1
|
Hetta HF, Alanazi FE, Ali MAS, Alatawi AD, Aljohani HM, Ahmed R, Alansari NA, Alkhathami FM, Albogmi A, Alharbi BM, Alanzi HS, Alaqyli AB, Ramadan YN. Hypervirulent Klebsiella pneumoniae: Insights into Virulence, Antibiotic Resistance, and Fight Strategies Against a Superbug. Pharmaceuticals (Basel) 2025; 18:724. [PMID: 40430542 PMCID: PMC12115101 DOI: 10.3390/ph18050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Community-acquired infections caused by Klebsiella pneumoniae (K. pneumoniae) have become a significant global health concern, particularly with the emergence of hypervirulent strains (hvKP). These strains are associated with severe infections, such as pyogenic liver abscesses, even in otherwise healthy individuals. Initially reported in Taiwan in the 1980s, hvKP has now spread worldwide. The pathogenicity of hvKP is attributed to an array of virulence factors that enhance its ability to colonize and evade host immune defenses. Additionally, the convergence of hypervirulence with antibiotic resistance has further complicated treatment strategies. As a member of the ESKAPE group of pathogens, K. pneumoniae exhibits high resistance to multiple antibiotics, posing a challenge for healthcare settings. This review provides a comprehensive overview of hvKP, highlighting its structural and pathogenic differences from classical K. pneumoniae strains, key virulence factors, mechanisms of antibiotic resistance, and the increasing threat of multidrug-resistant hvKP. Lastly, we discuss current treatment guidelines and emerging therapeutic strategies to combat this formidable pathogen.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Fawaz E. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Mostafa A. Sayed Ali
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Ahmed D. Alatawi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Hashim M. Aljohani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madina 41477, Saudi Arabia;
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Nuha A. Alansari
- Laboratory Medicine, College of Applied Medical Sciences, Umm Al-Qura University, Jeddah 22231, Saudi Arabia;
| | - Fahad M. Alkhathami
- College of Applied Medical Sciences, University of Tabuk, Tabuk 47315, Saudi Arabia; (F.M.A.); (H.S.A.); (A.B.A.)
| | - Alaa Albogmi
- Medical Laboratory Technology, King Abdulaziz University, Jeddah 80216, Saudi Arabia;
| | - Bander M. Alharbi
- Medical Laboratory Technology, College of Applied Medical Sciences, University of Tabuk, Tabuk 47524, Saudi Arabia;
| | - Hanadi S. Alanzi
- College of Applied Medical Sciences, University of Tabuk, Tabuk 47315, Saudi Arabia; (F.M.A.); (H.S.A.); (A.B.A.)
| | - Amirah B. Alaqyli
- College of Applied Medical Sciences, University of Tabuk, Tabuk 47315, Saudi Arabia; (F.M.A.); (H.S.A.); (A.B.A.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt;
| |
Collapse
|
2
|
Li M, Ma F, Zhao H, Zhou D, Liang L, Lv R, Li J, Wang Y, Xu L, Liu C, Tian GB, Feng S, Xia Y. Outer membrane permeability of mcr-positive bacteria reveals potent synergy of colistin and macromolecular antibiotics against colistin-resistant Acinetobacter baumannii. Front Microbiol 2024; 15:1468682. [PMID: 39629205 PMCID: PMC11611826 DOI: 10.3389/fmicb.2024.1468682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Colistin (CT) is the last-resort of antibiotic against multidrug-resistance (MDR) Acinetobacter baumannii (A. baumannii) infection. However, colistin resistance is increasingly reported in A. baumannii isolates partially due to the global emergence and dissemination of plasmid-borne mobile colistin resistance (mcr) gene and is a threat to human health. Thus, available treatment strategies urgently required in the fight against colistin-resistant A. baumannii. Here, we showed that mcr confers damaged outer membrane (OM) permeability in A. baumannii, which could compromise the viability of A. baumannii. Consistently, A. baumannii with colistin resistance exhibits increased susceptibility to macromolecular antibiotics such as rifampicin (RIF) and erythromycin (ERY). Moreover, the combination therapy of colistin and rifampicin demonstrates efficacy against colistin-resistant A. baumannii, regardless of the presence of mcr. Altogether, our data suggest that the synergy of colistin in combination with macromolecular hydrophobic antibiotics poses a promising therapeutic alternative for colistin-resistant A. baumannii.
Collapse
Affiliation(s)
- Meisong Li
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Center for Provincial Clinical Research Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Furong Ma
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Center for Provincial Clinical Research Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hui Zhao
- School of Pharmacy, Guangzhou Xinhua University, Guangzhou, China
| | - Dianrong Zhou
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Lujie Liang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Runling Lv
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Center for Provincial Clinical Research Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiachen Li
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yaxuan Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Lin Xu
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Chenfei Liu
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Center for Provincial Clinical Research Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guo-Bao Tian
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Siyuan Feng
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yong Xia
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Center for Provincial Clinical Research Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Maunders EA, Giles MW, Ganio K, Cunningham BA, Bennett-Wood V, Cole GB, Ng D, Lai CC, Neville SL, Moraes TF, McDevitt CA, Tan A. Zinc acquisition and its contribution to Klebsiella pneumoniae virulence. Front Cell Infect Microbiol 2024; 13:1322973. [PMID: 38249299 PMCID: PMC10797113 DOI: 10.3389/fcimb.2023.1322973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024] Open
Abstract
Klebsiella pneumoniae is a World Health Organization priority pathogen and a significant clinical concern for infections of the respiratory and urinary tracts due to widespread and increasing resistance to antimicrobials. In the absence of a vaccine, there is an urgent need to identify novel targets for therapeutic development. Bacterial pathogens, including K. pneumoniae, require the d-block metal ion zinc as an essential micronutrient, which serves as a cofactor for ~6% of the proteome. During infection, zinc acquisition necessitates the use of high affinity uptake systems to overcome niche-specific zinc limitation and host-mediated nutritional immunity. Here, we report the identification of ZnuCBA and ZniCBA, two ATP-binding cassette permeases that are highly conserved in Klebsiella species and contribute to K. pneumoniae AJ218 zinc homeostasis, and the high-resolution structure of the zinc-recruiting solute-binding protein ZniA. The Znu and Zni permeases appear functionally redundant with abrogation of both systems required to reduce K. pneumoniae zinc accumulation. Disruption of both systems also exerted pleiotropic effects on the homeostasis of other d-block elements. Zinc limitation perturbed K. pneumoniae cell morphology and compromised resistance to stressors, such as salt and oxidative stress. The mutant strain lacking both systems showed significantly impaired virulence in acute lung infection models, highlighting the necessity of zinc acquisition in the virulence and pathogenicity of K. pneumoniae.
Collapse
Affiliation(s)
- Eve A. Maunders
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Matthew W. Giles
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Bliss A. Cunningham
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Vicki Bennett-Wood
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Gregory B. Cole
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Dixon Ng
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Christine C. Lai
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Stephanie L. Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Trevor F. Moraes
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Christopher A. McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Aimee Tan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Sharma KK, Singh D, Mohite SV, Williamson PR, Kennedy JF. Metal manipulators and regulators in human pathogens: A comprehensive review on microbial redox copper metalloenzymes "multicopper oxidases and superoxide dismutases". Int J Biol Macromol 2023; 233:123534. [PMID: 36740121 DOI: 10.1016/j.ijbiomac.2023.123534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The chemistry of metal ions with human pathogens is essential for their survival, energy generation, redox signaling, and niche dominance. To regulate and manipulate the metal ions, various enzymes and metal chelators are present in pathogenic bacteria. Metalloenzymes incorporate transition metal such as iron, zinc, cobalt, and copper in their reaction centers to perform essential metabolic functions; however, iron and copper have gained more importance. Multicopper oxidases have the ability to perform redox reaction on phenolic substrates with the help of copper ions. They have been reported from Enterobacteriaceae, namely Salmonella enterica, Escherichia coli, and Yersinia enterocolitica, but their role in virulence is still poorly understood. Similarly, superoxide dismutases participate in reducing oxidative stress and allow the survival of pathogens. Their role in virulence and survival is well established in Salmonella typhimurium and Mycobacterium tuberculosis. Further, to ensure survival against stress, like metal starvation or metal toxicity, redox metalloenzymes and metal transportation systems of pathogens actively participate in metal homeostasis. Recently, the omics and protein structure biology studies have helped to predict new targets for regulation the colonization potential of the pathogenic strains. The current review is focused on the major roles of redox metalloenzymes, especially MCOs and SODs of human pathogenic bacteria.
Collapse
Affiliation(s)
- Krishna Kant Sharma
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| | - Deepti Singh
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Shreya Vishwas Mohite
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, 5 the Croft, Buntsford Drive, Stoke Heath, Bromsgrove, Worcs B60 4JE, UK
| |
Collapse
|
5
|
Rafi MO, Al-Khafaji K, Mandal SM, Meghla NS, Biswas PK, Rahman MS. A subunit vaccine against pneumonia: targeting S treptococcus pneumoniae and Klebsiella pneumoniae. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2023; 12:21. [PMID: 37096010 PMCID: PMC10115389 DOI: 10.1007/s13721-023-00416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/25/2023] [Accepted: 04/09/2023] [Indexed: 04/26/2023]
Abstract
Community-acquired pneumonia is primarily caused by Streptococcus pneumoniae and Klebsiella pneumoniae, two pathogens that have high morbidity and mortality rates. This is largely due to bacterial resistance development against current antibiotics and the lack of effective vaccines. The objective of this work was to develop an immunogenic multi-epitope subunit vaccine capable of eliciting a robust immune response against S. pneumoniae and K. pneumoniae. The targeted proteins were the pneumococcal surface proteins (PspA and PspC) and choline-binding protein (CbpA) of S. pneumoniae and the outer membrane proteins (OmpA and OmpW) of K. pneumoniae. Different computational approaches and various immune filters were employed for designing a vaccine. The immunogenicity and safety of the vaccine were evaluated by utilizing many physicochemical and antigenic profiles. To improve structural stability, disulfide engineering was applied to a portion of the vaccine structure with high mobility. Molecular docking was performed to examine the binding affinities and biological interactions at the atomic level between the vaccine and Toll-like receptors (TLR2 and 4). Further, the dynamic stabilities of the vaccine and TLRs complexes were investigated by molecular dynamics simulations. While the immune response induction capability of the vaccine was assessed by the immune simulation study. Vaccine translation and expression efficiency was determined through an in silico cloning experiment utilizing the pET28a(+) plasmid vector. The obtained results revealed that the designed vaccine is structurally stable and able to generate an effective immune response to combat pneumococcal infection. Supplementary Information The online version contains supplementary material available at 10.1007/s13721-023-00416-3.
Collapse
Affiliation(s)
- Md. Oliullah Rafi
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | | | - Santi M. Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Nigar Sultana Meghla
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Polash Kumar Biswas
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 South Korea
| | - Md. Shahedur Rahman
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| |
Collapse
|
6
|
Huang M, He P, He P, Wu Y, Munir S, He Y. Novel Virulence Factors Deciphering Klebsiella pneumoniae KpC4 Infect Maize as a Crossing-Kingdom Pathogen: An Emerging Environmental Threat. Int J Mol Sci 2022; 23:ijms232416005. [PMID: 36555647 PMCID: PMC9785288 DOI: 10.3390/ijms232416005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Klebsiella pneumoniae is not only a human and animal opportunistic pathogen, but a food-borne pathogen. Cross-kingdom infection has been focused on since K. pneumoniae was identified as the pathogen of maize, banana, and pomegranate. Although the pathogenicity of K. pneumoniae strains (from ditch water, maize, and human) on plant and mice has been confirmed, there are no reports to explain the molecular mechanisms of the pathogen. This study uncovered the K. pneumoniae KpC4 isolated from maize top rot for the determination of various virulence genes and resistance genes. At least thirteen plant disease-causing genes are found to be involved in the disruption of plant defense. Among them, rcsB is responsible for causing disease in both plants and animals. The novel sequence types provide solid evidence that the pathogen invades plant and has robust ecological adaptability. It is imperative to perform further studies on the verification of these KpC4 genes’ functions to understand the molecular mechanisms involved in plant−pathogen interactions.
Collapse
Affiliation(s)
- Min Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- College of Agronomy and Life Sciences and Engineering Research Center for Urban Modern Agriculture of Higher Education in Yunnan Province, Kunming University, Kunming 650214, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (S.M.); (Y.H.)
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (S.M.); (Y.H.)
| |
Collapse
|
7
|
Zhang BZ, Hu D, Dou Y, Xiong L, Wang X, Hu J, Xing SZ, Li W, Cai JP, Jin M, Zhang M, Lin Q, Li M, Yuen KY, Huang JD. Identification and Evaluation of Recombinant Outer Membrane Proteins as Vaccine Candidates Against Klebsiella pneumoniae. Front Immunol 2021; 12:730116. [PMID: 34745099 PMCID: PMC8564470 DOI: 10.3389/fimmu.2021.730116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Klebsiella pneumoniae found in the normal flora of the human oral and intestinal tract mainly causes hospital-acquired infections but can also cause community-acquired infections. To date, most clinical trials of vaccines against K. pneumoniae have ended in failure. Furthermore, no single conserved protein has been identified as an antigen candidate to accelerate vaccine development. In this study, we identified five outer membrane proteins of K. pneumoniae, namely, Kpn_Omp001, Kpn_Omp002, Kpn_Omp003, Kpn_Omp004, and Kpn_Omp005, by using reliable second-generation proteomics and bioinformatics. Mice vaccinated with these five KOMPs elicited significantly higher antigen-specific IgG, IgG1, and IgG2a. However, only Kpn_Omp001, Kpn_Omp002, and Kpn_Omp005 were able to induce a protective immune response with two K. pneumoniae infection models. These protective effects were accompanied by the involvement of different immune responses induced by KOMPs, which included KOMPs-specific IFN-γ-, IL4-, and IL17A-mediated immune responses. These findings indicate that Kpn_Omp001, Kpn_Omp002, and Kpn_Omp005 are three potential Th1, Th2, and Th17 candidate antigens, which could be developed into multivalent and serotype-independent vaccines against K. pneumoniae infection.
Collapse
Affiliation(s)
- Bao-Zhong Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Danyu Hu
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ying Dou
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Lifeng Xiong
- Department of Microbiology, The University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Xiaolei Wang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Jingchu Hu
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shao-Zhen Xing
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Wenjun Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jian-Piao Cai
- Department of Microbiology, The University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Meiling Jin
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mengya Zhang
- Vaccine and Antibody Engineering, HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), Hangzhou, China
| | - Qiubin Lin
- Vaccine and Antibody Engineering, HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), Hangzhou, China
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong, SAR China
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong, Hong Kong, SAR China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Jian-Dong Huang
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, Hong Kong, SAR China
- Vaccine and Antibody Engineering, HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), Hangzhou, China
| |
Collapse
|
8
|
Jung HJ, Sorbara MT, Pamer EG. TAM mediates adaptation of carbapenem-resistant Klebsiella pneumoniae to antimicrobial stress during host colonization and infection. PLoS Pathog 2021; 17:e1009309. [PMID: 33556154 PMCID: PMC7895364 DOI: 10.1371/journal.ppat.1009309] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/19/2021] [Accepted: 01/12/2021] [Indexed: 01/12/2023] Open
Abstract
Gram-negative pathogens, such as Klebsiella pneumoniae, remodel their outer membrane (OM) in response to stress to maintain its integrity as an effective barrier and thus to promote their survival in the host. The emergence of carbapenem-resistant K. pneumoniae (CR-Kp) strains that are resistant to virtually all antibiotics is an increasing clinical problem and OM impermeability has limited development of antimicrobial agents because higher molecular weight antibiotics cannot access sites of activity. Here, we demonstrate that TAM (translocation and assembly module) deletion increases CR-Kp OM permeability under stress conditions and enhances sensitivity to high-molecular weight antimicrobials. SILAC-based proteomic analyses revealed mis-localization of membrane proteins in the TAM deficient strain. Stress-induced sensitization enhances clearance of TAM-deficient CR-Kp from the gut lumen following fecal microbiota transplantation and from infection sites following pulmonary or systemic infection. Our study suggests that TAM, as a regulator of OM permeability, represents a potential target for development of agents that enhance the effectiveness of existing antibiotics.
Collapse
Affiliation(s)
- Hea-Jin Jung
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States of America
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Infectious Diseases and Global Health, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (H-JJ); (EGP)
| | - Matthew T. Sorbara
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States of America
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Infectious Diseases and Global Health, The University of Chicago, Chicago, Illinois, United States of America
| | - Eric G. Pamer
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States of America
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Infectious Diseases and Global Health, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (H-JJ); (EGP)
| |
Collapse
|
9
|
Hu Y, Anes J, Devineau S, Fanning S. Klebsiella pneumoniae: Prevalence, Reservoirs, Antimicrobial Resistance, Pathogenicity, and Infection: A Hitherto Unrecognized Zoonotic Bacterium. Foodborne Pathog Dis 2020; 18:63-84. [PMID: 33124929 DOI: 10.1089/fpd.2020.2847] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Klebsiella pneumoniae is considered an opportunistic pathogen, constituting an ongoing health concern for immunocompromised patients, the elderly, and neonates. Reports on the isolation of K. pneumoniae from other sources are increasing, many of which express multidrug-resistant (MDR) phenotypes. Three phylogroups were identified based on nucleotide differences. Niche environments, including plants, animals, and humans appear to be colonized by different phylogroups, among which KpI (K. pneumoniae) is commonly associated with human infection. Infections with K. pneumoniae can be transmitted through contaminated food or water and can be associated with community-acquired infections or between persons and animals involved in hospital-acquired infections. Increasing reports are describing detections along the food chain, suggesting the possibility exists that this could be a hitherto unexplored reservoir for this opportunistic bacterial pathogen. Expression of MDR phenotypes elaborated by these bacteria is due to the nature of various plasmids carrying antimicrobial resistance (AMR)-encoding genes, and is a challenge to animal, environmental, and human health alike. Raman spectroscopy has the potential to provide for the rapid identification and screening of antimicrobial susceptibility of Klebsiella isolates. Moreover, hypervirulent isolates linked with extraintestinal infections express phenotypes that may support their niche adaptation. In this review, the prevalence, reservoirs, AMR, Raman spectroscopy detection, and pathogenicity of K. pneumoniae are summarized and various extraintestinal infection pathways are further narrated to extend our understanding of its adaptation and survival ability in reservoirs, and associated disease risks.
Collapse
Affiliation(s)
- Yujie Hu
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, Science Centre South, College of Health and Agricultural Sciences, University College Dublin (UCD), Dublin, Ireland.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - João Anes
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, Science Centre South, College of Health and Agricultural Sciences, University College Dublin (UCD), Dublin, Ireland
| | | | - Séamus Fanning
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, Science Centre South, College of Health and Agricultural Sciences, University College Dublin (UCD), Dublin, Ireland.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China.,Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
10
|
Lerminiaux NA, MacKenzie KD, Cameron ADS. Salmonella Pathogenicity Island 1 (SPI-1): The Evolution and Stabilization of a Core Genomic Type Three Secretion System. Microorganisms 2020; 8:microorganisms8040576. [PMID: 32316180 PMCID: PMC7232297 DOI: 10.3390/microorganisms8040576] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 11/16/2022] Open
Abstract
Salmonella Pathogenicity Island 1 (SPI-1) encodes a type three secretion system (T3SS), effector proteins, and associated transcription factors that together enable invasion of epithelial cells in animal intestines. The horizontal acquisition of SPI-1 by the common ancestor of all Salmonella is considered a prime example of how gene islands potentiate the emergence of new pathogens with expanded niche ranges. However, the evolutionary history of SPI-1 has attracted little attention. Here, we apply phylogenetic comparisons across the family Enterobacteriaceae to examine the history of SPI-1, improving the resolution of its boundaries and unique architecture by identifying its composite gene modules. SPI-1 is located between the core genes fhlA and mutS, a hotspot for the gain and loss of horizontally acquired genes. Despite the plasticity of this locus, SPI-1 demonstrates stable residency of many tens of millions of years in a host genome, unlike short-lived homologous T3SS and effector islands including Escherichia ETT2, Yersinia YSA, Pantoea PSI-2, Sodalis SSR2, and Chromobacterium CPI-1. SPI-1 employs a unique series of regulatory switches, starting with the dedicated transcription factors HilC and HilD, and flowing through the central SPI-1 regulator HilA. HilA is shared with other T3SS, but HilC and HilD may have their evolutionary origins in Salmonella. The hilA, hilC, and hilD gene promoters are the most AT-rich DNA in SPI-1, placing them under tight control by the transcriptional repressor H-NS. In all Salmonella lineages, these three promoters resist amelioration towards the genomic average, ensuring strong repression by H-NS. Hence, early development of a robust and well-integrated regulatory network may explain the evolutionary stability of SPI-1 compared to T3SS gene islands in other species.
Collapse
Affiliation(s)
- Nicole A. Lerminiaux
- Department of Biology, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada; (N.A.L.); (K.D.M.)
- Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Keith D. MacKenzie
- Department of Biology, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada; (N.A.L.); (K.D.M.)
- Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Andrew D. S. Cameron
- Department of Biology, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada; (N.A.L.); (K.D.M.)
- Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
- Correspondence:
| |
Collapse
|
11
|
Kong H, Cheng W, Wei H, Yuan Y, Yang Z, Zhang X. An overview of recent progress in siderophore-antibiotic conjugates. Eur J Med Chem 2019; 182:111615. [PMID: 31434038 DOI: 10.1016/j.ejmech.2019.111615] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/01/2019] [Accepted: 08/09/2019] [Indexed: 01/09/2023]
Abstract
Multi-drug resistant infections caused by Gram-negative bacteria have become one of the most important reasons for the failure of clinical anti-infective treatment. Siderophore-antibiotic conjugates, which were designed based on a "Trojan horse" strategy wherein features enabled active uptake to bypass the Gram-negative cell wall, have been expected to be a weapon for anti-infective treatment in the clinic. Herein, we review antibiotic drug design strategies based on mimics of nature siderophores reported in recent years, we also focus our attention on the relationship between the type of linker and the corresponding antibacterial activity.
Collapse
Affiliation(s)
- Huimin Kong
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Han Wei
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yongliang Yuan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiheng Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
12
|
Babu L, Uppalapati SR, Sripathy MH, Reddy PN. Evaluation of Recombinant Multi-Epitope Outer Membrane Protein-Based Klebsiella pneumoniae Subunit Vaccine in Mouse Model. Front Microbiol 2017; 8:1805. [PMID: 28979250 PMCID: PMC5611512 DOI: 10.3389/fmicb.2017.01805] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/05/2017] [Indexed: 12/31/2022] Open
Abstract
Safety and protective efficacy of recombinant multi-epitope subunit vaccine (r-AK36) was evaluated in a mouse model. Recombinant AK36 protein comprised of immunodominant antigens from outer membrane proteins (Omp’s) of Klebsiella pneumoniae namely OmpA and OmpK36. r-AK36 was highly immunogenic and the hyperimmune sera reacted strongly with native OmpA and OmpK36 proteins from different K. pneumoniae strains. Hyperimmune sera showed cross-reactivity with Omp’s of other Gram-negative organisms. Humoral responses showed a Th2-type polarized immune response with IgG1 being the predominant antibody isotype. Anti-r-AK36 antibodies showed antimicrobial effect during in vitro testing with MIC values in the range of 25–50 μg/ml on different K. pneumoniae strains. The recombinant antigen elicited three fold higher proliferation of splenocytes from immunized mice compared to those with sham-immunized mice. Anti-r-AK36 antibodies also exhibited in vitro biofilm inhibition property. Subunit vaccine r-AK36 immunization promoted induction of protective cytokines IL-2 and IFN-γ in immunized mice. When r-AK36-immunized mice were challenged with 3 × LD100 dose, ∼80% of mice survived beyond the observation period. Passive antibody administration to naive mice protected them (67%) against the lethal challenge. Since the targeted OMPs are conserved among all K. pneumoniae serovars and due to the strong nature of immune responses, r-AK36 subunit vaccine could be a cost effective candidate against klebsiellosis.
Collapse
Affiliation(s)
- Litty Babu
- Department of Microbiology, Defence Food Research LaboratoryMysore, India
| | - Siva R Uppalapati
- Department of Microbiology, Defence Food Research LaboratoryMysore, India
| | - Murali H Sripathy
- Department of Microbiology, Defence Food Research LaboratoryMysore, India
| | - Prakash N Reddy
- Department of Microbiology, Defence Food Research LaboratoryMysore, India.,Department of Biotechnology, Vignan's Foundation for Science, Technology and Research UniversityGuntur, India
| |
Collapse
|
13
|
Zhi XY, Jiang Z, Yang LL, Huang Y. The underlying mechanisms of genetic innovation and speciation in the family Corynebacteriaceae: A phylogenomics approach. Mol Phylogenet Evol 2017; 107:246-255. [DOI: 10.1016/j.ympev.2016.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 01/01/2023]
|
14
|
Lin IT, Chiou YM, Liang YC, Lin CN, Sun WSW, Li S, Chang CH, Syu WJ, Chen JW. Unique clustering genes in the bacterial chromosome affecting the type-III secretion of enterohaemorrhagic Escherichia coli. Microbiology (Reading) 2016; 162:1744-1754. [DOI: 10.1099/mic.0.000348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- I-Ting Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Yi-Ming Chiou
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Yen-Chia Liang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Ching-Nan Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Wei-Sheng W. Sun
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Shiaowen Li
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Chuan-Hsiung Chang
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Wan-Jr Syu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Jenn-Wei Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| |
Collapse
|
15
|
Ferreira D, Seca AML, C G A D, Silva AMS. Targeting human pathogenic bacteria by siderophores: A proteomics review. J Proteomics 2016; 145:153-166. [PMID: 27109355 DOI: 10.1016/j.jprot.2016.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/03/2016] [Accepted: 04/12/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED Human bacterial infections are still a major public health problem throughout the world. Therefore it is fundamental to understand how pathogenic bacteria interact with their human host and to develop more advanced drugs or vaccines in response to the increasing bacterial resistance. Since iron is essential to bacterial survival and growth inside the host tissues, these microorganisms have developed highly efficient iron-acquisition systems; the most common one involves the secretion of iron chelators into the extracellular environment, known as siderophores, and the corresponding siderophore-membrane receptors or transporters responsible for the iron uptake. In the past few decades, several biochemical methods and genetic screens have been employed to track down and identify these iron-scavenging molecules. However, compared with the previous "static" approaches, proteomic identification is revealing far more molecules through full protein mapping and becoming more rapid and selective, leading the scientific and medical community to consider standardizing proteomic tools for clinical biomarker detection of bacterial infectious diseases. In this review, we focus on human pathogenic Gram-negative bacteria and discuss the importance of siderophores in their virulence and the available proteomic strategies to identify siderophore-related proteins and their expression level under different growth conditions. The promising use of siderophore antibiotics to overcome bacterial resistance and the future of proteomics in the routine clinical care are also mentioned. SIGNIFICANCE Proteomic strategies to identify siderophore-related proteins and their expression level can be helpful to control and/or find a cure of infectious deseases especially if related with multidrug resistance. Siderophores are low-molecular-weight compounds produced by bacteria which can become clinical biomarkers and/or antibiotics used mainly in "Trojan horse" type strategies. Due to the above mention we think that the promising use of siderophore to overcome bacterial resistance and the future of proteomics in the routine clinical care is a hot topic that should be discussed.
Collapse
Affiliation(s)
- Daniela Ferreira
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs (QOPNA), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ana M L Seca
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs (QOPNA), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Department of Technologic Sciences and Development, University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Azores, Portugal
| | - Diana C G A
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs (QOPNA), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Artur M S Silva
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs (QOPNA), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
16
|
Vaccination with Klebsiella pneumoniae-derived extracellular vesicles protects against bacteria-induced lethality via both humoral and cellular immunity. Exp Mol Med 2015; 47:e183. [PMID: 26358222 PMCID: PMC4650931 DOI: 10.1038/emm.2015.59] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 12/30/2022] Open
Abstract
The emergence of multidrug-resistant Klebsiella pneumoniae highlights the need to develop preventive measures to ameliorate Klebsiella infections. Bacteria-derived extracellular vesicles (EVs) are spherical nanometer-sized proteolipids enriched with outer membrane proteins. Gram-negative bacteria-derived EVs have gained interest for use as nonliving complex vaccines. In the present study, we evaluated whether K. pneumoniae-derived EVs confer protection against bacteria-induced lethality. K. pneumoniae-derived EVs isolated from in vitro bacterial culture supernatants induced innate immunity, including the upregulation of co-stimulatory molecule expression and proinflammatory mediator production. EV vaccination via the intraperitoneal route elicited EV-reactive antibodies and interferon-gamma-producing T-cell responses. Three vaccinations with the EVs prevented bacteria-induced lethality. As verified by sera and splenocytes adoptive transfer, the protective effect of EV vaccination was dependent on both humoral and cellular immunity. Taken together, these findings suggest that K. pneumoniae-derived EVs are a novel vaccine candidate against K. pneumoniae infections.
Collapse
|
17
|
Li B, Zhao Y, Liu C, Chen Z, Zhou D. Molecular pathogenesis of Klebsiella pneumoniae. Future Microbiol 2015; 9:1071-81. [PMID: 25340836 DOI: 10.2217/fmb.14.48] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Typical Klebsiella pneumoniae is an opportunistic pathogen, which mostly affects those with weakened immune systems and tends to cause nosocomial infections. A subset of hypervirulent K. pneumoniae serotypes with elevated production of capsule polysaccharide can affect previously healthy persons and cause life-threatening community-acquired infections, such as pyogenic liver abscess, meningitis, necrotizing fasciitis, endophthalmitis and severe pneumonia. K. pneumoniae utilizes a variety of virulence factors, especially capsule polysaccharide, lipopolysaccharide, fimbriae, outer membrane proteins and determinants for iron acquisition and nitrogen source utilization, for survival and immune evasion during infection. This article aims to present the state-of-the-art understanding of the molecular pathogenesis of K. pneumoniae.
Collapse
Affiliation(s)
- Bei Li
- Department of Dermatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | | | | | | | | |
Collapse
|