1
|
Ko EA, Zhou T, Ko JH. Insight into noncanonical small noncoding RNAs in Influenza A virus infection. Virus Res 2024; 350:199474. [PMID: 39326700 PMCID: PMC11466576 DOI: 10.1016/j.virusres.2024.199474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Influenza A virus (IAV) induces acute respiratory infections in birds and various mammals, including humans, and presents a significant global public health concern, with considerable economic consequences. Recently, researchers have shown keen interest in noncanonical small noncoding RNAs (sncRNAs) as carriers of epigenetic information, including tRNA-derived small RNAs (tsRNAs), rRNA-derived small RNA (rsRNAs), and Y RNA-derived small RNAs (ysRNAs). Particularly, tsRNAs and rsRNAs are detected in diverse species and demonstrate evolutionary conservation. We analyzed sncRNAs sequencing data in the pulmonary tissue of two genetically distinct mouse strains, C57BL/6J and DBA/2J, to explore strain-specific variations of sncRNAs in response to IAV infection. We systematically compiled information on noncanonical sncRNAs in these two strains and investigated the tsRNAs/rsRNAs/ysRNAs profiles influenced by IAV infection. Specifically, four noncanonical sncRNA families, including rsRNA-12S, GtsRNA-Arg-CCT, GtsRNA-Arg-TCT, and GtsRNA-Lys-TTT, exhibited upregulation upon IAV infection. Notably, DBA/2J mice showed earlier systemic differential expression of noncanonical sncRNAs after IAV infection compared to C57BL/6J mice. Additionally, our study revealed a strain-specific biogenesis of MtsRNAs in response to IAV infection. Also, distinct co-expression patterns of MtsRNAs were observed between C57BL/6J and DBA/2J mice, with DBA/2J mice showing broader positive co-expression of MtsRNAs with various sncRNA families compared to C57BL/6J mice. Our study provides a novel insight into noncanonical sncRNAs and their implications in IAV pathology and mouse strain specificity.
Collapse
Affiliation(s)
- Eun-A Ko
- Department of Physiology, College of Medicine, Jeju National University, Jeju 63243, South Korea
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Jae-Hong Ko
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
2
|
Bouzari B, Chugaeva UY, Karampoor S, Mirzaei R. Immunometabolites in viral infections: Action mechanism and function. J Med Virol 2024; 96:e29807. [PMID: 39037069 DOI: 10.1002/jmv.29807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/10/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
The interplay between viral pathogens and host metabolism plays a pivotal role in determining the outcome of viral infections. Upon viral detection, the metabolic landscape of the host cell undergoes significant changes, shifting from oxidative respiration via the tricarboxylic acid (TCA) cycle to increased aerobic glycolysis. This metabolic shift is accompanied by elevated nutrient accessibility, which is vital for cell function, development, and proliferation. Furthermore, depositing metabolites derived from fatty acids, TCA intermediates, and amino acid catabolism accelerates the immunometabolic transition, facilitating pro-inflammatory and antimicrobial responses. Immunometabolites refer to small molecules involved in cellular metabolism regulating the immune response. These molecules include nutrients, such as glucose and amino acids, along with metabolic intermediates and signaling molecules adenosine, lactate, itaconate, succinate, kynurenine, and prostaglandins. Emerging evidence suggests that immunometabolites released by immune cells establish a complex interaction network within local niches, orchestrating and fine-tuning immune responses during viral diseases. However, our current understanding of the immense capacity of metabolites to convey essential cell signals from one cell to another or within cellular compartments remains incomplete. Unraveling these complexities would be crucial for harnessing the potential of immunometabolites in therapeutic interventions. In this review, we discuss specific immunometabolites and their mechanisms of action in viral infections, emphasizing recent findings and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Ding M, Nielsen K. Inbred Mouse Models in Cryptococcus neoformans Research. J Fungi (Basel) 2024; 10:426. [PMID: 38921412 PMCID: PMC11204852 DOI: 10.3390/jof10060426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Animal models are frequently used as surrogates to understand human disease. In the fungal pathogen Cryptococcus species complex, several variations of a mouse model of disease were developed that recapitulate different aspects of human disease. These mouse models have been implemented using various inbred and outbred mouse backgrounds, many of which have genetic differences that can influence host response and disease outcome. In this review, we will discuss the most commonly used inbred mouse backgrounds in C. neoformans infection models.
Collapse
Affiliation(s)
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Sanchez PL, Staats HF, Abraham SN, Ross TM. Mastoparan-7 adjuvanted COBRA H1 and H3 hemagglutinin influenza vaccines. Sci Rep 2024; 14:13800. [PMID: 38877101 PMCID: PMC11178843 DOI: 10.1038/s41598-024-64351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
Adjuvants enhance, prolong, and modulate immune responses by vaccine antigens to maximize protective immunity and enable more effective immunization in the young and elderly. Most adjuvants are formulated with injectable vaccines. However, an intranasal route of vaccination may induce mucosal and systemic immune responses for enhancing protective immunity in individuals and be easier to administer compared to injectable vaccines. In this study, a next generation of broadly-reactive influenza hemagglutinin (HA) vaccines were developed using the Computationally Optimized Broadly Reactive Antigen (COBRA) methodology. These HA vaccines were formulated with Mastoparan 7 (M7-NH2) mast cell degranulating peptide adjuvant and administered intranasally to determine vaccine-induced seroconversion of antibodies against a panel of influenza viruses and protection following infection with H1N1 and H3N2 viruses in mice. Mice vaccinated intranasally with M7-NH2-adjuvanted COBRA HA vaccines had high HAIs against a panel of H1N1 and H3N2 influenza viruses and were protected against both morbidity and mortality, with reduced viral lung titers, following challenge with an H1N1 influenza virus. Additionally, M7-NH2 adjuvanted COBRA HA vaccines induced Th2 skewed immune responses with robust IgG and isotype antibodies in the serum and mucosal lung lavages. Overall, this intranasally delivered M7-NH2 -adjuvanted COBRA HA vaccine provides effective protection against drifted H1N1 and H3N2 viruses.
Collapse
Affiliation(s)
- Pedro L Sanchez
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Herman F Staats
- Pathology Department, School of Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Immunology, School of Medicine, Duke University Medical Center, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University, Duke University Medical Center, Durham, NC, USA
| | - Soman N Abraham
- Pathology Department, School of Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Immunology, School of Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA.
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA.
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
5
|
De Meyer A, Meuleman P. Preclinical animal models to evaluate therapeutic antiviral antibodies. Antiviral Res 2024; 225:105843. [PMID: 38548022 DOI: 10.1016/j.antiviral.2024.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024]
Abstract
Despite the availability of effective preventative vaccines and potent small-molecule antiviral drugs, effective non-toxic prophylactic and therapeutic measures are still lacking for many viruses. The use of monoclonal and polyclonal antibodies in an antiviral context could fill this gap and provide effective virus-specific medical interventions. In order to develop these therapeutic antibodies, preclinical animal models are of utmost importance. Due to the variability in viral pathogenesis, immunity and overall characteristics, the most representative animal model for human viral infection differs between virus species. Therefore, throughout the years researchers sought to find the ideal preclinical animal model for each virus. The most used animal models in preclinical research include rodents (mice, ferrets, …) and non-human primates (macaques, chimpanzee, ….). Currently, antibodies are tested for antiviral efficacy against a variety of viruses including different hepatitis viruses, human immunodeficiency virus (HIV), influenza viruses, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and rabies virus. This review provides an overview of the current knowledge about the preclinical animal models that are used for the evaluation of therapeutic antibodies for the abovementioned viruses.
Collapse
Affiliation(s)
- Amse De Meyer
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
6
|
Bergmann S, Brunotte L, Schughart K. Differential lung gene expression changes in C57BL/6 and DBA/2 mice carrying an identical functional Mx1 gene reveals crucial differences in the host response. BMC Genom Data 2024; 25:19. [PMID: 38360537 PMCID: PMC10870463 DOI: 10.1186/s12863-024-01203-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Influenza virus infections represent a major global health problem. The dynamin-like GTPase MX1 is an interferon-dependent antiviral host protein that confers resistance to influenza virus infections. Infection models in mice are an important experimental system to understand the host response and susceptibility to developing severe disease following influenza infections. However, almost all laboratory mouse strains carry a non-functional Mx1 gene whereas humans have a functional MX1 gene. Most studies in mice have been performed with strains carrying a non-functional Mx1 gene. It is therefore very important to investigate the host response in mouse strains with a functional Mx1 gene. RESULTS Here, we analyzed the host response to influenza virus infections in two congenic mouse strains carrying the functional Mx1 gene from the A2G strain. B6.A2G-Mx1r/r(B6-Mx1r/r) mice are highly resistant to influenza A virus (IAV) H1N1 infections. On the other hand, D2(B6).A2G-Mx1r/r(D2-Mx1r/r) mice, although carrying a functional Mx1 gene, were highly susceptible, exhibited rapid weight loss, and died. We performed gene expression analysis using RNAseq from infected lungs at days 3 and 5 post-infection (p.i.) of both mouse strains to identify genes and pathways that were differentially expressed between the two mouse strains. The susceptible D2-Mx1r/r mice showed a high viral replication already at day 3 p.i. and exhibited a much higher number of differentially expressed genes (DEGs) and many DEGs had elevated expression levels compared to B6-Mx1r/r mice. On the other hand, some DEGs were specifically up-regulated only in B6-Mx1r/r mice at day 3 p.i., many of which were related to host immune response functions. CONCLUSIONS From these results, we conclude that at early times of infection, D2-Mx1r/r mice showed a very high and rapid replication of the virus, which resulted in lung damage and a hyperinflammatory response leading to death. We hypothesize that the activation of certain immune response genes was missing and that others, especially Mx1, were expressed at a time in D2-Mx1r/r mice when the virus had already massively spread in the lung and were thus not able anymore to protect them from severe disease. Our study represents an important addition to previously published studies in mouse models and contributes to a better understanding of the molecular pathways and genes that protect against severe influenza disease.
Collapse
Affiliation(s)
- Silke Bergmann
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Linda Brunotte
- Institute of Virology Münster, University of Münster, Von-Esmarch-Straße 56, 48149, Münster, Germany
| | - Klaus Schughart
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
- Institute of Virology Münster, University of Münster, Von-Esmarch-Straße 56, 48149, Münster, Germany.
| |
Collapse
|
7
|
Sohail A, Iqbal AA, Sahini N, Chen F, Tantawy M, Waqas SF, Winterhoff M, Ebensen T, Schultz K, Geffers R, Schughart K, Preusse M, Shehata M, Bähre H, Pils MC, Guzman CA, Mostafa A, Pleschka S, Falk C, Michelucci A, Pessler F. Itaconate and derivatives reduce interferon responses and inflammation in influenza A virus infection. PLoS Pathog 2022; 18:e1010219. [PMID: 35025971 PMCID: PMC8846506 DOI: 10.1371/journal.ppat.1010219] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/15/2022] [Accepted: 12/17/2021] [Indexed: 02/06/2023] Open
Abstract
Excessive inflammation is a major cause of morbidity and mortality in many viral infections including influenza. Therefore, there is a need for therapeutic interventions that dampen and redirect inflammatory responses and, ideally, exert antiviral effects. Itaconate is an immunomodulatory metabolite which also reprograms cell metabolism and inflammatory responses when applied exogenously. We evaluated effects of endogenous itaconate and exogenous application of itaconate and its variants dimethyl- and 4-octyl-itaconate (DI, 4OI) on host responses to influenza A virus (IAV). Infection induced expression of ACOD1, the enzyme catalyzing itaconate synthesis, in monocytes and macrophages, which correlated with viral replication and was abrogated by DI and 4OI treatment. In IAV-infected mice, pulmonary inflammation and weight loss were greater in Acod1-/- than in wild-type mice, and DI treatment reduced pulmonary inflammation and mortality. The compounds reversed infection-triggered interferon responses and modulated inflammation in human cells supporting non-productive and productive infection, in peripheral blood mononuclear cells, and in human lung tissue. All three itaconates reduced ROS levels and STAT1 phosphorylation, whereas AKT phosphorylation was reduced by 4OI and DI but increased by itaconate. Single-cell RNA sequencing identified monocytes as the main target of infection and the exclusive source of ACOD1 mRNA in peripheral blood. DI treatment silenced IFN-responses predominantly in monocytes, but also in lymphocytes and natural killer cells. Ectopic synthesis of itaconate in A549 cells, which do not physiologically express ACOD1, reduced infection-driven inflammation, and DI reduced IAV- and IFNγ-induced CXCL10 expression in murine macrophages independent of the presence of endogenous ACOD1. The compounds differed greatly in their effects on cellular gene homeostasis and released cytokines/chemokines, but all three markedly reduced release of the pro-inflammatory chemokines CXCL10 (IP-10) and CCL2 (MCP-1). Viral replication did not increase under treatment despite the dramatically repressed IFN responses. In fact, 4OI strongly inhibited viral transcription in peripheral blood mononuclear cells, and the compounds reduced viral titers (4OI>Ita>DI) in A549 cells whereas viral transcription was unaffected. Taken together, these results reveal itaconates as immunomodulatory and antiviral interventions for influenza virus infection. Interferon responses are part of the primary host defenses against infections. However, excessive inflammation is often a major factor in severe disease or even death in respiratory infections such as influenza, as it can lead to acute respiratory distress syndrome and sepsis-like multiorgan involvement. We applied itaconate and chemically modified versions of it (which enter cells more efficiently and can be applied at lower doses) to influenza A virus-infected human cells and lung tissue and found that these compounds markedly repress interferon responses and some pro-inflammatory processes without increasing viral replication. In fact, 4-octyl itaconate greatly decreased viral RNA replication in peripheral blood, and itaconate and 4-octyl itaconate reduced production of infectious virus in a human lung cell line. By analyzing gene expression patterns of single mononuclear cells in peripheral blood, we found that the virus infects predominantly monocytes and that these cells are the only source of ACOD1, the enzyme that synthesizes itaconate in humans. In a mouse model of influenza A virus infection, dimethyl-itaconate prevented lung inflammation and improved survival. Thus, our results suggest that novel medications based on itaconate promise to be effective treatments for influenza because they reduce deleterious inflammation and potentially also limit viral spread in the patient.
Collapse
Affiliation(s)
- Aaqib Sohail
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Azeem A. Iqbal
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Nishika Sahini
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Fangfang Chen
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Mohamed Tantawy
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Center, Dokki, Giza, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Center, Dokki, Giza, Egypt
| | - Syed F.H. Waqas
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Moritz Winterhoff
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Thomas Ebensen
- Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kristin Schultz
- Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Schughart
- Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
- University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Matthias Preusse
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mahmoud Shehata
- Institute for Medical Virology, Justus-Liebig-University, Giessen, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Marina C. Pils
- Mouse Pathology Platform, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Carlos A. Guzman
- Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ahmed Mostafa
- Institute for Medical Virology, Justus-Liebig-University, Giessen, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Stephan Pleschka
- Institute for Medical Virology, Justus-Liebig-University, Giessen, Germany
- German Center for Infection Research (DZIF) partner site Giessen, Germany
| | - Christine Falk
- Department of Transplantation Immunology, Hannover Medical School, Hannover, Germany
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Frank Pessler
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Centre for Individualised Infection Medicine, Hannover, Germany
- * E-mail: , frank.pesslerwincore.de
| |
Collapse
|
8
|
Watzenboeck ML, Drobits B, Zahalka S, Gorki AD, Farhat A, Quattrone F, Hladik A, Lakovits K, Richard GM, Lederer T, Strobl B, Versteeg GA, Boon L, Starkl P, Knapp S. Lipocalin 2 modulates dendritic cell activity and shapes immunity to influenza in a microbiome dependent manner. PLoS Pathog 2021; 17:e1009487. [PMID: 33905460 PMCID: PMC8078786 DOI: 10.1371/journal.ppat.1009487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/19/2021] [Indexed: 12/27/2022] Open
Abstract
Lipocalin 2 (LCN2) is a secreted glycoprotein with roles in multiple biological processes. It contributes to host defense by interference with bacterial iron uptake and exerts immunomodulatory functions in various diseases. Here, we aimed to characterize the function of LCN2 in lung macrophages and dendritic cells (DCs) using Lcn2-/- mice. Transcriptome analysis revealed strong LCN2-related effects in CD103+ DCs during homeostasis, with differential regulation of antigen processing and presentation and antiviral immunity pathways. We next validated the relevance of LCN2 in a mouse model of influenza infection, wherein LCN2 protected from excessive weight loss and improved survival. LCN2-deficiency was associated with enlarged mediastinal lymph nodes and increased lung T cell numbers, indicating a dysregulated immune response to influenza infection. Depletion of CD8+ T cells equalized weight loss between WT and Lcn2-/- mice, proving that LCN2 protects from excessive disease morbidity by dampening CD8+ T cell responses. In vivo T cell chimerism and in vitro T cell proliferation assays indicated that improved antigen processing by CD103+ DCs, rather than T cell intrinsic effects of LCN2, contribute to the exacerbated T cell response. Considering the antibacterial potential of LCN2 and that commensal microbes can modulate antiviral immune responses, we speculated that LCN2 might cause the observed influenza phenotype via the microbiome. Comparing the lung and gut microbiome of WT and Lcn2-/- mice by 16S rRNA gene sequencing, we observed profound effects of LCN2 on gut microbial composition. Interestingly, antibiotic treatment or co-housing of WT and Lcn2-/- mice prior to influenza infection equalized lung CD8+ T cell counts, suggesting that the LCN2-related effects are mediated by the microbiome. In summary, our results highlight a novel regulatory function of LCN2 in the modulation of antiviral immunity.
Collapse
Affiliation(s)
- Martin L. Watzenboeck
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Barbara Drobits
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Sophie Zahalka
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Anna-Dorothea Gorki
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Asma Farhat
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Federica Quattrone
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Anastasiya Hladik
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Karin Lakovits
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Gabriel M. Richard
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Therese Lederer
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gijs A. Versteeg
- Department of Microbiology, Immunobiology, and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Louis Boon
- Polpharma Biologics, Utrecht, The Netherlands
| | - Philipp Starkl
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Sylvia Knapp
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| |
Collapse
|
9
|
Xu F, Gao J, Bergmann S, Sims AC, Ashbrook DG, Baric RS, Cui Y, Jonsson CB, Li K, Williams RW, Schughart K, Lu L. Genetic Dissection of the Regulatory Mechanisms of Ace2 in the Infected Mouse Lung. Front Immunol 2021; 11:607314. [PMID: 33488611 PMCID: PMC7819859 DOI: 10.3389/fimmu.2020.607314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
Acute lung injury (ALI) is an important cause of morbidity and mortality after viral infections, including influenza A virus H1N1, SARS-CoV, MERS-CoV, and SARS-CoV-2. The angiotensin I converting enzyme 2 (ACE2) is a key host membrane-bound protein that modulates ALI induced by viral infection, pulmonary acid aspiration, and sepsis. However, the contributions of ACE2 sequence variants to individual differences in disease risk and severity after viral infection are not understood. In this study, we quantified H1N1 influenza-infected lung transcriptomes across a family of 41 BXD recombinant inbred strains of mice and both parents—C57BL/6J and DBA/2J. In response to infection Ace2 mRNA levels decreased significantly for both parental strains and the expression levels was associated with disease severity (body weight loss) and viral load (expression levels of viral NA segment) across the BXD family members. Pulmonary RNA-seq for 43 lines was analyzed using weighted gene co-expression network analysis (WGCNA) and Bayesian network approaches. Ace2 not only participated in virus-induced ALI by interacting with TNF, MAPK, and NOTCH signaling pathways, but was also linked with high confidence to gene products that have important functions in the pulmonary epithelium, including Rnf128, Muc5b, and Tmprss2. Comparable sets of transcripts were also highlighted in parallel studies of human SARS-CoV-infected primary human airway epithelial cells. Using conventional mapping methods, we determined that weight loss at two and three days after viral infection maps to chromosome X—the location of Ace2. This finding motivated the hierarchical Bayesian network analysis, which defined molecular endophenotypes of lung infection linked to Ace2 expression and to a key disease outcome. Core members of this Bayesian network include Ace2, Atf4, Csf2, Cxcl2, Lif, Maml3, Muc5b, Reg3g, Ripk3, and Traf3. Collectively, these findings define a causally-rooted Ace2 modulatory network relevant to host response to viral infection and identify potential therapeutic targets for virus-induced respiratory diseases, including those caused by influenza and coronaviruses.
Collapse
Affiliation(s)
- Fuyi Xu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jun Gao
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States.,Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Silke Bergmann
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amy C Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David G Ashbrook
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yan Cui
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Colleen B Jonsson
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Kui Li
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Robert W Williams
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Klaus Schughart
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
10
|
Silva WN, Prazeres PHDM, Paiva AE, Lousado L, Turquetti AOM, Barreto RSN, de Alvarenga EC, Miglino MA, Gonçalves R, Mintz A, Birbrair A. Macrophage-derived GPNMB accelerates skin healing. Exp Dermatol 2018; 27:630-635. [PMID: 29505115 PMCID: PMC6013359 DOI: 10.1111/exd.13524] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2018] [Indexed: 12/22/2022]
Abstract
Healing is a vital response important for the re-establishment of the skin integrity following injury. Delayed or aberrant dermal wound healing leads to morbidity in patients. The development of therapies to improve dermal healing would be useful. Currently, the design of efficient treatments is stalled by the lack of detailed knowledge about the cellular and molecular mechanisms involved in wound healing. Recently, using state-of-the-art technologies, it was revealed that macrophages signal via GPNMB to mesenchymal stem cells, accelerating skin healing. Strikingly, transplantation of macrophages expressing GPNMB improves skin healing in GPNMB-mutant mice. Additionally, topical treatment with recombinant GPNMB restored mesenchymal stem cells recruitment and accelerated wound closure in the diabetic skin. From a drug development perspective, this GPNMB is a new candidate for skin healing.
Collapse
Affiliation(s)
- Walison N. Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Ana E. Paiva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiza Lousado
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anaelise O. M. Turquetti
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Rodrigo S. N. Barreto
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Erika Costa de Alvarenga
- Department of Natural Sciences, Federal University of São João del Rei, São João Del Rey, MG, Brazil
| | - Maria A. Miglino
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Ricardo Gonçalves
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Bonniaud P, Fabre A, Frossard N, Guignabert C, Inman M, Kuebler WM, Maes T, Shi W, Stampfli M, Uhlig S, White E, Witzenrath M, Bellaye PS, Crestani B, Eickelberg O, Fehrenbach H, Guenther A, Jenkins G, Joos G, Magnan A, Maitre B, Maus UA, Reinhold P, Vernooy JHJ, Richeldi L, Kolb M. Optimising experimental research in respiratory diseases: an ERS statement. Eur Respir J 2018; 51:13993003.02133-2017. [PMID: 29773606 DOI: 10.1183/13993003.02133-2017] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/02/2018] [Indexed: 12/15/2022]
Abstract
Experimental models are critical for the understanding of lung health and disease and are indispensable for drug development. However, the pathogenetic and clinical relevance of the models is often unclear. Further, the use of animals in biomedical research is controversial from an ethical perspective.The objective of this task force was to issue a statement with research recommendations about lung disease models by facilitating in-depth discussions between respiratory scientists, and to provide an overview of the literature on the available models. Focus was put on their specific benefits and limitations. This will result in more efficient use of resources and greater reduction in the numbers of animals employed, thereby enhancing the ethical standards and translational capacity of experimental research.The task force statement addresses general issues of experimental research (ethics, species, sex, age, ex vivo and in vitro models, gene editing). The statement also includes research recommendations on modelling asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, lung infections, acute lung injury and pulmonary hypertension.The task force stressed the importance of using multiple models to strengthen validity of results, the need to increase the availability of human tissues and the importance of standard operating procedures and data quality.
Collapse
Affiliation(s)
- Philippe Bonniaud
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre Hospitalo-Universitaire de Bourgogne, Dijon, France.,Faculté de Médecine et Pharmacie, Université de Bourgogne-Franche Comté, Dijon, France.,INSERM U866, Dijon, France
| | - Aurélie Fabre
- Dept of Histopathology, St Vincent's University Hospital, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, Université de Strasbourg, Strasbourg, France.,CNRS UMR 7200, Faculté de Pharmacie, Illkirch, France.,Labex MEDALIS, Université de Strasbourg, Strasbourg, France
| | - Christophe Guignabert
- INSERM UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Mark Inman
- Dept of Medicine, Firestone Institute for Respiratory Health at St Joseph's Health Care MDCL 4011, McMaster University, Hamilton, ON, Canada
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tania Maes
- Dept of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, USA.,Dept of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Martin Stampfli
- Dept of Medicine, Firestone Institute for Respiratory Health at St Joseph's Health Care MDCL 4011, McMaster University, Hamilton, ON, Canada.,Dept of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Eric White
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martin Witzenrath
- Dept of Infectious Diseases and Respiratory Medicine And Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Pierre-Simon Bellaye
- Département de Médecine nucléaire, Plateforme d'imagerie préclinique, Centre George-François Leclerc (CGFL), Dijon, France
| | - Bruno Crestani
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, DHU FIRE, Service de Pneumologie A, Paris, France.,INSERM UMR 1152, Paris, France.,Université Paris Diderot, Paris, France
| | - Oliver Eickelberg
- Division of Pulmonary Sciences and Critical Care Medicine, Dept of Medicine, University of Colorado, Aurora, CO, USA
| | - Heinz Fehrenbach
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.,Member of the Leibniz Research Alliance Health Technologies
| | - Andreas Guenther
- Justus-Liebig-University Giessen, Universitary Hospital Giessen, Agaplesion Lung Clinic Waldhof-Elgershausen, German Center for Lung Research, Giessen, Germany
| | - Gisli Jenkins
- Nottingham Biomedical Research Centre, Respiratory Research Unit, City Campus, University of Nottingham, Nottingham, UK
| | - Guy Joos
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Antoine Magnan
- Institut du thorax, CHU de Nantes, Université de Nantes, Nantes, France
| | - Bernard Maitre
- Hôpital H Mondor, AP-HP, Centre Hospitalier Intercommunal de Créteil, Service de Pneumologie et de Pathologie Professionnelle, DHU A-TVB, Université Paris Est - Créteil, Créteil, France
| | - Ulrich A Maus
- Hannover School of Medicine, Division of Experimental Pneumology, Hannover, Germany
| | - Petra Reinhold
- Institute of Molecular Pathogenesis at the 'Friedrich-Loeffler-Institut' (Federal Research Institute for Animal Health), Jena, Germany
| | - Juanita H J Vernooy
- Dept of Respiratory Medicine, Maastricht University Medical Center+ (MUMC+), AZ Maastricht, The Netherlands
| | - Luca Richeldi
- UOC Pneumologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "A. Gemelli", Rome, Italy
| | - Martin Kolb
- Dept of Medicine, Firestone Institute for Respiratory Health at St Joseph's Health Care MDCL 4011, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
12
|
Bayesian Diallel Analysis Reveals Mx1-Dependent and Mx1-Independent Effects on Response to Influenza A Virus in Mice. G3-GENES GENOMES GENETICS 2018; 8:427-445. [PMID: 29187420 PMCID: PMC5919740 DOI: 10.1534/g3.117.300438] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Influenza A virus (IAV) is a respiratory pathogen that causes substantial morbidity and mortality during both seasonal and pandemic outbreaks. Infection outcomes in unexposed populations are affected by host genetics, but the host genetic architecture is not well understood. Here, we obtain a broad view of how heritable factors affect a mouse model of response to IAV infection using an 8 × 8 diallel of the eight inbred founder strains of the Collaborative Cross (CC). Expanding on a prior statistical framework for modeling treatment response in diallels, we explore how a range of heritable effects modify acute host response to IAV through 4 d postinfection. Heritable effects in aggregate explained ∼57% of the variance in IAV-induced weight loss. Much of this was attributable to a pattern of additive effects that became more prominent through day 4 postinfection and was consistent with previous reports of antiinfluenza myxovirus resistance 1 (Mx1) polymorphisms segregating between these strains; these additive effects largely recapitulated haplotype effects observed at the Mx1 locus in a previous study of the incipient CC, and are also replicated here in a CC recombinant intercross population. Genetic dominance of protective Mx1 haplotypes was observed to differ by subspecies of origin: relative to the domesticus null Mx1 allele, musculus acts dominantly whereas castaneus acts additively. After controlling for Mx1, heritable effects, though less distinct, accounted for ∼34% of the phenotypic variance. Implications for future mapping studies are discussed.
Collapse
|
13
|
Influenza-Omics and the Host Response: Recent Advances and Future Prospects. Pathogens 2017; 6:pathogens6020025. [PMID: 28604586 PMCID: PMC5488659 DOI: 10.3390/pathogens6020025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 12/23/2022] Open
Abstract
Influenza A viruses (IAV) continually evolve and have the capacity to cause global pandemics. Because IAV represents an ongoing threat, identifying novel therapies and host innate immune factors that contribute to IAV pathogenesis is of considerable interest. This review summarizes the relevant literature as it relates to global host responses to influenza infection at both the proteome and transcriptome level. The various-omics infection systems that include but are not limited to ferrets, mice, pigs, and even the controlled infection of humans are reviewed. Discussion focuses on recent advances, remaining challenges, and knowledge gaps as it relates to influenza-omics infection outcomes.
Collapse
|
14
|
Dong K, Chang S, Xie Q, Black-Pyrkosz A, Zhang H. Comparative transcriptomics of genetically divergent lines of chickens in response to Marek's disease virus challenge at cytolytic phase. PLoS One 2017; 12:e0178923. [PMID: 28591220 PMCID: PMC5462384 DOI: 10.1371/journal.pone.0178923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/22/2017] [Indexed: 11/30/2022] Open
Abstract
Marek's disease (MD), caused by Marek's disease virus (MDV), remains an economically significant threat to the poultry industry worldwide. Genetic resistance to MD is a promising alternative strategy to augment current control measures (vaccination and management). However, only a few functional genes reportedly conferring MD resistance have been identified. Here, we performed a comparative transcriptomics analysis of two highly inbred yet genetically divergent lines of chickens (line 63 and 72) that are resistant and susceptible to MD, respectively, in response to a very virulent plus strain of MDV (vv+MDV) challenge at cytolytic phase. A total of 203 DEGs in response to MDV challenge were identified in the two lines. Of these, 96 DEGs were in common for both lines, in addition to 36 and 71 DEGs that were specific for line 63 and 72, respectively. Functional enrichment analysis results showed the DEGs were significantly enriched in GO terms and pathways associated with immune response. Especially, the four DEGs, FGA, ALB, FN1, and F13A1 that reportedly facilitate virus invasion or immunosuppression, were found to be significantly up-regulated in the susceptible line 72 but down-regulated in the resistant line 63 birds. These results provide new resources for future studies to further elucidate the genetic mechanism conferring MD resistance.
Collapse
Affiliation(s)
- Kunzhe Dong
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan, United States of America
- ORISE Fellow, USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan, United States of America
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong, China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Alexis Black-Pyrkosz
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan, United States of America
| | - Huanmin Zhang
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan, United States of America
| |
Collapse
|
15
|
VanLeuven JT, Ridenhour BJ, Gonzalez AJ, Miller CR, Miura TA. Lung epithelial cells have virus-specific and shared gene expression responses to infection by diverse respiratory viruses. PLoS One 2017; 12:e0178408. [PMID: 28575086 PMCID: PMC5456070 DOI: 10.1371/journal.pone.0178408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 05/13/2017] [Indexed: 12/28/2022] Open
Abstract
The severity of respiratory viral infections is partially determined by the cellular response mounted by infected lung epithelial cells. Disease prevention and treatment is dependent on our understanding of the shared and unique responses elicited by diverse viruses, yet few studies compare host responses to viruses from different families while controlling other experimental parameters. Murine models are commonly used to study the pathogenesis of respiratory viral infections, and in vitro studies using murine cells provide mechanistic insight into the pathogenesis observed in vivo. We used microarray analysis to compare changes in gene expression of murine lung epithelial cells infected individually by three respiratory viruses causing mild (rhinovirus, RV1B), moderate (coronavirus, MHV-1), and severe (influenza A virus, PR8) disease in mice. RV1B infection caused numerous gene expression changes, but the differential effect peaked at 12 hours post-infection. PR8 altered an intermediate number of genes whose expression continued to change through 24 hours. MHV-1 had comparatively few effects on host gene expression. The viruses elicited highly overlapping responses in antiviral genes, though MHV-1 induced a lower type I interferon response than the other two viruses. Signature genes were identified for each virus and included host defense genes for PR8, tissue remodeling genes for RV1B, and transcription factors for MHV-1. Our comparative approach identified universal and specific transcriptional signatures of virus infection that can be used to distinguish shared and virus-specific mechanisms of pathogenesis in the respiratory tract.
Collapse
Affiliation(s)
- James T. VanLeuven
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
| | - Benjamin J. Ridenhour
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Andres J. Gonzalez
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Craig R. Miller
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Department of Mathematics, University of Idaho, Moscow, Idaho, United States of America
| | - Tanya A. Miura
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
16
|
Preusse M, Schughart K, Pessler F. Host Genetic Background Strongly Affects Pulmonary microRNA Expression before and during Influenza A Virus Infection. Front Immunol 2017; 8:246. [PMID: 28377766 PMCID: PMC5359533 DOI: 10.3389/fimmu.2017.00246] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/20/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Expression of host microRNAs (miRNAs) changes markedly during influenza A virus (IAV) infection of natural and adaptive hosts, but their role in genetically determined host susceptibility to IAV infection has not been explored. We, therefore, compared pulmonary miRNA expression during IAV infection in two inbred mouse strains with differential susceptibility to IAV infection. RESULTS miRNA expression profiles were determined in lungs of the more susceptible strain DBA/2J and the less susceptible strain C57BL/6J within 120 h post infection (hpi) with IAV (H1N1) PR8. Even the miRNomes of uninfected lungs differed substantially between the two strains. After a period of relative quiescence, major miRNome reprogramming was detected in both strains by 48 hpi and increased through 120 hpi. Distinct groups of miRNAs regulated by IAV infection could be defined: (1) miRNAs (n = 39) whose expression correlated with hemagglutinin (HA) mRNA expression and represented the general response to IAV infection independent of host genetic background; (2) miRNAs (n = 20) whose expression correlated with HA mRNA expression but differed between the two strains; and (3) remarkably, miR-147-3p, miR-208b-3p, miR-3096a-5p, miR-3069b-3p, and the miR-467 family, whose abundance even in uninfected lungs differentiated nearly perfectly (area under the ROC curve > 0.99) between the two strains throughout the time course, suggesting a particularly strong association with the differential susceptibility of the two mouse strains. Expression of subsets of miRNAs correlated significantly with peripheral blood granulocyte and monocyte numbers, particularly in DBA/2J mice; miR-223-3p, miR-142-3p, and miR-20b-5p correlated most positively with these cell types in both mouse strains. Higher abundance of antiapoptotic (e.g., miR-467 family) and lower abundance of proapoptotic miRNAs (e.g., miR-34 family) and those regulating the PI3K-Akt pathway (e.g., miR-31-5p) were associated with the more susceptible DBA/2J strain. CONCLUSION Substantial differences in pulmonary miRNA expression between the two differentially susceptible mouse strains were evident even before infection, but evolved further throughout infection and could in part be attributed to differences in peripheral blood leukocyte populations. Thus, pulmonary miRNA expression both before and during IAV infection is in part determined genetically and contributes to susceptibility to IAV infection in this murine host, and likely in humans.
Collapse
Affiliation(s)
- Matthias Preusse
- Institute for Experimental Infection Research, TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany; Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany; University of Veterinary Medicine Hannover, Hannover, Germany; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Centre, Memphis, TN, USA
| | - Frank Pessler
- Institute for Experimental Infection Research, TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany; Helmholtz Centre for Infection Research, Braunschweig, Germany; Centre for Individualised Infection Medicine, Hannover, Germany
| |
Collapse
|
17
|
Kobzik L. Searching for a Lifeline: Transcriptome Profiling Studies of Influenza Susceptibility and Resistance. J Innate Immun 2017; 9:232-242. [PMID: 28249256 DOI: 10.1159/000457902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/24/2017] [Indexed: 11/19/2022] Open
Abstract
Excess or dysregulated host inflammatory responses cause much of the morbidity and mortality caused by severe influenza. Given the limitations of vaccines and antiviral drugs, novel therapeutics to modulate host responses and improve outcomes in severe influenza are needed. One strategy is to learn from the direct comparison of high-survivor versus high-mortality animal models. This review surveys the results of lung transcriptome profiling studies in murine models that directly compare susceptible versus resistant hosts challenged with identical influenza infections. The potential contributions and limitations of these studies are discussed. To amplify their power, the studies are subjected to a meta-analysis, which helps identify frequently dysregulated pathways and potentially novel areas for investigation. Using connectivity map-based tools (LINCS), transcriptome signatures linked to susceptibility can identify candidate drugs that merit testing for in vivo efficacy.
Collapse
Affiliation(s)
- Lester Kobzik
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, and Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
18
|
Leist SR, Pilzner C, van den Brand JMA, Dengler L, Geffers R, Kuiken T, Balling R, Kollmus H, Schughart K. Influenza H3N2 infection of the collaborative cross founder strains reveals highly divergent host responses and identifies a unique phenotype in CAST/EiJ mice. BMC Genomics 2016; 17:143. [PMID: 26921172 PMCID: PMC4769537 DOI: 10.1186/s12864-016-2483-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/17/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Influenza A virus is a zoonotic pathogen that poses a major threat to human and animal health. The severe course of influenza infection is not only influenced by viral virulence factors but also by individual differences in the host response. To determine the extent to which the genetic background can modulate severity of an infection, we studied the host responses to influenza infections in the eight genetically highly diverse Collaborative Cross (CC) founder mouse strains. RESULTS We observed highly divergent host responses between the CC founder strains with respect to survival, body weight loss, hematological parameters in the blood, relative lung weight and viral load. Mouse strain was the main factor with highest effect size on body weight loss after infection, demonstrating that this phenotype was highly heritable. Sex represented another significant main effect, although it was less strong. Analysis of survival rates and mean time to death suggested three groups of susceptibility phenotypes: highly susceptible (A/J, CAST/EiJ, WSB/EiJ), intermediate susceptible (C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ) and highly resistant strains (NZO/HlLtJ, PWK/PhJ). These three susceptibility groups were significantly different with respect to death/survival counts. Viral load was significantly different between susceptible and resistant strains but not between intermediate and highly susceptible strains. CAST/EiJ mice showed a unique phenotype. Despite high viral loads in their lungs, CAST/EiJ mice exhibited low counts of infiltrating granulocytes and showed increased numbers of macrophages in the lung. Histological studies of infected lungs and transcriptome analyses of peripheral blood cells and lungs confirmed an abnormal response in the leukocyte recruitment in CAST/EiJ mice. CONCLUSIONS The eight CC founder strains exhibited a large diversity in their response to influenza infections. Therefore, the CC will represent an ideal mouse genetic reference population to study the influence of genetic variation on the susceptibility and resistance to influenza infections which will be important to understand individual variations of disease severity in humans. The unique phenotype combination in the CAST/EiJ strain resembles human leukocyte adhesion deficiency and may thus represent a new mouse model to understand this and related abnormal immune responses to infections in humans.
Collapse
Affiliation(s)
- Sarah R Leist
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany
| | - Carolin Pilzner
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany
| | | | - Leonie Dengler
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Heike Kollmus
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany. .,University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
19
|
Wilk E, Pandey AK, Leist SR, Hatesuer B, Preusse M, Pommerenke C, Wang J, Schughart K. RNAseq expression analysis of resistant and susceptible mice after influenza A virus infection identifies novel genes associated with virus replication and important for host resistance to infection. BMC Genomics 2015; 16:655. [PMID: 26329040 PMCID: PMC4557482 DOI: 10.1186/s12864-015-1867-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 08/19/2015] [Indexed: 12/20/2022] Open
Abstract
Background The host response to influenza A infections is strongly influenced by host genetic factors. Animal models of genetically diverse mouse strains are well suited to identify host genes involved in severe pathology, viral replication and immune responses. Here, we have utilized a dual RNAseq approach that allowed us to investigate both viral and host gene expression in the same individual mouse after H1N1 infection. Results We performed a detailed expression analysis to identify (i) correlations between changes in expression of host and virus genes, (ii) host genes involved in viral replication, and (iii) genes showing differential expression between two mouse strains that strongly differ in resistance to influenza infections. These genes may be key players involved in regulating the differences in pathogenesis and host defense mechanisms after influenza A infections. Expression levels of influenza segments correlated well with the viral load and may thus be used as surrogates for conventional viral load measurements. Furthermore, we investigated the functional role of two genes, Reg3g and Irf7, in knock-out mice and found that deletion of the Irf7 gene renders the host highly susceptible to H1N1 infection. Conclusions Using RNAseq analysis we identified novel genes important for viral replication or the host defense. This study adds further important knowledge to host-pathogen-interactions and suggests additional candidates that are crucial for host susceptibility or survival during influenza A infections. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1867-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esther Wilk
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Ashutosh K Pandey
- Department of Genetics, Genomics and Informatics, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, 855 Madison Avenue, Memphis, TN, 38163, USA
| | - Sarah Rebecca Leist
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Bastian Hatesuer
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Matthias Preusse
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Claudia Pommerenke
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstr. 7B, 38124, Braunschweig, Germany
| | - Junxi Wang
- Bioinformatics and Statistics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Inhoffenstr. 7, 38124, Braunschweig, Germany. .,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, USA.
| |
Collapse
|
20
|
Yan W, Wei J, Deng X, Shi Z, Zhu Z, Shao D, Li B, Wang S, Tong G, Ma Z. Transcriptional analysis of immune-related gene expression in p53-deficient mice with increased susceptibility to influenza A virus infection. BMC Med Genomics 2015; 8:52. [PMID: 26282854 PMCID: PMC4539693 DOI: 10.1186/s12920-015-0127-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 08/06/2015] [Indexed: 11/18/2022] Open
Abstract
Background p53 is a tumor suppressor that contributes to the host immune response against viral infections in addition to its well-established protective role against cancer development. In response to influenza A virus (IAV) infection, p53 is activated and plays an essential role in inhibiting IAV replication. As a transcription factor, p53 regulates the expression of a range of downstream responsive genes either directly or indirectly in response to viral infection. We compared the expression profiles of immune-related genes between IAV-infected wild-type p53 (p53WT) and p53-deficient (p53KO) mice to gain an insight into the basis of p53-mediated antiviral response. Methods p53KO and p53WT mice were infected with influenza A/Puerto Rico/8/1934 (PR8) strain. Clinical symptoms and body weight changes were monitored daily. Lung specimens of IAV-infected mice were collected for analysis of virus titers and gene expression profiles. The difference in immune-related gene expression levels between IAV-infected p53KO and p53WT mice was comparatively determined using microarray analysis and confirmed by quantitative real-time reverse transcription polymerase chain reaction. Results p53KO mice showed an increased susceptibility to IAV infection compared to p53WT mice. Microarray analysis of gene expression profiles in the lungs of IAV-infected mice indicated that the increased susceptibility was associated with significantly changed expression levels in a range of immune-related genes in IAV-infected p53KO mice. A significantly attenuated expression of Ifng (encoding interferon (IFN)-gamma), Irf7 (encoding IFN regulator factor 7), and antiviral genes, such as Mx2 and Eif2ak2 (encoding PKR), were observed in IAV-infected p53KO mice, suggesting an impaired IFN-mediated immune response against IAV infection in the absence of p53. In addition, dysregulated expression levels of proinflammatory cytokines and chemokines, such as Ccl2 (encoding MCP-1), Cxcl9, Cxcl10 (encoding IP-10), and Tnf, were detected in IAV-infected p53KO mice during early IAV infection, reflecting an aberrant inflammatory response. Conclusion Lack of p53 resulted in the impaired expression of genes involved in IFN signaling and the dysregulated expression of cytokine and chemokine genes in IAV-infected mice, suggesting an essential role of p53 in the regulation of antiviral and inflammatory responses during IAV infection. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0127-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjun Yan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| | - Xufang Deng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| | - Zixue Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| | - Zixiang Zhu
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| |
Collapse
|
21
|
Casanova T, Van de Paar E, Desmecht D, Garigliany MM. Hyporeactivity of Alveolar Macrophages and Higher Respiratory Cell Permissivity Characterize DBA/2J Mice Infected by Influenza A Virus. J Interferon Cytokine Res 2015; 35:808-20. [PMID: 26134384 DOI: 10.1089/jir.2014.0237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Influenza A virus remains a major public health problem. Mouse models have been widely used to study influenza infection in mammals. DBA/2J and C57BL/6J represent extremes in terms of susceptibility to influenza A infection among inbred laboratory mouse strains. Several studies focused specifically on the factors responsible for the susceptibility of DBA/2J or the resistance of C57BL/6J and resulted in impressive lists of candidate genes or factors over- or underexpressed in one of the strains. We adopted a different phenotypical approach to identify the critical steps of the infection process accounting for the differences between DBA/2J and C57BL/6J strains. We concluded that both a dysfunction of alveolar macrophages and an increased permissivity of respiratory cells rendered DBA/2J more susceptible to influenza infection.
Collapse
Affiliation(s)
- Tomás Casanova
- Department of Veterinary Pathology, University of Liège , Liège, Belgium
| | - Els Van de Paar
- Department of Veterinary Pathology, University of Liège , Liège, Belgium
| | - Daniel Desmecht
- Department of Veterinary Pathology, University of Liège , Liège, Belgium
| | | |
Collapse
|
22
|
Preusse M, Schughart K, Wilk E, Klawonn F, Pessler F. Hematological parameters in the early phase of influenza A virus infection in differentially susceptible inbred mouse strains. BMC Res Notes 2015; 8:225. [PMID: 26047817 PMCID: PMC4467623 DOI: 10.1186/s13104-015-1195-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/20/2015] [Indexed: 12/29/2022] Open
Abstract
Background Hematological parameters have not received much attention in small animal models of infection, particularly at very early time points. We therefore studied changes in leukocyte and thrombocyte numbers in a mouse model of influenza A virus (IAV) infection, including measurements within the first 24 h after infection, and also assessing effects, if any, of the infection/anesthesia procedure on these parameters. Methods DBA/2J and C57BL/6J mice (n = 5–8 per observation) were evaluated in a time course experiment of IAV infection, focusing on early time points. After anesthesia with ketamine/xylazine, a suspension of 2 × 103 focus forming units of the mouse-adapted IAV strain A/Puerto Rico/8/1934 (H1N1) in 20 µl sterile PBS, or 20 µl sterile PBS only (“mock treatment”), were instilled intranasally. Weight loss was assessed daily, and eight common hematological parameters and viral hemagglutinin (HA) mRNA expression were determined after 6, 12, 18, 24, 48 and 120 h. Results Hematological differences between the strains were apparent even in untreated mice. Infection-dependent changes, in particular increased granulocyte and decreased lymphocyte counts, were first detectable after 18 h in DBA/2J, were fully manifest in both strains at 48 h, and were usually more pronounced in the DBA/2J mice. In this strain, relative granulocyte and lymphocyte counts and the granulocyte/lymphocyte ratio correlated with viral HA mRNA expression and weight loss. In C57BL/6J, hematological parameters did not correlate with weight loss, but HA mRNA expression correlated weakly with total leukocyte counts, granulocyte/lymphocyte ratio, relative and absolute granulocyte counts, and relative lymphocyte counts. Significant changes due to mock treatment were mild and were detected only in C57BL/6J. Conclusion This study underscores the value of hematological parameters in monitoring disease evolution in the early phase of IAV infection, and likely other pathogens. The hematological response to infection may differ significantly among inbred mouse strains.
Collapse
Affiliation(s)
- Matthias Preusse
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625, Hannover, Germany. .,Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany.
| | - Klaus Schughart
- Bioinformatics, Helmholtz Centre for Infection Research, Brunswick, Germany. .,University of Veterinary Medicine, Hannover, Germany. .,University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Esther Wilk
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Brunswick, Germany.
| | - Frank Klawonn
- Bioinformatics, Helmholtz Centre for Infection Research, Brunswick, Germany.
| | - Frank Pessler
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625, Hannover, Germany. .,Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany.
| |
Collapse
|
23
|
Kamal RP, Katz JM, York IA. Molecular determinants of influenza virus pathogenesis in mice. Curr Top Microbiol Immunol 2015; 385:243-74. [PMID: 25038937 DOI: 10.1007/82_2014_388] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mice are widely used for studying influenza virus pathogenesis and immunology because of their low cost, the wide availability of mouse-specific reagents, and the large number of mouse strains available, including knockout and transgenic strains. However, mice do not fully recapitulate the signs of influenza infection of humans: transmission of influenza between mice is much less efficient than in humans, and influenza viruses often require adaptation before they are able to efficiently replicate in mice. In the process of mouse adaptation, influenza viruses acquire mutations that enhance their ability to attach to mouse cells, replicate within the cells, and suppress immunity, among other functions. Many such mouse-adaptive mutations have been identified, covering all 8 genomic segments of the virus. Identification and analysis of these mutations have provided insight into the molecular determinants of influenza virulence and pathogenesis, not only in mice but also in humans and other species. In particular, several mouse-adaptive mutations of avian influenza viruses have proved to be general mammalian-adaptive changes that are potential markers of pre-pandemic viruses. As well as evaluating influenza pathogenesis, mice have also been used as models for evaluation of novel vaccines and anti-viral therapies. Mice can be a useful animal model for studying influenza biology as long as differences between human and mice infections are taken into account.
Collapse
Affiliation(s)
- Ram P Kamal
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA,
| | | | | |
Collapse
|
24
|
Zhu Z, Yang Y, Wei J, Shao D, Shi Z, Li B, Liu K, Qiu Y, Zheng H, Ma Z. Type I interferon-mediated immune response against influenza A virus is attenuated in the absence of p53. Biochem Biophys Res Commun 2014; 454:189-95. [PMID: 25450379 DOI: 10.1016/j.bbrc.2014.10.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/14/2014] [Indexed: 01/10/2023]
Abstract
Influenza A virus (IAV) infection induces secretion of type I interferon (IFN) and activation of p53, which play essential roles in the host defense against tumor development and viral infection. In this study, we knocked down p53 expression by RNA interference. The expression levels of IFN-stimulated genes (ISGs) including IFN regulatory factor (IRF) 5, IRF9, ISG15, ISG20, guanylate-binding protein 1, retinoic acid-inducible gene-I and 2'-5'-oligoadenylate synthetase 1 were significantly attenuated in response to IAV infection and IFN-α stimulation in p53-knockdown cells. This attenuated expression of ISGs was associated with enhanced replication of IAV. Pretreatment of p53-knockdown cells with IFN-α failed to inhibit IAV replication, indicating impaired antiviral activity. These findings indicate that p53 plays an essential role in the enhancement of the type I IFN-mediated immune response against IAV infection.
Collapse
Affiliation(s)
- Zixiang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1, Xujiaping Road, Lanzhou 730046, PR China
| | - Yifan Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Zixue Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Haixue Zheng
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1, Xujiaping Road, Lanzhou 730046, PR China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China.
| |
Collapse
|
25
|
Young GR, Mavrommatis B, Kassiotis G. Microarray analysis reveals global modulation of endogenous retroelement transcription by microbes. Retrovirology 2014; 11:59. [PMID: 25063042 PMCID: PMC4222864 DOI: 10.1186/1742-4690-11-59] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A substantial proportion of both the mouse and human genomes comprise of endogenous retroelements (REs), which include endogenous retroviruses. Over evolutionary time, REs accumulate inactivating mutations or deletions and thus lose the ability to replicate. Additionally, REs can be transcriptionally repressed by dedicated mechanisms of the host. Nevertheless, many of them still possess and express intact open reading frames, and their transcriptional activity has been associated with many physiological and pathological processes of the host. However, this association remains tenuous due to incomplete understanding of the mechanism by which RE transcription is regulated. Here, we use a bioinformatics tool to examine RE transcriptional activity, measured by microarrays, in murine and human immune cells responding to microbial stimulation. RESULTS Immune cell activation by microbial signals in vitro caused extensive changes in the transcription not only of the host genes involved in the immune response, but also of numerous REs. Modulated REs were frequently found near or embedded within similarly-modulated host genes. Focusing on probes reporting single-integration, intergenic REs, revealed extensive transcriptional responsiveness of these elements to microbial signals. Microbial stimulation modulated RE expression in a cell-intrinsic manner. In line with these results, the transcriptional activity of numerous REs followed characteristics in different tissues according to exposure to environmental microbes and was further heavily altered during viral infection or imbalances with intestinal microbiota, both in mice and humans. CONCLUSIONS Together, these results highlight the utility of improved methodologies in assessing RE transcription profiles in both archived and new microarray data sets. More importantly, application of this methodology suggests that immune activation, as a result of infection with pathogens or dysbiosis with commensal microbes, causes global modulation of RE transcription. RE responsiveness to external stimuli should, therefore, be considered in any association between RE transcription and disease.
Collapse
Affiliation(s)
| | | | - George Kassiotis
- Division of Immunoregulation, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK.
| |
Collapse
|
26
|
Systems biology and systems genetics - novel innovative approaches to study host-pathogen interactions during influenza infection. Curr Opin Virol 2014; 6:47-54. [PMID: 24769047 DOI: 10.1016/j.coviro.2014.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/04/2014] [Accepted: 03/14/2014] [Indexed: 11/19/2022]
Abstract
Influenza represents a serious threat to public health with thousands of deaths each year. A deeper understanding of the host-pathogen interactions is urgently needed to evaluate individual and population risks for severe influenza disease and to identify new therapeutic targets. Here, we review recent progress in large scale omics technologies, systems genetics as well as new mathematical and computational developments that are now in place to apply a systems biology approach for a comprehensive description of the multidimensional host response to influenza infection. In addition, we describe how results from experimental animal models can be translated to humans, and we discuss some of the future challenges ahead.
Collapse
|
27
|
Preusse M, Tantawy MA, Klawonn F, Schughart K, Pessler F. Infection- and procedure-dependent effects on pulmonary gene expression in the early phase of influenza A virus infection in mice. BMC Microbiol 2013; 13:293. [PMID: 24341411 PMCID: PMC3880568 DOI: 10.1186/1471-2180-13-293] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 12/07/2013] [Indexed: 01/12/2023] Open
Abstract
Background Investigating the host response in the early stage of influenza A virus (IAV) infection is of considerable interest. However, it is conceivable that effects due to the anesthesia and/or intranasal infection procedure might introduce artifacts. We therefore aimed to evaluate the effects of anesthesia and/or intranasal infection on transcription of selected pulmonary mRNAs in two inbred mouse strains with differential susceptibility to IAV infection. Results DBA/2J and C57BL/6J mice were evaluated in a time course experiment in which lung tissue was sampled after 6, 12, 18, 24, 48 and 120 h. After anesthesia with ketamine and xylazine, a suspension of mouse-adapted IAV strain PR8_Mun in 20 μl sterile buffer, or 20 μl sterile buffer only, was instilled intranasally. The mice receiving anesthesia and PBS only were designated the “mock treatment” group. Pulmonary expression of 10 host mRNAs (Fos, Retnla, Irg1, Il6, Il1b, Cxcl10, Stat1, Ifng, Ifnl2, and Mx1) and viral hemagglutinin (HA) mRNA were determined at the designated time points. As expected, weight loss and viral replication were greater in the DBA/2J strain (which is more susceptible to IAV infection). Four mRNAs (Retnla, Irg1, Il6, and Cxcl10) were procedure-dependently regulated in DBA/2J mice between 6 and 24 h, and two (Retnla and Il6) in C57BL/6J mice, although to a lesser extent. All 10 mRNAs rose after infection, but one (Fos) only in DBA/2J mice. These infection-dependent effects could be separated from procedure-dependent effects beginning around 12 h in DBA/2J and 18 h in C57BL/6J mice. The interferon-related mRNAs Stat1, Ifng, Infl2, and Mx1 were unaffected by mock treatment in either mouse strain. Mx1 and Infl2 correlated best with HA mRNA expression (r = 0.97 and 0.93, respectively, in DBA/2J). Conclusions These results demonstrate effects of the anesthesia and/or intranasal infection procedure on pulmonary gene expression, which are detectable between approximately 6 and 24 h post procedure and vary in intensity and temporal evolution depending on the mouse strain used. Mock infection controls should be included in all studies on pulmonary gene expression in the early phase of infection with IAV and, likely, other respiratory pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Frank Pessler
- Institute for Experimental Infection Research, TWINCORE Center for Experimental and Clinical Infection Research, Feodor-Lynen-Str, 7, Hannover 30625, Germany.
| |
Collapse
|
28
|
Josset L, Tisoncik-Go J, Katze MG. Moving H5N1 studies into the era of systems biology. Virus Res 2013; 178:151-67. [PMID: 23499671 PMCID: PMC3834220 DOI: 10.1016/j.virusres.2013.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/24/2013] [Indexed: 12/20/2022]
Abstract
The dynamics of H5N1 influenza virus pathogenesis are multifaceted and can be seen as an emergent property that cannot be comprehended without looking at the system as a whole. In past years, most of the high-throughput studies on H5N1-host interactions have focused on the host transcriptomic response, at the cellular or the lung tissue level. These studies pointed out that the dynamics and magnitude of the innate immune response and immune cell infiltration is critical to H5N1 pathogenesis. However, viral-host interactions are multidimensional and advances in technologies are creating new possibilities to systematically measure additional levels of 'omic data (e.g. proteomic, metabolomic, and RNA profiling) at each temporal and spatial scale (from the single cell to the organism) of the host response. Natural host genetic variation represents another dimension of the host response that determines pathogenesis. Systems biology models of H5N1 disease aim at understanding and predicting pathogenesis through integration of these different dimensions by using intensive computational modeling. In this review, we describe the importance of 'omic studies for providing a more comprehensive view of infection and mathematical models that are being developed to integrate these data. This review provides a roadmap for what needs to be done in the future and what computational strategies should be used to build a global model of H5N1 pathogenesis. It is time for systems biology of H5N1 pathogenesis to take center stage as the field moves toward a more comprehensive view of virus-host interactions.
Collapse
Affiliation(s)
- Laurence Josset
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, United States
| | | | | |
Collapse
|
29
|
Bao S, Zhou X, Zhang L, Zhou J, To KKW, Wang B, Wang L, Zhang X, Song YQ. Prioritizing genes responsible for host resistance to influenza using network approaches. BMC Genomics 2013; 14:816. [PMID: 24261899 PMCID: PMC4046670 DOI: 10.1186/1471-2164-14-816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 11/06/2013] [Indexed: 01/17/2023] Open
Abstract
Background The genetic make-up of humans and other mammals (such as mice) affects their resistance to influenza virus infection. Considering the complexity and moral issues associated with experiments on human subjects, we have only acquired partial knowledge regarding the underlying molecular mechanisms. Although influenza resistance in inbred mice has been mapped to several quantitative trait loci (QTLs), which have greatly narrowed down the search for host resistance genes, only few underlying genes have been identified. Results To prioritize a list of promising candidates for future functional investigation, we applied network-based approaches to leverage the information of known resistance genes and the expression profiles contrasting susceptible and resistant mouse strains. The significance of top-ranked genes was supported by different lines of evidence from independent genetic associations, QTL studies, RNA interference (RNAi) screenings, and gene expression analysis. Further data mining on the prioritized genes revealed the functions of two pathways mediated by tumor necrosis factor (TNF): apoptosis and TNF receptor-2 signaling pathways. We suggested that the delicate balance between TNF’s pro-survival and apoptotic effects may affect hosts’ conditions after influenza virus infection. Conclusions This study considerably cuts down the list of candidate genes responsible for host resistance to influenza and proposed novel pathways and mechanisms. Our study also demonstrated the efficacy of network-based methods in prioritizing genes for complex traits. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-14-816) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - You-Qiang Song
- Department of Biochemistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
30
|
Kebaabetswe LP, Haick AK, Miura TA. Differentiated phenotypes of primary murine alveolar epithelial cells and their susceptibility to infection by respiratory viruses. Virus Res 2013; 175:110-9. [PMID: 23639425 PMCID: PMC3683362 DOI: 10.1016/j.virusres.2013.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 12/31/2022]
Abstract
Alveolar epithelial cells are important targets in severe respiratory viral infection. Murine ATI and ATII cultures are an in vitro model for viral pathogenesis. ATI cells are infected by IAV and MHV-1, not mouse-adapted SARS-CoV. ATII cells are infected by IAV, MHV-1, and mouse-adapted SARS-CoV. ATI and ATII cells express cytokines upon infection by respiratory viruses.
Severe respiratory viral infections are associated with spread to the alveoli of the lungs. There are multiple murine models of severe respiratory viral infections that have been used to identify viral and host factors that contribute to disease severity. Primary cultures of murine alveolar epithelial cells provide a robust in vitro model to perform mechanistic studies that can be correlated with in vivo studies to identify cell type-specific factors that contribute to pathology within the alveoli of the lung during viral infection. In this study, we established an in vitro model to compare the responses of type I (ATI) and type II (ATII) alveolar epithelial cells to infection by respiratory viruses used in murine models: mouse-adapted severe acute respiratory syndrome-associated coronavirus (SARS-CoV, v2163), murine coronavirus MHV-1, and influenza A (H1N1) virus, strain PR8. Murine alveolar cells cultured to maintain an ATII cell phenotype, determined by expression of LBP180, were susceptible to infection by all three viruses. In contrast, ATII cells that were cultured to trans-differentiate into an ATI-like cell phenotype were susceptible to MHV-1 and PR8, but not mouse-adapted SARS-CoV. Epithelial cells produce cytokines in response to viral infections, thereby activating immune responses. Thus, virus-induced cytokine expression was quantified in ATI and ATII cells. Both cell types had increased expression of IL-1β mRNA upon viral infection, though at different levels. While MHV-1 and PR8 induced expression of a number of shared cytokines in ATI cells, there were several cytokines whose expression was induced uniquely by MHV-1 infection. In summary, ATI and ATII cells exhibited differential susceptibilities and cytokine responses to infection by respiratory viruses. This in vitro model will be critical for future studies to determine the roles of these specialized cell types in the pathogenesis of respiratory viral infection.
Collapse
Affiliation(s)
| | | | - Tanya A. Miura
- Corresponding author at: 875 Perimeter Drive, MS 3051, Moscow, ID 83844-3051, USA. Tel.: +1 208 885 4940; fax: +1 208 885 7905.
| |
Collapse
|
31
|
Fedson DS, Opal SM. The controversy over H5N1 transmissibility research: an opportunity to define a practical response to a global threat. Hum Vaccin Immunother 2013; 9:977-86. [PMID: 23391967 DOI: 10.4161/hv.23869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Since December 2011, influenza virologists and biosecurity experts have been engaged in a controversial debate over research on the transmissibility of H5N1 influenza viruses. Influenza virologists disagreed with the NSABB's recommendation not to publish experimental details of their findings, whereas biosecurity experts wanted the details to be withheld and future research restricted. The virologists initially declared a voluntary moratorium on their work, but later the NSABB allowed their articles to be published, and soon transmissibility research will resume. Throughout the debate, both sides have had understandable views, but both have overlooked the more important question of whether anything could be done if one of these experimentally derived viruses or a naturally occurring and highly virulent influenza virus should emerge and cause a global pandemic. This is a crucial question, because during the 2009 H1N1 influenza pandemic, more than 90% of the world's people had no access to timely supplies of affordable vaccines and antiviral agents. Observational studies suggest that inpatient statin treatment reduces mortality in patients with laboratory-confirmed seasonal influenza. Other immunomodulatory agents (glitazones, fibrates and AMPK agonists) improve survival in mice infected with influenza viruses. These agents are produced as inexpensive generics in developing countries. If they were shown to be effective, they could be used immediately to treat patients in any country with a basic health care system. For this reason alone, influenza virologists and biosecurity experts need to join with public health officials to develop an agenda for laboratory and clinical research on these agents. This is the only approach that could yield practical measures for a global response to the next influenza pandemic.
Collapse
|
32
|
Reinholdt LG, Howell GR, Czechanski AM, Macalinao DG, MacNicoll KH, Lin CS, Donahue LR, John SWM. Generating embryonic stem cells from the inbred mouse strain DBA/2J, a model of glaucoma and other complex diseases. PLoS One 2012; 7:e50081. [PMID: 23209647 PMCID: PMC3507949 DOI: 10.1371/journal.pone.0050081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/15/2012] [Indexed: 12/18/2022] Open
Abstract
Mouse embryonic stem (ES) cells are derived from the inner cell mass of blastocyst stage embryos and are used primarily for the creation of genetically engineered strains through gene targeting. While some inbred strains of mice are permissive to the derivation of embryonic stem cell lines and are therefore easily engineered, others are nonpermissive or recalcitrant. Genetic engineering of recalcitrant strain backgrounds requires gene targeting in a permissive background followed by extensive backcrossing of the engineered allele into the desired strain background. The inbred mouse strain DBA/2J is a recalcitrant strain that is used as a model of many human diseases, including glaucoma, deafness and schizophrenia. Here, we describe the generation of germ-line competent ES cell lines derived from DBA/2J mice. We also demonstrate the utility of DBA/2J ES cells with the creation of conditional knockout allele for Endothelin-2 (Edn2) directly on the DBA/2J strain background.
Collapse
Affiliation(s)
| | - Gareth R. Howell
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- The Howard Hughes Medical Institute, Bar Harbor, Maine, United States of America
| | | | | | | | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University, New York, New York, United States of America
| | - Leah Rae Donahue
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Simon W. M. John
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- The Howard Hughes Medical Institute, Bar Harbor, Maine, United States of America
- Department of Ophthalmology, Tufts University of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
33
|
Nedelko T, Kollmus H, Klawonn F, Spijker S, Lu L, Heßman M, Alberts R, Williams RW, Schughart K. Distinct gene loci control the host response to influenza H1N1 virus infection in a time-dependent manner. BMC Genomics 2012; 13:411. [PMID: 22905720 PMCID: PMC3479429 DOI: 10.1186/1471-2164-13-411] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/10/2012] [Indexed: 02/08/2023] Open
Abstract
Background There is strong but mostly circumstantial evidence that genetic factors modulate the severity of influenza infection in humans. Using genetically diverse but fully inbred strains of mice it has been shown that host sequence variants have a strong influence on the severity of influenza A disease progression. In particular, C57BL/6J, the most widely used mouse strain in biomedical research, is comparatively resistant. In contrast, DBA/2J is highly susceptible. Results To map regions of the genome responsible for differences in influenza susceptibility, we infected a family of 53 BXD-type lines derived from a cross between C57BL/6J and DBA/2J strains with influenza A virus (PR8, H1N1). We monitored body weight, survival, and mean time to death for 13 days after infection. Qivr5 (quantitative trait for influenza virus resistance on chromosome 5) was the largest and most significant QTL for weight loss. The effect of Qivr5 was detectable on day 2 post infection, but was most pronounced on days 5 and 6. Survival rate mapped to Qivr5, but additionally revealed a second significant locus on chromosome 19 (Qivr19). Analysis of mean time to death affirmed both Qivr5 and Qivr19. In addition, we observed several regions of the genome with suggestive linkage. There are potentially complex combinatorial interactions of the parental alleles among loci. Analysis of multiple gene expression data sets and sequence variants in these strains highlights about 30 strong candidate genes across all loci that may control influenza A susceptibility and resistance. Conclusions We have mapped influenza susceptibility loci to chromosomes 2, 5, 16, 17, and 19. Body weight and survival loci have a time-dependent profile that presumably reflects the temporal dynamic of the response to infection. We highlight candidate genes in the respective intervals and review their possible biological function during infection.
Collapse
Affiliation(s)
- Tatiana Nedelko
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, 38124, Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pommerenke C, Wilk E, Srivastava B, Schulze A, Novoselova N, Geffers R, Schughart K. Global transcriptome analysis in influenza-infected mouse lungs reveals the kinetics of innate and adaptive host immune responses. PLoS One 2012; 7:e41169. [PMID: 22815957 PMCID: PMC3398930 DOI: 10.1371/journal.pone.0041169] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/18/2012] [Indexed: 12/15/2022] Open
Abstract
An infection represents a highly dynamic process involving complex biological responses of the host at many levels. To describe such processes at a global level, we recorded gene expression changes in mouse lungs after a non-lethal infection with influenza A virus over a period of 60 days. Global analysis of the large data set identified distinct phases of the host response. The increase in interferon genes and up-regulation of a defined NK-specific gene set revealed the initiation of the early innate immune response phase. Subsequently, infiltration and activation of T and B cells could be observed by an augmentation of T and B cell specific signature gene expression. The changes in B cell gene expression and preceding chemokine subsets were associated with the formation of bronchus-associated lymphoid tissue. In addition, we compared the gene expression profiles from wild type mice with Rag2 mutant mice. This analysis readily demonstrated that the deficiency in the T and B cell responses in Rag2 mutants could be detected by changes in the global gene expression patterns of the whole lung. In conclusion, our comprehensive gene expression study describes for the first time the entire host response and its kinetics to an acute influenza A infection at the transcriptome level.
Collapse
Affiliation(s)
- Claudia Pommerenke
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The cytokine storm has captured the attention of the public and the scientific community alike, and while the general notion of an excessive or uncontrolled release of proinflammatory cytokines is well known, the concept of a cytokine storm and the biological consequences of cytokine overproduction are not clearly defined. Cytokine storms are associated with a wide variety of infectious and noninfectious diseases. The term was popularized largely in the context of avian H5N1 influenza virus infection, bringing the term into popular media. In this review, we focus on the cytokine storm in the context of virus infection, and we highlight how high-throughput genomic methods are revealing the importance of the kinetics of cytokine gene expression and the remarkable degree of redundancy and overlap in cytokine signaling. We also address evidence for and against the role of the cytokine storm in the pathology of clinical and infectious disease and discuss why it has been so difficult to use knowledge of the cytokine storm and immunomodulatory therapies to improve the clinical outcomes for patients with severe acute infections.
Collapse
|
36
|
Boivin GA, Pothlichet J, Skamene E, Brown EG, Loredo-Osti JC, Sladek R, Vidal SM. Mapping of clinical and expression quantitative trait loci in a sex-dependent effect of host susceptibility to mouse-adapted influenza H3N2/HK/1/68. THE JOURNAL OF IMMUNOLOGY 2012; 188:3949-60. [PMID: 22427645 DOI: 10.4049/jimmunol.1103320] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Seasonal influenza outbreaks and recurrent influenza pandemics present major challenges to public health. By studying immunological responses to influenza in different host species, it may be possible to discover common mechanisms of susceptibility in response to various influenza strains. This could lead to novel therapeutic targets with wide clinical application. Using a mouse-adapted strain of influenza (A/HK/1/68-MA20 [H3N2]), we produced a mouse model of severe influenza that reproduces the hallmark high viral load and overexpression of cytokines associated with susceptibility to severe influenza in humans. We mapped genetic determinants of the host response using a panel of 29 closely related mouse strains (AcB/BcA panel of recombinant congenic strains) created from influenza-susceptible A/J and influenza-resistant C57BL/6J (B6) mice. Combined clinical quantitative trait loci (QTL) and lung expression QTL mapping identified candidate genes for two sex-specific QTL on chromosomes 2 and 17. The former includes the previously described Hc gene, a deficit of which is associated with the susceptibility phenotype in females. The latter includes the phospholipase gene Pla2g7 and Tnfrsf21, a member of the TNFR superfamily. Confirmation of the gene underlying the chromosome 17 QTL may reveal new strategies for influenza treatment.
Collapse
Affiliation(s)
- Gregory A Boivin
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Horby P, Nguyen NY, Dunstan SJ, Baillie JK. The role of host genetics in susceptibility to influenza: a systematic review. PLoS One 2012; 7:e33180. [PMID: 22438897 PMCID: PMC3305291 DOI: 10.1371/journal.pone.0033180] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/06/2012] [Indexed: 12/24/2022] Open
Abstract
Background The World Health Organization has identified studies of the role of host genetics on susceptibility to severe influenza as a priority. A systematic review was conducted to summarize the current state of evidence on the role of host genetics in susceptibility to influenza (PROSPERO registration number: CRD42011001380). Methods and Findings PubMed, Web of Science, the Cochrane Library, and OpenSIGLE were searched using a pre-defined strategy for all entries up to the date of the search. Two reviewers independently screened the title and abstract of 1,371 unique articles, and 72 full text publications were selected for inclusion. Mouse models clearly demonstrate that host genetics plays a critical role in susceptibility to a range of human and avian influenza viruses. The Mx genes encoding interferon inducible proteins are the best studied but their relevance to susceptibility in humans is unknown. Although the MxA gene should be considered a candidate gene for further study in humans, over 100 other candidate genes have been proposed. There are however no data associating any of these candidate genes to susceptibility in humans, with the only published study in humans being under-powered. One genealogy study presents moderate evidence of a heritable component to the risk of influenza-associated death, and while the marked familial aggregation of H5N1 cases is suggestive of host genetic factors, this remains unproven. Conclusion The fundamental question “Is susceptibility to severe influenza in humans heritable?” remains unanswered. Not because of a lack of genotyping or analytic tools, nor because of insufficient severe influenza cases, but because of the absence of a coordinated effort to define and assemble cohorts of cases. The recent pandemic and the ongoing epizootic of H5N1 both represent rapidly closing windows of opportunity to increase understanding of the pathogenesis of severe influenza through multi-national host genetic studies.
Collapse
Affiliation(s)
- Peter Horby
- Oxford University Clinical Research Unit-Wellcome Trust Major Overseas Programme, Hanoi, Vietnam.
| | | | | | | |
Collapse
|
38
|
Dimitrakopoulou K, Tsimpouris C, Papadopoulos G, Pommerenke C, Wilk E, Sgarbas KN, Schughart K, Bezerianos A. Dynamic gene network reconstruction from gene expression data in mice after influenza A (H1N1) infection. J Clin Bioinforma 2011; 1:27. [PMID: 22017961 PMCID: PMC3219564 DOI: 10.1186/2043-9113-1-27] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/21/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The immune response to viral infection is a temporal process, represented by a dynamic and complex network of gene and protein interactions. Here, we present a reverse engineering strategy aimed at capturing the temporal evolution of the underlying Gene Regulatory Networks (GRN). The proposed approach will be an enabling step towards comprehending the dynamic behavior of gene regulation circuitry and mapping the network structure transitions in response to pathogen stimuli. RESULTS We applied the Time Varying Dynamic Bayesian Network (TV-DBN) method for reconstructing the gene regulatory interactions based on time series gene expression data for the mouse C57BL/6J inbred strain after infection with influenza A H1N1 (PR8) virus. Initially, 3500 differentially expressed genes were clustered with the use of k-means algorithm. Next, the successive in time GRNs were built over the expression profiles of cluster centroids. Finally, the identified GRNs were examined with several topological metrics and available protein-protein and protein-DNA interaction data, transcription factor and KEGG pathway data. CONCLUSIONS Our results elucidate the potential of TV-DBN approach in providing valuable insights into the temporal rewiring of the lung transcriptome in response to H1N1 virus.
Collapse
|
39
|
Infection with seasonal influenza virus elicits CD4 T cells specific for genetically conserved epitopes that can be rapidly mobilized for protective immunity to pandemic H1N1 influenza virus. J Virol 2011; 85:13310-21. [PMID: 21976658 DOI: 10.1128/jvi.05728-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In recent years, influenza viruses with pandemic potential have been a major concern worldwide. One unresolved issue is how infection or vaccination with seasonal influenza virus strains influences the ability to mount a protective immune response to novel pandemic strains. In this study, we developed a mouse model of primary and secondary influenza infection by using a widely circulating seasonal H1N1 virus and the pandemic strain of H1N1 that emerged in Mexico in 2009, and we evaluated several key issues. First, using overlapping peptide libraries encompassing the entire translated sequences of 5 major influenza virus proteins, we assessed the specificity of CD4 T cell reactivity toward epitopes conserved among H1N1 viruses or unique to the seasonal or pandemic strain by enzyme-linked immunospot (ELISpot) assays. Our data show that CD4 T cells reactive to both virus-specific and genetically conserved epitopes are elicited, allowing separate tracking of these responses. Populations of cross-reactive CD4 T cells generated from seasonal influenza infection were found to expand earlier after secondary infection with the pandemic H1N1 virus than CD4 T cell populations specific for new epitopes. Coincident with this rapid CD4 T cell response was a potentiated neutralizing-antibody response to the pandemic strain and protection from the pathological effects of infection with the pandemic virus. This protection was not dependent on CD8 T cells. Together, our results indicate that exposure to seasonal vaccines and infection elicits CD4 T cells that promote the ability of the mammalian host to mount a protective immune response to pandemic strains of influenza virus.
Collapse
|
40
|
The DBA.2 mouse is susceptible to disease following infection with a broad, but limited, range of influenza A and B viruses. J Virol 2011; 85:12825-9. [PMID: 21917963 DOI: 10.1128/jvi.05930-11] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We assessed the relative susceptibilities to disease of the DBA.2 and C57BL/6 mouse models upon infection with a range of influenza A and B viruses. DBA.2 mice were more susceptible to disease upon inoculation with human H1N1 influenza A virus strains, several swine influenza viruses, and influenza B viruses but were not overtly susceptible to infection with human seasonal H3N2 strains. Hemagglutination inhibition and immunoglobulin isotype profiling indicated that DBA.2 and C57BL/6 mice generate comparable humoral responses upon equivalent 50% mouse lethal dose (MLD(50)) challenges with influenza virus. Our data demonstrate the utility of DBA.2 mice for the elucidation of influenza virus pathogenicity determinants and the testing of influenza vaccines.
Collapse
|
41
|
Trammell RA, Liberati TA, Toth LA. Host genetic background and the innate inflammatory response of lung to influenza virus. Microbes Infect 2011; 14:50-8. [PMID: 21920449 DOI: 10.1016/j.micinf.2011.08.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 07/30/2011] [Accepted: 08/10/2011] [Indexed: 12/15/2022]
Abstract
Many studies of influenza severity have focused on viral properties that confer virulence, whereas the contributory role of the host genetic background on infection severity remains largely unexplored. In this study, we measure the impact of inoculation with influenza virus in four strains of inbred mice - BALB/cByJ, C57BL/6J, A/J, and DBA/2J. To evaluate the extent to which responses are inherent to lung per se, as opposed to effects of the systemic response to lung infection, we also measured cytokines and chemokines in lung slices exposed to the virus in vitro. Finally, we evaluate the in vivo responses of recombinant inbred (RI) and select consomic strains of mice to search for genomic loci that contribute to phenotypic variance in response to influenza infection. We found marked variation among mouse strains after challenge with virus strain A/HKX31(H3N2), consistent with previous reports using more virulent strains. Furthermore, response patterns differ after in vivo versus in vitro exposure of lung to virus, supporting a predominant role of the systemic host inflammatory response in generating the strain differences. These results add to the body of information pointing to host genotype as a crucial factor in mediating the severity of influenza infections.
Collapse
Affiliation(s)
- Rita A Trammell
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9616, USA
| | | | | |
Collapse
|
42
|
Simon AY, Sasaki N, Ichii O, Kajino K, Kon Y, Agui T. Distinctive and critical roles for cellular immunity and immune-inflammatory response in the immunopathology of Sendai virus infection in mice. Microbes Infect 2011; 13:783-97. [DOI: 10.1016/j.micinf.2011.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/17/2011] [Accepted: 04/05/2011] [Indexed: 11/16/2022]
|
43
|
Pathogenicity of different PR8 influenza A virus variants in mice is determined by both viral and host factors. Virology 2011; 412:36-45. [DOI: 10.1016/j.virol.2010.12.047] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/19/2010] [Accepted: 12/23/2010] [Indexed: 12/18/2022]
|
44
|
do Valle TZ, Billecocq A, Guillemot L, Alberts R, Gommet C, Geffers R, Calabrese K, Schughart K, Bouloy M, Montagutelli X, Panthier JJ. A New Mouse Model Reveals a Critical Role for Host Innate Immunity in Resistance to Rift Valley Fever. THE JOURNAL OF IMMUNOLOGY 2010; 185:6146-56. [DOI: 10.4049/jimmunol.1000949] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Abstract
Influenza virus infection of humans results in a respiratory disease that ranges in severity from sub-clinical infection to primary viral pneumonia that can result in death. The clinical effects of infection vary with the exposure history, age and immune status of the host, and also the virulence of the influenza strain. In humans, the virus is transmitted through either aerosol or contact-based transfer of infectious respiratory secretions. As is evidenced by most zoonotic influenza virus infections, not all strains that can infect humans are able to transmit from person-to-person. Animal models of influenza are essential to research efforts aimed at understanding the viral and host factors that contribute to the disease and transmission outcomes of influenza virus infection in humans. These models furthermore allow the pre-clinical testing of antiviral drugs and vaccines aimed at reducing morbidity and mortality in the population through amelioration of the virulence or transmissibility of influenza viruses. Mice, ferrets, guinea pigs, cotton rats, hamsters and macaques have all been used to study influenza viruses and therapeutics targeting them. Each model presents unique advantages and disadvantages, which will be discussed herein.
Collapse
|
46
|
Host response to influenza virus: protection versus immunopathology. Curr Opin Immunol 2010; 22:475-81. [PMID: 20594815 DOI: 10.1016/j.coi.2010.06.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 06/01/2010] [Indexed: 11/22/2022]
Abstract
Host responses play crucial roles in defense against influenza but sometimes these may contribute to immunopathology. Potentially, this may be more important in disease caused by viruses such as avian influenza A H5N1 or the 1918 H1N1 influenza virus rather than with seasonal influenza or pandemic H1N1 2009 (pdmH1N1). Understanding pathogenesis will help develop novel therapeutic options that minimize immunopathology without impairing beneficial host defenses.
Collapse
|