1
|
Sun D, Gou H, Zhang Y, Li J, Dai C, Shen H, Chen K, Wang Y, Pan P, Zhu T, Xu C, Shan T, Liao M, Zhang J. Salmonella Typhimurium persistently infects host via its effector SseJ-induced PHB2-mediated mitophagy. Autophagy 2025; 21:1228-1244. [PMID: 39902787 DOI: 10.1080/15548627.2025.2462511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025] Open
Abstract
Despite decades of research on effective methods to resist Salmonella enterica serovar Typhimurium (S. Typhimurium) pathogenicity, the mechanisms of S. Typhimurium-host interactions have not been fully determined. S. Typhimurium is characterized as an important zoonosis in public health worldwide because of its endemicity, high morbidity, and difficulty in applying control and prevention measures. Herein, we introduce a novel bacterial factor, secretion system effector J (SseJ), and its interactive host protein, PHB2 (prohibitin 2). We explored whether SseJ affected S. Typhimurium replication and survival in the host. S. Typhimurium infection caused severe mitochondrial damage and mitophagy, which facilitated S. Typhimurium proliferation in cells. S. Typhimurium SseJ activated the PINK1 (PTEN induced kinase 1)-PRKN (parkin RBR E3 ubiquitin protein ligase)-autophagosome-dependent mitophagy pathway, aided by the mitophagy receptor PHB2, for bacterial survival and persistent infection. Moreover, suppression of mitophagy alleviated the pathogenicity of S. Typhimurium. In conclusion, S. Typhimurium infection could be antagonized by targeting the SseJ-PHB2-mediated host mitochondrial autophagy pathway.Abbreviation: ACTB: actin beta; BafA1: bafilomycin A1; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; co-IP: co-immunoprecipitation; CFU: colony-forming units; COX4/COXIV: cytochrome c oxidase subunit 4; CQ: chloroquine; hpi: h post-bacterial infection; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; Mdivi-1:mitophagy inhibitor mitochondrial division inhibitor 1; MFN2: mitofusin 2; MG132: z-leu-leu-leucinal; MOI: multiplicity of infection; mtDNA: mitochondrial DNA; PBS: phosphate-buffered saline; PGAM5: PGAM family member 5, mitochondrial serine/threonine protein phosphatase; PHB2: prohibitin 2; PINK1: PTEN induced kinase 1; qPCR: quantitative real-time reverse transcription PCR; Roc-A: Rocaglamide A; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; SCVs: Salmonella-containing vacuoles; siRNA: small interfering RNA; SPI-2: Salmonella pathogenicity island 2; SseJ: secretion system effector J; S. Typhimurium: Salmonella enterica serovar Typhimurium; S.T-ΔSseJ: SseJ gene-deleted Salmonella Typhimurium strains; S.T-CΔSseJ: SseJ-complemented Salmonella Typhimurium strains; WT: wild-type.
Collapse
Affiliation(s)
- Dage Sun
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongchao Gou
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Yu Zhang
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai, China
| | - Jiayi Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Changzhi Dai
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haiyan Shen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Kaifeng Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yu Wang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Peng Pan
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ting Zhu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chenggang Xu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Zhongkai University of Agricultural Engineering, Guangzhou, China
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Su Y, Sun T, Gao J, Zhang C, Liu X, Bi C, Wang J, Shan A. Anti-Proteolytic Peptide R7I Protects the Intestinal Barrier and Alleviates Fatty Acid Malabsorption in Salmonella typhimurium-Infected Mice. Int J Mol Sci 2023; 24:16409. [PMID: 38003599 PMCID: PMC10670956 DOI: 10.3390/ijms242216409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
With a wide range of hosts, environmental adaptation, and antibiotic resistance, Salmonella typhimurium is one of the most common causes of food poisoning in the world. Infection with Salmonella typhimurium not only results in intestinal inflammation but also damages the intestinal barrier and interferes with the host's ability to absorb nutrients. It is imperative to find alternatives to antibiotics for eradicating bacteria, reducing intestinal damage, and reestablishing nutrient absorption, especially given that antibiotics are currently prohibited. This research aims to understand the protective role of anti-proteolytic peptide R7I on the gut in the setting of Salmonella typhimurium infection and its impact on nutritional absorption, maybe offering an alternative to antibiotics for bacterial killing. The findings demonstrated that R7I reduced the production of inflammatory factors, including IL-6, TNF-α, and L-1β in the jejunum and decreased the expression of genes like TLR4 and NF-κB in the jejunum (p < 0.05). R7I enhanced antioxidant capacity and preserved the antioxidant/pro-oxidant balance in the jejunum (p < 0.05). R7I also normalized intestinal shape and restored tight junction protein expression. Fatty acid binding protein 2 (FABP2) and fatty acid transport protein 4 (FATP4) expression in the jejunum was restored by R7I. In addition, serum-free fatty acids and lipid metabolites were significantly higher in the R7I group than in the control group (p < 0.05). Overall, the anti-enzyme peptide R7I maintained the healthy state of the intestine and alleviated the abnormal fatty acid absorption caused by bacterial infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiajun Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.S.); (T.S.); (J.G.); (C.Z.); (X.L.); (C.B.)
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.S.); (T.S.); (J.G.); (C.Z.); (X.L.); (C.B.)
| |
Collapse
|
3
|
Zeng C, Wang R, Tan H. Role of Pyroptosis in Cardiovascular Diseases and its Therapeutic Implications. Int J Biol Sci 2019; 15:1345-1357. [PMID: 31337966 PMCID: PMC6643148 DOI: 10.7150/ijbs.33568] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
Abstract
Pyroptotic cell death or pyroptosis is characterized by caspase-1-dependent formation of plasma membrane pores, leading to the release of pro-inflammatory cytokines and cell lysis. Pyroptosis tightly controls the inflammatory responses and coordinates antimicrobial host defenses by releasing pro-inflammatory cellular contents, such as interleukin (IL)-1β and IL-18, and consequently expands or sustains inflammation. It is recognized as an important innate immune effector mechanism against intracellular pathogens. The induction of pyroptosis is closely associated with the activation of the NOD-like receptor 3 (NLRP3) inflammasome which has been linked to key cardiovascular risk factors including hyperlipidemia, diabetes, hypertension, obesity, and hyperhomocysteinemia. Emerging evidence has indicated pyroptosis as an important trigger and endogenous regulator of cardiovascular inflammation. Thus, pyroptosis may play an important role in the pathogenesis of cardiovascular diseases. Design of therapeutic strategies targeting the activation of NLRP3 inflammasome and pyroptosis holds promise for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Renqing Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Department of pathology, the Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 21008, China
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
4
|
Rodrigues VCDC, de Oliveira IP, Bezerra RMN, Antunes AEC. Riscos microbiológicos de fórmulas para lactentes. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2019. [DOI: 10.1590/1981-6723.05618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resumo O objetivo desse trabalho foi discorrer sobre os principais perigos biológicos encontrados em fórmulas infantis a partir dos relatos da literatura, especialmente de registros de surtos. Este estudo é de cunho exploratório por meio de revisão bibliográfica, sendo utilizados como fontes de dados sites de busca científica. Dentre os principais micro-organismos causadores de doenças ligadas à ingestão de fórmulas infantis estão o Cronobacter sakazakii e a Salmonella enterica, porém outras bactérias, como Clostridium botulinum, Klebsiella pneumoniae, Staphylococcus aureus e Bacillus cereus, podem ser responsáveis por contaminações destas fórmulas. Visto que lactentes apresentam os sistemas imunológico e metabólico ainda em desenvolvimento, estes representam um público mais vulnerável a contaminantes, fazendo-se fundamental o oferecimento de alimentos seguros desde o processamento na indústria até a administração nas residências e unidades hospitalares.
Collapse
|
5
|
dos Santos AMP, Ferrari RG, Conte-Junior CA. Virulence Factors in Salmonella Typhimurium: The Sagacity of a Bacterium. Curr Microbiol 2018; 76:762-773. [DOI: 10.1007/s00284-018-1510-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
|
6
|
Mittal R, Lisi CV, Kumari H, Grati M, Blackwelder P, Yan D, Jain C, Mathee K, Weckwerth PH, Liu XZ. Otopathogenic Pseudomonas aeruginosa Enters and Survives Inside Macrophages. Front Microbiol 2016; 7:1828. [PMID: 27917157 PMCID: PMC5114284 DOI: 10.3389/fmicb.2016.01828] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022] Open
Abstract
Otitis media (OM) is a broad term describing a group of infectious and inflammatory disorders of the middle ear. Despite antibiotic therapy, acute OM can progress to chronic suppurative otitis media (CSOM) characterized by ear drum perforation and purulent discharge. Pseudomonas aeruginosa is the most common pathogen associated with CSOM. Although, macrophages play an important role in innate immune responses but their role in the pathogenesis of P. aeruginosa-induced CSOM is not known. The objective of this study is to examine the interaction of P. aeruginosa with primary macrophages. We observed that P. aeruginosa enters and multiplies inside human and mouse primary macrophages. This bacterial entry in macrophages requires both microtubule and actin dependent processes. Transmission electron microscopy demonstrated that P. aeruginosa was present in membrane bound vesicles inside macrophages. Interestingly, deletion of oprF expression in P. aeruginosa abrogates its ability to survive inside macrophages. Our results suggest that otopathogenic P. aeruginosa entry and survival inside macrophages is OprF-dependent. The survival of bacteria inside macrophages will lead to evasion of killing and this lack of pathogen clearance by phagocytes contributes to the persistence of infection in CSOM. Understanding host-pathogen interaction will provide novel avenues to design effective treatment modalities against OM.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Christopher V Lisi
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Hansi Kumari
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami FL, USA
| | - M'hamed Grati
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Patricia Blackwelder
- Chemistry Department, Center for Advanced Microscopy, University of Miami, Coral GablesFL, USA; Rosenstiel School of Marine and Atmospheric Science, University of Miami, Key BiscayneFL, USA
| | - Denise Yan
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Chaitanya Jain
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, MiamiFL, USA; Global Health Consortium and Biomolecular Science Institute, Florida International University, MiamiFL, USA
| | - Paulo H Weckwerth
- Health Sciences Department, University of Sagrado Coração Bauru, Brazil
| | - Xue Z Liu
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| |
Collapse
|
7
|
Abstract
Several live-attenuated Shigella vaccines, with well-defined mutations in specific genes, have shown great promise in eliciting significant immune responses when given orally to volunteers. These responses have been measured by evaluating antibody-secreting cells, serum antibody levels and fecal immunoglobulin A to bacterial lipopolysaccharide and to individual bacterial invasion plasmid antigens. In this review, data collected from volunteer trials with live Shigella vaccines from three different research groups are described. The attenuating features of the bacterial strains, as well as the immune response following the use of different dosing regimens, are also described. The responses obtained with each vaccine strain are compared with data obtained from challenge trials using wild-type Shigella strains. Although the exact correlates of protection have not been found, some consensus may be derived as to what may constitute a protective immune response. Future directions in the field of live Shigella vaccines are also discussed.
Collapse
Affiliation(s)
- Malabi M Venkatesan
- Division of Bacterial and Rickettsial Diseases, Walter Reed Army Institute of Research, 503 Robert Forney Drive, Room 3s12, Silver Spring, MD 20910, USA.
| | | |
Collapse
|
8
|
Martins RP, Aguilar C, Graham JE, Carvajal A, Bautista R, Claros MG, Garrido JJ. Pyroptosis and adaptive immunity mechanisms are promptly engendered in mesenteric lymph-nodes during pig infections with Salmonella enterica serovar Typhimurium. Vet Res 2013; 44:120. [PMID: 24308825 PMCID: PMC4028780 DOI: 10.1186/1297-9716-44-120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 11/25/2013] [Indexed: 12/21/2022] Open
Abstract
In this study, we explored the transcriptional response and the morphological changes occurring in porcine mesenteric lymph-nodes (MLN) along a time course of 1, 2 and 6 days post infection (dpi) with Salmonella Typhimurium. Additionally, we analysed the expression of some Salmonella effectors in tissue to complete our view of the processes triggered in these organs upon infection. The results indicate that besides dampening apoptosis, swine take advantage of the flagellin and prgJ expression by Salmonella Typhimuriun to induce pyroptosis in MLN, preventing bacterial dissemination. Furthermore, cross-presentation of Salmonella antigens was inferred as a mechanism that results in a rapid clearance of pathogen by cytotoxic T cells. In summary, although the Salmonella Typhimurium strain employed in this study was able to express some of its major virulence effectors in porcine MLN, a combination of early innate and adaptive immunity mechanisms might overcome virulence strategies employed by the pathogen, enabling the host to protect itself against bacterial spread beyond gut-associated lymph-nodes. Interestingly, we deduced that clathrin-mediated endocytosis could contribute to mechanisms of pathogen virulence and/or host defence in MLN of Salmonella infected swine. Taken together, our results are useful for a better understanding of the critical protective mechanisms against Salmonella that occur in porcine MLN to prevent the spread of infection beyond the intestine.
Collapse
Affiliation(s)
- Rodrigo Prado Martins
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Gregor Mendel C5, 14071, Córdoba, Spain
| | - Carmen Aguilar
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Gregor Mendel C5, 14071, Córdoba, Spain
| | - James E Graham
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, 40202, Louisville, KY, USA
| | - Ana Carvajal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Rocío Bautista
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, Parque Tecnológico de Andalucía, 29590, Málaga, Spain
| | - M Gonzalo Claros
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, Parque Tecnológico de Andalucía, 29590, Málaga, Spain
| | - Juan J Garrido
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Gregor Mendel C5, 14071, Córdoba, Spain
| |
Collapse
|
9
|
Heme catabolism by heme oxygenase-1 confers host resistance to Mycobacterium infection. Infect Immun 2013; 81:2536-45. [PMID: 23630967 DOI: 10.1128/iai.00251-13] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Heme oxygenases (HO) catalyze the rate-limiting step of heme degradation. The cytoprotective action of the inducible HO-1 isoform, encoded by the Hmox1 gene, is required for host protection against systemic infections. Here we report that upregulation of HO-1 expression in macrophages (M) is strictly required for protection against mycobacterial infection in mice. HO-1-deficient (Hmox1(-/-)) mice are more susceptible to intravenous Mycobacterium avium infection, failing to mount a protective granulomatous response and developing higher pathogen loads, than infected wild-type (Hmox1(+/+)) controls. Furthermore, Hmox1(-/-) mice also develop higher pathogen loads and ultimately succumb when challenged with a low-dose aerosol infection with Mycobacterium tuberculosis. The protective effect of HO-1 acts independently of adaptive immunity, as revealed in M. avium-infected Hmox1(-/-) versus Hmox1(+/+) SCID mice lacking mature B and T cells. In the absence of HO-1, heme accumulation acts as a cytotoxic pro-oxidant in infected M, an effect mimicked by exogenous heme administration to M. avium-infected wild-type M in vitro or to mice in vivo. In conclusion, HO-1 prevents the cytotoxic effect of heme in M, contributing critically to host resistance to Mycobacterium infection.
Collapse
|
10
|
Abstract
Eukaryotic cells undergo death by several different mechanisms: apoptosis, a cell death that prevents inflammatory response; necrosis, when the cell membrane lyses and all the intracellular content is spilled outside; and pyroptosis, a cell death that is accompanied by the release of inflammatory cytokines by the dying cells. Pyroptosis is designed to attract a nonspecific innate response to the site of infection or tumor. In this chapter, we describe the methods used to study pyroptosis in a mammalian cell. The model organism used is Mycobacterium tuberculosis, which suppresses pyroptosis by macrophages, and possibly in dendritic cells.
Collapse
Affiliation(s)
- Lia Danelishvili
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | | |
Collapse
|
11
|
Proteomic analysis of porcine mesenteric lymph-nodes after Salmonella typhimurium infection. J Proteomics 2012; 75:4457-70. [DOI: 10.1016/j.jprot.2012.03.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 03/14/2012] [Accepted: 03/22/2012] [Indexed: 11/23/2022]
|
12
|
New insights into Whipple’s disease and Tropheryma whipplei infections. Microbes Infect 2010; 12:1102-10. [DOI: 10.1016/j.micinf.2010.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 08/02/2010] [Indexed: 12/17/2022]
|
13
|
de Paula CMD, Mercedes PG, do Amaral PH, Tondo EC. Antimicrobial resistance and PCR-ribotyping of Shigella responsible for foodborne outbreaks occurred in southern Brazil. Braz J Microbiol 2010; 41:966-77. [PMID: 24031576 PMCID: PMC3769747 DOI: 10.1590/s1517-838220100004000015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 04/04/2010] [Accepted: 06/21/2010] [Indexed: 12/01/2022] Open
Abstract
Little information about Shigella responsible for foodborne shigellosis is available in Brazil. The present study aimed to investigate the antimicrobial resistance and PCR-ribotyping patterns of Shigella isolates responsible for foodborne outbreaks occurred in Rio Grande do Sul State (RS), Southern Brazil in the period between 2003 and 2007. Shigella strains (n=152) were isolated from foods and fecal samples of victims of shigellosis outbreaks investigated by the Surveillance Service. Identification of the strains at specie level indicated that 71.1% of them were S. flexneri, 21.5% S. sonnei, and 0.7% S. dysenteriae. Ten strains (6.7%) were identified only as Shigella spp. An increasing occurrence of S. sonnei was observed after 2004. Most of the strains were resistant to streptomycin (88.6%), followed by ampicillin (84.6%), and sulfamethoxazole/trimethoprim (80.5 %). Resistant strains belonged to 73 patterns, and pattern A (resistance to ampicillin, sulfamethoxazole/trimethoprim, tetracycline, streptomycin, chloramphenicol, and intermediate resistance to kanamycin) grouped the largest number of isolates (n=36). PCR-ribotyping identified three banding patterns (SH1, SH2, and SH3). SH1 grouped all S. flexneri and SH2 grouped all S. sonnei. The S. dysenteriae strain belonged to group SH3. According to the results, several Shigella isolates shared the same PCR-rybotyping banding pattern and the same resistance profile, suggesting that closely related strains were responsible for the outbreaks. However, other molecular typing methods need to be applied to confirm the clonal relationship of these isolates.
Collapse
|
14
|
Behar SM, Divangahi M, Remold HG. Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy? Nat Rev Microbiol 2010; 8:668-74. [PMID: 20676146 DOI: 10.1038/nrmicro2387] [Citation(s) in RCA: 336] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Virulent Mycobacterium tuberculosis inhibits apoptosis and triggers necrosis of host macrophages to evade innate immunity and delay the initiation of adaptive immunity. By contrast, attenuated M. tuberculosis induces macrophage apoptosis, an innate defence mechanism that reduces bacterial viability. In this Opinion article, we describe how virulent M. tuberculosis blocks production of the eicosanoid lipid mediator prostaglandin E(2) (PGE(2)). PGE(2) production by infected macrophages prevents mitochondrial damage and initiates plasma membrane repair, two processes that are crucial for preventing necrosis and inducing apoptosis. Thus, M. tuberculosis-mediated modulation of eicosanoid production determines the death modality of the infected macrophage, which in turn has a substantial impact on the outcome of infection.
Collapse
Affiliation(s)
- Samuel M Behar
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Womens Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
15
|
Divangahi M, Desjardins D, Nunes-Alves C, Remold HG, Behar SM. Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. Nat Immunol 2010; 11:751-8. [PMID: 20622882 DOI: 10.1038/ni.1904] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 06/15/2010] [Indexed: 12/29/2022]
Abstract
The fate of infected macrophages has an essential role in protection against Mycobacterium tuberculosis by regulating innate and adaptive immunity. M. tuberculosis exploits cell necrosis to exit from macrophages and spread. In contrast, apoptosis, which is characterized by an intact plasma membrane, is an innate mechanism that results in lower bacterial viability. Virulent M. tuberculosis inhibits apoptosis and promotes necrotic cell death by inhibiting production of prostaglandin E(2). Here we show that by activating the 5-lipoxygenase pathway, M. tuberculosis not only inhibited apoptosis but also prevented cross-presentation of its antigens by dendritic cells, which impeded the initiation of T cell immunity. Our results explain why T cell priming in response to M. tuberculosis is delayed and emphasize the importance of early immunity.
Collapse
Affiliation(s)
- Maziar Divangahi
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
16
|
Northen H, Paterson GK, Constantino-Casas F, Bryant CE, Clare S, Mastroeni P, Peters SE, Maskell DJ. Salmonella enterica serovar Typhimurium mutants completely lacking the F(0)F(1) ATPase are novel live attenuated vaccine strains. Vaccine 2009; 28:940-9. [PMID: 19925904 PMCID: PMC3898827 DOI: 10.1016/j.vaccine.2009.10.146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 10/27/2009] [Accepted: 10/29/2009] [Indexed: 12/31/2022]
Abstract
The F0F1 ATPase plays a central role in both the generation of ATP and the utilisation of ATP for cellular processes such as rotation of bacterial flagella. We have deleted the entire operon encoding the F0F1 ATPase, as well as genes encoding individual F0 or F1 subunits, in Salmonella enteric serovar Typhimurium. These mutants were attenuated for virulence, as assessed by bacterial counts in the livers and spleens of intravenously infected mice. The attenuated in vivo growth of the entire atp operon mutant was complemented by the insertion of the atp operon into the malXY pseudogene region. Following clearance of the attenuated mutants from the organs, mice were protected against challenge with the virulent wild type parent strain. We have shown that the F0F1 ATPase is important for bacterial growth in vivo and that atp mutants are effective live attenuated vaccines against Salmonella infection.
Collapse
Affiliation(s)
- H Northen
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Chung JW, Piao ZH, Yoon SR, Kim MS, Jeong M, Lee SH, Min JK, Kim JW, Cho YH, Kim JC, Ahn JK, Kim KE, Choi I. Pseudomonas aeruginosa eliminates natural killer cells via phagocytosis-induced apoptosis. PLoS Pathog 2009; 5:e1000561. [PMID: 19714221 PMCID: PMC2726936 DOI: 10.1371/journal.ppat.1000561] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 07/31/2009] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is an opportunistic pathogen that causes the relapse of illness in immunocompromised patients, leading to prolonged hospitalization, increased medical expense, and death. In this report, we show that PA invades natural killer (NK) cells and induces phagocytosis-induced cell death (PICD) of lymphocytes. In vivo tumor metastasis was augmented by PA infection, with a significant reduction in NK cell number. Adoptive transfer of NK cells mitigated PA-induced metastasis. Internalization of PA into NK cells was observed by transmission electron microscopy. In addition, PA invaded NK cells via phosphoinositide 3-kinase (PI3K) activation, and the phagocytic event led to caspase 9-dependent apoptosis of NK cells. PA-mediated NK cell apoptosis was dependent on activation of mitogen-activated protein (MAP) kinase and the generation of reactive oxygen species (ROS). These data suggest that the phagocytosis of PA by NK cells is a critical event that affects the relapse of diseases in immunocompromised patients, such as those with cancer, and provides important insights into the interactions between PA and NK cells.
Collapse
Affiliation(s)
- Jin Woong Chung
- Cell Therapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong, Daejeon, Republic of Korea
- Department of Biological Science, Dong-A University, Busan, Republic of Korea
| | - Zheng-Hao Piao
- Cell Therapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong, Daejeon, Republic of Korea
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Suk Ran Yoon
- Cell Therapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong, Daejeon, Republic of Korea
| | - Mi Sun Kim
- Cell Therapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong, Daejeon, Republic of Korea
| | - Mira Jeong
- Cell Therapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Suk Hyung Lee
- Cell Therapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Jeong Ki Min
- Antibody Therapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jae Wha Kim
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong, Daejeon, Republic of Korea
| | - You-Hee Cho
- Department of Life Science, College of Natural Science, Sogang University, Seoul Republic of Korea
| | - Jin Chul Kim
- Department of Microbiology, School of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Jeong Keun Ahn
- Department of Microbiology, School of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Kyoon Eon Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Inpyo Choi
- Cell Therapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
18
|
Apoptosis-like cell death induced by Salmonella in Acanthamoeba rhysodes. Genomics 2009; 94:132-7. [DOI: 10.1016/j.ygeno.2009.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 04/21/2009] [Accepted: 05/06/2009] [Indexed: 12/29/2022]
|
19
|
Mesenteric lymph nodes confine dendritic cell-mediated dissemination of Salmonella enterica serovar Typhimurium and limit systemic disease in mice. Infect Immun 2009; 77:3170-80. [PMID: 19506012 DOI: 10.1128/iai.00272-09] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In humans with typhoid fever or in mouse strains susceptible to Salmonella enterica serovar Typhimurium (S. Typhimurium) infection, bacteria gain access to extraintestinal tissues, causing severe systemic disease. Here we show that in the gut-draining mesenteric lymph nodes (MLN), the majority of S. Typhimurium-carrying cells show dendritic-cell (DC) morphology and express the DC marker CD11c, indicating that S. Typhimurium bacteria are transported to the MLN by migratory DCs. In vivo FLT-3L-induced expansion of DCs, as well as stimulation of DC migration by Toll-like receptor agonists, results in increased numbers of S. Typhimurium bacteria reaching the MLN. Conversely, genetically impaired DC migration in chemokine receptor CCR7-deficient mice reduces the number of S. Typhimurium bacteria reaching the MLN. This indicates that transport of S. Typhimurium from the intestine into the MLN is limited by the number of migratory DCs carrying S. Typhimurium bacteria. In contrast, modulation of DC migration does not affect the number of S. Typhimurium bacteria reaching systemic tissues, indicating that DC-bound transport of S. Typhimurium does not substantially contribute to systemic S. Typhimurium infection. Surgical removal of the MLN results in increased numbers of S. Typhimurium bacteria reaching systemic sites early after infection, thereby rendering otherwise resistant mice susceptible to fatal systemic disease development. This suggests that the MLN provide a vital barrier shielding systemic compartments from DC-mediated dissemination of S. Typhimurium. Thus, confinement of S. Typhimurium in gut-associated lymphoid tissue and MLN delays massive extraintestinal dissemination and at the same time allows for the establishment of protective adaptive immune responses.
Collapse
|
20
|
Shinohara NKS, Barros VBD, Jimenez SMC, Machado EDCL, Dutra RAF, de Lima Filho JL. [Salmonella spp., important pathogenic agent transmitted through foodstuffs]. CIENCIA & SAUDE COLETIVA 2009; 13:1675-83. [PMID: 18813668 DOI: 10.1590/s1413-81232008000500031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 09/05/2006] [Indexed: 11/22/2022] Open
Abstract
The occurrence of foodborne diseases has been a matter of discussion over the last years due to the worldwide concern with strategies for their control and for ensuring that safe food products reach the consumer. Salmonella spp. is among the most widespread microorganisms in nature, having man and animals as main natural reservoirs. With occurrence of regional serotypes causing salmonellosis, this pathogen is considered one of the main agents responsible for outbreaks of foodborne disease in the developing countries. The increasing incidence of salmonellosis caused by contaminated food has shown that, despite the recent technological improvements, this problem still occurs in all countries. Cattle and poultry are the main responsible for the transmission of this pathogenic agent. Due to its wide distribution in animals, the existence of asymptomatic carriers and its presence in foodstuff and in the environment Salmonella spp. represents a significant public health problem worldwide calling for permanent control programs and eradication strategies.
Collapse
|
21
|
Kim DW, Chu H, Joo DH, Jang MS, Choi JH, Park SM, Choi YJ, Han SH, Yun CH. OspF directly attenuates the activity of extracellular signal-regulated kinase during invasion by Shigella flexneri in human dendritic cells. Mol Immunol 2008; 45:3295-301. [PMID: 18378312 DOI: 10.1016/j.molimm.2008.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 02/11/2008] [Accepted: 02/13/2008] [Indexed: 11/18/2022]
Abstract
Shigella spp., Gram-negative pathogenic bacteria, deliver various effector molecules into the host cell cytoplasm through their type III secretion system to facilitate their invasive process and control the host innate immune responses. Although the function of these effectors is well characterized in epithelial cells during Shigella infection, it has not been elucidated in the dendritic cell (DC), a major antigen presenting cell playing an important role in the initiation of immune responses. In this study, we showed that an invasive Shigella strain (M90T), but not its non-invasive counterpart strain (BS176) induced apoptotic cell death in the human monocyte-derived DCs. Confocal microscopy using a lysosome-associated membrane protein 2 specific antibody demonstrated that the M90T escaped from phagosomes 2h post-DC invasion while BS176 remained in the phagosome. Furthermore, Shigella expressed outer Shigella protein F (OspF), one of the effector proteins that are released through type III secretion system during the invasion, at non-secretion state and further up-regulated OspF expression in the cytoplasm of DC during the invasion. Interestingly, in the host cell, OspF could directly bind to the extracellular signal-regulated kinase (Erk) 1/2 and dephosphorylate phospho-Erk. These results suggest that induction of OspF is enhanced during Shigella invasion of DCs and decreases the phosphorylation level of Erk1/2, which could be at least partially involved in the apoptotic death of DC, eventually resulting in the down-regulation of the host immune response.
Collapse
Affiliation(s)
- Dong Wook Kim
- International Vaccine Institute, SNU Research Park, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 2008; 21:134-56. [PMID: 18202440 DOI: 10.1128/cmr.00032-07] [Citation(s) in RCA: 411] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Shigella spp. are gram-negative pathogenic bacteria that evolved from harmless enterobacterial relatives and may cause devastating diarrhea upon ingestion. Research performed over the last 25 years revealed that a type III secretion system (T3SS) encoded on a large plasmid is a key virulence factor of Shigella flexneri. The T3SS determines the interactions of S. flexneri with intestinal cells by consecutively translocating two sets of effector proteins into the target cells. Thus, S. flexneri controls invasion into EC, intra- and intercellular spread, macrophage cell death, as well as host inflammatory responses. Some of the translocated effector proteins show novel biochemical activities by which they intercept host cell signal transduction pathways. An understanding of the molecular mechanisms underlying Shigella pathogenesis will foster the development of a safe and efficient vaccine, which, in parallel with improved hygiene, should curb infections by this widespread pathogen.
Collapse
|
23
|
Willingham SB, Bergstralh DT, O'Connor W, Morrison AC, Taxman DJ, Duncan JA, Barnoy S, Venkatesan MM, Flavell RA, Deshmukh M, Hoffman HM, Ting JPY. Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe 2007; 2:147-59. [PMID: 18005730 DOI: 10.1016/j.chom.2007.07.009] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 04/30/2007] [Accepted: 07/30/2007] [Indexed: 01/21/2023]
Abstract
Cryopyrin (CIAS1, NLRP3) and ASC are components of the inflammasome, a multiprotein complex required for caspase-1 activation and cytokine IL-1beta production. CIAS1 mutations underlie autoinflammation characterized by excessive IL-1beta secretion. Disease-associated cryopyrin also causes a program of necrosis-like cell death in macrophages, the mechanistic details of which are unknown. We find that patient monocytes carrying disease-associated CIAS1 mutations exhibit excessive necrosis-like death by a process dependent on ASC and cathepsin B, resulting in spillage of the proinflammatory mediator HMGB1. Shigella flexneri infection also causes cryopyrin-dependent macrophage necrosis with features similar to the death caused by mutant CIAS1. This necrotic death is independent of caspase-1 and IL-1beta, and thus independent of the inflammasome. Furthermore, necrosis of primary macrophages requires the presence of Shigella virulence genes. While similar proteins mediate pathogen-induced cell death in plants, this report identifies cryopyrin as an important host regulator of programmed pathogen-induced necrosis in animals, a process we term pyronecrosis.
Collapse
Affiliation(s)
- Stephen B Willingham
- Lineberger Comprehensive Cancer Center, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Schroeder GN, Jann NJ, Hilbi H. Intracellular type III secretion by cytoplasmic Shigella flexneri promotes caspase-1-dependent macrophage cell death. MICROBIOLOGY-SGM 2007; 153:2862-2876. [PMID: 17768231 DOI: 10.1099/mic.0.2007/007427-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Gram-negative bacterium Shigella flexneri triggers pro-inflammatory apoptotic cell death in macrophages, which is crucial for the onset of an acute inflammatory diarrhoea termed bacillary dysentery. The Mxi-Spa type III secretion system promotes bacterial uptake and escape into the cytoplasm, where, dependent on the translocator/effector protein IpaB, caspase-1 [interleukin (IL)-1beta-converting enzyme] and its substrate IL-1beta are activated. Here, we show that in the course of a macrophage infection, IpaB is secreted intracellularly for more than 1 h post-infection and progressively accumulates in aggregates on the bacterial surface. Concomitantly, the bacterial pool of IpaB is gradually depleted. The protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) dose-dependently inhibited the Mxi-Spa-dependent secretion of IpaB triggered by the dye Congo red in vitro and abolished translocation of IpaB into the host-cell cytoplasm of S. flexneri-infected macrophages. CCCP specifically inhibited S. flexneri-triggered macrophage death in a dose-dependent manner, even if added up to 60 min post-infection. Addition of CCCP 15 min after infection blocked macrophage cell death, the activation of caspase-1 and the maturation of IL-1beta, without affecting uptake or escape of S. flexneri from the phagosome. By contrast, CCCP used at the same concentration had no effect on ATP-induced caspase-1 activation or staurosporine-induced apoptosis. Our results indicate that under the conditions used, CCCP rapidly and specifically blocks bacterial type III secretion, and thus, intracellular type III secretion promotes cytotoxicity of S. flexneri.
Collapse
Affiliation(s)
- Gunnar N Schroeder
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Naja J Jann
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| |
Collapse
|
25
|
Buckner D, Wilson S, Kurk S, Hardy M, Miessner N, Jutila MA. Use of Early Passage Fetal Intestinal Epithelial Cells in Semi-High-Throughput Screening Assays: An Approach to Identify New Innate Immune System Adjuvants. ACTA ACUST UNITED AC 2006; 11:664-71. [PMID: 16923848 DOI: 10.1177/1087057106289876] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Innate immune system stimulants (innate adjuvants) offer complementary approaches to vaccines and antimicrobial compounds to increase host resistance to infection. The authors established fetal bovine intestinal epithelial cell (BIEC) cultures to screen natural product and synthetic compound libraries for novel mucosal adjuvants. They showed that BIECs from fetal intestine maintained an in vivo phenotype as reflected in cytokeratin expression, expression of antigens restricted to intestinal enterocytes, and induced interleukin-8 (IL-8) production. BIECs could be infected by and support replication of bovine rotavirus. A semi-high-throughput enzyme-linked immunosorbent assay-based assay that measured IL-8 production by BIECs was established and used to screen commercially available natural compounds for novel adjuvant activity. Five novel hits were identified, demonstrating the utility of the assay for selecting and screening new epithelial cell adjuvants. Although the identified compounds had not previously been shown to induce IL-8 production in epithelial cells, other known functions for 3 of the 5 were consistent with this activity. Statistical analysis of the throughput data demonstrated that the assay is adaptable to a high-throughput format for screening both synthetic and natural product derived compound libraries.
Collapse
Affiliation(s)
- Diana Buckner
- Veterinary Molecular Biology, Montana State University, Bozeman 59718, USA
| | | | | | | | | | | |
Collapse
|