1
|
Chen J, Wang Y, Cheng J, Ma Y, Zhang X, Bai X, Rehati P, Cui H, Wu F, Pan Q, Huang J. Synergistic impact of macrolide resistance and H3N2 infection on M. pneumoniae outbreak in children. Microbiol Spectr 2025; 13:e0184424. [PMID: 39998323 PMCID: PMC11960130 DOI: 10.1128/spectrum.01844-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/02/2025] [Indexed: 02/26/2025] Open
Abstract
In November 2023, there was a substantial increase in the incidence of Mycoplasma pneumoniae infections in China following waves of SARS-CoV-2 Omicron variant and influenza outbreaks. This study aimed to elucidate the epidemiological features and clinical implications of M. pneumoniae infections in children and explore the potential influence of SARS-CoV-2 Omicron variants and influenza A infections on the M. pneumoniae outbreak. Among 38,668 children with lower respiratory tract infections from January to December 2023, 11,919 tested positive for M. pneumoniae, predominantly between October and December. The majority of the children with M. pneumoniae were aged 5-10 years, with type 1 strains and macrolide-resistant M. pneumoniae strains having the highest prevalence rates. Statistical analysis revealed elevated C-reactive protein, neutrophil, and monocyte levels and decreased lymphocyte, basophil, and eosinophil counts in M. pneumoniae-positive children. M. pneumoniae-positive children also presented significantly increased neutralizing antibody levels against preceding influenza A (H3N2) but not against SARS-CoV-2 Omicron variants. A parallel trend was observed between M. pneumoniae and H3N2 prevalence from June to December 2023. The emergence of macrolide-resistant strains and prior influenza A (H3N2) epidemics notably contributed to the M. pneumoniae outbreak. These findings suggested that H3N2 infection facilitates M. pneumoniae infection through various mechanisms. This study underscores the complex interactions between respiratory pathogens and highlights the need for comprehensive surveillance and response strategies.IMPORTANCEThis study identified key factors contributing to an outbreak of Mycoplasma pneumoniae that affected 11,919 children. The influencing factors included a high prevalence of macrolide-resistant epidemic strains (94.2%) and significantly higher H3N2 neutralizing antibody levels (P < 0.0001) stimulated by the preceding H3N2 influenza epidemic. These findings highlight the complex relationship between the prevalence of M. pneumoniae and H3N2 infection in children, indicating that it is necessary to consider pathogen interactions in respiratory disease management by continuously monitoring respiratory pathogens. The emergence of macrolide-resistant strains in China and the previous H3N2 influenza epidemic significantly exacerbated the severity of the M. pneumoniae outbreak. H3N2 infection potentially amplifies Mycoplasma transmission. This study elucidates the epidemiological and clinical aspects of M. pneumoniae infections in children, yields insights regarding the cause of the outbreak, and provides guidance for improving respiratory infection management.
Collapse
Affiliation(s)
- Jiali Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yingdan Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Juan Cheng
- Clinical Laboratory, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yunping Ma
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Xin Zhang
- Clinical Laboratory, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuezhou Bai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Palizhati Rehati
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huashun Cui
- Department of Acupuncture and Moxibustion, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fan Wu
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Qiuhui Pan
- Clinical Laboratory, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, China
| | - Jinghe Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Vaccination with Mycoplasma pneumoniae membrane lipoproteins induces IL-17A driven neutrophilia that mediates Vaccine-Enhanced Disease. NPJ Vaccines 2022; 7:86. [PMID: 35906257 PMCID: PMC9336141 DOI: 10.1038/s41541-022-00513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022] Open
Abstract
Bacterial lipoproteins are an often-underappreciated class of microbe-associated molecular patterns with potent immunomodulatory activity. We previously reported that vaccination of BALB/c mice with Mycoplasma pneumoniae (Mp) lipid-associated membrane proteins (LAMPs) resulted in lipoprotein-dependent vaccine enhanced disease after challenge with virulent Mp, though the immune responses underpinning this phenomenon remain poorly understood. Herein, we report that lipoprotein-induced VED in a mouse model is associated with elevated inflammatory cytokines TNF-α, IL-1β, IL-6, IL-17A, and KC in lung lavage fluid and with suppurative pneumonia marked by exuberant neutrophilia in the pulmonary parenchyma. Whole-lung-digest flow cytometry and RNAScope analysis identified multiple cellular sources for IL-17A, and the numbers of IL-17A producing cells were increased in LAMPs-vaccinated/Mp-challenged animals compared to controls. Specific IL-17A or neutrophil depletion reduced disease severity in our VED model—indicating that Mp lipoproteins induce VED in an IL-17A-dependent manner and through exuberant neutrophil recruitment. IL-17A neutralization reduced levels of TNF-α, IL-1β, IL-6, and KC, indicating that IL-17A preceded other inflammatory cytokines. Surprisingly, we found that IL-17A neutralization impaired bacterial clearance, while neutrophil depletion improved it—indicating that, while IL-17A appears to confer both maladaptive and protective responses, neutrophils play an entirely maladaptive role in VED. Given that lipoproteins are found in virtually all bacteria, the potential for lipoprotein-mediated maladaptive inflammatory responses should be taken into consideration when developing vaccines against bacterial pathogens.
Collapse
|
3
|
Mycoplasma pneumoniae Infections: Pathogenesis and Vaccine Development. Pathogens 2021; 10:pathogens10020119. [PMID: 33503845 PMCID: PMC7911756 DOI: 10.3390/pathogens10020119] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mycoplasma pneumoniae is a major causative agent of community-acquired pneumonia which can lead to both acute upper and lower respiratory tract inflammation, and extrapulmonary syndromes. Refractory pneumonia caused by M. pneumonia can be life-threatening, especially in infants and the elderly. Here, based on a comprehensive review of the scientific literature related to the respective area, we summarize the virulence factors of M. pneumoniae and the major pathogenic mechanisms mediated by the pathogen: adhesion to host cells, direct cytotoxicity against host cells, inflammatory response-induced immune injury, and immune evasion. The increasing rate of macrolide-resistant strains and the harmful side effects of other sensitive antibiotics (e.g., respiratory quinolones and tetracyclines) in young children make it difficult to treat, and increase the health risk or re-infections. Hence, there is an urgent need for development of an effective vaccine to prevent M. pneumoniae infections in children. Various types of M. pneumoniae vaccines have been reported, including whole-cell vaccines (inactivated and live-attenuated vaccines), subunit vaccines (involving M. pneumoniae protein P1, protein P30, protein P116 and CARDS toxin) and DNA vaccines. This narrative review summarizes the key pathogenic mechanisms underlying M. pneumoniae infection and highlights the relevant vaccines that have been developed and their reported effectiveness.
Collapse
|
4
|
Tamiya S, Yoshikawa E, Suzuki K, Yoshioka Y. Susceptibility Analysis in Several Mouse Strains Reveals Robust T-Cell Responses After Mycoplasma pneumoniae Infection in DBA/2 Mice. Front Cell Infect Microbiol 2021; 10:602453. [PMID: 33520736 PMCID: PMC7839406 DOI: 10.3389/fcimb.2020.602453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/27/2020] [Indexed: 02/03/2023] Open
Abstract
Mycoplasma pneumoniae (Mp) is a highly contagious respiratory pathogen responsible for human community-acquired pneumonia. The number of antibiotic-resistant Mp strains is increasing; therefore, to develop novel therapeutics, it is crucial to precisely understand the pathogenesis of mycoplasma pneumonia. Herein, we examined the susceptibility and response to Mp among eight inbred mouse strains. Following infection, the bacterial load in the bronchoalveolar lavage fluid (BALF) from DBA/2 mice was higher than that in the other tested strains such as BALB/c mice, which are frequently used in Mp research. In contrast, the numbers of CD45+ immune cells and neutrophils in BALF were comparable between BALB/c and DBA/2 mice, with lower numbers observed in C57BL/6J and CBA/N mice than in BALB/c mice. Among the tested strains, the BALF level of interleukin 12 subunit p40 was highest in DBA/2 mice; however, significant differences in other cytokines levels were not observed between BALB/c and DBA/2 mice. After Mp infection, Mp-specific Th1 and Th17 responses were significantly enhanced in DBA/2 mice when compared with BALB/c mice. Furthermore, prior infection with Mp increased the number of neutrophils in BALF after the reinfection of DBA/2 mice through an Mp-specific CD4+ T cell-dependent mechanism. Thus, DBA/2 may be an appropriate strain for evaluating Mp infection. Moreover, a comparison of responses revealed by various inbred mouse strains could be useful for elucidating the pathogenesis of Mycoplasma pneumonia.
Collapse
Affiliation(s)
- Shigeyuki Tamiya
- Laboratory of Nano-design for innovative drug development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.,Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Eisuke Yoshikawa
- Laboratory of Nano-design for innovative drug development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.,Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Koichiro Suzuki
- The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-design for innovative drug development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.,Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Tamiya S, Yoshikawa E, Ogura M, Kuroda E, Suzuki K, Yoshioka Y. Vaccination using inactivated Mycoplasma pneumoniae induces detrimental infiltration of neutrophils after subsequent infection in mice. Vaccine 2020; 38:4979-4987. [PMID: 32536549 DOI: 10.1016/j.vaccine.2020.05.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/18/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022]
Abstract
Mycoplasma pneumoniae (Mp) is one of the most common causes of community-acquired pneumonia. Given the emergence and high rates of antibiotic-resistant Mp strains, vaccines that prevent the pneumonia and secondary complications due to Mp infection are urgently needed. Although several studies have shown the protective efficacy of Mp vaccines in human clinical trials, some reports suggest that vaccination against Mp exacerbates disease upon subsequent Mp challenge. Therefore, to develop optimal vaccines against Mp, understanding the immune responses that contribute to post-vaccination exacerbation of inflammation is crucial. Here we examined whether Mp vaccination might exacerbate pneumonia after subsequent Mp infection in mice. We found that vaccination with inactivated Mp plus aluminum salts as an adjuvant induced Mp-specific IgG, Th1 cells, and Th17 cells. Toll-like receptor 2 signaling contributed to the induction of an Mp-specific IgG response and was necessary for Mp-specific Th17-cell-but not Th1-cell-responses in vaccinated mice. In addition, vaccination with inactivated Mp plus aluminum salts suppressed the number of Mp organisms in the bronchoalveolar lavage fluid, indicating that vaccination can reduce Mp infection. However, the numbers of total immune cells and neutrophils in bronchoalveolar lavage fluid after Mp challenge did not differ between vaccinated mice and non-vaccinated control mice. Furthermore, depletion of CD4+ T cells prior to Mp challenge decreased pulmonary neutrophil infiltration in vaccinated mice, suggesting that Th1 or Th17 cells (or both) are responsible for the vaccination-induced neutrophil infiltration. These results suggest that, despite reducing Mp infection, vaccination of mice by using inactivated Mp fails to suppress inflammation, such as neutrophil infiltration into the lung, after subsequent Mp infection.
Collapse
Affiliation(s)
- Shigeyuki Tamiya
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Eisuke Yoshikawa
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Monami Ogura
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Etsushi Kuroda
- Department of Immunology and Medical Zoology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan; Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, NIBIOHN, Ibaraki, Osaka, Japan
| | - Koichiro Suzuki
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan; BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
6
|
Mara AB, Gavitt TD, Tulman ER, Geary SJ, Szczepanek SM. Lipid moieties of Mycoplasma pneumoniae lipoproteins are the causative factor of vaccine-enhanced disease. NPJ Vaccines 2020; 5:31. [PMID: 32284882 PMCID: PMC7142147 DOI: 10.1038/s41541-020-0181-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/17/2020] [Indexed: 11/20/2022] Open
Abstract
Vaccine-enhanced disease (VED) occurs as a result of vaccination followed by infection with virulent Mycoplasma pneumoniae. To date VED has prevented development of an efficacious vaccine against this significant human respiratory pathogen. Herein we report that vaccination of BALB/c mice with M. pneumoniae lipid-associated membrane proteins (LAMPs) induces lung lesions consistent with exacerbated disease following challenge, without reducing bacterial loads. Removal of lipid moieties from LAMPs prior to vaccination eliminates VED and reduces bacterial loads after infection. Collectively, these data indicate that lipid moieties of lipoproteins are the causative factors of M. pneumoniae VED.
Collapse
Affiliation(s)
- Arlind B Mara
- Department of Pathobiology and Veterinary Science and the Center of Excellence for Vaccine Research, University of Connecticut, 61 North Eagleville Road, Unit 3089, Storrs, CT 06269 USA
| | - Tyler D Gavitt
- Department of Pathobiology and Veterinary Science and the Center of Excellence for Vaccine Research, University of Connecticut, 61 North Eagleville Road, Unit 3089, Storrs, CT 06269 USA
| | - Edan R Tulman
- Department of Pathobiology and Veterinary Science and the Center of Excellence for Vaccine Research, University of Connecticut, 61 North Eagleville Road, Unit 3089, Storrs, CT 06269 USA
| | - Steven J Geary
- Department of Pathobiology and Veterinary Science and the Center of Excellence for Vaccine Research, University of Connecticut, 61 North Eagleville Road, Unit 3089, Storrs, CT 06269 USA
| | - Steven M Szczepanek
- Department of Pathobiology and Veterinary Science and the Center of Excellence for Vaccine Research, University of Connecticut, 61 North Eagleville Road, Unit 3089, Storrs, CT 06269 USA
| |
Collapse
|
7
|
High Mycoplasma pneumoniae loads and persistent long-term Mycoplasma pneumoniae DNA in lower airway associated with severity of pediatric Mycoplasma pneumoniae pneumonia. BMC Infect Dis 2019; 19:1045. [PMID: 31823740 PMCID: PMC6905005 DOI: 10.1186/s12879-019-4667-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 11/29/2019] [Indexed: 12/26/2022] Open
Abstract
Background An increased number of refractory mycoplasma pneumoniae (MP) pneumonia (MPP) cases have been reported. However the duration of MP infection in lower airway and the course of anti-MP treatment remains unclear. Methods We retrospectively reviewed the medical records of 94 MPP children. Patients were classified into two groups. The long-term group (Group LT) was defined as bronchoalveolar lavage fluid (BALF) remained MP-positive by PCR after 30 days of the disease course. The non-long-term group (Group NLT) was defined as BALF became MP-negative by PCR within 30 days of disease and patients who only needed one bronchoscopy lavage therapy. MP loads, clinical outcomes were analyzed along with other clinical measurements. Results The average levels of inflammatory markers such as C reactive protein and lactate dehydrogenase in Group LT were significantly higher than those in Group NLT. Airway and lung damage in Group LT were more severe than Group NLT. 28 patients developed necrotizing pneumonia and 8 patients developed pulmonary embolism in Group LT. Mean maximum MP loads in BALF were 107.46 ± 0.93 and 104.86 ± 0.93 in Groups LT and NLT, respectively. There was persistent MP DNA in Group LT, even lasted for 120 days. One severe MPP patient in Group LT had MP-associated bloodstream infection. After 3 months of follow-up, chest imaging revealed incomplete absorption of pulmonary consolidation in 33 patients of Group LT [including 13 airway obliterans (AO) patients] and in 7 patients of Group NLT (including 2 AO patients). Conclusion MP loads of BALF were associated with the subsequent duration of MP DNA in lower airway. High MP loads and persistent long-term MP DNA in lower airway were associated with severity of pediatric MPP.
Collapse
|
8
|
Interleukin 1 Receptor-Like 1 (IL1RL1) Promotes Airway Bacterial and Viral Infection and Inflammation. Infect Immun 2019; 87:IAI.00340-19. [PMID: 31061143 DOI: 10.1128/iai.00340-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 01/14/2023] Open
Abstract
Interleukin 1 receptor-like 1 (IL1RL1), also known as suppression of tumorigenicity 2 (ST2), is the receptor for interleukin 33 (IL-33) and has been increasingly studied in type 2 inflammation. An increase in airway IL-33/ST2 signaling in asthma has been associated with eosinophilic inflammation, but little is known about the role of ST2 in neutrophilic inflammation. Airway Mycoplasma pneumoniae and human rhinovirus (HRV) infections are linked to neutrophilic inflammation during acute exacerbations of asthma. However, whether ST2 contributes to M. pneumoniae- and HRV-mediated airway inflammation is poorly understood. The current study sought to determine the functions of ST2 during airway M. pneumoniae or HRV infection. In cultured normal human primary airway epithelial cells, ST2 overexpression (OE) increased the production of neutrophilic chemoattractant IL-8 in the absence or presence of M. pneumoniae or HRV1B infection. ST2 OE also enhanced HRV1B-induced IP-10, a chemokine involved in asthma exacerbations. In the M. pneumoniae-infected mouse model, ST2 deficiency, in contrast to sufficiency, significantly reduced the levels of neutrophils following acute (≤24 h) infection, while in the HRV1B-infected mouse model, ST2 deficiency significantly reduced the levels of proinflammatory cytokines KC, IP-10, and IL-33 in bronchoalveolar lavage (BAL) fluid. Overall, ST2 overexpression in human epithelial cells and ST2 sufficiency in mice increased the M. pneumoniae and HRV loads in cell supernatants and BAL fluid. After pathogen infection, ST2-deficient mice showed a higher level of the host defense protein lactotransferrin in BAL fluid. Our data suggest that ST2 promotes proinflammatory responses (e.g., neutrophils) to airway bacterial and viral infection and that blocking ST2 signaling may broadly attenuate airway infection and inflammation.
Collapse
|
9
|
Antibodies to Protein but Not Glycolipid Structures Are Important for Host Defense against Mycoplasma pneumoniae. Infect Immun 2019; 87:IAI.00663-18. [PMID: 30396892 DOI: 10.1128/iai.00663-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/28/2018] [Indexed: 11/20/2022] Open
Abstract
Antibody responses to Mycoplasma pneumoniae correlate with pulmonary M. pneumoniae clearance. However, M. pneumoniae-specific IgG antibodies can cross-react with the myelin glycolipid galactocerebroside (GalC) and cause neurological disorders. We assessed whether antiglycolipid antibody formation is part of the physiological immune response to M. pneumoniae We show that antibodies against M. pneumoniae proteins and glycolipids arise in serum of M. pneumoniae-infected children and mice. Although antibodies to M. pneumoniae glycolipids were mainly IgG, anti-GalC antibodies were only IgM. B-1a cells, shown to aid in protection against pathogen-derived glycolipids, are lacking in Bruton tyrosine kinase (Btk)-deficient mice. M. pneumoniae-infected Btk-deficient mice developed M. pneumoniae-specific IgG responses to M. pneumoniae proteins but not to M. pneumoniae glycolipids, including GalC. The equal recovery from M. pneumoniae infection in Btk-deficient and wild-type mice suggests that pulmonary M. pneumoniae clearance is predominantly mediated by IgG reactive with M. pneumoniae proteins and that M. pneumoniae glycolipid-specific IgG or IgM is not essential. These data will guide the development of M. pneumoniae-targeting vaccines that avoid the induction of neurotoxic antibodies.
Collapse
|
10
|
Waites KB, Xiao L, Liu Y, Balish MF, Atkinson TP. Mycoplasma pneumoniae from the Respiratory Tract and Beyond. Clin Microbiol Rev 2017; 30:747-809. [PMID: 28539503 PMCID: PMC5475226 DOI: 10.1128/cmr.00114-16] [Citation(s) in RCA: 475] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mycoplasma pneumoniae is an important cause of respiratory tract infections in children as well as adults that can range in severity from mild to life-threatening. Over the past several years there has been much new information published concerning infections caused by this organism. New molecular-based tests for M. pneumoniae detection are now commercially available in the United States, and advances in molecular typing systems have enhanced understanding of the epidemiology of infections. More strains have had their entire genome sequences published, providing additional insights into pathogenic mechanisms. Clinically significant acquired macrolide resistance has emerged worldwide and is now complicating treatment. In vitro susceptibility testing methods have been standardized, and several new drugs that may be effective against this organism are undergoing development. This review focuses on the many new developments that have occurred over the past several years that enhance our understanding of this microbe, which is among the smallest bacterial pathogens but one of great clinical importance.
Collapse
Affiliation(s)
- Ken B Waites
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Li Xiao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yang Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China, and Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | | | - T Prescott Atkinson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
11
|
Nader MA, Gameil N, Abdelaziz RR, Zalata KR, Osman A, Zedan MM, Abo-Elkheir N, Elsiddig AA, Zedan M. Effect of tranilast in comparison with beclomethasone in chronic murine model of asthma. Exp Lung Res 2016; 42:296-306. [PMID: 27450020 DOI: 10.1080/01902148.2016.1207727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIM OF THE STUDY The current investigation was taken to scrutinize the action of tranilast on the airway remodeling in chronic asthma in mice. MATERIALS AND METHODS Intraperitoneal injection of ovalbumin was applied to mice for sensitization and subsequent inhalation of 1% ovalbumin three times week for 10 weeks for challenge. Beclomethasone or tranilast were given daily for the 10 week challenge period. At the end of the study, lung weight index, total collagen content, bronchoalveolar lavage level of total and differential cell counts, interleukin-13, in addition to lung tissue nitrate/nitrite and transforming growth beta-1 were measured. Also, histological analysis was done. RESULTS Asthmatic mice demonstrated apparent fibrotic changes. Significant airway fibrosis was demonstrated by hyperplasia of goblet cells and thickening of airway epithelium, increased content of lung collagen, lung and bronchoalveolar lavage of transforming growth factor beta-1 and interleukin-13 mutually accompanied by reduction in nitrate/nitrite generation. CONCLUSIONS Beclomethasone influence on airway remodeling was mediated mainly via suppression of eosinophilic recruitment into the airways and reduction of interleukin-13 cytokine levels. Whereas, tranilast effects on airway remodeling was found to be mainly mediated via its inhibitory effect on transforming growth beta-1. Both beclomethasone and tranilast influence airway remodeling by different degrees and mechanisms.
Collapse
Affiliation(s)
- Manar A Nader
- a Department of Pharmacology & Toxicology , College of Pharmacy, Taibah University , El-Madinah El-Munawarah , Saudi Arabia.,b Department of Pharmacology & Toxicology, Faculty of Pharmacy , Mansoura University , Mansoura , Egypt
| | - Nariman Gameil
- b Department of Pharmacology & Toxicology, Faculty of Pharmacy , Mansoura University , Mansoura , Egypt
| | - Rania R Abdelaziz
- b Department of Pharmacology & Toxicology, Faculty of Pharmacy , Mansoura University , Mansoura , Egypt
| | - Khaled R Zalata
- c Department of Clinical Pathology, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| | - Amal Osman
- d Department of Pediatrics, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| | - Mohamed M Zedan
- d Department of Pediatrics, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| | - Nermin Abo-Elkheir
- c Department of Clinical Pathology, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| | - Abeer Abdalla Elsiddig
- e Department of Pathology, Faculty of Medicine , Taibah University , El-Madinah El-Munawarah , Saudi Arabia
| | - Magdy Zedan
- d Department of Pediatrics, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| |
Collapse
|
12
|
Saraya T, Kurai D, Nakagaki K, Sasaki Y, Niwa S, Tsukagoshi H, Nunokawa H, Ohkuma K, Tsujimoto N, Hirao S, Wada H, Ishii H, Nakata K, Kimura H, Kozawa K, Takizawa H, Goto H. Novel aspects on the pathogenesis of Mycoplasma pneumoniae pneumonia and therapeutic implications. Front Microbiol 2014; 5:410. [PMID: 25157244 PMCID: PMC4127663 DOI: 10.3389/fmicb.2014.00410] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/20/2014] [Indexed: 01/30/2023] Open
Abstract
Mycoplasma pneumoniae (Mp) is a leading cause of community acquired pneumonia. Knowledge regarding Mp pneumonia obtained from animal models or human subjects has been discussed in many different reports. Accumulated expertise concerning this critical issue has been hard to apply clinically, and potential problems may remain undiscovered. Therefore, our multidisciplinary team extensively reviewed the literature regarding Mp pneumonia, and compared findings from animal models with those from human subjects. In human beings, the characteristic pathological features of Mp pneumonia have been reported as alveolar infiltration with neutrophils and lymphocytes and lymphocyte/plasma cell infiltrates in the peri-bronchovascular area. Herein, we demonstrated the novel aspects of Mp pneumonia that the severity of the Mp pneumonia seemed to depend on the host innate immunity to the Mp, which might be accelerated by antecedent Mp exposure (re-exposure or latent respiratory infection) through up-regulation of Toll-like receptor 2 expression on bronchial epithelial cells and alveolar macrophages. The macrolides therapy might be beneficial for the patients with macrolide-resistant Mp pneumonia via not bacteriological but immunomodulative effects. This exhaustive review focuses on pathogenesis and extends to some therapeutic implications such as clarithromycin, and discusses the various diverse aspects of Mp pneumonia. It is our hope that this might lead to new insights into this common respiratory disease.
Collapse
Affiliation(s)
- Takeshi Saraya
- Department of Respiratory Medicine, Kyorin University School of Medicine Mitaka, Japan
| | - Daisuke Kurai
- Department of Respiratory Medicine, Kyorin University School of Medicine Mitaka, Japan
| | - Kazuhide Nakagaki
- Department of Virology and Immunology, College of Veterinary Medicine, Nippon Veterinary and Animal Science University Mitaka, Japan
| | - Yoshiko Sasaki
- Gunma Prefectural Institute of Public Health and Environmental Sciences Maebashi, Japan
| | - Shoichi Niwa
- Gunma Prefectural Institute of Public Health and Environmental Sciences Maebashi, Japan
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences Maebashi, Japan
| | - Hiroki Nunokawa
- Department of Respiratory Medicine, Kyorin University School of Medicine Mitaka, Japan
| | - Kosuke Ohkuma
- Department of Respiratory Medicine, Kyorin University School of Medicine Mitaka, Japan
| | - Naoki Tsujimoto
- Department of Respiratory Medicine, Kyorin University School of Medicine Mitaka, Japan
| | - Susumu Hirao
- Department of Respiratory Medicine, Kyorin University School of Medicine Mitaka, Japan
| | - Hiroo Wada
- Department of Respiratory Medicine, Kyorin University School of Medicine Mitaka, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University School of Medicine Mitaka, Japan
| | - Koh Nakata
- Bioscience Medical Research Center, Niigata University Medical and Dental Hospital Niigata, Japan
| | - Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases Tokyo, Japan
| | - Kunihisa Kozawa
- Gunma Prefectural Institute of Public Health and Environmental Sciences Maebashi, Japan
| | - Hajime Takizawa
- Department of Respiratory Medicine, Kyorin University School of Medicine Mitaka, Japan
| | - Hajime Goto
- Department of Respiratory Medicine, Kyorin University School of Medicine Mitaka, Japan
| |
Collapse
|
13
|
Luo Z, Luo J, Liu E, Xu X, Liu Y, Zeng F, Li S, Fu Z. Effects of prednisolone on refractory mycoplasma pneumoniae pneumonia in children. Pediatr Pulmonol 2014; 49:377-80. [PMID: 23401275 DOI: 10.1002/ppul.22752] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/29/2012] [Indexed: 11/06/2022]
Abstract
OBJECTIVES To prospectively evaluate prednisolone treatment in children with refractory Mycoplasma pneumonia pneumonia (MPP). METHODS Fifty-eight refractory children with MPP were enrolled to receive either azithromycin combined with prednisolone (treatment group, n = 28) or azithromycin alone (control group, n = 30). Temperature, respiratory symptoms and signs were examined at the time of study entry and every 8 hr after enrollment, infiltration absorption, atelectasis resolution, pleural effusion disappearance, and serum ferritin and LDH levels were assessed on seventh day after enrollment. RESULTS All patients in treatment group achieved defervescence during 8-48 hr after enrollment versus no patient in the control group. The mean duration of hypoxemia was 1.9 ± 0.9 days in treatment group and 2.7 ± 1.1 days in the control group (P < 0.05), and the dyspnea resolved time was 1.5 ± 0.7 days and 2.9 ± 0.6 days (P < 0.05), respectively. Seven days after enrollment, 80% of patients in treatment group showed infiltration absorption versus 21.4% in control group (P < 0.05); the figures for atelectasis resolution were 71.4% versus 12.5% (P < 0.05), and for pleural effusion disappearance 88.9% versus 20.0% (P < 0.05). The serum ferritin and LDH level was lower in the treatment than that in control group (P < 0.05). CONCLUSIONS Azithromycin combined with prednisolone is a better treatment for children with refractory MPP than azithromycin alone.
Collapse
Affiliation(s)
- Zhengxiu Luo
- Department of Respiratory, Children's Hospital, Chong Qing Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Alrifai M, Marsh LM, Dicke T, Kılıç A, Conrad ML, Renz H, Garn H. Compartmental and temporal dynamics of chronic inflammation and airway remodelling in a chronic asthma mouse model. PLoS One 2014; 9:e85839. [PMID: 24465740 PMCID: PMC3897544 DOI: 10.1371/journal.pone.0085839] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/02/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Allergic asthma is associated with chronic airway inflammation and progressive airway remodelling. However, the dynamics of the development of these features and their spontaneous and pharmacological reversibility are still poorly understood. We have therefore investigated the dynamics of airway remodelling and repair in an experimental asthma model and studied how pharmacological intervention affects these processes. METHODS Using BALB/c mice, the kinetics of chronic asthma progression and resolution were characterised in absence and presence of inhaled corticosteroid (ICS) treatment. Airway inflammation and remodelling was assessed by the analysis of bronchoalveolar and peribronichal inflammatory cell infiltrate, goblet cell hyperplasia, collagen deposition and smooth muscle thickening. RESULTS Chronic allergen exposure resulted in early (goblet cell hyperplasia) and late remodelling (collagen deposition and smooth muscle thickening). After four weeks of allergen cessation eosinophilic inflammation, goblet cell hyperplasia and collagen deposition were resolved, full resolution of lymphocyte inflammation and smooth muscle thickening was only observed after eight weeks. ICS therapy when started before the full establishment of chronic asthma reduced the development of lung inflammation, decreased goblet cell hyperplasia and collagen deposition, but did not affect smooth muscle thickening. These effects of ICS on airway remodelling were maintained for a further four weeks even when therapy was discontinued. CONCLUSIONS Utilising a chronic model of experimental asthma we have shown that repeated allergen exposure induces reversible airway remodelling and inflammation in mice. Therapeutic intervention with ICS was partially effective in inhibiting the transition from acute to chronic asthma by reducing airway inflammation and remodelling but was ineffective in preventing smooth muscle hypertrophy.
Collapse
Affiliation(s)
- Mohammed Alrifai
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Medical Faculty, Philipps University Marburg, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research, Marburg, Germany
| | - Leigh M. Marsh
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Medical Faculty, Philipps University Marburg, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research, Marburg, Germany
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Tanja Dicke
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Medical Faculty, Philipps University Marburg, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research, Marburg, Germany
| | - Ayse Kılıç
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Medical Faculty, Philipps University Marburg, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research, Marburg, Germany
| | - Melanie L. Conrad
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Medical Faculty, Philipps University Marburg, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Medical Faculty, Philipps University Marburg, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research, Marburg, Germany
| | - Holger Garn
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Medical Faculty, Philipps University Marburg, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research, Marburg, Germany
- * E-mail:
| |
Collapse
|
15
|
Kurai D, Nakagaki K, Wada H, Saraya T, Kamiya S, Fujioka Y, Nakata K, Takizawa H, Goto H. Mycoplasma pneumoniae extract induces an IL-17-associated inflammatory reaction in murine lung: implication for mycoplasmal pneumonia. Inflammation 2013; 36:285-93. [PMID: 23001692 DOI: 10.1007/s10753-012-9545-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mycoplasma pneumoniae (Mp) may cause immune cell reactions as pivotal aspects of this clinically common respiratory pathogen. Our aim is to determine if Mp extract induces a cellular immune response associated with interleukin (IL)-17, leading to lung inflammation and lung injury. BALB/c mice were immunized with Mp extract intraperitoneally followed by its intratracheal administration, to mimic repeated Mp infection found in humans (repeated inoculation, RI group). Those with a single inoculation were compared as single inoculation group (SI group). Analysis of bronchoalveolar lavage fluid (BALF) demonstrated that keratinocyte-derived cytokine, tumor necrosis factor-α, and IL-6 were produced and peaked on days 0.5 or 1, followed by IL-17 on day 2. Levels of these mediators in BALF were higher in RI group than SI group (P < 0.05). Further, significantly more neutrophils were recruited to the lungs of the RI group (P < 0.05). These observations suggest that IL-17 is involved in the prolonged induction of neutrophils in mice treated with Mp extract.
Collapse
Affiliation(s)
- Daisuke Kurai
- Department of Respiratory Medicine, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
A novel function of MUC18: amplification of lung inflammation during bacterial infection. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 182:819-27. [PMID: 23256918 DOI: 10.1016/j.ajpath.2012.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/08/2012] [Accepted: 11/01/2012] [Indexed: 12/21/2022]
Abstract
Bacterial infection plays a critical role in exacerbations of various lung diseases, including chronic pulmonary obstructive disease (COPD) and asthma. Excessive lung inflammation is a prominent feature in disease exacerbations, but the underlying mechanisms remain poorly understood. Cell surface glycoprotein MUC18 (alias CD146 or melanoma cell adhesion molecule) has been shown to promote metastasis in several tumors, including melanoma. We explored the function of MUC18 in lung inflammatory responses to bacteria (eg, Mycoplasma pneumoniae) involved in lung disease exacerbations. MUC18 expression was increased in alveolar macrophages from lungs of COPD and asthma patients, compared with normal healthy human subjects. Mouse alveolar macrophages also express MUC18. After M. pneumoniae lung infection, Muc18(-/-) mice exhibited lower levels of the lung proinflammatory cytokines KC and TNF-α and less neutrophil recruitment than Muc18(+/+) mice. Alveolar macrophages from Muc18(-/-) mice produced less KC than those from Muc18(+/+) mice. In Muc18(-/-) mouse alveolar macrophages, adenovirus-mediated MUC18 gene transfer increased KC production. MUC18 amplified proinflammatory responses in alveolar macrophages, in part through enhancing the activation of nuclear factor-κB (NF-κB). Our results demonstrate, for the first time, that MUC18 exerts a proinflammatory function during lung bacterial infection. Up-regulated MUC18 expression in lungs (eg, in alveolar macrophages) of COPD and asthma patients may contribute to excessive inflammation during disease exacerbations.
Collapse
|
17
|
Medina JL, Coalson JJ, Brooks EG, Winter VT, Chaparro A, Principe MFR, Kannan TR, Baseman JB, Dube PH. Mycoplasma pneumoniae CARDS toxin induces pulmonary eosinophilic and lymphocytic inflammation. Am J Respir Cell Mol Biol 2012; 46:815-22. [PMID: 22281984 DOI: 10.1165/rcmb.2011-0135oc] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mycoplasma pneumoniae causes acute and chronic lung infections in humans, leading to a variety of pulmonary and extrapulmonary sequelae. Of the airway complications of M. pneumoniae infection, M. pneumoniae-associated exacerbation of asthma and pediatric wheezing are emerging as significant sources of human morbidity. However, M. pneumoniae products capable of promoting allergic inflammation are unknown. Recently, we reported that M. pneumoniae produces an ADP-ribosylating and vacuolating toxin termed the community-acquired respiratory distress syndrome (CARDS) toxin. Here we report that naive mice exposed to a single dose of recombinant CARDS (rCARDS) toxin respond with a robust inflammatory response consistent with allergic disease. rCARDS toxin induced 30-fold increased expression of the Th-2 cytokines IL-4 and IL-13 and 70- to 80-fold increased expression of the Th-2 chemokines CCL17 and CCL22, corresponding to a mixed cellular inflammatory response comprised of a robust eosinophilia, accumulation of T cells and B cells, and mucus metaplasia. The inflammatory responses correlate temporally with toxin-dependent increases in airway hyperreactivity characterized by increases in airway restriction and decreases in lung compliance. Furthermore, CARDS toxin-mediated changes in lung function and histopathology are dependent on CD4(+) T cells. Altogether, the data suggest that rCARDS toxin is capable of inducing allergic-type inflammation in naive animals and may represent a causal factor in M. pneumoniae-associated asthma.
Collapse
Affiliation(s)
- Jorge L Medina
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Vaccination of BALB/c mice with an avirulent Mycoplasma pneumoniae P30 mutant results in disease exacerbation upon challenge with a virulent strain. Infect Immun 2012; 80:1007-14. [PMID: 22252865 DOI: 10.1128/iai.06078-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mycoplasma pneumoniae is a significant human respiratory pathogen that causes high morbidity worldwide. No vaccine to prevent M. pneumoniae infection currently exists, since the mechanisms of pathogenesis are poorly understood. To this end, we constructed a P30 cytadhesin mutant (P-130) with a drastically reduced capacity for binding to erythrocytes and an inability to glide on glass substrates. This mutant was determined to be avirulent and cannot survive in the lungs of BALB/c mice. We also ascertained that the previously identified P30 gliding motility mutant II-3R is avirulent and also cannot be recovered from the lungs of mice after infection. Mutant P130 was then assessed for its efficacy as a live attenuated vaccine candidate in mice after challenge with wild-type M. pneumoniae. After vaccination with the P-130 P30 mutant, mice showed evidence of exacerbated disease upon subsequent challenge with the wild-type strain PI1428, which appears to be driven by a Th17 response and corresponding eosinophilia. Our results are in accordance with other reports of vaccine-induced disease exacerbation in rodents and emphasize the need to better understand the basic mechanisms of M. pneumoniae pathogenesis.
Collapse
|
19
|
Saraya T, Nakata K, Nakagaki K, Motoi N, Iihara K, Fujioka Y, Oka T, Kurai D, Wada H, Ishii H, Taguchi H, Kamiya S, Goto H. Identification of a mechanism for lung inflammation caused by Mycoplasma pneumoniae using a novel mouse model. RESULTS IN IMMUNOLOGY 2011; 1:76-87. [PMID: 24371556 DOI: 10.1016/j.rinim.2011.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/05/2011] [Accepted: 11/07/2011] [Indexed: 02/02/2023]
Abstract
Human Mycoplasma pneumoniae (MP) pneumonia is characterized by alveolar infiltration with neutrophils and lymphocytes and lymphocyte/plasma cell infiltrates in the peri-bronchovascular area (PBVA). No mouse model has been able to mimic the pathological features seen in human MP pneumonia, such as plasma cell-rich lymphocytic infiltration in PBVA. To figure out the mechanism for inflammation by MP infection using a novel mouse model that mimics human MP pneumonia, mice were pre-immunized intraperitoneally with Th2 stimulating adjuvant, alum, alone or MP extracts with an alum, followed by intratracheal challenge with MP extracts. The toll-like receptor-2, which is the major receptor for mycoplasma cell wall lipoproteins, was strongly up-regulated in alveolar macrophages in a latter group after the pre-immunization but prior to the intratracheal challenge. Those findings demonstrated that acceleration of innate immunity by antecedent antigenic stimulation can be an important positive-feedback mechanism in lung inflammation during MP pneumonia.
Collapse
Affiliation(s)
- Takeshi Saraya
- Department of Respiratory Medicine, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka City, Tokyo, Japan
| | - Koh Nakata
- Niigata University Medical & Dental Hospital, Bioscience Medical Research Center, 1-754, Asashimachi-dori, Chuo-ku, Niigata 951-8520, Japan
| | - Kazuhide Nakagaki
- Laboratory of Infectious Diseases and Immunology, College of Veterinary Medicine, Nippon Jui Seimei-kagaku University, Musashino, Tokyo 180-8602, Japan
| | - Natsuki Motoi
- Niigata University Medical & Dental Hospital, Bioscience Medical Research Center, 1-754, Asashimachi-dori, Chuo-ku, Niigata 951-8520, Japan
| | - Kuniko Iihara
- NTT Medical Center Tokyo, Department of Diagnostic Pathology, Japan
| | - Yasunori Fujioka
- Department of Pathology, Kyorin University School of Medicine, Japan
| | - Teruaki Oka
- Division of Pathology and Central Clinical Laboratory, Kanto Central Hospital of the Mutual Aid Association of Public School Teachers, Japan
| | - Daisuke Kurai
- Department of Respiratory Medicine, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka City, Tokyo, Japan
| | - Hiroo Wada
- Department of Respiratory Medicine, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka City, Tokyo, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka City, Tokyo, Japan
| | - Haruhiko Taguchi
- Department of Immunology, Kyorin University, Faculty of Health Sciences, Japan
| | - Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka City, Tokyo, Japan
| | - Hajime Goto
- Department of Respiratory Medicine, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka City, Tokyo, Japan
| |
Collapse
|
20
|
Tang LF, Shi YC, Xu YC, Wang CF, Yu ZS, Chen ZM. The change of asthma-associated immunological parameters in children with Mycoplasma pneumoniae infection. J Asthma 2009; 46:265-9. [PMID: 19373634 DOI: 10.1080/02770900802647557] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Mycoplasma pneumoniae (M. pneumoniae), an atypical pathogen, is increasingly recognized as a common and important pathogen. Previous studies showed that M. pneumoniae infection may play a role in asthmatic mechanisms based on evidence collected from peripheral blood or sputum of patients or animal models. However, evidence reported from the airways of patients has been rare. OBJECTIVE To estimate the role of M. pneumoniae infection in asthma by measuring the immunological parameters from peripheral blood and bronchoalveolar lavage fluid (BALF) in pediatric patients with mycoplasma pneumonia. METHODS A total of 30 patients with mycoplasma pneumonia and 37 patients without M. pneumoniae infection undergoing fiberoptic bronchoscopy were reviewed. The peripheral blood cell count, immunoglobulins (Ig), BALF cell count, and other clinical and laboratory data were reviewed and analyzed. RESULTS There were significantly more patients with raised basophil counts in the M. pneumoniae group than that in the control group (p = 0.033). Serum immunoglobulin (Ig) A, IgM, and IgG levels in the M. pneumoniae group were significantly higher than those in the control group (p = 0.008, p = 0.011, and p = 0.019, respectively). The percentage of eosinophils in BALF cells was in the range 0 to 10% in M. pneumoniae patients, while it ranged between 0 and 4% in the control group with a significant difference (p = 0.043). In the M. pneumoniae group, we found that the percentage of eosinophils in the BALF cells was positively correlated with age, the percentage of peripheral eosinophils, and BALF lymphocytes (r = 0.298, p = 0.030; r = 0.341, p = 0.014; r = 0.387, p = 0.006; respectively) and negatively correlated with total peripheral white blood cell (r = -0.387, p = 0.005). CONCLUSION These results suggest that M. pneumonia infection is associated with the asthma mechanism, especially in older children.
Collapse
Affiliation(s)
- Lan Fang Tang
- Department of Pulmonology, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | | | | | | | | | | |
Collapse
|
21
|
Sieve AN, Meeks KD, Bodhankar S, Lee S, Kolls JK, Simecka JW, Berg RE. A novel IL-17-dependent mechanism of cross protection: respiratory infection with mycoplasma protects against a secondary listeria infection. Eur J Immunol 2009; 39:426-38. [PMID: 19180464 PMCID: PMC2735239 DOI: 10.1002/eji.200838726] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Immune responses to pathogens occur within the context of current and previous infections. Cross protection refers to the phenomena where infection with a particular pathogen provides enhanced resistance to a subsequent unrelated pathogen in an antigen-independent manner. Proposed mechanisms of antigen-independent cross protection have involved the secretion of IFN-gamma, which activates macrophages, thus providing enhanced innate immunity against the secondary viral or bacterial pathogen. Here we provide evidence that a primary infection with the chronic respiratory pathogen, Mycoplasma pulmonis, provides a novel form of cross protection against a secondary infection with Listeria monocytogenes that is not mediated by IFN-gamma, but instead relies upon IL-17 and mobilization of neutrophils. Mice infected with M. pulmonis have enhanced clearance of L. monocytogenes from the spleen and liver, which is associated with increased numbers of Gr-1(+)CD11b(+) cells and higher levels of IL-17. This enhanced clearance of L. monocytogenes was absent in mice depleted of Gr-1(+) cells or in mice deficient in the IL-17 receptor. Additionally, both the IL-17 receptor and neutrophils were essential for optimal clearance of M. pulmonis. Thus, a natural component of the immune response directed against M. pulmonis was able to enhance clearance of L. monocytogenes.
Collapse
Affiliation(s)
- Amy N. Sieve
- Department of Molecular Biology and Immunology, The University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Karen D. Meeks
- Department of Molecular Biology and Immunology, The University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Sheetal Bodhankar
- Department of Molecular Biology and Immunology, The University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Suheung Lee
- Department of Molecular Biology and Immunology, The University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Jay K. Kolls
- Division of Pulmonology, Department of Pediatrics, Children's Hospital of Pittsburgh and The University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Jerry W. Simecka
- Department of Molecular Biology and Immunology, The University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Rance E. Berg
- Department of Molecular Biology and Immunology, The University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| |
Collapse
|
22
|
Tagliabue C, Salvatore CM, Techasaensiri C, Mejias A, Torres JP, Katz K, Gomez AM, Esposito S, Principi N, Hardy RD. The impact of steroids given with macrolide therapy on experimental Mycoplasma pneumoniae respiratory infection. J Infect Dis 2008; 198:1180-8. [PMID: 18717637 PMCID: PMC2562003 DOI: 10.1086/591915] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Systemic steroids have been advocated in addition to antimicrobial therapy for severe Mycoplasma pneumoniae pneumonia. We evaluated the efficacy of clarithromycin, dexamethasone, and combination therapy for M. pneumoniae respiratory infection. METHODS Mice infected with M. pneumoniae were treated with clarithromycin, dexamethasone, combined clarithromycin/dexamethasone, or placebo daily; mice were evaluated at baseline and after 1, 3, and 6 days of therapy. Outcome variables included M. pneumoniae culture, lung histopathologic score (HPS), and bronchoalveolar lavage cytokine, chemokine, and growth factor concentrations. RESULTS Clarithromycin monotherapy resulted in the greatest reductions in M. pneumoniae concentrations. After 3 days of treatment, combination therapy significantly reduced lung HPS compared with placebo, clarithromycin, and dexamethasone alone, whereas, after 6 days of therapy, clarithromycin alone and combination therapy significantly reduced lung HPS compared with placebo. Concentrations of interleukin (IL)-12 p40, RANTES, macrophage chemotactic protein-1, and cytokine-induced neutrophil chemoattractant were significantly lower in mice treated with clarithromycin alone and/or combination therapy compared with dexamethasone alone and/or placebo; combination therapy resulted in a significantly greater reduction than clarithromycin alone for IL-12 p40 and RANTES. CONCLUSIONS Although monotherapy with clarithromycin had the greatest effect on reducing concentrations of M. pneumoniae, combination therapy had the greatest effect on decreasing levels of cytokines and chemokines as well as pulmonary histologic inflammation.
Collapse
Affiliation(s)
- C Tagliabue
- Institute of Pediatrics, University of Milan Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mycoplasma pneumoniae infection and environmental tobacco smoke inhibit lung glutathione adaptive responses and increase oxidative stress. Infect Immun 2008; 76:4455-62. [PMID: 18644874 DOI: 10.1128/iai.00136-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic cigarette smoking evokes a lung glutathione (GSH) adaptive response that results in elevated GSH levels in the lung epithelial lining fluid (ELF). Currently, little is known about how the lung regulates or maintains steady-state levels of ELF GSH. Pathogens such as Mycoplasma pneumoniae can exacerbate airway inflammation and oxidative stress. The present study examined whether M. pneumoniae infections synergize with environmental tobacco smoke (ETS) to disrupt lung GSH adaptive responses. Mice were exposed separately and in combination to ETS and M. pneumoniae for 16 weeks. ETS exposure resulted in a doubling of ELF GSH levels, which was blocked in the M. pneumoniae-exposed mice. In addition, the ETS-plus-M. pneumoniae-exposed mice had elevated levels of oxidized glutathione (GSSG), resulting in a dramatic change in the ELF redox state that corresponded with an increase in lung tissue DNA oxidation. Similar findings were observed in human lung epithelial cells in vitro. Cells exposed separately or in combination to cigarette smoke extract and M. pneumoniae for 48 h had elevated apical levels of GSH compared to control cells, and these increases were blocked by M. pneumoniae and were also associated with increased cellular DNA oxidation. Further studies showed that M. pneumoniae exposure blocked ETS-induced increases in GSH reductase, an enzyme that recycles GSSG back to GSH, both in vitro and in vivo. These studies suggest that M. pneumoniae infection synergizes with ETS and suppresses the lung's ability to respond appropriately to environmental challenges leading to enhanced oxidative stress.
Collapse
|
24
|
Wu Q, Martin RJ, Rino JG, Breed R, Torres RM, Chu HW. IL-23-dependent IL-17 production is essential in neutrophil recruitment and activity in mouse lung defense against respiratory Mycoplasma pneumoniae infection. Microbes Infect 2006; 9:78-86. [PMID: 17198762 PMCID: PMC1832075 DOI: 10.1016/j.micinf.2006.10.012] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Revised: 09/12/2006] [Accepted: 10/17/2006] [Indexed: 11/25/2022]
Abstract
IL-23 induces IL-17 production in activated CD4+ T cells and participates in host defense against many encapsulated bacteria. However, whether the IL-23/IL-17 axis contributes to a Mycoplasma pneumoniae (Mp)-induced lung inflammation (e.g., neutrophils) has not been addressed. Using an acute respiratory Mp infection murine model, we found significantly up-regulated lung IL-23p19 mRNA in the early phase of infection (4h), and alveolar macrophages were an important cell source of Mp-induced IL-23. We further showed that Mp significantly increased IL-17 protein levels in bronchoalveolar lavage (BAL). Lung gene expression of IL-17, IL-17C and IL-17F was also markedly up-regulated by Mp in vivo. IL-17 and IL-17F were found to be derived mainly from lung CD4+ T cells, and were increased upon IL-23 stimulation in vitro. In vivo blocking of IL-23p19 alone or in combination with IL-23/IL-12p40 resulted in a significant reduction of Mp-induced IL-17 protein and IL-17/IL-17F mRNA expression, which was accompanied by a trend toward reduced lung neutrophil recruitment, BAL neutrophil activity, and Mp clearance. However, IL-23 neutralization had no effect on Mp-induced lung IL-17C mRNA expression. These results demonstrate that IL-17/IL-17F production is IL-23-dependent in an acute Mp infection, and contributes to neutrophil recruitment and activity in the lung defense against the infection.
Collapse
Affiliation(s)
- Qun Wu
- Department of Medicine, National Jewish Medical and Research Center and the University of Colorado Health Sciences Center, Denver, Colorado
| | - Richard J. Martin
- Department of Medicine, National Jewish Medical and Research Center and the University of Colorado Health Sciences Center, Denver, Colorado
| | - John G. Rino
- Department of Medicine, National Jewish Medical and Research Center and the University of Colorado Health Sciences Center, Denver, Colorado
| | - Rachel Breed
- Department of Medicine, National Jewish Medical and Research Center and the University of Colorado Health Sciences Center, Denver, Colorado
| | - Raul M. Torres
- Department of Immunology, National Jewish Medical and Research Center and the University of Colorado Health Sciences Center, Denver, Colorado
| | - Hong Wei Chu
- Department of Medicine, National Jewish Medical and Research Center and the University of Colorado Health Sciences Center, Denver, Colorado
- Corresponding author: Dr. Hong Wei Chu, National Jewish Medical and Research Center, 1400 Jackson Street, Room D104, Denver, CO 80206. Tel: 1-303-398-1689; fax: 1-303-270-2319. E-mail address:
| |
Collapse
|