yang,
| | - Kai Huang
- *Correspondence: Fengxiang Liu, ; Kai Huang, ; Shengbing Yang,
| | - Shengbing Yang
- *Correspondence: Fengxiang Liu, ; Kai Huang, ; Shengbing Yang,
| |
Collapse
|
47
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1635-1644. [DOI: 10.1093/jac/dkac094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/28/2022] [Indexed: 11/14/2022] Open
|
48
|
Pulingam T, Parumasivam T, Gazzali AM, Sulaiman AM, Chee JY, Lakshmanan M, Chin CF, Sudesh K. Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur J Pharm Sci 2021; 170:106103. [PMID: 34936936 DOI: 10.1016/j.ejps.2021.106103] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/25/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022]
Abstract
Antibiotic resistance is a major health concern globally and has been estimated to cause 10 million deaths worldwide by year 2050 if the current trend of inappropriate and excessive use of antibiotics continues. Although, the discovery of antibiotics has saved countless of lives for the past 80 years, increasing levels of bacterial resistance to antibiotics would jeopardize the progress in clinical and agricultural sectors and may cause life-threatening situations even for previously treatable bacterial infections. Antibiotic resistance would increase the levels of poverty of low-middle income countries mostly due to extended hospital stays, higher cost of treatment and untimely deaths that directly affect the total productivity rate. Recent incidences of antibiotic resistance have been gradually increasing globally and this may potentiate horizontal transmission of the resistant gene and have been linked with cross-resistance to other antibiotic families as well. This review summarizes the global burden of antibiotic resistance from the economic viewpoint, highlights the recent incidences of antibiotic resistance mainly related to Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Salmonella spp. and Staphylococcus aureus, describes the common mechanistic actions of antibiotic resistance and potential strategies to overcome antibiotic resistance.
Collapse
Affiliation(s)
- Thiruchelvi Pulingam
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Jiun Yee Chee
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Manoj Lakshmanan
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; USM-RIKEN Centre for Aging Science (URICAS), Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Chai Fung Chin
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; USM-RIKEN Centre for Aging Science (URICAS), Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
49
|
Alrashidi A, Jafar M, Higgins N, Mulligan C, Varricchio C, Moseley R, Celiksoy V, Houston DMJ, Heard CM. A Time-Kill Assay Study on the Synergistic Bactericidal Activity of Pomegranate Rind Extract and Zn (II) against Methicillin-Resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa. Biomolecules 2021; 11:1889. [PMID: 34944534 PMCID: PMC8699308 DOI: 10.3390/biom11121889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 01/19/2023] Open
Abstract
There is a need for new antimicrobial systems due to increased global resistance to current antimicrobials. Pomegranate rind extract (PRE) and Zn (II) ions both possess a level of antimicrobial activity and work has previously shown that PRE/Zn (II) in combination possesses synergistic activity against Herpes simplex virus and Micrococcus luteus. Here, we determined whether such synergistic activity extended to other, more pathogenic, bacteria. Reference strains of methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa were cultured and subjected to challenge by PRE, Zn (II), or PRE + Zn (II), in time-kill assays. Data were obtained independently by two researchers using different PRE preparations. Statistically significant synergistic activity for PRE + Zn (II) was shown for all four bacterial strains tested compared to untreated controls, although the extent of efficacy and timescales varied. Zn (II) exerted activity and at 1 h, it was not possible to distinguish with PRE + Zn (II) combination treatment in all cases. PRE alone showed low activity against all four bacteria. Reproducible synergistic bactericidal activity involving PRE and Zn (II) has been confirmed. Potential mechanisms are discussed. The development of a therapeutic system that possesses demonstrable antimicrobial activity is supported which lends itself particularly to topical delivery applications, for example MRSA infections.
Collapse
Affiliation(s)
- Amal Alrashidi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK; (A.A.); (M.J.); (N.H.); (C.M.); (C.V.); (V.C.); (D.M.J.H.)
| | - Mohammed Jafar
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK; (A.A.); (M.J.); (N.H.); (C.M.); (C.V.); (V.C.); (D.M.J.H.)
| | - Niamh Higgins
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK; (A.A.); (M.J.); (N.H.); (C.M.); (C.V.); (V.C.); (D.M.J.H.)
| | - Ciara Mulligan
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK; (A.A.); (M.J.); (N.H.); (C.M.); (C.V.); (V.C.); (D.M.J.H.)
| | - Carmine Varricchio
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK; (A.A.); (M.J.); (N.H.); (C.M.); (C.V.); (V.C.); (D.M.J.H.)
| | - Ryan Moseley
- Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK;
| | - Vildan Celiksoy
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK; (A.A.); (M.J.); (N.H.); (C.M.); (C.V.); (V.C.); (D.M.J.H.)
- Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK;
| | - David M. J. Houston
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK; (A.A.); (M.J.); (N.H.); (C.M.); (C.V.); (V.C.); (D.M.J.H.)
| | - Charles M. Heard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK; (A.A.); (M.J.); (N.H.); (C.M.); (C.V.); (V.C.); (D.M.J.H.)
| |
Collapse
|
50
|
Uddin TM, Chakraborty AJ, Khusro A, Zidan BRM, Mitra S, Emran TB, Dhama K, Ripon MKH, Gajdács M, Sahibzada MUK, Hossain MJ, Koirala N. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J Infect Public Health 2021; 14:1750-1766. [PMID: 34756812 DOI: 10.1016/j.jiph.2021.10.020] [Citation(s) in RCA: 439] [Impact Index Per Article: 109.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 12/22/2022] Open
Abstract
Antibiotics have been used to cure bacterial infections for more than 70 years, and these low-molecular-weight bioactive agents have also been used for a variety of other medicinal applications. In the battle against microbes, antibiotics have certainly been a blessing to human civilization by saving millions of lives. Globally, infections caused by multidrug-resistant (MDR) bacteria are on the rise. Antibiotics are being used to combat diversified bacterial infections. Synthetic biology techniques, in combination with molecular, functional genomic, and metagenomic studies of bacteria, plants, and even marine invertebrates are aimed at unlocking the world's natural products faster than previous methods of antibiotic discovery. There are currently only few viable remedies, potential preventive techniques, and a limited number of antibiotics, thereby necessitating the discovery of innovative medicinal approaches and antimicrobial therapies. MDR is also facilitated by biofilms, which makes infection control more complex. In this review, we have spotlighted comprehensively various aspects of antibiotics viz. overview of antibiotics era, mode of actions of antibiotics, development and mechanisms of antibiotic resistance in bacteria, and future strategies to fight the emerging antimicrobial resistant threat.
Collapse
Affiliation(s)
- Tanvir Mahtab Uddin
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Arka Jyoti Chakraborty
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai, Tamil Nadu, India.
| | - Bm Redwan Matin Zidan
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India.
| | - Md Kamal Hossain Ripon
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh.
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6720 Szeged, Hungary.
| | | | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh.
| | - Niranjan Koirala
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu 44600, Nepal.
| |
Collapse
|