1
|
Ober VT, Githure GB, Volpato Santos Y, Becker S, Moya Munoz G, Basquin J, Schwede F, Lorentzen E, Boshart M. Purine nucleosides replace cAMP in allosteric regulation of PKA in trypanosomatid pathogens. eLife 2024; 12:RP91040. [PMID: 38517938 PMCID: PMC10959531 DOI: 10.7554/elife.91040] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Cyclic nucleotide binding domains (CNB) confer allosteric regulation by cAMP or cGMP to many signaling proteins, including PKA and PKG. PKA of phylogenetically distant Trypanosoma is the first exception as it is cyclic nucleotide-independent and responsive to nucleoside analogues (Bachmaier et al., 2019). Here, we show that natural nucleosides inosine, guanosine and adenosine are nanomolar affinity CNB ligands and activators of PKA orthologs of the important tropical pathogens Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. The sequence and structural determinants of binding affinity, -specificity and kinase activation of PKAR were established by structure-activity relationship (SAR) analysis, co-crystal structures and mutagenesis. Substitution of two to three amino acids in the binding sites is sufficient for conversion of CNB domains from nucleoside to cyclic nucleotide specificity. In addition, a trypanosomatid-specific C-terminal helix (αD) is required for high affinity binding to CNB-B. The αD helix functions as a lid of the binding site that shields ligands from solvent. Selectivity of guanosine for CNB-B and of adenosine for CNB-A results in synergistic kinase activation at low nanomolar concentration. PKA pulldown from rapid lysis establishes guanosine as the predominant ligand in vivo in T. brucei bloodstream forms, whereas guanosine and adenosine seem to synergize in the procyclic developmental stage in the insect vector. We discuss the versatile use of CNB domains in evolution and recruitment of PKA for novel nucleoside-mediated signaling.
Collapse
Affiliation(s)
- Veronica Teresa Ober
- Faculty of Biology, Genetics, Ludwig-Maximilians University Munich (LMU)MartinsriedGermany
| | | | - Yuri Volpato Santos
- Faculty of Biology, Genetics, Ludwig-Maximilians University Munich (LMU)MartinsriedGermany
| | - Sidney Becker
- Max Planck Institute of Molecular PhysiologyDortmundGermany
- TU Dortmund, Department of Chemistry and Chemical BiologyDortmundGermany
| | - Gabriel Moya Munoz
- Faculty of Biology, Genetics, Ludwig-Maximilians University Munich (LMU)MartinsriedGermany
| | | | - Frank Schwede
- BIOLOG Life Science Institute GmbH & Co KGBremenGermany
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Michael Boshart
- Faculty of Biology, Genetics, Ludwig-Maximilians University Munich (LMU)MartinsriedGermany
| |
Collapse
|
2
|
VanSchouwen B, Melacini G. Probing ligand selectivity in pathogens. eLife 2023; 12:e94720. [PMID: 38126364 PMCID: PMC10735216 DOI: 10.7554/elife.94720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Why does protein kinase A respond to purine nucleosides in certain pathogens, but not to the cyclic nucleotides that activate this kinase in most other organisms?
Collapse
Affiliation(s)
- Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster UniversityHamiltonCanada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, and the Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
| |
Collapse
|
3
|
Pereira PHS, Borges-Pereira L, Garcia CRS. Evidences of G Coupled-Protein Receptor (GPCR) Signaling in the human Malaria Parasite Plasmodium falciparum for Sensing its Microenvironment and the Role of Purinergic Signaling in Malaria Parasites. Curr Top Med Chem 2021; 21:171-180. [PMID: 32851963 DOI: 10.2174/1568026620666200826122716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
The nucleotides were discovered in the early 19th century and a few years later, the role of such molecules in energy metabolism and cell survival was postulated. In 1972, a pioneer work by Burnstock and colleagues suggested that ATP could also work as a neurotransmitter, which was known as the "purinergic hypothesis". The idea of ATP working as a signaling molecule faced initial resistance until the discovery of the receptors for ATP and other nucleotides, called purinergic receptors. Among the purinergic receptors, the P2Y family is of great importance because it comprises of G proteincoupled receptors (GPCRs). GPCRs are widespread among different organisms. These receptors work in the cells' ability to sense the external environment, which involves: to sense a dangerous situation or detect a pheromone through smell; the taste of food that should not be eaten; response to hormones that alter metabolism according to the body's need; or even transform light into an electrical stimulus to generate vision. Advances in understanding the mechanism of action of GPCRs shed light on increasingly promising treatments for diseases that have hitherto remained incurable, or the possibility of abolishing side effects from therapies widely used today.
Collapse
Affiliation(s)
- Pedro H S Pereira
- Department of Clinical and Toxicological Analyses, University of Sao Paulo, Sao Paulo, Brazil
| | - Lucas Borges-Pereira
- Department of Clinical and Toxicological Analyses, University of Sao Paulo, Sao Paulo, Brazil
| | - Célia R S Garcia
- Department of Clinical and Toxicological Analyses, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
4
|
Lasonder E, More K, Singh S, Haidar M, Bertinetti D, Kennedy EJ, Herberg FW, Holder AA, Langsley G, Chitnis CE. cAMP-Dependent Signaling Pathways as Potential Targets for Inhibition of Plasmodium falciparum Blood Stages. Front Microbiol 2021; 12:684005. [PMID: 34108954 PMCID: PMC8183823 DOI: 10.3389/fmicb.2021.684005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
We review the role of signaling pathways in regulation of the key processes of merozoite egress and red blood cell invasion by Plasmodium falciparum and, in particular, the importance of the second messengers, cAMP and Ca2+, and cyclic nucleotide dependent kinases. cAMP-dependent protein kinase (PKA) is comprised of cAMP-binding regulatory, and catalytic subunits. The less well conserved cAMP-binding pockets should make cAMP analogs attractive drug leads, but this approach is compromised by the poor membrane permeability of cyclic nucleotides. We discuss how the conserved nature of ATP-binding pockets makes ATP analogs inherently prone to off-target effects and how ATP analogs and genetic manipulation can be useful research tools to examine this. We suggest that targeting PKA interaction partners as well as substrates, or developing inhibitors based on PKA interaction sites or phosphorylation sites in PKA substrates, may provide viable alternative approaches for the development of anti-malarial drugs. Proximity of PKA to a substrate is necessary for substrate phosphorylation, but the P. falciparum genome encodes few recognizable A-kinase anchor proteins (AKAPs), suggesting the importance of PKA-regulatory subunit myristylation and membrane association in determining substrate preference. We also discuss how Pf14-3-3 assembles a phosphorylation-dependent signaling complex that includes PKA and calcium dependent protein kinase 1 (CDPK1) and how this complex may be critical for merozoite invasion, and a target to block parasite growth. We compare altered phosphorylation levels in intracellular and egressed merozoites to identify potential PKA substrates. Finally, as host PKA may have a critical role in supporting intracellular parasite development, we discuss its role at other stages of the life cycle, as well as in other apicomplexan infections. Throughout our review we propose possible new directions for the therapeutic exploitation of cAMP-PKA-signaling in malaria and other diseases caused by apicomplexan parasites.
Collapse
Affiliation(s)
- Edwin Lasonder
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Kunal More
- Unité de Biologie de Plasmodium et Vaccins, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Malak Haidar
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR 8104, Cochin Institute, Paris, France
| | | | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| | | | - Anthony A Holder
- Malaria Parasitology Laboratory, Francis Crick Institute, London, United Kingdom
| | - Gordon Langsley
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR 8104, Cochin Institute, Paris, France
| | - Chetan E Chitnis
- Unité de Biologie de Plasmodium et Vaccins, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| |
Collapse
|
5
|
Uboldi AD, Wilde ML, Bader SM, Tonkin CJ. Environmental sensing and regulation of motility in Toxoplasma. Mol Microbiol 2020; 115:916-929. [PMID: 33278047 DOI: 10.1111/mmi.14661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Toxoplasma and other apicomplexan parasites undergo a unique form of cellular locomotion referred to as "gliding motility." Gliding motility is crucial for parasite survival as it powers tissue dissemination, host cell invasion and egress. Distinct environmental cues lead to activation of gliding motility and have become a prominent focus of recent investigation. Progress has been made toward understanding what environmental cues are sensed and how these signals are transduced in order to regulate the machinery and cellular events powering gliding motility. In this review, we will discuss new findings and integrate these into our current understanding to propose a model of how environmental sensing is achieved to regulate gliding motility in Toxoplasma. Collectively, these findings also have implications for the understanding of gliding motility across Apicomplexa more broadly.
Collapse
Affiliation(s)
- Alessandro D Uboldi
- Division of Infectious Disease and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Mary-Louise Wilde
- Division of Infectious Disease and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Stefanie M Bader
- Division of Infectious Disease and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Christopher J Tonkin
- Division of Infectious Disease and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Bisio H, Soldati-Favre D. Signaling Cascades Governing Entry into and Exit from Host Cells by Toxoplasma gondii. Annu Rev Microbiol 2020; 73:579-599. [PMID: 31500539 DOI: 10.1146/annurev-micro-020518-120235] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Apicomplexa phylum includes a large group of obligate intracellular protozoan parasites responsible for important diseases in humans and animals. Toxoplasma gondii is a widespread parasite with considerable versatility, and it is capable of infecting virtually any warm-blooded animal, including humans. This outstanding success can be attributed at least in part to an efficient and continuous sensing of the environment, with a ready-to-adapt strategy. This review updates the current understanding of the signals governing the lytic cycle of T. gondii, with particular focus on egress from infected cells, a key step for balancing survival, multiplication, and spreading in the host. We cover the recent advances in the conceptual framework of regulation of microneme exocytosis that ensures egress, motility, and invasion. Particular emphasis is given to the trigger molecules and signaling cascades regulating exit from host cells.
Collapse
Affiliation(s)
- Hugo Bisio
- Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, Université de Genève, 1211 Geneva 4, Switzerland;
| | - Dominique Soldati-Favre
- Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, Université de Genève, 1211 Geneva 4, Switzerland;
| |
Collapse
|
7
|
Helton LG, Kennedy EJ. Targeting Plasmodium with constrained peptides and peptidomimetics. IUBMB Life 2020; 72:1103-1114. [PMID: 32037730 DOI: 10.1002/iub.2244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/24/2020] [Indexed: 01/04/2023]
Abstract
Malaria remains a worldwide health concern with an estimated quarter of a billion people infected and nearly half a million deaths annually. Malaria is caused by a parasite infection from Plasmodium strains which are transmitted from mosquitoes into the human host. Although several small molecule inhibitors have been found to target the early stages of transmission and prevent parasite proliferation, multiple drug resistant parasite strains have emerged and drug resistance remains a major hurdle. As an alternative to small molecule inhibition, several peptide-based therapeutics have been explored for their potential as antimalarial compounds. Chemically constrained peptides or peptidomimetics were developed to target large binding interfaces of parasite-based proteins that have historically been difficult to selectively inhibit using small molecules. Here, we review ongoing research aimed at developing constrained peptides targeting protein-protein interactions pertinent to malaria pathogenesis. These targets include Falcipain-2, the J domain of CDPK1, myosin A tail domain interacting protein, the PKA signaling pathway, and an unclear signaling pathway involving angiotensin-derived peptides. Diverse synthetic methods were also used for each target. Merging parasite biology with synthetic strategies may provide new opportunities to develop alternative methods for uncovering novel antimalarials and may offer an alternate source for targeting drug-resistant parasite strains.
Collapse
Affiliation(s)
- Leah G Helton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia
| |
Collapse
|
8
|
Abstract
Understanding the mechanisms behind host cell invasion by Plasmodium falciparum remains a major hurdle to developing antimalarial therapeutics that target the asexual cycle and the symptomatic stage of malaria. Host cell entry is enabled by a multitude of precisely timed and tightly regulated receptor-ligand interactions. Cyclic nucleotide signaling has been implicated in regulating parasite invasion, and an important downstream effector of the cAMP-signaling pathway is protein kinase A (PKA), a cAMP-dependent protein kinase. There is increasing evidence that P. falciparum PKA (PfPKA) is responsible for phosphorylation of the cytoplasmic domain of P. falciparum apical membrane antigen 1 (PfAMA1) at Ser610, a cAMP-dependent event that is crucial for successful parasite invasion. In the present study, CRISPR-Cas9 and conditional gene deletion (dimerizable cre) technologies were implemented to generate a P. falciparum parasite line in which expression of the catalytic subunit of PfPKA (PfPKAc) is under conditional control, demonstrating highly efficient dimerizable Cre recombinase (DiCre)-mediated gene excision and complete knockdown of protein expression. Parasites lacking PfPKAc show severely reduced growth after one intraerythrocytic growth cycle and are deficient in host cell invasion, as highlighted by live-imaging experiments. Furthermore, PfPKAc-deficient parasites are unable to phosphorylate PfAMA1 at Ser610. This work not only identifies an essential role for PfPKAc in the P. falciparum asexual life cycle but also confirms that PfPKAc is the kinase responsible for phosphorylating PfAMA1 Ser610.IMPORTANCE Malaria continues to present a major global health burden, particularly in low-resource countries. Plasmodium falciparum, the parasite responsible for the most severe form of malaria, causes disease through rapid and repeated rounds of invasion and replication within red blood cells. Invasion into red blood cells is essential for P. falciparum survival, and the molecular events mediating this process have gained much attention as potential therapeutic targets. With no effective vaccine available, and with the emergence of resistance to antimalarials, there is an urgent need for the development of new therapeutics. Our research has used genetic techniques to provide evidence of an essential protein kinase involved in P. falciparum invasion. Our work adds to the current understanding of parasite signaling processes required for invasion, highlighting PKA as a potential drug target to inhibit invasion for the treatment of malaria.
Collapse
|
9
|
Druggable Targets in Cyclic Nucleotide Signaling Pathways in Apicomplexan Parasites and Kinetoplastids against Disabling Protozoan Diseases in Humans. Int J Mol Sci 2019; 20:ijms20010138. [PMID: 30609697 PMCID: PMC6337498 DOI: 10.3390/ijms20010138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 12/20/2022] Open
Abstract
Cell signaling in eukaryotes is an evolutionarily conserved mechanism to respond and adapt to various environmental changes. In general, signal sensation is mediated by a receptor which transfers the signal to a cascade of effector proteins. The cyclic nucleotides 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP) are intracellular messengers mediating an extracellular stimulus to cyclic nucleotide-dependent kinases driving a change in cell function. In apicomplexan parasites and kinetoplastids, which are responsible for a variety of neglected, tropical diseases, unique mechanisms of cyclic nucleotide signaling are currently identified. Collectively, cyclic nucleotides seem to be essential for parasitic proliferation and differentiation. However, there is no a genomic evidence for canonical G-proteins in these parasites while small GTPases and secondary effector proteins with structural differences to host orthologues occur. Database entries encoding G-protein-coupled receptors (GPCRs) are still without functional proof. Instead, signals from the parasite trigger GPCR-mediated signaling in the host during parasite invasion and egress. The role of cyclic nucleotide signaling in the absence of G-proteins and GPCRs, with a particular focus on small GTPases in pathogenesis, is reviewed here. Due to the absence of G-proteins, apicomplexan parasites and kinetoplastids may use small GTPases or their secondary effector proteins and host canonical G-proteins during infection. Thus, the feasibility of targeting cyclic nucleotide signaling pathways in these parasites, will be an enormous challenge for the identification of selective, pharmacological inhibitors since canonical host proteins also contribute to pathogenesis.
Collapse
|
10
|
Baker DA, Drought LG, Flueck C, Nofal SD, Patel A, Penzo M, Walker EM. Cyclic nucleotide signalling in malaria parasites. Open Biol 2018; 7:rsob.170213. [PMID: 29263246 PMCID: PMC5746546 DOI: 10.1098/rsob.170213] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/28/2017] [Indexed: 12/22/2022] Open
Abstract
The cyclic nucleotides 3′, 5′-cyclic adenosine monophosphate (cAMP) and 3′, 5′-cyclic guanosine monophosphate (cGMP) are intracellular messengers found in most animal cell types. They usually mediate an extracellular stimulus to drive a change in cell function through activation of their respective cyclic nucleotide-dependent protein kinases, PKA and PKG. The enzymatic components of the malaria parasite cyclic nucleotide signalling pathways have been identified, and the genetic and biochemical studies of these enzymes carried out to date are reviewed herein. What has become very clear is that cyclic nucleotides play vital roles in controlling every stage of the complex malaria parasite life cycle. Our understanding of the involvement of cyclic nucleotide signalling in orchestrating the complex biology of malaria parasites is still in its infancy, but the recent advances in our genetic tools and the increasing interest in signalling will deliver more rapid progress in the coming years.
Collapse
Affiliation(s)
- David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Laura G Drought
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Christian Flueck
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Stephanie D Nofal
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Avnish Patel
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Maria Penzo
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.,Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760, Madrid, Spain
| | - Eloise M Walker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
11
|
Schlott AC, Holder AA, Tate EW. N-Myristoylation as a Drug Target in Malaria: Exploring the Role of N-Myristoyltransferase Substrates in the Inhibitor Mode of Action. ACS Infect Dis 2018; 4:449-457. [PMID: 29363940 DOI: 10.1021/acsinfecdis.7b00203] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Malaria continues to be a significant cause of death and morbidity worldwide, and there is a need for new antimalarial drugs with novel targets. We have focused as a potential target for drug development on N-myristoyl transferase (NMT), an enzyme that acylates a wide range of substrate proteins. The NMT substrates in Plasmodium falciparum include some proteins that are common to processes in eukaryotes such as secretory transport and others that are unique to apicomplexan parasites. Myristoylation facilitates a protein interaction with membranes that may be strengthened by further lipidation, and the inhibition of NMT results in incorrect protein localization and the consequent disruption of function. The diverse roles of NMT substrates mean that NMT inhibition has a pleiotropic and severe impact on parasite development, growth, and multiplication. To study the mode of action underlying NMT inhibition, it is important to consider the function of proteins upstream and downstream of NMT. In this work, we therefore present our current perspective on the different functions of known NMT substrates as well as compare the inhibition of cotranslational myristoylation to the inhibition of known targets upstream of NMT.
Collapse
Affiliation(s)
- Anja C. Schlott
- Malaria Parasitology, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom
- Department of Chemistry, Imperial College London, Imperial College Road, SW7 2AZ London, United Kingdom
| | - Anthony A. Holder
- Malaria Parasitology, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, Imperial College Road, SW7 2AZ London, United Kingdom
| |
Collapse
|
12
|
Jia Y, Marq JB, Bisio H, Jacot D, Mueller C, Yu L, Choudhary J, Brochet M, Soldati-Favre D. Crosstalk between PKA and PKG controls pH-dependent host cell egress of Toxoplasma gondii. EMBO J 2017; 36:3250-3267. [PMID: 29030485 PMCID: PMC5666616 DOI: 10.15252/embj.201796794] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 12/27/2022] Open
Abstract
Toxoplasma gondii encodes three protein kinase A catalytic (PKAc1-3) and one regulatory (PKAr) subunits to integrate cAMP-dependent signals. Here, we show that inactive PKAc1 is maintained at the parasite pellicle by interacting with acylated PKAr. Either a conditional knockdown of PKAr or the overexpression of PKAc1 blocks parasite division. Conversely, down-regulation of PKAc1 or stabilisation of a dominant-negative PKAr isoform that does not bind cAMP triggers premature parasite egress from infected cells followed by serial invasion attempts leading to host cell lysis. This untimely egress depends on host cell acidification. A phosphoproteome analysis suggested the interplay between cAMP and cGMP signalling as PKAc1 inactivation changes the phosphorylation profile of a putative cGMP-phosphodiesterase. Concordantly, inhibition of the cGMP-dependent protein kinase G (PKG) blocks egress induced by PKAc1 inactivation or environmental acidification, while a cGMP-phosphodiesterase inhibitor circumvents egress repression by PKAc1 or pH neutralisation. This indicates that pH and PKAc1 act as balancing regulators of cGMP metabolism to control egress. These results reveal a crosstalk between PKA and PKG pathways to govern egress in T. gondii.
Collapse
Affiliation(s)
- Yonggen Jia
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva 4, Switzerland
| | - Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva 4, Switzerland
| | - Hugo Bisio
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva 4, Switzerland
| | - Damien Jacot
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva 4, Switzerland
| | - Christina Mueller
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva 4, Switzerland
| | - Lu Yu
- Proteomic Mass-spectrometry Team, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Jyoti Choudhary
- Proteomic Mass-spectrometry Team, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva 4, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva 4, Switzerland
| |
Collapse
|
13
|
PfCDPK1 mediated signaling in erythrocytic stages of Plasmodium falciparum. Nat Commun 2017; 8:63. [PMID: 28680058 PMCID: PMC5498596 DOI: 10.1038/s41467-017-00053-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/26/2017] [Indexed: 01/11/2023] Open
Abstract
Calcium Dependent Protein Kinases are key effectors of calcium signaling in malaria parasite. PfCDPK1 is critical for asexual development of Plasmodium falciparum, but its precise function and substrates remain largely unknown. Using a conditional knockdown strategy, we here establish that this kinase is critical for the invasion of host erythrocytes. Furthermore, using a multidisciplinary approach involving comparative phosphoproteomics we gain insights into the underlying molecular mechanisms. We identify substrates of PfCDPK1, which includes proteins of Inner Membrane Complex and glideosome-actomyosin motor assembly. Interestingly, PfCDPK1 phosphorylates PfPKA regulatory subunit (PfPKA-R) and regulates PfPKA activity in the parasite, which may be relevant for the process of invasion. This study delineates the signaling network of PfCDPK1 and sheds light on mechanisms via which it regulates invasion.Calcium dependent protein kinase 1 (CDPK1) plays an important role in asexual development of Plasmodium falciparum. Using phosphoproteomics and conditional knockdown of CDPK1, the authors here identify CDPK1 substrates and a cross-talk between CDPK1 and PKA, and show the role of CDPK1 in parasite invasion.
Collapse
|
14
|
Torres-Quesada O, Röck R, Stefan E. Systematic Quantification of GPCR/cAMP-Controlled Protein Kinase A Interactions. Horm Metab Res 2017; 49:240-249. [PMID: 28427097 DOI: 10.1055/s-0042-110791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The diffusible second messenger cyclic AMP (cAMP) originates from multiple G protein-coupled receptor (GPCR) cascades activating the intracellular key effector protein kinase A (PKA). Spatially and temporally restricted cAMP-fluxes are directly sensed by macromolecular PKA complexes. The consequences are alterations of molecular interactions, which lead to activation of compartmentalized PKA phosphotransferase activities, regulating a vast array of cellular functions. To decode cell-type and cell-compartment specific PKA functions, the spatio-temporal dynamics of small molecule:protein interactions, protein:protein interactions (PPIs), cAMP-mobilization, and phosphotransferase activities need to be determined directly in the appropriate cellular context. A collection of cell-based reporters has been developed to either visualize or quantitatively measure kinase activities or PKA complex formation/dissociation. In this review, we list a collection of unimolecular and bimolecular PKA biosensors, followed by the specification of the modular design of a Renilla luciferase based protein-fragment complementation assay (PCA) platform for measuring PKA network interactions. We discuss the application spectrum of the PCA reporter to identify, quantify, and dissect dynamic and transient PKA complexes downstream of specific GPCR activities. We specify the implementation of a PCA PKA platform to systematically quantify the concurrent involvement of receptor-cAMP signaling, post-translational modifications, and kinase subunit mutations/perturbations in PKA activation. The systematic quantification of transient PKA network interactions will contribute to a better understanding how GPCR-recognized input signals are streamlined through the compartmentalized and cAMP-interacting PKA signalosome.
Collapse
Affiliation(s)
- O Torres-Quesada
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - R Röck
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - E Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Littler DR, Bullen HE, Harvey KL, Beddoe T, Crabb BS, Rossjohn J, Gilson PR. Disrupting the Allosteric Interaction between the Plasmodium falciparum cAMP-dependent Kinase and Its Regulatory Subunit. J Biol Chem 2016; 291:25375-25386. [PMID: 27738107 DOI: 10.1074/jbc.m116.750174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/27/2016] [Indexed: 11/06/2022] Open
Abstract
The ubiquitous second messenger cAMP mediates signal transduction processes in the malarial parasite that regulate host erythrocyte invasion and the proliferation of merozoites. In Plasmodium falciparum, the central receptor for cAMP is the single regulatory subunit (R) of protein kinase A (PKA). To aid the development of compounds that can selectively dysregulate parasite PKA signaling, we solved the structure of the PKA regulatory subunit in complex with cAMP and a related analogue that displays antimalarial activity, (Sp)-2-Cl-cAMPS. Prior to signaling, PKA-R holds the kinase's catalytic subunit (C) in an inactive state by exerting an allosteric inhibitory effect. When two cAMP molecules bind to PKA-R, they stabilize a structural conformation that facilitates its dissociation, freeing PKA-C to phosphorylate downstream substrates such as apical membrane antigen 1. Although PKA activity was known to be necessary for erythrocytic proliferation, we show that uncontrolled induction of PKA activity using membrane-permeable agonists is equally disruptive to growth.
Collapse
Affiliation(s)
- Dene R Littler
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, and
| | | | - Katherine L Harvey
- the Burnet Institute, Melbourne, Victoria 3004, Australia.,the Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Travis Beddoe
- the Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086, Australia, and
| | - Brendan S Crabb
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, and.,the Burnet Institute, Melbourne, Victoria 3004, Australia.,the Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jamie Rossjohn
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, and.,the Institute of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN Wales, United Kingdom.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Paul R Gilson
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, and .,the Burnet Institute, Melbourne, Victoria 3004, Australia
| |
Collapse
|
16
|
Characterization of an A-kinase anchoring protein-like suggests an alternative way of PKA anchoring in Plasmodium falciparum. Malar J 2016; 15:248. [PMID: 27129434 PMCID: PMC4850634 DOI: 10.1186/s12936-016-1275-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 04/12/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The asexual intra-erythrocytic multiplication of the malaria parasite Plasmodium falciparum is regulated by various molecular mechanisms. In eukaryotic cells, protein kinases are known to play key roles in cell cycle regulation and signaling pathways. The activity of cAMP-dependent protein kinase (PKA) depends on A-kinase anchoring proteins (AKAPs) through protein interactions. While several components of the cAMP dependent pathway-including the PKA catalytic and regulatory subunits-have been characterized in P. falciparum, whether AKAPs are involved in this pathway remains unclear. Here, PfAKAL, an open reading frame of a potential AKAP-like protein in the P. falciparum genome was identified, and its protein partners and putative cellular functions characterized. METHODS The expression of PfAKAL throughout the erythrocytic cycle of the 3D7 strain was assessed by RT-qPCR and the presence of the corresponding protein by immunofluorescence assays. In order to study physical interactions between PfAKAL and other proteins, pull down experiments were performed using a recombinant PfAKAL protein and parasite protein extracts, or with recombinant proteins. These interactions were also tested by combining biochemical and proteomic approaches. As phosphorylation could be involved in the regulation of protein complexes, both PfAKAL and Pf14-3-3I phosphorylation was studied using a radiolabel kinase activity assay. Finally, to identify a potential function of the protein, PfAKAL sequence was aligned and structurally modeled, revealing a conserved nucleotide-binding pocket; confirmed by qualitative nucleotide binding experiments. RESULTS PfAKAL is the first AKAP-like protein in P. falciparum to be identified, and shares 23 % sequence identity with the central domain of human AKAP18δ. PfAKAL is expressed in mature asexual stages, merozoites and gametocytes. In spite of homology to AKAP18, biochemical and immunochemical analyses demonstrated that PfAKAL does not interact directly with the P. falciparum PKA regulatory subunit (PfPKA-R), but instead binds and colocalizes with Pf14-3-3I, which in turn interacts with PfPKA-R. In vivo, these different interactions could be regulated by phosphorylation, as PfPKA-R and Pf14-3-3I, but not PfAKAL, are phosphorylated in vitro by PKA. Interestingly, PfAKAL binds nucleotides such as AMP and cAMP, suggesting that this protein may be involved in the AMP-activated protein kinase (AMPK) pathway, or associated with phosphodiesterase activities. CONCLUSION PfAKAL is an atypical AKAP that shares common features with human AKAP18, such as nucleotides binding. The interaction of PfAKAL with PfPKA-R could be indirectly mediated through a join interaction with Pf14-3-3I. Therefore, PfPKA localization could not depend on PfAKAL, but rather involves other partners.
Collapse
|
17
|
A Putative Non-Canonical Ras-Like GTPase from P. falciparum: Chemical Properties and Characterization of the Protein. PLoS One 2015; 10:e0140994. [PMID: 26540393 PMCID: PMC4634863 DOI: 10.1371/journal.pone.0140994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/02/2015] [Indexed: 12/16/2022] Open
Abstract
During its development the malaria parasite P. falciparum has to adapt to various different environmental contexts. Key cellular mechanisms involving G-protein coupled signal transduction chains are assumed to act at these interfaces. Heterotrimeric G-proteins are absent in Plasmodium. We here describe the first cloning and expression of a putative, non-canonical Ras-like G protein (acronym PfG) from Plasmodium. PfG reveals an open reading frame of 2736 bp encoding a protein of 912 amino acids with a theoretical pI of 8.68 and a molecular weight of 108.57 kDa. Transcript levels and expression are significantly increased in the erythrocytic phase in particular during schizont and gametocyte formation. Most notably, PfG has GTP binding capacity and GTPase activity due to an EngA2 domain present in small Ras-like GTPases in a variety of Bacillus species and Mycobacteria. By contrast, plasmodial PfG is divergent from any human alpha-subunit. PfG was expressed in E. coli as a histidine-tagged fusion protein and was stable only for 3.5 hours. Purification was only possible under native conditions by Nickel-chelate chromatography and subsequent separation by Blue Native PAGE. Binding of a fluorescent GTP analogue BODIPY® FL guanosine 5’O-(thiotriphosphate) was determined by fluorescence emission. Mastoparan stimulated GTP binding in the presence of Mg2+. GTPase activity was determined colorimetrically. Activity expressed as absolute fluorescence was 50% higher for the human paralogue than the activity of the parasitic enzyme. The PfG protein is expressed in the erythrocytic stages and binds GTP after immunoprecipitation. Immunofluorescence using specific antiserum suggests that PfG localizes to the parasite cytosol. The current data suggest that the putitative, Ras-like G-protein might be involved in a non-canonical signaling pathway in Plasmodium. Research on the function of PfG with respect to pathogenesis and antimalarial chemotherapy is currently under way.
Collapse
|
18
|
Peng M, Aye TT, Snel B, van Breukelen B, Scholten A, Heck AJR. Spatial Organization in Protein Kinase A Signaling Emerged at the Base of Animal Evolution. J Proteome Res 2015; 14:2976-87. [DOI: 10.1021/acs.jproteome.5b00370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mao Peng
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
- Department
of Toxicogenomics, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Thin Thin Aye
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Berend Snel
- Theoretical
Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Bas van Breukelen
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Arjen Scholten
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
19
|
Flaherty BR, Wang Y, Trope EC, Ho TG, Muralidharan V, Kennedy EJ, Peterson DS. The Stapled AKAP Disruptor Peptide STAD-2 Displays Antimalarial Activity through a PKA-Independent Mechanism. PLoS One 2015; 10:e0129239. [PMID: 26010880 PMCID: PMC4444124 DOI: 10.1371/journal.pone.0129239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/06/2015] [Indexed: 11/19/2022] Open
Abstract
Drug resistance poses a significant threat to ongoing malaria control efforts. Coupled with lack of a malaria vaccine, there is an urgent need for the development of new antimalarials with novel mechanisms of action and low susceptibility to parasite drug resistance. Protein Kinase A (PKA) has been implicated as a critical regulator of pathogenesis in malaria. Therefore, we sought to investigate the effects of disrupted PKA signaling as a possible strategy for inhibition of parasite replication. Host PKA activity is partly regulated by a class of proteins called A Kinase Anchoring Proteins (AKAPs), and interaction between HsPKA and AKAP can be inhibited by the stapled peptide Stapled AKAP Disruptor 2 (STAD-2). STAD-2 was tested for permeability to and activity against Plasmodium falciparum blood stage parasites in vitro. The compound was selectively permeable only to infected red blood cells (iRBC) and demonstrated rapid antiplasmodial activity, possibly via iRBC lysis (IC50 ≈ 1 μM). STAD-2 localized within the parasite almost immediately post-treatment but showed no evidence of direct association with PKA, indicating that STAD-2 acts via a PKA-independent mechanism. Furosemide-insensitive parasite permeability pathways in the iRBC were largely responsible for uptake of STAD-2. Further, peptide import was highly specific to STAD-2 as evidenced by low permeability of control stapled peptides. Selective uptake and antiplasmodial activity of STAD-2 provides important groundwork for the development of stapled peptides as potential antimalarials. Such peptides may also offer an alternative strategy for studying protein-protein interactions critical to parasite development and pathogenesis.
Collapse
Affiliation(s)
- Briana R. Flaherty
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Yuxiao Wang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States of America
| | - Edward C. Trope
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, United States of America
| | - Tienhuei G. Ho
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States of America
| | - Vasant Muralidharan
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Eileen J. Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (EK); David Peterson: (DP)
| | - David S. Peterson
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (EK); David Peterson: (DP)
| |
Collapse
|
20
|
Mohanty S, Kennedy EJ, Herberg FW, Hui R, Taylor SS, Langsley G, Kannan N. Structural and evolutionary divergence of cyclic nucleotide binding domains in eukaryotic pathogens: Implications for drug design. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1575-85. [PMID: 25847873 DOI: 10.1016/j.bbapap.2015.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/25/2015] [Indexed: 12/24/2022]
Abstract
Many cellular functions in eukaryotic pathogens are mediated by the cyclic nucleotide binding (CNB) domain, which senses second messengers such as cyclic AMP and cyclic GMP. Although CNB domain-containing proteins have been identified in many pathogenic organisms, an incomplete understanding of how CNB domains in pathogens differ from other eukaryotic hosts has hindered the development of selective inhibitors for CNB domains associated with infectious diseases. Here, we identify and classify CNB domain-containing proteins in eukaryotic genomes to understand the evolutionary basis for CNB domain functional divergence in pathogens. We identify 359 CNB domain-containing proteins in 31 pathogenic organisms and classify them into distinct subfamilies based on sequence similarity within the CNB domain as well as functional domains associated with the CNB domain. Our study reveals novel subfamilies with pathogen-specific variations in the phosphate-binding cassette. Analyzing these variations in light of existing structural and functional data provides new insights into ligand specificity and promiscuity and clues for drug design. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.
Collapse
Affiliation(s)
- Smita Mohanty
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30602, USA
| | | | - Raymond Hui
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Susan S Taylor
- Department of Chemistry & Biochemistry and Pharmacology, University of CA, San Diego, USA
| | - Gordon Langsley
- INSERM U1016, CNRS UMR8104, Cochin Institute, Paris, 75014 France; Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes - Sorbonne Paris Cité, France
| | - Natarajan Kannan
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA; Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
21
|
Dawn A, Singh S, More KR, Siddiqui FA, Pachikara N, Ramdani G, Langsley G, Chitnis CE. The central role of cAMP in regulating Plasmodium falciparum merozoite invasion of human erythrocytes. PLoS Pathog 2014; 10:e1004520. [PMID: 25522250 PMCID: PMC4270784 DOI: 10.1371/journal.ppat.1004520] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 10/15/2014] [Indexed: 12/19/2022] Open
Abstract
All pathogenesis and death associated with Plasmodium falciparum malaria is due to parasite-infected erythrocytes. Invasion of erythrocytes by P. falciparum merozoites requires specific interactions between host receptors and parasite ligands that are localized in apical organelles called micronemes. Here, we identify cAMP as a key regulator that triggers the timely secretion of microneme proteins enabling receptor-engagement and invasion. We demonstrate that exposure of merozoites to a low K+ environment, typical of blood plasma, activates a bicarbonate-sensitive cytoplasmic adenylyl cyclase to raise cytosolic cAMP levels and activate protein kinase A, which regulates microneme secretion. We also show that cAMP regulates merozoite cytosolic Ca2+ levels via induction of an Epac pathway and demonstrate that increases in both cAMP and Ca2+ are essential to trigger microneme secretion. Our identification of the different elements in cAMP-dependent signaling pathways that regulate microneme secretion during invasion provides novel targets to inhibit blood stage parasite growth and prevent malaria. The blood stage of malaria parasites is responsible for all the morbidity and mortality associated with malaria. During the blood stage, malaria parasites invade and multiply within host erythrocytes. The process of erythrocyte invasion requires specific interactions between host receptors and parasite ligands. Many of the key parasite proteins that bind host receptors are localized in apical organelles called micronemes. Here, we demonstrate that cAMP serves as a key regulator that controls the timely secretion of microneme proteins during invasion. We show that exposure of merozoites to a low K+ environment, as found in blood plasma, leads to a rise in cytosolic cAMP levels due to activation of the cytoplasmic, bicarbonate-sensitive adenylyl cyclase β (PfACβ). A rise in cAMP activates protein kinase A (PKA), which regulates microneme secretion. In addition, cAMP triggers a rise in cytosolic Ca2+ levels through the Epac pathway. Increases in both cAMP and Ca2+ levels are essential for triggering microneme secretion. Identification of the different elements in the cAMP-dependent signaling pathways that regulate microneme secretion during invasion provides novel targets to block erythrocyte invasion, inhibit blood stage parasite growth and prevent malaria.
Collapse
Affiliation(s)
- Amrita Dawn
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Shailja Singh
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- Malaria Parasite Biology and Vaccines Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Kunal R. More
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Faiza Amber Siddiqui
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Niseema Pachikara
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ghania Ramdani
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Chetan E. Chitnis
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- Malaria Parasite Biology and Vaccines Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
22
|
Targeting Plasmodium falciparum protein kinases with adenosine analogue-oligoarginine conjugates. Exp Parasitol 2014; 138:55-62. [PMID: 24534615 DOI: 10.1016/j.exppara.2014.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 12/03/2013] [Accepted: 02/05/2014] [Indexed: 11/22/2022]
Abstract
During the last decade, a vast number of inhibitors, ligands and fluorescent probes have evolved for mammalian protein kinases; however, the suitability of these compounds for studies of evolutionarily divergent eukaryotes has mostly been left beyond the scope of research. Here, we examined whether adenosine analogue-oligoarginine conjugates that had been extensively characterized as efficient inhibitors of the human protein kinases are applicable for targeting Plasmodium protein kinases. We demonstrated that ARCs were not only able to bind to and inhibit a representative member of Plasmodium falciparum kinome (cGMP-dependent protein kinase) in biochemical assay, but also affected the general phosphorylation levels in parasites released from the infected red blood cells upon saponin treatment. These findings urge advantaging of already existing biochemical tools, whose initially generic, but intrinsically "tunable" selectivity profiles could be used for dissection of signaling pathways outside the initially defined group of biological targets.
Collapse
|
23
|
Yu Z, Zhang C, Chai R, Du Y, Gao X, Xing J, Yu E, Zhang W, Zhang X, Cao G, Fu C. Prognostic significance and molecular mechanism of ATP-binding cassette subfamily C member 4 in resistance to neoadjuvant radiotherapy of locally advanced rectal carcinoma. PLoS One 2014; 9:e85446. [PMID: 24454870 PMCID: PMC3893201 DOI: 10.1371/journal.pone.0085446] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 11/27/2013] [Indexed: 12/15/2022] Open
Abstract
Background Mechanism of radioresistance in rectal carcinoma remains largely unknown. We aimed to evaluate the predictive role of ATP-binding cassette subfamily C member 4 (ABCC4) in locally advanced rectal carcinoma and explore possible molecular mechanisms by which ABCC4 confers the resistance to neoadjuvant radiotherapy. Methods The expression of ABCC4 and P53 mutant in biopsy tissue specimens from 121 locally advanced rectal carcinoma patients was examined using immunohistochemistry. The factors contributing to 3-year overall survival and disease-free survival were evaluated using the Kaplan-Meier method and Cox proportional hazard model. Lentivirus-mediated small hairpin RNA was applied to inhibit ABCC4 expression in colorectal carcinoma cell line RKO, and investigate the radiosensitivity in xenograft model. Intracellular cyclic adenosine monophosphate concentration and cell cycle distribution following irradiation were detected. Results High expression of ABCC4 and p53 mutant in pretreated tumors, poor pathological response, and high final tumor staging were significant factors independently predicted an unfavorable prognosis of locally advanced rectal carcinoma patients after neoadjuvant radiotherapy. Down-regulation of ABCC4 expression significantly enhanced irradiation-induced suppression of tumor growth in xenograft model. Furthermore, down-regulation of ABCC4 expression enhanced intracellular cyclic adenosine monophosphate production and noticeable deficiency of G1-S phase checkpoint in cell cycle following irradiation. Conclusions Our study suggests that ABCC4 serves as a novel predictive biomarker that is responsible for the radioresistance and predicts a poor prognosis for locally advanced rectal carcinoma after neoadjuvant radiotherapy.
Collapse
Affiliation(s)
- Zhiqi Yu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chang Zhang
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Rui Chai
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Yan Du
- Department of Epidemiology, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Xianhua Gao
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Junjie Xing
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Enda Yu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wei Zhang
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaoqing Zhang
- Department of Radiotherapy, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Chuangang Fu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
24
|
Wright MH, Clough B, Rackham MD, Rangachari K, Brannigan JA, Grainger M, Moss DK, Bottrill AR, Heal WP, Broncel M, Serwa RA, Brady D, Mann DJ, Leatherbarrow RJ, Tewari R, Wilkinson AJ, Holder AA, Tate EW. Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach. Nat Chem 2013; 6:112-21. [PMID: 24451586 DOI: 10.1038/nchem.1830] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 11/19/2013] [Indexed: 02/07/2023]
Abstract
Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase.
Collapse
Affiliation(s)
- Megan H Wright
- 1] Department of Chemistry, Imperial College London, London SW7 2AZ, UK [2] Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Barbara Clough
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Mark D Rackham
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Kaveri Rangachari
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - James A Brannigan
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Munira Grainger
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - David K Moss
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Andrew R Bottrill
- Protein and Nucleic Acid Chemistry Laboratory, University of Leicester, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - William P Heal
- 1] Department of Chemistry, Imperial College London, London SW7 2AZ, UK [2]
| | | | - Remigiusz A Serwa
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Declan Brady
- Centre for Genetics and Genomics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - David J Mann
- 1] Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK [2] Division of Molecular Biosciences, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Robin J Leatherbarrow
- 1] Department of Chemistry, Imperial College London, London SW7 2AZ, UK [2] Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK [3]
| | - Rita Tewari
- Centre for Genetics and Genomics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - Anthony J Wilkinson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Anthony A Holder
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Edward W Tate
- 1] Department of Chemistry, Imperial College London, London SW7 2AZ, UK [2] Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
25
|
Abstract
There is an urgent need for the development of new antimalarial drugs with novel modes of actions. The malarial parasite, Plasmodium falciparum, has a relatively small kinome of <100 kinases, with many members exhibiting a high degree of structural divergence from their host counterparts. A number of Plasmodium kinases have recently been shown by reverse genetics to be essential for various parts of the complex parasitic life cycle, and are thus genetically validated as potential targets. Implementation of mass spectrometry-based phosphoproteomics approaches has informed on key phospho-signalling pathways in the parasite. In addition, global phenotypic screens have revealed a large number of putative protein kinase inhibitors with antimalarial potency. Taken together, these investigations point to the Plasmodium kinome as a rich source of potential new targets. In this review, we highlight recent progress made towards this goal.
Collapse
|
26
|
Arencibia JM, Pastor-Flores D, Bauer AF, Schulze JO, Biondi RM. AGC protein kinases: from structural mechanism of regulation to allosteric drug development for the treatment of human diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1302-21. [PMID: 23524293 DOI: 10.1016/j.bbapap.2013.03.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/07/2013] [Indexed: 01/15/2023]
Abstract
The group of AGC protein kinases includes more than 60 protein kinases in the human genome, classified into 14 families: PDK1, AKT/PKB, SGK, PKA, PKG, PKC, PKN/PRK, RSK, NDR, MAST, YANK, DMPK, GRK and SGK494. This group is also widely represented in other eukaryotes, including causative organisms of human infectious diseases. AGC kinases are involved in diverse cellular functions and are potential targets for the treatment of human diseases such as cancer, diabetes, obesity, neurological disorders, inflammation and viral infections. Small molecule inhibitors of AGC kinases may also have potential as novel therapeutic approaches against infectious organisms. Fundamental in the regulation of many AGC kinases is a regulatory site termed the "PIF-pocket" that serves as a docking site for substrates of PDK1. This site is also essential to the mechanism of activation of AGC kinases by phosphorylation and is involved in the allosteric regulation of N-terminal domains of several AGC kinases, such as PKN/PRKs and atypical PKCs. In addition, the C-terminal tail and its interaction with the PIF-pocket are involved in the dimerization of the DMPK family of kinases and may explain the molecular mechanism of allosteric activation of GRKs by GPCR substrates. In this review, we briefly introduce the AGC kinases and their known roles in physiology and disease and the discovery of the PIF-pocket as a regulatory site in AGC kinases. Finally, we summarize the current status and future therapeutic potential of small molecules directed to the PIF-pocket; these molecules can allosterically activate or inhibit the kinase as well as act as substrate-selective inhibitors. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- José M Arencibia
- Research Group PhosphoSites, Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
27
|
Müller J, Hemphill A. New approaches for the identification of drug targets in protozoan parasites. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:359-401. [PMID: 23317822 DOI: 10.1016/b978-0-12-407704-1.00007-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Antiparasitic chemotherapy is an important issue for drug development. Traditionally, novel compounds with antiprotozoan activities have been identified by screening of compound libraries in high-throughput systems. More recently developed approaches employ target-based drug design supported by genomics and proteomics of protozoan parasites. In this chapter, the drug targets in protozoan parasites are reviewed. The gene-expression machinery has been among the first targets for antiparasitic drugs and is still under investigation as a target for novel compounds. Other targets include cytoskeletal proteins, proteins involved in intracellular signaling, membranes, and enzymes participating in intermediary metabolism. In apicomplexan parasites, the apicoplast is a suitable target for established and novel drugs. Some drugs act on multiple subcellular targets. Drugs with nitro groups generate free radicals under anaerobic growth conditions, and drugs with peroxide groups generate radicals under aerobic growth conditions, both affecting multiple cellular pathways. Mefloquine and thiazolides are presented as examples for antiprotozoan compounds with multiple (side) effects. The classic approach of drug discovery employing high-throughput physiological screenings followed by identification of drug targets has yielded the mainstream of current antiprotozoal drugs. Target-based drug design supported by genomics and proteomics of protozoan parasites has not produced any antiparasitic drug so far. The reason for this is discussed and a synthesis of both methods is proposed.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, University of Berne, Berne, Switzerland.
| | | |
Collapse
|
28
|
Taylor SS, Ilouz R, Zhang P, Kornev AP. Assembly of allosteric macromolecular switches: lessons from PKA. Nat Rev Mol Cell Biol 2012; 13:646-58. [PMID: 22992589 DOI: 10.1038/nrm3432] [Citation(s) in RCA: 351] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein kinases are dynamic molecular switches that have evolved to be only transiently activated. Kinase activity is embedded within a conserved kinase core, which is typically regulated by associated domains, linkers and interacting proteins. Moreover, protein kinases are often tethered to large macromolecular complexes to provide tighter spatiotemporal control. Thus, structural characterization of kinase domains alone is insufficient to explain protein kinase function and regulation in vivo. Recent progress in structural characterization of cyclic AMP-dependent protein kinase (PKA) exemplifies how our knowledge of kinase signalling has evolved by shifting the focus of structural studies from single kinase subunits to macromolecular complexes.
Collapse
Affiliation(s)
- Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, 92093-90654, USA.
| | | | | | | |
Collapse
|
29
|
The kinomes of apicomplexan parasites. Microbes Infect 2012; 14:796-810. [DOI: 10.1016/j.micinf.2012.04.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/11/2012] [Accepted: 04/11/2012] [Indexed: 11/21/2022]
|
30
|
Hopp CS, Bowyer PW, Baker DA. The role of cGMP signalling in regulating life cycle progression of Plasmodium. Microbes Infect 2012; 14:831-7. [PMID: 22613210 PMCID: PMC3484397 DOI: 10.1016/j.micinf.2012.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/13/2012] [Accepted: 04/17/2012] [Indexed: 11/25/2022]
Abstract
The 3′-5′-cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is the main mediator of cGMP signalling in the malaria parasite. This article reviews the role of PKG in Plasmodium falciparum during gametogenesis and blood stage schizont rupture, as well as the role of the Plasmodium berghei orthologue in ookinete differentiation and motility, and liver stage schizont development. The current views on potential effector proteins downstream of PKG and the mechanisms that may regulate cyclic nucleotide levels are presented.
Collapse
Affiliation(s)
- Christine S Hopp
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | | | |
Collapse
|
31
|
Purinoceptor signaling in malaria-infected erythrocytes. Microbes Infect 2012; 14:779-86. [PMID: 22580091 DOI: 10.1016/j.micinf.2012.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 04/13/2012] [Accepted: 04/13/2012] [Indexed: 01/25/2023]
Abstract
Human erythrocytes are endowed with ATP release pathways and metabotropic and ionotropic purinoceptors. This review summarizes the pivotal function of purinergic signaling in erythrocyte control of vascular tone, in hemolytic septicemia, and in malaria. In malaria, the intraerythrocytic parasite exploits the purinergic signaling of its host to adapt the erythrocyte to its requirements.
Collapse
|
32
|
Generation of second messengers in Plasmodium. Microbes Infect 2012; 14:787-95. [PMID: 22584103 DOI: 10.1016/j.micinf.2012.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 02/05/2023]
Abstract
Signalling in malaria parasites is a field of growing interest as its components may prove to be valuable drug targets, especially when one considers the burden of a disease that is responsible for up to 500 million infections annually. The scope of this review is to discuss external stimuli in the parasite life cycle and the upstream machinery responsible for translating them into intracellular responses, focussing particularly on the calcium signalling pathway.
Collapse
|