1
|
Serpa G, Hemann EA, Long ME. Does increased CCL2-mediated immune cell recruitment during mucosal BCG vaccination provide superior protection against TB? Mol Ther 2024; 32:3763-3764. [PMID: 39489905 PMCID: PMC11573566 DOI: 10.1016/j.ymthe.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Affiliation(s)
- Gregory Serpa
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Emily A Hemann
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew E Long
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
2
|
Shiraz M, Lata S, Kumar P, Shankar UN, Akif M. Immunoinformatics analysis of antigenic epitopes and designing of a multi-epitope peptide vaccine from putative nitro-reductases of Mycobacterium tuberculosis DosR. INFECTION GENETICS AND EVOLUTION 2021; 94:105017. [PMID: 34332157 DOI: 10.1016/j.meegid.2021.105017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/13/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
Mycobacterium tuberculosis (Mtb) resides in alveolar macrophages as a non-dividing and dormant state causing latent tuberculosis. Currently, no vaccine is available against the latent tuberculosis. Latent Mtb expresses ~48 genes under the control of DosR regulon. Among these, putative nitroreductases have significantly high expression levels, help Mtb to cope up with nitrogen stresses and possess antigenic properties. In the current study, immunoinformatics methodologies are applied to predict promiscuous antigenic T-cell epitopes from putative nitro-reductases of the DosR regulon. The promiscuous antigenic T-cell epitopes prediction was performed on the basis of their potential to induce an immune response and forming a stable interaction with the HLA alleles. The highest antigenic promiscuous epitopes were assembled for designing an in-silico vaccine construct. A TLR-2 agonist Phenol-soluble modulin alpha 4 was exploited as an adjuvant. Molecular docking and Molecular Dynamics Simulations were used to predict the stability of vaccine construct with the immune receptor. The predicted promiscuous epitopes may be helpful in the construction of a subunit vaccine against latent tuberculosis, which can also be administered along with the BCG to increase its efficacy. Experimental validation is a prerequisite for the in-silico designed vaccine construct against TB infection.
Collapse
Affiliation(s)
- Mohd Shiraz
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Surabhi Lata
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Pankaj Kumar
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Umate Nachiket Shankar
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Mohd Akif
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
3
|
Dorneles J, Madruga AB, Seixas Neto ACP, Rizzi C, Bettin ÉB, Hecktheuer AS, Castro CCD, Fernandes CG, Oliveira TL, Dellagostin OA. Protection against leptospirosis conferred by Mycobacterium bovis BCG expressing antigens from Leptospira interrogans. Vaccine 2020; 38:8136-8144. [PMID: 33176938 DOI: 10.1016/j.vaccine.2020.10.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/29/2022]
Abstract
Leptospirosis is a zoonotic disease worldwide and caused by the pathogenic spirochetes of the genus Leptospira. Bacterins make up the vaccines used against leptospirosis, but they only succeed in providing short-term and serovar-specific protection. The use of Mycobacterium bovis BCG as a live vaccine vector expressing leptospiral antigens is a promising alternative, particularly due to its adjuvant properties. Four distinct portions P1 (lipL32), P2 (ligAni), P3 (lemA:ligAni) and P4 (lipL32:lemA) of a recombinant chimera composed of the lipL32, lemA and ligANI genes from Leptospira interrogans were cloned individually according to the BioBricks® strategy in the plasmid pUP500/PpAN. These constructs were individually transformed into a BCG Pasteur strain, and protein expression was detected by Western blot. For vaccination, 5 groups of 10 Golden Syrian hamsters were used, aged 4-6 weeks - group 1, rBCG (LipL32); group 2, rBCG (LigAni); group 3, rBCG (LemA:LigAni); group 4, (LipL32:LemA); group 5, wild-type BCG Pasteur (negative control). Two doses containing 106 CFU of rBCG were administered subcutaneously, the challenge was performed with 5 × LD50 of Leptospira interrogans serovar Copenhageni L1-130, and the animals were observed for a 30-day period until the endpoint was reached. Humoral immunity was assessed via indirect ELISA, while renal colonisation was assessed by culture and quantitative real-time PCR. All vaccinated groups were protected against lethal challenge and renal colonisation, in comparison with negative control group (P < 0.05). Recombinant vaccines were not effective at inducing significant humoral immunity, which suggests the induction of cellular immunity - a characteristic of M. bovis BCG. In conclusion, all formulations provide 100% significant protection against leptospirosis in hamsters with no renal colonisation. The use of rBCG as a vaccine vector represents a promising alternative for the control of animal leptospirosis, allowing for protection against clinical signs of leptospirosis and renal colonisation.
Collapse
Affiliation(s)
- Jessica Dorneles
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Andriele Bonemann Madruga
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Amilton Clair Pinto Seixas Neto
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Caroline Rizzi
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Éverton Burlamarque Bettin
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Amanda Silva Hecktheuer
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Clarissa Caetano de Castro
- Programa de Pós-Graduação em Veterinária, Departamento de Patologia Animal, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Cristina Gevehr Fernandes
- Programa de Pós-Graduação em Veterinária, Departamento de Patologia Animal, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Thaís Larré Oliveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir Antonio Dellagostin
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
4
|
A standardized BioBrick toolbox for the assembly of sequences in mycobacteria. Tuberculosis (Edinb) 2019; 119:101851. [DOI: 10.1016/j.tube.2019.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/02/2019] [Accepted: 07/19/2019] [Indexed: 11/19/2022]
|
5
|
Oliveira TL, Rizzi C, da Cunha CEP, Dorneles J, Seixas Neto ACP, Amaral MG, Hartwig DD, Dellagostin OA. Recombinant BCG strains expressing chimeric proteins derived from Leptospira protect hamsters against leptospirosis. Vaccine 2019; 37:776-782. [DOI: 10.1016/j.vaccine.2018.12.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/10/2018] [Accepted: 12/30/2018] [Indexed: 01/25/2023]
|
6
|
Oliveira TL, Rizzi C, Dellagostin OA. Recombinant BCG vaccines: molecular features and their influence in the expression of foreign genes. Appl Microbiol Biotechnol 2017; 101:6865-6877. [PMID: 28779291 DOI: 10.1007/s00253-017-8439-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 01/17/2023]
Abstract
Recombinant Mycobacterium bovis BCG vaccines (rBCG) were first developed in the 1990s as a means of expressing antigens from multiple pathogens. This review examines the key structural factors of recombinant M. bovis that influence the expression of the heterologous antigens and the generation of genetic and functional stability in rBCG, which are crucial for inducing strong and lasting immune responses. The fundamental aim of this paper is to provide an overview of factors that affect the expression of recombinant proteins in BCG and the generation of the immune response against the target antigens, including mycobacterial promoters, location of foreign antigens, and stability of the vectors. The reporter systems that have been employed for evaluation of these molecular features in BCG are also reviewed here.
Collapse
Affiliation(s)
- Thaís Larré Oliveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Caroline Rizzi
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir Antônio Dellagostin
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil. .,Unidade de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário, Caixa Postal 354, Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
7
|
Liu W, Xu Y, Shen H, Yan J, Yang E, Wang H. Recombinant Bacille Calmette-Guérin coexpressing Ag85B-IFN-γ enhances the cell-mediated immunity in C57BL/6 mice. Exp Ther Med 2017; 13:2339-2347. [PMID: 28565847 PMCID: PMC5443280 DOI: 10.3892/etm.2017.4273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 01/31/2017] [Indexed: 12/16/2022] Open
Abstract
The only available vaccine against pulmonary tuberculosis is Bacille Calmette-Guérin (BCG). As the efficacy reported of the vaccine is not up to the mark, there is an urgent need to develop improved anti-tuberculosis vaccines. Antigen 85B (Ag85B) is a very promising vaccine candidate molecule of Mycobacterium tuberculosis and interferon (IFN)-γ and has been considered the most attractive correlate of protective immunity. The aim of this study was to construct a novel recombinant BCG (rBCG) to secrete Ag85B and mouse IFN-γ under control of the Mycobacterial heat shock protein 60 (hsp60) promoter and the antigen signal sequence. Second aim of the present study is to evaluate the immune response in C57BL/6 elicted by the new rBCG. Expression of the fusion protein was readily detectable by western blotting and IFN-γ bioactivity was detected indirectly by enzyme-linked immunosorbent assay (ELISA). Compared with BCG, rBCG::Ag85B-IFN-γ was substantially more active in inducing the production of IFN-γ and tumor necrosis factor (TNF)-α from mouse splenocytes. ELISA analysis for IgG, IgG1 and IgG2c showed that rBCG::Ag85B-IFN-γ induced higher titer of Ag85B and facilitated Th1 type immune response. rBCG::Ag85B-IFN-γ also improved nitric oxide production levels and enhanced antigen-specific splenocyte proliferation. Moreover, rBCG::Ag85B-IFN-γ induced human monocytes such as THP-1 cells to enhance expression of CD80, CD86, CD40 and HLA-DR. Flow cytometry analysis confirmed that rBCG::Ag85B-IFN-γ significantly activated CD4+ T cells. Assessing combinations of IFN-γ, TNF-α and interleukin-2 at the single-cell level by multiparameter flow cytometry, we found that rBCG::Ag85B-IFN-γ improved the multifunctional T cells level in comparison to BCG. In conclusion, the present study indicates that rBCG::Ag85B-IFN-γ increases cell mediated immune response and is a potential candidate vaccine for immunotherapeutic protocols against pulmonary tuberculosis.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Hongbo Shen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Jingran Yan
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Enzhuo Yang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
8
|
Lau A, Singh V, Soualhine H, Hmama Z. Expression of Cathepsin S in BCG converts it into a pro-apoptotic and highly immunogenic strain. Vaccine 2017; 35:2060-2068. [PMID: 28318770 DOI: 10.1016/j.vaccine.2017.02.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/16/2017] [Accepted: 02/28/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND BCG vaccine, introduced almost 100years ago, is the only option to prevent TB disease. It effectively protects newborns from meningeal TB but fails to prevent adult pulmonary TB. TB kills 1.3million people annually in areas where BCG vaccination is widely practiced. Thus, more effective TB vaccines are urgently needed. Others and we have shown that BCG mimics features of virulent M. tuberculosis, in particular attenuation of essential macrophage functions such as phagosome maturation and antigen presentation. One of these studies revealed that defect in antigen presentation is largely due to down-regulation of the cysteine protease Cathepsin S (CatS), which prevents MHC II molecule maturation and proper antigen peptide loading. Recent studies also suggested a potential role for cysteine proteases in the regulation of apoptosis, a key cellular process used by the macrophage to (i) contain and process ingested bacteria and (ii) facilitate cross-talk antigen presentation between the macrophage and dendritic cells. METHOD To reverse the phenotype of vaccine-mediated macrophage attenuation, we engineered a novel BCG strain that expresses and secretes active CatS (rBCG-CatS) to examine its pro-apoptotic properties in vitro, and subsequently, immunogenicity in mice. RESULTS Transcriptomic profiling of macrophages infected with rBCG-CatS, but not BCG, revealed upregulation of key pro-apoptotic genes and downregulation of anti-apoptotic genes, which were further confirmed by RT-qPCR analyses of expression of selected genes. Macrophages infected with rBCG-CatS undergo apoptosis as indicated by increased levels of annexin V staining and intracellular caspase-3 cleavage. Consistent with these findings, mice vaccinated with rBCG-CatS showed increased antigen-specific CD4+ T-cell responses, as well as enhanced cytokine production and proliferation in CD4+ upon ex vivo re-stimulation. CONCLUSION Collectively, this study shows that a pro-apoptotic BCG strain alleviates adverse traits of the wild-type strain, resulting in a highly immunogenic TB vaccine.
Collapse
Affiliation(s)
- Alice Lau
- Division of Infectious Diseases, Department of Medicine and Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Vijender Singh
- Division of Infectious Diseases, Department of Medicine and Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Hafid Soualhine
- Division of Infectious Diseases, Department of Medicine and Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Zakaria Hmama
- Division of Infectious Diseases, Department of Medicine and Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|
9
|
Deshpande V, Krishnan R, Philip S, Faludi I, Ponnusamy T, Thota LNR, Endresz V, Lu X, Kakkar VV, Mundkur LA. Oral administration of recombinant Mycobacterium smegmatis expressing a tripeptide construct derived from endogenous and microbial antigens prevents atherosclerosis in ApoE(-/-) mice. Cardiovasc Ther 2017; 34:314-24. [PMID: 27241889 DOI: 10.1111/1755-5922.12201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION Immunotherapy by inducing oral tolerance to atherogenic self-antigens is gaining importance as an alternative treatment modality for atherosclerosis. The use of live bacterial vectors to express the recombinant antigen in vivo will obviate the need for large-scale purification of recombinant protein and may also augment the efficacy of oral tolerance induction. AIM The objective of the study was to explore the use of recombinant Mycobacterium smegmatis as a live vector for oral delivery of antigens to induce immune tolerance. METHOD AND RESULTS We developed a M. smegmatis vector to secrete a recombinant tripeptide construct (AHC; peptides from Apolipoprotein B, Heat-shock protein 60 and Chlamydia pneumoniae outer membrane protein) expressed in a dendroaspin protein scaffold in pJH154 background. Immune response and oral tolerance to the cloned peptides were studied in C57/BL6 mice. The efficacy of this live vaccine to control atherosclerosis was studied in ApoE(-/-) knockout mice in C57/BL6 background. Oral administration of M. smegmatis secreting the cloned AHC antigen was found to induce tolerance to cloned protein and reduce the development of atherosclerosis by 24.0% compared to control. Protection against atherosclerosis was associated with increase in expression of regulatory T cell-associated markers including CTLA4 (1.8-fold), Foxp3 (2.6-fold), TGF-β (2.8-fold), IL10 (2.9-fold), and reduction in lipids, macrophage infiltration, and expression of inflammatory mediators in aorta. CONCLUSIONS Our results suggest that M. smegmatis can be developed as an oral carrier of recombinant proteins to treat inflammatory autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Sheena Philip
- Molecular Immunology, Thrombosis Research Institute, Bangalore, India
| | - Ildiko Faludi
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | | | | | - Valeria Endresz
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | - Xinjie Lu
- Molecular Immunology, Thrombosis Research Institute, London, UK
| | - Vijay V Kakkar
- Molecular Immunology, Thrombosis Research Institute, Bangalore, India.,Molecular Immunology, Thrombosis Research Institute, London, UK
| | - Lakshmi A Mundkur
- Molecular Immunology, Thrombosis Research Institute, Bangalore, India.
| |
Collapse
|
10
|
da Silva AJ, Zangirolami TC, Novo-Mansur MTM, Giordano RDC, Martins EAL. Live bacterial vaccine vectors: an overview. Braz J Microbiol 2015; 45:1117-29. [PMID: 25763014 PMCID: PMC4323283 DOI: 10.1590/s1517-83822014000400001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/17/2014] [Indexed: 02/07/2023] Open
Abstract
Genetically attenuated microorganisms, pathogens, and some commensal bacteria can be engineered to deliver recombinant heterologous antigens to stimulate the host immune system, while still offering good levels of safety. A key feature of these live vectors is their capacity to stimulate mucosal as well as humoral and/or cellular systemic immunity. This enables the use of different forms of vaccination to prevent pathogen colonization of mucosal tissues, the front door for many infectious agents. Furthermore, delivery of DNA vaccines and immune system stimulatory molecules, such as cytokines, can be achieved using these special carriers, whose adjuvant properties and, sometimes, invasive capacities enhance the immune response. More recently, the unique features and versatility of these vectors have also been exploited to develop anti-cancer vaccines, where tumor-associated antigens, cytokines, and DNA or RNA molecules are delivered. Different strategies and genetic tools are constantly being developed, increasing the antigenic potential of agents delivered by these systems, opening fresh perspectives for the deployment of vehicles for new purposes. Here we summarize the main characteristics of the different types of live bacterial vectors and discuss new applications of these delivery systems in the field of vaccinology.
Collapse
Affiliation(s)
- Adilson José da Silva
- Departamento de Engenharia Química Universidade Federal de São Carlos São CarlosSP Brazil Departamento de Engenharia Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Teresa Cristina Zangirolami
- Departamento de Engenharia Química Universidade Federal de São Carlos São CarlosSP Brazil Departamento de Engenharia Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Maria Teresa Marques Novo-Mansur
- Departamento de Genética e Evolução Universidade Federal de São Carlos São CarlosSP Brazil Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Roberto de Campos Giordano
- Departamento de Engenharia Química Universidade Federal de São Carlos São CarlosSP Brazil Departamento de Engenharia Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Elizabeth Angélica Leme Martins
- Centro de Biotecnologia Instituto Butantan São PauloSP Brazil Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Protective immunity induced by a recombinant BCG vaccine encoding the cyclophilin gene of Toxoplasma gondii. Vaccine 2013; 31:6065-71. [DOI: 10.1016/j.vaccine.2013.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/14/2013] [Accepted: 10/03/2013] [Indexed: 01/18/2023]
|
12
|
Wang J, Qie Y, Liu W, Wang H. Protective efficacy of a recombinant BCG secreting antigen 85B/Rv3425 fusion protein against Mycobacterium tuberculosis infection in mice. Hum Vaccin Immunother 2012; 8:1869-74. [PMID: 22906934 DOI: 10.4161/hv.21817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In this study, the protective efficacy of a novel recombinant BCG strain co-expressing Ag85B and Rv3425 against Mycobacterium tuberculosis H37Rv was evaluated in mice. This rBCG::Ag85B-Rv3425 strain could provide similar or even better protective efficacy against M. tuberculosis challenge compared with BCG, as shown by no weight loss, significantly reduced lung:body weight ratios and lung bacteria load only at early time of infection. The results suggest that rBCG::Ag85B-Rv3425 could be a potential tuberculosis vaccine candidate for further study.
Collapse
Affiliation(s)
- Jiuling Wang
- State Key Laboratory of Genetic Engineering; Institute of Genetics, Fudan University, Shanghai, P.R. China
| | | | | | | |
Collapse
|
13
|
MicroRNA-155 is required for Mycobacterium bovis BCG-mediated apoptosis of macrophages. Mol Cell Biol 2012; 32:2239-53. [PMID: 22473996 DOI: 10.1128/mcb.06597-11] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pathogenic mycobacteria, including Mycobacterium tuberculosis and Mycobacterium bovis, cause significant morbidity and mortality worldwide. However, the vaccine strain Mycobacterium bovis BCG, unlike virulent strains, triggers extensive apoptosis of infected macrophages, a step necessary for the elicitation of robust protective immunity. We here demonstrate that M. bovis BCG triggers Toll-like receptor 2 (TLR2)-dependent microRNA-155 (miR-155) expression, which involves signaling cross talk among phosphatidylinositol 3-kinase (PI3K), protein kinase Cδ (PKCδ), and mitogen-activated protein kinases (MAPKs) and recruitment of NF-κB and c-ETS to miR-155 promoter. Genetic and signaling perturbations presented the evidence that miR-155 regulates PKA signaling by directly targeting a negative regulator of PKA, protein kinase inhibitor alpha (PKI-α). Enhanced activation of PKA signaling resulted in the generation of PKA C-α; phosphorylation of MSK1, cyclic AMP response element binding protein (CREB), and histone H3; and recruitment of phospho-CREB to the apoptotic gene promoters. The miR-155-triggered activation of caspase-3, BAK1, and cytochrome c translocation involved signaling integration of MAPKs and epigenetic or posttranslational modification of histones or CREB. Importantly, M. bovis BCG infection-induced apoptosis was severely compromised in macrophages derived from miR-155 knockout mice. Gain-of-function and loss-of-function studies validated the requirement of miR-155 for M. bovis BCG's ability to trigger apoptosis. Overall, M. bovis BCG-driven miR-155 dictates cell fate decisions of infected macrophages, strongly implicating a novel role for miR-155 in orchestrating cellular reprogramming during immune responses to mycobacterial infection.
Collapse
|
14
|
Lin CW, Su IJ, Chang JR, Chen YY, Lu JJ, Dou HY. Recombinant BCG coexpressing Ag85B, CFP10, and interleukin-12 induces multifunctional Th1 and memory T cells in mice. APMIS 2011; 120:72-82. [PMID: 22151310 DOI: 10.1111/j.1600-0463.2011.02815.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mycobacterium tuberculosis (MTB) continues to be a leading cause of human deaths due to an infectious agent. Current efforts are focused on making better TB vaccines. We describe the generation and immunological characterization of recombinant BCG (rBCG). This rBCG was generated by incorporating an expression plasmid encoding two mycobacterial antigens (Ag85B and CFP10) and human interleukin (IL)-12 into a BCG strain. Immunogenicity studies in mice showed that rBCG coexpressing Ag85B, CFP10, and IL-12 (rBCG::Ag85B-CFP10-IL-12) induces a robust immune response in mice. The rBCG vaccine promotes a T-cell response against MTB that is characterized by a high proportion of polyfunctional and memory T cells in spleen and lung. Our results showed strong immunogenicity and mycobacterial growth inhibition of rBCG::Ag85B-CFP10 plus IL-12 than that of BCG vaccine.
Collapse
Affiliation(s)
- Chih-Wei Lin
- Division of Infectious Diseases, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | | | | | | | | | | |
Collapse
|
15
|
Windish HP, Duthie MS, Misquith A, Ireton G, Lucas E, Laurance JD, Bailor RH, Coler RN, Reed SG. Protection of mice from Mycobacterium tuberculosis by ID87/GLA-SE, a novel tuberculosis subunit vaccine candidate. Vaccine 2011; 29:7842-8. [PMID: 21816196 DOI: 10.1016/j.vaccine.2011.07.094] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/15/2011] [Accepted: 07/20/2011] [Indexed: 01/28/2023]
Abstract
Tuberculosis is a major health concern. Non-living tuberculosis (TB) vaccine candidates may not only be safer than the current vaccine (BCG) but could also be used to boost BCG to enhance or elongate protection. No subunit vaccines, however, are currently available for TB. To address this gap and to improve the global TB situation, we have generated a defined subunit vaccine by genetically fusing the genes of 3 potent protein Mtb antigens, Rv2875, Rv3478 and Rv1886, into a single product: ID87. When delivered with a TLR4 agonist-based adjuvant, GLA-SE, ID87 immunization reduced Mtb burden in the lungs of experimentally infected mice. The reduction in bacterial burden of ID87/GLA-SE immunized mice was accompanied by an early and significant leukocyte infiltration into the lungs during the infectious process. ID87/GLA-SE appears to be a promising new vaccine candidate that warrants further development.
Collapse
|
16
|
Xu Y, Liu W, Shen H, Yan J, Yang E, Wang H. Recombinant Mycobacterium bovis BCG expressing chimaeric protein of Ag85B and ESAT-6 enhances immunostimulatory activity of human macrophages. Microbes Infect 2010; 12:683-9. [PMID: 20417300 DOI: 10.1016/j.micinf.2010.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/26/2010] [Accepted: 04/07/2010] [Indexed: 10/19/2022]
Abstract
Recombinant BCG strain that secretes the chimaeric protein of Ag85B and ESAT-6 has been demonstrated to augment Th1 immune response in C57BL/6 mice. In this paper, we studied the immunostimulatory activity of the recombinant BCG strains in vitro and found out that rBCG-A(N)-E-A(C) activated THP-1 cells and induced higher expression levels of CD86, CD80, CD40 and HLA-DR, especially increased the ratio of CD86/CD80. Likewise, rBCG-A(N)-E-A(C) infection was able to stimulate an increase in TNF-alpha production of macrophages. Moreover, rBCG-A(N)-E-A(C) up-regulated the expression of EFHD2, ACTB and ACTG1 in the macrophages and improved the ability of antigen presentation and the CD8(+) T-cells immune response. Taken together, this rBCG-A(N)-E-A(C) strain enhanced the immunostimulatory activity of human macrophages and could be a potential vaccine against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
17
|
Recombinant Mycobacterium bovis BCG expressing the chimeric protein of antigen 85B and ESAT-6 enhances the Th1 cell-mediated response. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1121-6. [PMID: 19515867 DOI: 10.1128/cvi.00112-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chimeric protein that relies on the T-cell epitopes of antigen 85B (Ag85B) and the 6-kDa early secreted antigen target (ESAT-6) has been demonstrated to augment the Th1 immune response. In this study, we developed a recombinant Mycobacterium bovis BCG (rBCG) strain that secretes the chimeric protein of Ag85B and ESAT-6 (rBCG-A(N)-E-A(C)). Immunization with this rBCG strain induced stronger antigen-specific gamma interferon (IFN-gamma) activities, as determined by an enzyme-linked immunospot assay, and higher levels of antigen-specific CD4(+) and CD8(+) T-cell responses than those in the control groups immunized with either rBCG expressing the Ag85B-ESAT-6 fusion protein (rBCG-A-E) or BCG. Likewise, rBCG-A(N)-E-A(C) significantly increased the level of production of the major Th1 cytokines IFN-gamma and tumor necrosis factor alpha in splenocyte cultures to levels comparable to those elicited by control BCG. Moreover, the antigen-specific immunoglobulin 2c (IgG2c)/IgG1 ratio for mice immunized with rBCG-A(N)-E-A(C) was also much higher than the ratios for the other immunized groups. Together, these results indicate that this rBCG-A(N)-E-A(C) strain enhances the Th1 cell-mediated response and may serve as a potential vaccine against M. tuberculosis.
Collapse
|
18
|
Qie YQ, Wang JL, Liu W, Shen H, Chen JZ, Zhu BD, Xu Y, Zhang XL, Wang HH. More vaccine efficacy studies on the recombinant Bacille Calmette-Guerin co-expressing Ag85B, Mpt64 and Mtb8.4. Scand J Immunol 2009; 69:342-50. [PMID: 19284499 DOI: 10.1111/j.1365-3083.2009.02231.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The immunogenicity of the recombinant Bacille Calmette-Guerin: rBCG-Ag85B-Mpt64(190-198)-Mtb8.4 (rBCG-AMM) was evaluated in our previous study. This paper compares the protective efficacy of rBCG-AMM, rBCG-A which overexpresses Ag85B and BCG in C57BL/6 mice. There was no significant difference in proliferation characteristics among rBCG-AMM, rBCG-A and BCG. The growth characteristics of rBCG-AMM in host tissue were identical to control BCG, suggesting the improved protective efficacy was directly related to the expression of the Ag85B-Mpt64(190-198)-Mtb8.4 fusion protein. The protective experiment demonstrated that rBCG-AMM could confer similar or even better protective efficacy against Mycobacterium tuberculosis infection compared with BCG or rBCG-A as evaluated by bacterial organ loads, lung histopathology and net weight gain or loss. The results suggested that the recombinant BCG: rBCG-Ag85B-Mpt64(190-198)-Mtb8.4 is a potential vaccine candidate for further study.
Collapse
Affiliation(s)
- Y Q Qie
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dobakhti F, Naghibi T, Taghikhani M, Ajdary S, Rafinejad A, Bayati K, Rafiei S, Rafiee-Tehrani M. Adjuvanticity effect of sodium alginate on subcutaneously injected BCG in BALB/c mice. Microbes Infect 2009; 11:296-301. [DOI: 10.1016/j.micinf.2008.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 11/29/2008] [Accepted: 12/04/2008] [Indexed: 12/22/2022]
|
20
|
|
21
|
Heinzmann J, Wilkens M, Dohmann K, Gerlach GF. Mycobacterium avium subsp. paratuberculosis-specific mpt operon expressed in M. bovis BCG as vaccine candidate. Vet Microbiol 2008; 130:330-7. [PMID: 18343053 DOI: 10.1016/j.vetmic.2008.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
Abstract
Mycobacterium (M.) avium subspecies paratuberculosis is the etiological agent of paratuberculosis (Johne's disease) in ruminants. Vaccination against paratuberculosis with an attenuated live vaccine has been shown not only to prevent or reduce disease symptoms but also to have severe side effects. In contrast, the tuberculosis vaccine strain M. bovis BCG is considered safe and the efficacy of vaccination with M. bovis BCG transformants carrying foreign antigens has been shown in several studies. The mpt genes of M. avium subsp. paratuberculosis are part of a putative pathogenicity island and have been described as possible virulence determinants. In this study we show that the mpt genes are transcribed on a single polycistronic mRNA in M. avium subsp. paratuberculosis. We cloned the entire mpt operon, transformed it into M. bovis BCG Pasteur using the integrative vector pMV306 and showed transcription and expression of the mpt genes in the M. bovis BCG transformant. In a challenge experiment with Balb/c mice we demonstrated that immunization with M. bovis BCG expressing the M. avium subsp. paratuberculosis-derived mpt operon significantly reduces amplification of M. avium subsp. paratuberculosis in liver and spleen of the host in comparison to both the mock-immunized animals as well as the M. bovis BCG-immunized control. These findings imply that immunization with M. bovis BCG transformants may constitute a new strategy in the development of an efficacious and safe vaccine against paratuberculosis.
Collapse
Affiliation(s)
- Julia Heinzmann
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | | | | | | |
Collapse
|
22
|
Xu Y, Zhu B, Wang Q, Chen J, Qie Y, Wang J, Wang H, Wang B, Wang H. Recombinant BCG coexpressing Ag85B, ESAT-6 and mouse-IFN-γ confers effective protection againstMycobacterium tuberculosisin C57BL/6 mice. ACTA ACUST UNITED AC 2007; 51:480-7. [DOI: 10.1111/j.1574-695x.2007.00322.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
|
24
|
Radosevic K, Wieland CW, Rodriguez A, Weverling GJ, Mintardjo R, Gillissen G, Vogels R, Skeiky YAW, Hone DM, Sadoff JC, van der Poll T, Havenga M, Goudsmit J. Protective immune responses to a recombinant adenovirus type 35 tuberculosis vaccine in two mouse strains: CD4 and CD8 T-cell epitope mapping and role of gamma interferon. Infect Immun 2007; 75:4105-15. [PMID: 17526747 PMCID: PMC1951991 DOI: 10.1128/iai.00004-07] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is an urgent need for an efficacious vaccine against tuberculosis (TB). Cellular immune responses are key to an effective protective response against TB. Recombinant adenovirus (rAd) vectors are especially suited to the induction of strong T-cell immunity and thus represent promising vaccine vehicles for the prevention of TB. We have previously reported on rAd vector serotype 35, the serotype of choice due to low preexisting immunity worldwide, which expresses a unique fusion protein of Mycobacterium tuberculosis antigens Ag85A, Ag85B, and TB10.4 (Ad35-TBS). Here, we demonstrate that Ad35-TBS confers protection against M. tuberculosis when administered to mice through either an intranasal or an intramuscular route. Histological evaluation of lung tissue corroborated the protection and, in addition, demonstrated differences between two mouse strains, with diffuse inflammation in BALB/c mice and distinct granuloma formation in C57BL/6 mice. Epitope mapping analysis in these mouse strains showed that the major T-cell epitopes are conserved in the artificial fusion protein, while three novel CD8 peptides were discovered. Using a defined set of T-cell epitopes, we reveal differences between the two mouse strains in the type of protective immune response, demonstrating that different antigen-specific gamma interferon (IFN-gamma)-producing T cells can provide protection against M. tuberculosis challenge. While in BALB/c (H-2(d)) mice, a dominant CD8 T-cell response was detected, in C57BL/6 (H-2(b)) mice, more balanced CD4/CD8 T-cell responses were observed, with a more pronounced CD4 response in the lungs. These results unify conflicting reports on the relative importance of CD4 versus CD8 T-cell responses in protection and emphasize the key role of IFN-gamma.
Collapse
MESH Headings
- Acyltransferases/genetics
- Acyltransferases/immunology
- Adenoviridae/genetics
- Administration, Intranasal
- Animals
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Colony Count, Microbial
- Disease Models, Animal
- Epitope Mapping
- Epitopes, T-Lymphocyte/immunology
- Female
- Genetic Vectors
- Injections, Intramuscular
- Interferon-gamma/immunology
- Liver/microbiology
- Lung/microbiology
- Lung/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Spleen/microbiology
- Tuberculosis/prevention & control
- Tuberculosis Vaccines/genetics
- Tuberculosis Vaccines/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
|
25
|
Yu JS, Peacock JW, Jacobs WR, Frothingham R, Letvin NL, Liao HX, Haynes BF. Recombinant Mycobacterium bovis bacillus Calmette-Guerin elicits human immunodeficiency virus type 1 envelope-specific T lymphocytes at mucosal sites. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:886-93. [PMID: 17507541 PMCID: PMC1951062 DOI: 10.1128/cvi.00407-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A successful vaccine vector for human immunodeficiency virus type 1 (HIV-1) should induce anti-HIV-1 T-cell immune responses at mucosal sites. We have constructed recombinant Mycobacterium bovis bacillus Calmette-Guérin (rBCG) expressing an HIV-1 group M consensus envelope (Env) either as a surface, intracellular, or secreted protein as an immunogen. rBCG containing HIV-1 env plasmids engineered for secretion induced optimal Env-specific T-cell gamma interferon enzyme-linked immunospot responses in murine spleen, female reproductive tract, and lungs. While rBCG-induced T-cell responses to HIV-1 envelope in spleen were lower than those induced by adenovirus prime/recombinant vaccinia virus (rAd-rVV) boost, rBCG induced comparable responses to rAd-rVV immunization in the female reproductive tract and lungs. T-cell responses induced by rBCG were primarily CD4(+), although rBCG alone did not induce anti-HIV-1 antibody. However, rBCG could prime for a protein boost by HIV-1 envelope protein. Thus, rBCG can serve as a vector for induction of anti-HIV-1 consensus Env cellular responses at mucosal sites.
Collapse
Affiliation(s)
- Jae-Sung Yu
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710 , USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Gupta UD, Katoch VM, McMurray DN. Current status of TB vaccines. Vaccine 2007; 25:3742-51. [PMID: 17321015 DOI: 10.1016/j.vaccine.2007.01.112] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 01/29/2007] [Indexed: 11/25/2022]
Abstract
During last 10 years, there has been extensive work for the development of potential tuberculosis vaccine candidates using the mice and guinea pig models. Though till date several promising candidates have been identified and at least eight vaccines have entered clinical evaluation. These recent advances in the clinical testing of new TB vaccines are very exciting and promising. However, there is a need to continue the search for additional vaccine candidates or vaccination strategies.
Collapse
Affiliation(s)
- Umesh Datta Gupta
- National JALMA Institute for Leprosy & Other Mycobacterial Disease (ICMR), P. Box No. 1101, Tajganj, Agra 282001, India.
| | | | | |
Collapse
|
27
|
Monteiro-Maia R, Ortigão-de-Sampaio MB, Pinho RT, Castello-Branco LRR. Modulation of humoral immune response to oral BCG vaccination by Mycobacterium bovis BCG Moreau Rio de Janeiro (RDJ) in healthy adults. JOURNAL OF IMMUNE BASED THERAPIES AND VACCINES 2006; 4:4. [PMID: 16956404 PMCID: PMC1569376 DOI: 10.1186/1476-8518-4-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 09/06/2006] [Indexed: 12/01/2022]
Abstract
Background Oral administration of BCG was the route initially used by Calmette and Guérin, but was replaced by intradermal administration in virtually all countries after the Lubeck accident. However, Brazil continued to administer oral BCG Moreau RDJ, which was maintained until the mid-1970s when it was substituted by the intradermal route. Although BCG vaccination has been used in humans since 1921, little is known of the induced immune response. The aim of this study was to analyse immunological responses after oral vaccination with M. bovis BCG Moreau RDJ. Methods This study in healthy volunteers has measured cellular and humoral aspects of the immunological response to oral M. bovis BCG Moreau RDJ in Rio de Janeiro, Brazil. T-cell trafficking and Th1 and Th2 cytokine responses are described, as well as isotype-specific antibody production using novel techniques. Results Oral immunisation has no adverse effects. We have shown that there are cellular and humoral immunological responses after oral immunisation. Oral revaccination does not induce a positive skin test in responsive individuals and multiple booster orally was able to induce modulation in humoral immunological responses (switch from IgG to IgA) in previously immunised subjects and incapable of inducing tolerance. In contrast, the cellular immune response does not differ between vaccinated individuals with positive and negative skin test reactions. Conclusion All subjects, including those who did not respond to the skin test at study commencement, were capable of mounting humoral and cellular immune response to the antigens tested.
Collapse
Affiliation(s)
- Renata Monteiro-Maia
- Centro de Pesquisas Arlindo de Assis, Fundação Ataulpho de Paiva, Avenida Almirante Barroso, 54, 15°. Andar, Rio de Janeiro, Brazil
| | - Maria B Ortigão-de-Sampaio
- Cellular & Molecular Medicine (Centre for Infection), St. George's, Cranmer Terrace, London SW17 0RE, UK
| | - Rosa T Pinho
- Laboratório de Imunologia Clínica, Departamento de Imunologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Luiz RR Castello-Branco
- Centro de Pesquisas Arlindo de Assis, Fundação Ataulpho de Paiva, Avenida Almirante Barroso, 54, 15°. Andar, Rio de Janeiro, Brazil
- Laboratório de Imunologia Clínica, Departamento de Imunologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is one of the main killers among infectious pathogens in the world and represents an important factor that sustain poverty in developing countries. Failure of the BCG vaccine to protect in endemic regions, and increasing problems with multi-drug-resistant TB calls for development of better vaccines to prevent reactivation of tuberculosis. It has been estimated that an effective post-exposure vaccine will prevent 30-40% of the TB cases. New vaccines should also prevent development of TB in HIV-infected individuals. Recent characterization of M. tuberculosis H37Rv by proteomic methods has revealed a large number of novel secreted proteins that should be investigated in mouse models for latent and slowly progressive TB. There is an important balance between control of infection and tissue destruction in TB, and M. tuberculosis has developed strategies to prevent immune-mediated sterilization. Central to this strategy is inhibition of apoptosis of macrophages. Development of novel vaccines should therefore take into consideration the effects on central markers to obtain a better picture of regulation of immunity, including FasL and Bcl-2 which are essential in regulation of apoptosis.
Collapse
Affiliation(s)
- H G Wiker
- Section for Microbiology and Immunology, The Gade Institute, Armauer Hansen Building, University of Bergen, NO-5021 Bergen, Norway.
| | | | | | | |
Collapse
|
29
|
Abstract
Tuberculosis (TB), an ancient human scourge, is a growing health problem in the developing world. Approximately two million deaths each year are caused by TB, which is the leading cause of death in HIV-infected individuals. Clearly, an improved TB vaccine is desperately needed. Heterologous prime-boost regimens probably represent the best hope for an improved vaccine regimen to prevent TB. This first generation of new vaccines might also complement drug treatment regimens and be effective against reactivation of TB from the latent state, which would significantly enhance their usefulness.
Collapse
Affiliation(s)
- Yasir A W Skeiky
- Aeras Global TB Vaccine Foundation, 1405 Research Blvd, Rockville, Maryland 20850, USA.
| | | |
Collapse
|
30
|
Baumann S, Nasser Eddine A, Kaufmann SHE. Progress in tuberculosis vaccine development. Curr Opin Immunol 2006; 18:438-48. [PMID: 16777396 DOI: 10.1016/j.coi.2006.05.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 05/31/2006] [Indexed: 12/17/2022]
Abstract
The first tuberculosis vaccine candidates have reached clinical testing. Novel subunit vaccine candidates aimed at boosting previous BCG-prime vaccination and novel viable attenuated vaccine candidates aimed at substituting BCG have both completed the preclinical stage. Despite these achievements, rational vaccine design against tuberculosis has not come to an end. Novel findings in basic immunology and microbiology will advance further improvements in vaccine development. These include the potential role of crosspriming to induce more potent T-cell responses, the role of memory T cells and regulatory T cells in sustaining or curtailing optimal immune responses, respectively, as well as the involvement of cytokines in T-cell migration to nonimmunologic tissue sites and in the generation of memory. Knowledge about basic mechanisms underlying optimum protection will not only have a direct impact on future vaccine design against tuberculosis but also help in the formulation of a set of biomarkers with predictive value for vaccine efficacy assessment.
Collapse
Affiliation(s)
- Sven Baumann
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | | | | |
Collapse
|
31
|
Ulrichs T, Kaufmann SHE. Immunologie der Tuberkulose und neue Impfstoffansätze. Monatsschr Kinderheilkd 2006. [DOI: 10.1007/s00112-005-1280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|