1
|
Allam NAT, Abdelsalam ME, Elsharkawy HI, Kandil MM, Mohamed AMM, Ali F, Gebely MA, Nour SY, Sedky D, El-Gawad MEHA, Zaki HM, Al-Gallas N, Aboelmaaty AM, Sobhy MM, Ata NS, Abdel-Hamid MS, Badawy GA. Comprehensive epidemiological evaluation of ruminant brucellosis and associated risk factors in some Egyptian Governorates. Vet World 2024; 17:2780-2796. [PMID: 39897353 PMCID: PMC11784036 DOI: 10.14202/vetworld.2024.2780-2796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/16/2024] [Indexed: 02/04/2025] Open
Abstract
Background and Aim Brucellosis contributes to significant economic losses due to abortion, weak newborns, infertility, and up to 20% reductions in milk yield in carrier animals. This study aimed to estimate the prevalence of ruminant brucellosis in six Egyptian governorates. This study aimed to estimate the prevalence of ruminant brucellosis and evaluate the risk factors regarding the epidemiological status, highlighting the importance of early carrier detection for the success of control programs. Materials and Methods A total of 3000 ruminants were investigated. Blood and serum samples were collected for routine hemato-biochemical analysis (complete blood picture and metabolic panel). In addition, genotoxicity analysis was performed, whereas tissue samples were collected for histopathological analysis. The buffered acidified plate antigen test (BAPAT), Rose Bengal plate test (RBPT), and complement fixation test (CFT) were used for serological diagnosis of brucellosis. The obtained bacterial colonies were typed using Brucella abortus-, melitensis-, ovis-, and suis-polymerase chain reaction (AMOS-PCR), depending on the variability of the IS711 fragment among Brucella spp. Serum trace elements, oxidative stress, and acute phase proteins were compared according to body condition score (BCS) and clinical condition images within the study population. Results Mastitis and abortion were the key recorded symptoms (9.966%, 299/3000 and 6%, 180/3000, respectively); however, symptomless individuals were predominant (82.9%, 2487/3000). Blood lymphocytosis was prominent even in asymptomatic animals. Nutritional and food conversion conditions were defined as low, moderate, or high BCS. Brucella overall seropositivity by BAPAT, RBPT, and CFT was 6.1% (182/3000), 5.6% (168/3000), and 5.1% (154/3000) in ruminant species within the included governorates, respectively. Upon diagnosis, 154 seropositive cases developed 93 bacterial isolates and a 731-bp PCR fragment whose sequences confirmed Brucella melitensis biovar 3. Serum metabolic and biochemical profiles, acute phase proteins, trace elements, and oxidative stress concentrations were indicative of loss of functionality in the liver and kidneys, malnutrition and malabsorption syndrome, and DNA damage, particularly in the low-BCS groups (p < 0.0001). Granulomatous lesions were most prominent in the lymph nodes, spleen, uterus, and udder of the dams, while placental multifocal necrosis with thrombosis was recorded in aborted fetuses. There were 8 types of chromosomal aberrations detected in peripheral white blood cells. The highest frequency was for dicentric aberrations 0.025% (25/1000), whereas the lowest 0.009% (9/1000) was for acentric, ring, fusion, and polyploidy. The difference between species was significant for BCS; 14.2% in low-BCS cattle and camels and 8.4% in high-BCS buffaloes. Conclusion B. melitensis biovar 3 is prevalent in Egypt. Mixed-rearing systems are the main risk factors for interspecies transmission among ruminants. The difficulty in accurately diagnosing all infected animals, particularly carriers, is a major limitation of eradication and control programs. Different biomarkers could be indicators and/or sensors for performance and/or infectivity conditions in animal herds; however, they require further optimization. Early detection using molecular technologies, highly descriptive, quantitative, sensitive, and specific methods, as alternatives to serological diagnosis (CFT, BAPAT, and RBT), is urgently needed to enhance the efficiency of brucellosis-specific prophylaxis. Such a comprehensive procedure is the World Organization for Animal Health dependent decision.
Collapse
Affiliation(s)
- Nesreen Allam Tantawy Allam
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, 33 El Buhouth Street, Dokki, P.O. Box: 12622, Cairo, Egypt
| | - Mahinour Ezzeldin Abdelsalam
- Department of General Biology, Center of Basic Sciences, Misr University for Science and Technology, Al Motamayez District, 6 of October, Giza, Egypt
| | - Hend I. Elsharkawy
- Brucella Reference Laboratory, Animal Health Research Institute, Agricultural Research Center, P.O. Box 264-Giza, Cairo, 12618, Egypt
| | - Mai Mohamed Kandil
- Department of Microbiology and Immunology, Veterinary Research Institute, National Research Centre, 33 El Buhouth Street, Dokki, P.O. Box: 12622, Cairo, Egypt
| | - Amany Mohamed Mohamed Mohamed
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, 33 El Buhouth Street, Dokki, P.O. Box: 12622, Cairo, Egypt
| | - Fatma Ali
- Department of Physiology, Faculty of Veterinary Medicine, Aswan University, Egypt
| | - Mohamed A. Gebely
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, 33 El Buhouth Street, Dokki, P.O. Box: 12622, Cairo, Egypt
| | - Safaa Y. Nour
- Animal Medicine Department, Faculty of Veterinary Medicine, Aswan University, Egypt
| | - Doaa Sedky
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, 33 El Buhouth Street, Dokki, P.O. Box: 12622, Cairo, Egypt
| | | | - Hoda M. Zaki
- Brucella Reference Laboratory, Animal Health Research Institute, Agricultural Research Center, P.O. Box 264-Giza, Cairo, 12618, Egypt
| | - Nazek Al-Gallas
- Department of Biology, Faculty of Science, University of Hafr Al-Batin, P.O. Box: 1803, Hafr Al-Batin, 31991, Kingdom of Saudi Arabia
- Water and Food Control Lab., National Center of Salmonella, Shigella, Vibrio, E. coli-Enteropathogens, Institute Pasteur de Tunis, Tunis
| | - Amal M. Aboelmaaty
- Department of Reproduction, Veterinary Research Institute, National Research Centre, 33 El Buhouth Street, Dokki, P.O. Box: 12622, Cairo, Egypt
| | - Mona Mohamed Sobhy
- Department of Reproductive Diseases, Animal Reproduction Research Institute, Agricultural Research Center, Al-Haram, Giza, Egypt
| | - Nagwa Sayed Ata
- Department of Microbiology and Immunology, Veterinary Research Institute, National Research Centre, 33 El Buhouth Street, Dokki, P.O. Box: 12622, Cairo, Egypt
| | - Marwa Salah Abdel-Hamid
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City
| | - Ghada A. Badawy
- Department of Botany, Faculty of Science, El-Fayoum University, Fayoum, 63514, Egypt
- Department of Biology, Faculty of Science, University of Tabuk, Umluj 46429, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Adcox HE, Hunt JR, Allen PE, Siff TE, Rodino KG, Ottens AK, Carlyon JA. Orientia tsutsugamushi Ank5 promotes NLRC5 cytoplasmic retention and degradation to inhibit MHC class I expression. Nat Commun 2024; 15:8069. [PMID: 39277599 PMCID: PMC11401901 DOI: 10.1038/s41467-024-52119-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 08/27/2024] [Indexed: 09/17/2024] Open
Abstract
How intracellular bacteria subvert the major histocompatibility complex (MHC) class I pathway is poorly understood. Here, we show that the obligate intracellular bacterium Orientia tsutsugamushi uses its effector protein, Ank5, to inhibit nuclear translocation of the MHC class I gene transactivator, NLRC5, and orchestrate its proteasomal degradation. Ank5 uses a tyrosine in its fourth ankyrin repeat to bind the NLRC5 N-terminus while its F-box directs host SCF complex ubiquitination of NLRC5 in the leucine-rich repeat region that dictates susceptibility to Orientia- and Ank5-mediated degradation. The ability of O. tsutsugamushi strains to degrade NLRC5 correlates with ank5 genomic carriage. Ectopically expressed Ank5 that can bind but not degrade NLRC5 protects the transactivator during Orientia infection. Thus, Ank5 is an immunoevasin that uses its bipartite architecture to rid host cells of NLRC5 and reduce surface MHC class I molecules. This study offers insight into how intracellular pathogens can impair MHC class I expression.
Collapse
Affiliation(s)
- Haley E Adcox
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Jason R Hunt
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Paige E Allen
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Thomas E Siff
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Kyle G Rodino
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
3
|
Serafino A, Bertinat YA, Bueno J, Pittaluga JR, Birnberg Weiss F, Milillo MA, Barrionuevo P. Beyond its preferential niche: Brucella abortus RNA down-modulates the IFN-γ-induced MHC-I expression in epithelial and endothelial cells. PLoS One 2024; 19:e0306429. [PMID: 38980867 PMCID: PMC11232970 DOI: 10.1371/journal.pone.0306429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024] Open
Abstract
Brucella abortus (Ba) is a pathogen that survives inside macrophages. Despite being its preferential niche, Ba infects other cells, as shown by the multiple signs and symptoms humans present. This pathogen can evade our immune system. Ba displays a mechanism of down-modulating MHC-I on monocytes/macrophages in the presence of IFN-γ (when Th1 response is triggered) without altering the total expression of MHC-I. The retained MHC-I proteins are located within the Golgi Apparatus (GA). The RNA of Ba is one of the PAMPs that trigger this phenomenon. However, we acknowledged whether this event could be triggered in other cells relevant during Ba infection. Here, we demonstrate that Ba RNA reduced the surface expression of MHC-I induced by IFN-γ in the human bronchial epithelium (Calu-6), the human alveolar epithelium (A-549) and the endothelial microvasculature (HMEC) cell lines. In Calu-6 and HMEC cells, Ba RNA induces the retention of MHC-I in the GA. This phenomenon was not observed in A-549 cells. We then evaluated the effect of Ba RNA on the secretion of IL-8, IL-6 and MCP-1, key cytokines in Ba infection. Contrary to our expectations, HMEC, Calu-6 and A-549 cells treated with Ba RNA had higher IL-8 and IL-6 levels compared to untreated cells. In addition, we showed that Ba RNA down-modulates the MHC-I surface expression induced by IFN-γ on human monocytes/macrophages via the pathway of the Epidermal Growth Factor Receptor (EGFR). So, cells were stimulated with an EGFR ligand-blocking antibody (Cetuximab) and Ba RNA. Neutralization of the EGFR to some extent reversed the down-modulation of MHC-I mediated by Ba RNA in HMEC and A-549 cells. In conclusion, this is the first study exploring a central immune evasion strategy, such as the downregulation of MHC-I surface expression, beyond monocytes and could shed light on how it persists effectively within the host, enduring unseen and escaping CD8+ T cell surveillance.
Collapse
Affiliation(s)
- Agustina Serafino
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Academia Nacional de Medicina; Buenos Aires, Argentina
| | - Yasmín A. Bertinat
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Academia Nacional de Medicina; Buenos Aires, Argentina
| | - Jorgelina Bueno
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Academia Nacional de Medicina; Buenos Aires, Argentina
| | - José R. Pittaluga
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Academia Nacional de Medicina; Buenos Aires, Argentina
| | - Federico Birnberg Weiss
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Academia Nacional de Medicina; Buenos Aires, Argentina
| | - M. Ayelén Milillo
- Universidad Nacional de Río Negro. Instituto de Estudios en Ciencia, Tecnología, Cultura y Desarrollo. Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas. Argentina
| | - Paula Barrionuevo
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Academia Nacional de Medicina; Buenos Aires, Argentina
| |
Collapse
|
4
|
Yu H, Gu X, Wang D, Wang Z. Brucella infection and Toll-like receptors. Front Cell Infect Microbiol 2024; 14:1342684. [PMID: 38533384 PMCID: PMC10963510 DOI: 10.3389/fcimb.2024.1342684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/17/2024] [Indexed: 03/28/2024] Open
Abstract
Brucella consists of gram-negative bacteria that have the ability to invade and replicate in professional and non-professional phagocytes, and its prolonged persistence in the host leads to brucellosis, a serious zoonosis. Toll-like receptors (TLRs) are the best-known sensors of microorganisms implicated in the regulation of innate and adaptive immunity. In particular, TLRs are transmembrane proteins with a typical structure of an extracellular leucine-rich repeat (LRR) region and an intracellular Toll/interleukin-1 receptor (TIR) domain. In this review, we discuss Brucella infection and the aspects of host immune responses induced by pathogens. Furthermore, we summarize the roles of TLRs in Brucella infection, with substantial emphasis on the molecular insights into its mechanisms of action.
Collapse
Affiliation(s)
- Hui Yu
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- School of Basic Medicine, Baotou Medical College, Baotou, China
| | - Xinyi Gu
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Danfeng Wang
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Zhanli Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| |
Collapse
|
5
|
de Araujo ACVSC, de Queiroz NMGP, Marinho FV, Oliveira SC. Bacillus Calmette-Guérin-Trained Macrophages Elicit a Protective Inflammatory Response against the Pathogenic Bacteria Brucella abortus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:791-803. [PMID: 37477668 PMCID: PMC10530434 DOI: 10.4049/jimmunol.2200642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
The bacillus Calmette-Guérin (BCG) can elicit enhanced innate immune responses against a wide range of infections, known as trained immunity. Brucella abortus is the causative agent of brucellosis, a debilitating disease that affects humans and animals. In this study, we demonstrate that C57BL/6 mouse bone marrow-derived macrophages under BCG training enhance inflammatory responses against B. abortus. BCG-trained macrophages showed increased MHC class II and CD40 expression on the cell surface and higher IL-6, IL-12, and IL-1β production. The increase in IL-1β secretion was accompanied by enhanced activation of canonical and noncanonical inflammasome platforms. We observed elevated caspase-11 expression and caspase-1 processing in BCG-trained macrophages in response to B. abortus compared with untrained cells. In addition, these BCG-trained cells showed higher NLRP3 expression after B. abortus infection. From a metabolic point of view, signaling through the Akt/mammalian target of rapamycin/S6 kinase pathway was also enhanced. In addition, BCG training resulted in higher inducible NO synthase expression and nitrite production, culminating in an improved macrophage-killing capacity against intracellular B. abortus. In vivo, we monitored a significant reduction in the bacterial burden in organs from BCG-trained C57BL/6 mice when compared with the untrained group. In addition, previous BCG immunization of RAG-1-deficient mice partially protects against Brucella infection, suggesting the important role of the innate immune compartment in this scenario. Furthermore, naive recipient mice that received BM transfer from BCG-trained donors showed greater resistance to B. abortus when compared with their untrained counterparts. These results demonstrate that BCG-induced trained immunity in mice results in better control of intracellular B. abortus in vivo and in vitro.
Collapse
Affiliation(s)
- Ana Carolina V. S. C. de Araujo
- Departamento de Genética, Ecologia e Evolução, Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Bioquímica e Imunologia, Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nina M. G. P. de Queiroz
- Departamento de Bioquímica e Imunologia, Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fábio V. Marinho
- Departamento de Bioquímica e Imunologia, Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sergio C. Oliveira
- Departamento de Genética, Ecologia e Evolução, Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Bioquímica e Imunologia, Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Wang H, Clapp B, Hoffman C, Yang X, Pascual DW. A Single Nasal Dose Vaccination with a Brucella abortus Mutant Potently Protects against Pulmonary Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1576-1588. [PMID: 37036290 PMCID: PMC10159994 DOI: 10.4049/jimmunol.2300071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023]
Abstract
The Brucella abortus double-mutant (ΔznuA ΔnorD Brucella abortus-lacZ [znBAZ]) was assessed for its protective efficacy after vaccination with a single nasal dose. Superior protection was achieved in znBAZ-vaccinated mice against pulmonary, wild-type B. abortus 2308 challenge when compared with conventional livestock Brucella abortus vaccines, the smooth S19 (smooth B. abortus strain 19 vaccine) and rough RB51 (rough mutant vaccine strain of B. abortus) strains. Nasal znBAZ vaccination reduced splenic and lung colonization by wild-type brucellae by >3-4 logs. In contrast, S19 reduced lung colonization by only 32-fold, and RB51 failed to reduce colonization. One profound attribute of znBAZ vaccination was the >3-fold increase in pulmonary CD8+ T cells when compared with other vaccinated groups. S19 vaccination increased only CD4+ T cells. All vaccines induced IFN-γ and TNF-α production by CD4+ T cells, but only znBAZ vaccination enhanced the recruitment of polyfunctional CD8+ T cells, by >100-fold. IL-17 by both CD4+ and CD8+ T cells was also induced by subsequent znBAZ vaccination. These results demonstrate that, in addition to achieving protective immunity by CD4+ T cells, CD8+ T cells, specifically resident memory T cells, also confer protection against brucellosis. The protection obtained by znBAZ vaccination was attributed to IFN-γ-producing CD8+ T cells, because depletion of CD8+ T cells throughout vaccination and challenge phases abrogated protection. The stimulation of only CD4+ T cells by RB51- and S19-vaccinated mice proved insufficient in protecting against pulmonary B. abortus 2308 challenge. Thus, nasal znBAZ vaccination offers an alternative means to elicit protection against brucellosis.
Collapse
Affiliation(s)
- Hongbin Wang
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - Beata Clapp
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - Carol Hoffman
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - Xinghong Yang
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - David W. Pascual
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| |
Collapse
|
7
|
Pascual DW, Goodwin ZI, Bhagyaraj E, Hoffman C, Yang X. Activation of mucosal immunity as a novel therapeutic strategy for combating brucellosis. Front Microbiol 2022; 13:1018165. [PMID: 36620020 PMCID: PMC9814167 DOI: 10.3389/fmicb.2022.1018165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Brucellosis is a disease of livestock that is commonly asymptomatic until an abortion occurs. Disease in humans results from contact of infected livestock or consumption of contaminated milk or meat. Brucella zoonosis is primarily caused by one of three species that infect livestock, Bacillus abortus in cattle, B. melitensis in goats and sheep, and B. suis in pigs. To aid in disease prophylaxis, livestock vaccines are available, but are only 70% effective; hence, improved vaccines are needed to mitigate disease, particularly in countries where disease remains pervasive. The absence of knowing which proteins confer complete protection limits development of subunit vaccines. Instead, efforts are focused on developing new and improved live, attenuated Brucella vaccines, since these mimic attributes of wild-type Brucella, and stimulate host immune, particularly T helper 1-type responses, required for protection. In considering their development, the new mutants must address Brucella's defense mechanisms normally active to circumvent host immune detection. Vaccination approaches should also consider mode and route of delivery since disease transmission among livestock and humans is believed to occur via the naso-oropharyngeal tissues. By arming the host's mucosal immune defenses with resident memory T cells (TRMs) and by expanding the sources of IFN-γ, brucellae dissemination from the site of infection to systemic tissues can be prevented. In this review, points of discussion focus on understanding the various immune mechanisms involved in disease progression and which immune players are important in fighting disease.
Collapse
|
8
|
Serafino A, Marin Franco JL, Maio M, Trotta A, Genoula M, Castillo LA, Birnberg Weiss F, Pittaluga JR, Balboa L, Barrionuevo P, Milillo MA. Brucella abortus RNA does not polarize macrophages to a particular profile but interferes with M1 polarization. PLoS Negl Trop Dis 2022; 16:e0010950. [PMID: 36441810 PMCID: PMC9731426 DOI: 10.1371/journal.pntd.0010950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/08/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Monocytes and macrophages play a central role in chronic brucellosis. Brucella abortus (Ba) is an intracellular pathogen that survives inside these cells. On the other hand, macrophages could be differentiated into classical (M1), alternative (M2) or other less-identified profiles. We have previously shown that Ba RNA (a bacterial viability-associated PAMP or vita-PAMP) is a key molecule by which Ba can evade the host immune response. However, we did not know if macrophages could be polarized by this vita-PAMP. To assess this, we used two different approaches: we evaluated if Ba RNA per se was able to differentiate macrophages to M1 or M2 or, given that Ba survives inside macrophages once a Th1 response is established (i.e., in the presence of IFN-γ), we also analysed if Ba RNA could interfere with M1 polarization. We found that Ba RNA alone does not polarize to M1 or M2 but activates human macrophages instead. However, our results show that Ba RNA does interfere with M1 polarization while they are being differentiated. This vita-PAMP diminished the M1-induced CD64, and MHC-II surface expression on macrophages at 48 h. This phenomenon was not associated with an alternative activation of these cells (M2), as shown by unchanged CD206, DC-SIGN and CD163 surface expression. When evaluating glucose metabolism, we found that Ba RNA did not modify M1 glucose consumption or lactate production. However, production of Nitrogen Reactive Species (NRS) did diminish in Ba RNA-treated M1 macrophages. Overall, our results show that Ba RNA could alter the proper immune response set to counterattack the bacteria that could persist in the host establishing a chronic infection.
Collapse
Affiliation(s)
- Agustina Serafino
- Instituto de Medicina Experimental—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Academia Nacional de Medicina; Buenos Aires, Argentina
| | - José L. Marin Franco
- Instituto de Medicina Experimental—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Academia Nacional de Medicina; Buenos Aires, Argentina
| | - Mariano Maio
- Instituto de Medicina Experimental—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Academia Nacional de Medicina; Buenos Aires, Argentina
| | - Aldana Trotta
- Instituto de Medicina Experimental—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Academia Nacional de Medicina; Buenos Aires, Argentina
| | - Melanie Genoula
- Instituto de Medicina Experimental—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Academia Nacional de Medicina; Buenos Aires, Argentina
| | - Luis A. Castillo
- Instituto de Medicina Experimental—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Academia Nacional de Medicina; Buenos Aires, Argentina
| | - Federico Birnberg Weiss
- Instituto de Medicina Experimental—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Academia Nacional de Medicina; Buenos Aires, Argentina
| | - José R. Pittaluga
- Instituto de Medicina Experimental—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Academia Nacional de Medicina; Buenos Aires, Argentina
| | - Luciana Balboa
- Instituto de Medicina Experimental—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Academia Nacional de Medicina; Buenos Aires, Argentina
| | - Paula Barrionuevo
- Instituto de Medicina Experimental—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Academia Nacional de Medicina; Buenos Aires, Argentina
| | - M. Ayelén Milillo
- Instituto de Medicina Experimental—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Academia Nacional de Medicina; Buenos Aires, Argentina
| |
Collapse
|
9
|
Milillo MA, Velásquez LN, Barrionuevo P. Microbial RNA, the New PAMP of Many Faces. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.924719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Traditionally, pathogen-associated molecular patterns (PAMPs) were described as structural molecular motifs shared by different classes of microorganisms. However, it was later discovered that the innate immune system is also capable of distinguishing metabolically active microbes through the detection of a special class of viability-associated PAMPs (vita-PAMPs). Indeed, recognition of vita-PAMPs triggers an extra warning sign not provoked by dead bacteria. Bacterial RNA is classified as a vita-PAMP since it stops being synthesized once the microbes are eliminated. Most of the studies in the literature have focused on the pro-inflammatory capacity of bacterial RNA on macrophages, neutrophils, endothelial cells, among others. However, we, and other authors, have shown that microbial RNA also has down-modulatory properties. More specifically, bacterial RNA can reduce the surface expression of MHC class I and MHC class II on monocytes/macrophages and help evade CD8+ and CD4+ T cell-mediated immune surveillance. This phenomenon has been described for several different bacteria and parasites, suggesting that microbial RNA plays a significant immunoregulatory role in the context of many infectious processes. Thus, beyond the pro-inflammatory capacity of microbial RNA, it seems to be a crucial component in the intricate collection of immune evasion strategies. This review focuses on the different facets of the immune modulating capacity of microbial RNA.
Collapse
|
10
|
Dadar M, Tiwari R, Sharun K, Dhama K. Importance of brucellosis control programs of livestock on the improvement of one health. Vet Q 2021; 41:137-151. [PMID: 33618618 PMCID: PMC7946044 DOI: 10.1080/01652176.2021.1894501] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 01/14/2021] [Accepted: 02/20/2021] [Indexed: 12/21/2022] Open
Abstract
Brucellosis not only represents an important health restraint on livestock but also causes high economic losses in many developing countries worldwide. Despite considerable efforts made for the control of brucellosis, the disease is still spreading in many regions (such as the Middle East) where it represents one of the most important health hazards impacting both animals and humans. The present review aims to investigate the efficacy of veterinary control programs regarding brucellosis, with a special focus on current prevention, control, and eradication approaches. The reasons for unsuccessful control programs such as the absence of highly effective vaccines and non-certified bulls are also debated, to understand why the prevalence of brucellosis in livestock is not decreasing in many areas despite considerable efforts taken to date. The importance of governmental and regional investment in brucellosis control remains one of the main limiting factors owing to the limited budget allocated to tackle this disease. In this context, one health concept has generated novel comprehensive approaches with multiple economic implications across the livestock industry and public health. However, the implementation of such global preventive strategies appears to be a key issue for many endemic and low-income countries. According to the collected data, epidemiological contexts including management and trade systems along with well-defined agro-ecological zones should be evaluated in brucellosis endemic countries to improve milk production and to enhance the sustainability of the livestock sector at both national and regional levels.
Collapse
Affiliation(s)
- Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadyaya Pashu Chikitsa Vigyan Vishwavidyalya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
11
|
Ren H, Yang H, Yang X, Zhang G, Rong X, Huang J, Zhang L, Fu Y, Allain JP, Li C, Wang W. Brucella Outer Membrane Lipoproteins 19 and 16 Differentially Induce IL-18 Response or Pyroptosis in Human Monocytic Cells. J Infect Dis 2021; 224:2148-2159. [PMID: 34013337 DOI: 10.1093/infdis/jiab272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/14/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Brucella species (B. spp.) are Gram-negative intracellular bacteria, causing severe inflammatory diseases in animals and humans. Two major lipoproteins (L19) and (L16) of Brucella outer membrane proteins (OMPs) were extensively explored in associating with inflammatory response of human monocytes (THP-1). METHODS Activated THP-1 cells induced with recombinant L19 and L16 were analyzed in comparison with unlipidated forms (U19 and U16) and lipopolysaccharide (LPS) of B. melitensis, respectively. RESULTS Secretion of inflammatory factors TNF-α, IL-6 and IL-1β was significantly increased from L19, L16 or both stimulated THP-1 cells. High secretion of IL-18 was detected only from L19-induced cells. Signaling of those cytokine responses was identified mainly through P38-MAPK pathway, and signaling of L19-induced IL-1β response was partly occurred via NF-κB. Exploration for different forms of IL-18 found that L19-induced production of active IL-18 (18 kD) was through up-regulating NLRP3 and activating caspase-1, while L16-induced production of inactive IL-18 fragments (15 kD and 16 kD) occurred through activating caspase-8/3. Additionally, L19 up-regulated phosphorylation of XIAP for inhibiting caspase-3 activity to cleave IL-18, while L16 activated caspase-3 for producing GSDME-N and leading to pyroptosis of THP-1 cells. CONCLUSION Brucella L19 and L16 differentially induce IL-18 response or pyroptosis in THP-1 cells, respectively.
Collapse
Affiliation(s)
- Hui Ren
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Heng Yang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.,Department of blood Transfusion, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xin Yang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Guoxia Zhang
- Department of Infectious Disease, Hei Longjiang General Hospital of Agriculture reclamation Bureau, Harbin 150088, China
| | - Xia Rong
- Guangzhou Blood Center, Guangzhou 510095, China
| | - Jiaheng Huang
- Department of Surgery, First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yongshui Fu
- Guangzhou Blood Center, Guangzhou 510095, China
| | - Jean-Pierre Allain
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.,Emeritus professor of Transfusion Medicine, University of Cambridge, Cambridge CB2 2PT, Cambridge, UK
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Wenjing Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
12
|
Jiao H, Zhou Z, Li B, Xiao Y, Li M, Zeng H, Guo X, Gu G. The Mechanism of Facultative Intracellular Parasitism of Brucella. Int J Mol Sci 2021; 22:ijms22073673. [PMID: 33916050 PMCID: PMC8036852 DOI: 10.3390/ijms22073673] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a highly prevalent zoonotic disease characterized by abortion and reproductive dysfunction in pregnant animals. Although the mortality rate of Brucellosis is low, it is harmful to human health, and also seriously affects the development of animal husbandry, tourism and international trade. Brucellosis is caused by Brucella, which is a facultative intracellular parasitic bacteria. It mainly forms Brucella-containing vacuoles (BCV) in the host cell to avoid the combination with lysosome (Lys), so as to avoid the elimination of it by the host immune system. Brucella not only has the ability to resist the phagocytic bactericidal effect, but also can make the host cells form a microenvironment which is conducive to its survival, reproduction and replication, and survive in the host cells for a long time, which eventually leads to the formation of chronic persistent infection. Brucella can proliferate and replicate in cells, evade host immune response and induce persistent infection, which are difficult problems in the treatment and prevention of Brucellosis. Therefore, the paper provides a preliminary overview of the facultative intracellular parasitic and immune escape mechanisms of Brucella, which provides a theoretical basis for the later study on the pathogenesis of Brucella.
Collapse
Affiliation(s)
- Hanwei Jiao
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
- Veterinary Scientific Engineering Research Center, Chongqing 402460, China
- Correspondence:
| | - Zhixiong Zhou
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Bowen Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Yu Xiao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Mengjuan Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Hui Zeng
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Xiaoyi Guo
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Guojing Gu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| |
Collapse
|
13
|
Giambartolomei GH, Delpino MV. Immunopathogenesis of Hepatic Brucellosis. Front Cell Infect Microbiol 2019; 9:423. [PMID: 31956605 PMCID: PMC6951397 DOI: 10.3389/fcimb.2019.00423] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/28/2019] [Indexed: 01/18/2023] Open
Abstract
The hepatic immune system can induce rapid and controlled responses to pathogenic microorganisms and tumor cells. Accordingly, most of the microorganisms that reach the liver through the blood are eliminated. However, some of them, including Brucella spp., take advantage of the immunotolerant capacity of the liver to persist in the host. Brucella has a predilection for surviving in the reticuloendothelial system, with the liver being the largest organ of this system in the human body. Therefore, its involvement in brucellosis is practically invariable. In patients with active brucellosis, the liver is commonly affected, and the most frequent clinical manifestation is hepatosplenomegaly. The molecular mechanisms implicated in liver damage have been recently elucidated. It has been demonstrated how Brucella interacts with hepatocytes inducing its death by apoptosis. The inflammatory microenvironment and the direct effect of Brucella on hepatic stellate cells (HSC) induce their activation and turn these cells from its quiescent form to their fibrogenic phenotype. This HSC activation induced by Brucella infection relies on the presence of a functional type IV secretion system and the effector protein BPE005 through a mechanism involved in the activation of the autophagic pathway. Finally, the molecular mechanisms of liver brucellosis observed so far are shedding light on how the interaction of Brucella with liver cells may play an important role in the discovery of new targets to control the infection. In this review, we report the current understanding of the interaction between liver structural cells and immune system cells during Brucella infection.
Collapse
Affiliation(s)
| | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
14
|
Milillo MA, Trotta A, Serafino A, Marin Franco JL, Marinho FV, Alcain J, Genoula M, Balboa L, Oliveira SC, Giambartolomei GH, Barrionuevo P. Bacterial RNA Contributes to the Down-Modulation of MHC-II Expression on Monocytes/Macrophages Diminishing CD4 + T Cell Responses. Front Immunol 2019; 10:2181. [PMID: 31572389 PMCID: PMC6753364 DOI: 10.3389/fimmu.2019.02181] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/29/2019] [Indexed: 01/18/2023] Open
Abstract
Brucella abortus, the causative agent of brucellosis, displays many resources to evade T cell responses conducive to persist inside the host. Our laboratory has previously showed that infection of human monocytes with B. abortus down-modulates the IFN-γ-induced MHC-II expression. Brucella outer membrane lipoproteins are structural components involved in this phenomenon. Moreover, IL-6 is the soluble factor that mediated MHC-II down-regulation. Yet, the MHC-II down-regulation exerted by lipoproteins was less marked than the one observed as consequence of infection. This led us to postulate that there should be other components associated with viable bacteria that may act together with lipoproteins in order to diminish MHC-II. Our group has recently demonstrated that B. abortus RNA (PAMP related to pathogens' viability or vita-PAMP) is involved in MHC-I down-regulation. Therefore, in this study we investigated if B. abortus RNA could be contributing to the down-regulation of MHC-II. This PAMP significantly down-modulated the IFN-γ-induced MHC-II surface expression on THP-1 cells as well as in primary human monocytes and murine bone marrow macrophages. The expression of other molecules up-regulated by IFN-γ (such as co-stimulatory molecules) was stimulated on monocytes treated with B. abortus RNA. This result shows that this PAMP does not alter all IFN-γ-induced molecules globally. We also showed that other bacterial and parasitic RNAs caused MHC-II surface expression down-modulation indicating that this phenomenon is not restricted to B. abortus. Moreover, completely degraded RNA was also able to reproduce the phenomenon. MHC-II down-regulation on monocytes treated with RNA and L-Omp19 (a prototypical lipoprotein of B. abortus) was more pronounced than in monocytes stimulated with both components separately. We also demonstrated that B. abortus RNA along with its lipoproteins decrease MHC-II surface expression predominantly by a mechanism of inhibition of MHC-II expression. Regarding the signaling pathway, we demonstrated that IL-6 is a soluble factor implicated in B. abortus RNA and lipoproteins-triggered MHC-II surface down-regulation. Finally, CD4+ T cells functionality was affected as macrophages treated with these components showed lower antigen presentation capacity. Therefore, B. abortus RNA and lipoproteins are two PAMPs that contribute to MHC-II down-regulation on monocytes/macrophages diminishing CD4+ T cell responses.
Collapse
Affiliation(s)
- M Ayelén Milillo
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Aldana Trotta
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Agustina Serafino
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - José Luis Marin Franco
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Fábio V Marinho
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Julieta Alcain
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Melanie Genoula
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Luciana Balboa
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Sergio Costa Oliveira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo, Hospital de Clínicas "José de San Martín" (CONICET-UBA), Buenos Aires, Argentina
| | - Paula Barrionuevo
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| |
Collapse
|