1
|
Dehghan M, Askari H, Tohidfar M, Siadat S, Fatemi F. Improvement of RBD-FC Immunogenicity by Using Alum-Sodium Alginate Adjuvant Against SARS-COV-2. Influenza Other Respir Viruses 2024; 18:e70018. [PMID: 39478310 PMCID: PMC11525037 DOI: 10.1111/irv.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Adjuvants use several mechanisms to boost immunogenicity and to modulate immune response. The strength of adsorption of antigen by adjuvants can be a determinant factor for significant improvement of immunopotentiation. METHODS We expressed recombinant RBD-FC in PichiaPink Strain 4 and examined the vaccination of mice by vaccine formulation with different adjuvants (sodium alginate and aluminum hydroxide, alone and together). RESULTS Sodium alginate significantly increased the immunogenicity and stability of RBD-FC antigen, so RBD-FC formulated with combined alginate and alum (AlSa) and sodium alginate alone showed higher antibody titer and stability. Immunogenicity of RBD-FC:AlSa was determined by serological assays including direct enzyme-linked immunosorbent assay (ELISA) and surrogate virus neutralization test (sVNT). High levels of IgGs and neutralizing antibodies were measured in serum of mice immunized with the RBD-FC:AlSa formulation. On the other hand, cytokines IL-10 and INF-γ were severely accumulated in response to RBD-FC:AlSa, and after 10 days, their accumulation was significantly declined, whereas IL-4 showed the highest and the lowest accumulation in response to alum and alginate, respectively. CONCLUSIONS Our data may suggest that combination of alum and sodium alginate has a better compatibility with RBD-FC in vaccine formulation.
Collapse
MESH Headings
- Alginates/chemistry
- Animals
- Mice
- Alum Compounds/administration & dosage
- Adjuvants, Immunologic/administration & dosage
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- SARS-CoV-2/immunology
- Mice, Inbred BALB C
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Female
- Adjuvants, Vaccine
- COVID-19/prevention & control
- COVID-19/immunology
- Immunogenicity, Vaccine
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Aluminum Hydroxide/administration & dosage
- Aluminum Hydroxide/immunology
- Aluminum Hydroxide/chemistry
- Humans
- Immunoglobulin G/blood
- Cytokines
- Immunoglobulin Fc Fragments/immunology
Collapse
Affiliation(s)
- Mahboobeh Dehghan
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | - Hossein Askari
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | - Masoud Tohidfar
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | | | - Fataneh Fatemi
- Protein Research CenterShahid Beheshti UniversityTehranIran
| |
Collapse
|
2
|
Chugh S, Bahal RK, Dhiman R, Singh R. Antigen identification strategies and preclinical evaluation models for advancing tuberculosis vaccine development. NPJ Vaccines 2024; 9:57. [PMID: 38461350 PMCID: PMC10924964 DOI: 10.1038/s41541-024-00834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/05/2024] [Indexed: 03/11/2024] Open
Abstract
In its myriad devastating forms, Tuberculosis (TB) has existed for centuries, and humanity is still affected by it. Mycobacterium tuberculosis (M. tuberculosis), the causative agent of TB, was the foremost killer among infectious agents until the COVID-19 pandemic. One of the key healthcare strategies available to reduce the risk of TB is immunization with bacilli Calmette-Guerin (BCG). Although BCG has been widely used to protect against TB, reports show that BCG confers highly variable efficacy (0-80%) against adult pulmonary TB. Unwavering efforts have been made over the past 20 years to develop and evaluate new TB vaccine candidates. The failure of conventional preclinical animal models to fully recapitulate human response to TB, as also seen for the failure of MVA85A in clinical trials, signifies the need to develop better preclinical models for TB vaccine evaluation. In the present review article, we outline various approaches used to identify protective mycobacterial antigens and recent advancements in preclinical models for assessing the efficacy of candidate TB vaccines.
Collapse
Affiliation(s)
- Saurabh Chugh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, 121001, Haryana, India
| | - Ritika Kar Bahal
- Marshall Centre, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, 121001, Haryana, India.
| |
Collapse
|
3
|
Enhancing neutralizing antibodies against receptor binding domain of SARS-CoV-2 by a safe natural adjuvant system. Virus Res 2023; 326:199047. [PMID: 36693449 PMCID: PMC9867563 DOI: 10.1016/j.virusres.2023.199047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
The receptor binding domain (RBD) plays a pivotal role in the viral entry as it enables the engagement of severe acute respiratory syndrome 2 (SARS-CoV-2) with the human angiotensin-converting enzyme 2 (ACE2) receptor for host cell entry. RBD is the major target for developing viral inhibitors and vaccines. Expression of recombinant RBD in E.coli is highly scalable with a low-cost procedure despite its high expression level compared to expression in mammalian and yeast cells. Using an alternative natural adjuvant system instead of alum adjuvant, increased immunogenicity of RBD antigen in serological assay including direct ELISA and surrogate Virus Neutralization Test (sVNT) was demonstrated with high levels of IgGs and neutralizing antibodies in mice sera immunized with RBD:AlSa (Alum and Sodium alginate) formulation. The sVNT is a simple and fast test that can be used instead of the conventional virus neutralization test requiring live virus and BSL3 laboratory to detect total neutralizing antibodies against RBD. Additionally, results showed a safety profile for sodium alginate which supported using it as an alternative natural adjuvant.
Collapse
|
4
|
AbdelAllah NH, Gaber Y, AbdelGhani S, Rashed ME, Azmy AF. Chitosan and alginate salt as biomaterials are potential natural adjuvants for killed cholera vaccine. J Biomed Mater Res A 2021; 109:2462-2470. [PMID: 34117696 DOI: 10.1002/jbm.a.37240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022]
Abstract
Chitosan and alginate salts are natural biopolymers that have gained recent attention in the biomedical sectors. Their properties allow them to become potential candidates as safe, cheap, and effective vaccine adjuvants. The present study aimed to enhance the immunogenic response of a current injectable killed cholera vaccine (KCV) using chitosan and alginate salt as natural adjuvants against alum. We tested KCV adjuvanted with alum, chitosan, and sodium alginate in mice. Mice were immunized intraperitoneally with KCV adjuvanted with alum, chitosan, or alginate salt and compared with a control unadjuvanted immunized group. Humoral, cellular, and functional immune responses were evaluated in all groups. The addition of adjuvants, particularly natural adjuvants, to KCV significantly improved the immune response as demonstrated by specific antibody increase, strong proliferation effects, and high protection rate against different challenge doses of cholera strains. Our findings demonstrate that chitosan and alginate salt are superior adjuvants for boosting the KCV immune response and highlights the requirement for further vaccine development.
Collapse
Affiliation(s)
- Nourhan H AbdelAllah
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Viral Control Unit, Egyptian Drug Authority (EDA), Cairo, Egypt
| | - Yasser Gaber
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-karak, Jordan
| | - Sameh AbdelGhani
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Mohamed E Rashed
- Microbiology Department, Egyptian Drug Authority (EDA), Cairo, Egypt
| | - Ahmed F Azmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
5
|
Animal Models of Tuberculosis Vaccine Research: An Important Component in the Fight against Tuberculosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4263079. [PMID: 32025519 PMCID: PMC6984742 DOI: 10.1155/2020/4263079] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Abstract
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, is one of the top ten infectious diseases worldwide, and is the leading cause of morbidity from a single infectious agent. M. tuberculosis can cause infection in several species of animals in addition to humans as the natural hosts. Although animal models of TB disease cannot completely simulate the occurrence and development of human TB, they play an important role in studying the pathogenesis, immune responses, and pathological changes as well as for vaccine research. This review summarizes the commonly employed animal models, including mouse, guinea pig, rabbit, rat, goat, cattle, and nonhuman primates, and their characteristics as used in TB vaccine research, and provides a basis for selecting appropriate animal models according to specific research needs. Furthermore, some of the newest animal models used for TB vaccine research (such as humanized animal models, zebrafish, Drosophila, and amoeba) are introduced, and their characteristics and research progress are discussed.
Collapse
|
6
|
Yan X, Zhou M, Yu S, Jin Z, Zhao K. An overview of biodegradable nanomaterials and applications in vaccines. Vaccine 2019; 38:1096-1104. [PMID: 31813649 DOI: 10.1016/j.vaccine.2019.11.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/30/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
Abstract
Vaccination is the most cost-effective and sustainable way to prevent and eliminate infectious diseases. Compared with traditional vaccines, novel vaccines have better stability, longer duration and require less antigen usage. In addition, novel vaccines have better immune effects and significantly less toxic side effects. However, both novel vaccines and traditional vaccines require carrier molecules or adjuvants to produce an optimal immune response. There is an increasing demand for vaccine adjuvants and delivery systems that can induce stronger immune response whilst reducing production cost and the dose of vaccine. In recent years, nanotechnology has played an important role in the development of novel vaccine adjuvants and nano-delivery systems. Biodegradable materials have also received a lot of attention in medical science because they have excellent biocompatibility, biodegradability and low toxicity, which can protect antigens from degradation, increase antigen stability and provide slow release; resulting in enhanced immunogenicity. Therefore, biodegradable nanoparticles have attracted much attention in the formulation of vaccines. In this review, we outline some key features of biodegradable nanomaterials in the developing safer and more effective vaccines. The properties, structural characteristics, advantages and disadvantage of the biodegradable nanomaterials will be systematically reviewed. Additionally, applications, research progress and future prospects of biodegradable nanomaterials are discussed. This review will be help in future research work directed at developing biodegradable vaccine adjuvants or delivery carriers.
Collapse
Affiliation(s)
- Xingye Yan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Mo Zhou
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Shuang Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Zheng Jin
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, China
| | - Kai Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
7
|
Sanina N. Vaccine Adjuvants Derived from Marine Organisms. Biomolecules 2019; 9:E340. [PMID: 31382606 PMCID: PMC6723903 DOI: 10.3390/biom9080340] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
Vaccine adjuvants help to enhance the immunogenicity of weak antigens. The adjuvant effect of certain substances was noted long ago (the 40s of the last century), and since then a large number of adjuvants belonging to different groups of chemicals have been studied. This review presents research data on the nonspecific action of substances originated from marine organisms, their derivatives and complexes, united by the name 'adjuvants'. There are covered the mechanisms of their action, safety, as well as the practical use of adjuvants derived from marine hydrobionts in medical immunology and veterinary medicine to create modern vaccines that should be non-toxic and efficient. The present review is intended to briefly describe some important achievements in the use of marine resources to solve this important problem.
Collapse
Affiliation(s)
- Nina Sanina
- Department of Biochemistry, Microbiology and Biotechnology, School of Natural Sciences, Far Eastern, Federal University, Sukhanov Str., 8, Vladivostok 690091, Russia.
| |
Collapse
|
8
|
Varankovich N, Grigoryan A, Brown K, Inglis GD, Uwiera RRE, Nickerson MT, Korber DR. Pea-protein alginate encapsulation adversely affects development of clinical signs of Citrobacter rodentium-induced colitis in mice treated with probiotics. Can J Microbiol 2018; 64:744-760. [PMID: 29958098 DOI: 10.1139/cjm-2018-0166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The efficacy of two strains of Lactobacillus probiotics (Lactobacillus rhamnosus R0011 and Lactobacillus helveticus R0052) immobilized in microcapsules composed of pea protein isolate (PPI) and alginate microcapsules was assessed using a mouse model of Citrobacter rodentium-induced colitis. Accordingly, 4-week-old mice were fed diets supplemented with freeze-dried probiotics (group P), probiotic-containing microcapsules (group PE) (lyophilized PPI-alginate microcapsules containing probiotics), or PPI-alginate microcapsules containing no probiotics (group E). Half of the mice (controls, groups P, PE, and E) received C. rodentium by gavage 2 weeks after initiation of feeding. Daily monitoring of disease symptoms (abnormal behavior, diarrhea, etc.) and body weights was undertaken. Histopathological changes in colonic and cecal tissues, cytokine expression levels, and pathogen and probiotic densities in feces were examined, and the microbial communities of the distal colon mucosa were characterized by 16S rRNA sequencing. Infection with C. rodentium led to marked progression of infectious colitis, as revealed by symptomatic and histopathological data, changes in cytokine expression, and alteration of composition of mucosal communities. Probiotics led to changes in most of the disease markers but did not have a significant impact on cytokine profiles in infected animals. On the basis of cytokine expression analyses and histopathological data, it was evident that encapsulation materials (pea protein and calcium alginate) contributed to inflammation and worsened a set of symptoms in the cecum. These results suggest that even though food ingredients may be generally recognized as safe, they may in fact contribute to the development of an inflammatory response in certain animal disease models.
Collapse
Affiliation(s)
- Natallia Varankovich
- a Department of Food and Bioproduct Sciences, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Alexander Grigoryan
- a Department of Food and Bioproduct Sciences, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Kirsty Brown
- b Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB T1J 4P4, Canada
| | - G Douglas Inglis
- b Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB T1J 4P4, Canada
| | - Richard R E Uwiera
- c Department of Agricultural Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB T6G 2R3, Canada
| | - Michael T Nickerson
- a Department of Food and Bioproduct Sciences, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Darren R Korber
- a Department of Food and Bioproduct Sciences, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
9
|
Speth MT, Repnik U, Griffiths G. Layer-by-layer nanocoating of live Bacille-Calmette-Guérin mycobacteria with poly(I:C) and chitosan enhances pro-inflammatory activation and bactericidal capacity in murine macrophages. Biomaterials 2016; 111:1-12. [PMID: 27716523 DOI: 10.1016/j.biomaterials.2016.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 12/11/2022]
Abstract
Tuberculosis (TB) is a major disease burden globally causing more than 1.5 million deaths per year. The attenuated live vaccine strain Bacille Calmette-Guérin (BCG), although providing protection against childhood TB, is largely ineffective against adult pulmonary TB. A major aim therefore is to increase the potency of the BCG vaccine to generate stronger and more sustained immunity against TB. Here, we investigated the use of layer-by-layer (LbL) nanocoating of the surface of live BCG with several layers of polyinosinic-polycytidylic acid (poly(I:C)), a strong inducer of cell-mediated immunity, and the biodegradable polysaccharide chitosan to enhance BCG immunogenicity. Nanocoating of live BCG did not affect bacterial viability or growth in vitro but induced killing of the BCG in infected mouse bone marrow-derived macrophages and enhanced macrophage production of pro-inflammatory cytokines and expression of surface co-stimulatory molecules relative to uncoated BCG. In addition, poly(I:C) surface-coated BCG, but not BCG alone or together with soluble poly(I:C), induced high production of nitric oxide (NO) and IL-12. These results argue that BCG and surface absorbed poly(I:C) act in a synergistic manner to elicit pro-inflammatory macrophage activation. In conclusion, nanocoating of live BCG with the immunostimulatory agent poly(I:C) may be an appropriate strategy to enhance and modulate host responses to the BCG vaccine.
Collapse
Affiliation(s)
- Martin Tobias Speth
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Urska Repnik
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Gareth Griffiths
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| |
Collapse
|
10
|
Chitosan and Sodium Alginate Combinations Are Alternative, Efficient, and Safe Natural Adjuvant Systems for Hepatitis B Vaccine in Mouse Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7659684. [PMID: 27493674 PMCID: PMC4963576 DOI: 10.1155/2016/7659684] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/09/2016] [Indexed: 02/06/2023]
Abstract
Hepatitis B viral (HBV) infections represent major public health problem and are an occupational hazard for healthcare workers. Current alum-adjuvanted HBV vaccine is the most effective measure to prevent HBV infection. However, the vaccine has some limitations including poor response in some vaccinee and being a frost-sensitive suspension. The goal of our study was to use an alternative natural adjuvant system strongly immunogenic allowing for a reduction in dose and cost. We tested HBV surface antigen (HBsAg) adjuvanted with chitosan (Ch) and sodium alginate (S), both natural adjuvants, either alone or combined with alum in mouse model. Mice groups were immunized subcutaneously with HBsAg adjuvanted with Ch or S, or triple adjuvant formula with alum (Al), Ch, and S, or double formulations with AlCh or AlS. These were compared to control groups immunized with current vaccine formula or unadjuvanted HBsAg. We evaluated the rate of seroconversion, serum HBsAg antibody, IL-4, and IFN-γ levels. The results showed that the solution formula with Ch or S exhibited comparable immunogenic responses to Al-adjuvanted suspension. The AlChS gave significantly higher immunogenic response compared to controls. Collectively, our results indicated that Ch and S are effective HBV adjuvants offering natural alternatives, potentially reducing dose.
Collapse
|
11
|
Hosseini M, Dobakhti F, Pakzad SR, Ajdary S. Immunization with Single Oral Dose of Alginate-Encapsulated BCG Elicits Effective and Long-Lasting Mucosal Immune Responses. Scand J Immunol 2016; 82:489-97. [PMID: 26286252 DOI: 10.1111/sji.12351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/10/2015] [Indexed: 12/30/2022]
Abstract
Effective vaccination against pathogens, which enter the body through mucosal surfaces, requires the induction of both mucosal and systemic immune responses. Here, mucosal as well as systemic immune responses in the lung and spleen of BALB/c mice which were orally vaccinated with a single dose of alginate-encapsulated bacille Calmette-Guerin (BCG) were evaluated. Twenty weeks after immunization, the vaccinated mice were challenged intranasally with BCG. Twelve weeks after immunization and 5 weeks after challenge, the immune responses were evaluated. Moreover, immune responses were compared with those of mice that were vaccinated with free BCG by subcutaneous (sc) and oral routes. Twelve weeks after the immunization, serum IgG level was higher in the sc-immunized mice, while serum IgA level was higher in the orally immunized mice with encapsulated BCG. Significant productions of both IgG and IgA were only detected in lungs of mice orally immunized with encapsulated BCG. Proliferative and delayed-type hypersensitivity responses and IFN-γ production were significantly higher in mice immunized orally with encapsulated BCG, compared to mice immunized orally with free BCG. After challenge, the levels of IFN-γ were comparable between sc-immunized mice with free BCG and orally immunized with encapsulated BCG; however, significantly less IL-4 was detected in mice which had received encapsulated BCG via oral route. Moreover, significant control of the bacilli growth in the lung of the immunized mice after intranasal challenge with BCG was documented in mice vaccinated with encapsulated BCG. These results suggest that oral immunization with alginate-encapsulated BCG is an effective mean of inducing mucosal and systemic specific immune responses.
Collapse
Affiliation(s)
- M Hosseini
- Immunology Department, Pasteur Institute of Iran, Tehran, IR, Iran
| | - F Dobakhti
- Mazandaran University of Medical Sciences, Mazandaran, IR, Iran
| | - S R Pakzad
- Vaccine Potency and Standardization Section, Food and Drugs Control Laboratory Research Center, Ministry of Health and Medical Education, Tehran, IR, Iran
| | - S Ajdary
- Immunology Department, Pasteur Institute of Iran, Tehran, IR, Iran
| |
Collapse
|
12
|
Powell BS, Andrianov AK, Fusco PC. Polyionic vaccine adjuvants: another look at aluminum salts and polyelectrolytes. Clin Exp Vaccine Res 2015; 4:23-45. [PMID: 25648619 PMCID: PMC4313107 DOI: 10.7774/cevr.2015.4.1.23] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 11/24/2014] [Accepted: 11/29/2014] [Indexed: 12/22/2022] Open
Abstract
Adjuvants improve the adaptive immune response to a vaccine antigen by modulating innate immunity or facilitating transport and presentation. The selection of an appropriate adjuvant has become vital as new vaccines trend toward narrower composition, expanded application, and improved safety. Functionally, adjuvants act directly or indirectly on antigen presenting cells (APCs) including dendritic cells (DCs) and are perceived as having molecular patterns associated either with pathogen invasion or endogenous cell damage (known as pathogen associated molecular patterns [PAMPs] and damage associated molecular patterns [DAMPs]), thereby initiating sensing and response pathways. PAMP-type adjuvants are ligands for toll-like receptors (TLRs) and can directly affect DCs to alter the strength, potency, speed, duration, bias, breadth, and scope of adaptive immunity. DAMP-type adjuvants signal via proinflammatory pathways and promote immune cell infiltration, antigen presentation, and effector cell maturation. This class of adjuvants includes mineral salts, oil emulsions, nanoparticles, and polyelectrolytes and comprises colloids and molecular assemblies exhibiting complex, heterogeneous structures. Today innovation in adjuvant technology is driven by rapidly expanding knowledge in immunology, cross-fertilization from other areas including systems biology and materials sciences, and regulatory requirements for quality, safety, efficacy and understanding as part of the vaccine product. Standardizations will aid efforts to better define and compare the structure, function and safety of adjuvants. This article briefly surveys the genesis of adjuvant technology and then re-examines polyionic macromolecules and polyelectrolyte materials, adjuvants currently not known to employ TLR. Specific updates are provided for aluminum-based formulations and polyelectrolytes as examples of improvements to the oldest and emerging classes of vaccine adjuvants in use.
Collapse
Affiliation(s)
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
13
|
Minassian AM, Satti I, Poulton ID, Meyer J, Hill AVS, McShane H. A human challenge model for Mycobacterium tuberculosis using Mycobacterium bovis bacille Calmette-Guerin. J Infect Dis 2012; 205:1035-42. [PMID: 22396610 PMCID: PMC3295601 DOI: 10.1093/infdis/jis012] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
(See the editorial commentary by Dockrell, on pages 1029–31.) Background. There is currently no safe human challenge model of Mycobacterium tuberculosis infection to enable proof-of-concept efficacy evaluation of candidate vaccines against tuberculosis. In vivo antimycobacterial immunity could be assessed using intradermal Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccination as a surrogate for M. tuberculosis infection. Methods. Healthy BCG-naive and BCG-vaccinated volunteers were challenged with intradermal BCG. BCG load was quantified from skin biopsy specimens by polymerase chain reaction (PCR) and culture colony-forming units. Cellular infiltrate was isolated by suction blisters and examined by flow cytometry. Prechallenge immune readouts were correlated with BCG load after challenge. Results. In BCG-naive volunteers, live BCG was detected at the challenge site for up to 4 weeks and peaked at 2 weeks. Infiltration of mainly CD15+ neutrophils was observed in blister fluid. In previously BCG-vaccinated individuals, PCR analysis of skin biopsy specimens reflected a degree of mycobacterial immunity. There was no significant correlation between BCG load after challenge and mycobacterial-specific memory T cells measured before challenge by cultured enzyme-linked immunospot assay. Conclusions. This novel experimental human challenge model provides a platform for the identification of correlates of antimycobacterial immunity and will greatly facilitate the rational down-selection of candidate tuberculosis vaccines. Further evaluation of this model with BCG and new vaccine candidates is warranted.
Collapse
|
14
|
Enhancing immunogenicity to PLGA microparticulate systems by incorporation of alginate and RGD-modified alginate. Eur J Pharm Sci 2011; 44:32-40. [DOI: 10.1016/j.ejps.2011.05.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/25/2011] [Accepted: 05/29/2011] [Indexed: 12/24/2022]
|
15
|
Minassian AM, Ronan EO, Poyntz H, Hill AVS, McShane H. Preclinical development of an in vivo BCG challenge model for testing candidate TB vaccine efficacy. PLoS One 2011; 6:e19840. [PMID: 21629699 PMCID: PMC3101220 DOI: 10.1371/journal.pone.0019840] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 04/04/2011] [Indexed: 11/18/2022] Open
Abstract
There is an urgent need for an immunological correlate of protection against tuberculosis (TB) with which to evaluate candidate TB vaccines in clinical trials. Development of a human challenge model of Mycobacterium tuberculosis (M.tb) could facilitate the detection of such correlate(s). Here we propose a novel in vivo Bacille Calmette-Guérin (BCG) challenge model using BCG immunization as a surrogate for M.tb infection. Culture and quantitative PCR methods have been developed to quantify BCG in the skin, using the mouse ear as a surrogate for human skin. Candidate TB vaccines have been evaluated for their ability to protect against a BCG skin challenge, using this model, and the results indicate that protection against a BCG skin challenge is predictive of BCG vaccine efficacy against aerosol M.tb challenge. Translation of these findings to a human BCG challenge model could enable more rapid assessment and down selection of candidate TB vaccines and ultimately the identification of an immune correlate of protection.
Collapse
|
16
|
Moreno-Mendieta SA, Rocha-Zavaleta L, Rodriguez-Sanoja R. Adjuvants in tuberculosis vaccine development. ACTA ACUST UNITED AC 2009; 58:75-84. [PMID: 20002177 DOI: 10.1111/j.1574-695x.2009.00629.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tuberculosis remains a major public health problem around the world. Because the Mycobacterium bovis Bacilli-Calmette-Guerin (BCG) vaccine fails to protect adults from pulmonary tuberculosis, there is an urgent need for improved vaccine formulations. Unlike BCG, recombinant vaccines purified from bacterial expression vectors, as well as naked DNA, require an additional adjuvant. Recent improvements in our understanding of disease immunopathology, together with advances in biochemical and molecular techniques, have permitted the successful development of promising tuberculosis vaccine delivery and adjuvant combinations for human use. Here, we summarize the current state of adjuvant development and its impact on tuberculosis vaccine progress.
Collapse
Affiliation(s)
- Silvia A Moreno-Mendieta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, México D.F., Mexico
| | | | | |
Collapse
|