1
|
Yang Y, Xu C, Zhang N, Wan Y, Wu Y, Meng F, Chen Y, Yang H, Liu L, Qiao C, Chen H. Two amino acid residues in the N-terminal region of the polymerase acidic protein determine the virulence of Eurasian avian-like H1N1 swine influenza viruses in mice. J Virol 2024; 98:e0129324. [PMID: 39212447 PMCID: PMC11495010 DOI: 10.1128/jvi.01293-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Reassortant Eurasian avian-like H1N1 (rEA H1N1) viruses carrying the internal genes of H1N1/2009 virus have been circulating in pigs for more than 10 years and have caused sporadic human infections. The enhanced virulence phenotype of the rEA H1N1 viruses highlights potential risks to public health. However, the molecular mechanism underlying the viral pathogenicity of the currently circulating rEA H1N1 viruses remains unclear. In this study, we found that two naturally isolated rEA H1N1 swine influenza viruses, A/swine/Liaoning/FX38/2017 (FX38) and A/swine/Liaoning/SY72/2018 (SY72), possessed similar genetic characteristics but exhibited significantly different pathogenicity in a mouse model. Using reverse genetics, we demonstrated that amino acid mutations at positions 100 and 122 in the polymerase acidic (PA) protein had individual and synergistic effects on the polymerase activity and viral replication capacity in vitro, as well as the viral pathogenicity in mice. Furthermore, we revealed that amino acid residue 100 in PA influenced the transcription of viral RNA (vRNA) by altering the endonuclease activity, and amino acid residue 122 affected the synthesis of complementary RNA and messenger RNA by altering the RNA-binding ability and endonuclease activity of the PA protein. Taken together, we identified that two naturally occurring amino acid mutations in PA derived from H1N1/2009 virus are crucial determinants of the virulence of rEA H1N1 viruses and revealed the differential mechanism by which these two mutations affect the transcription and replication of vRNA. These findings will extend our understanding of the roles of PA in the virulence of influenza A viruses.IMPORTANCEMultiple genetic determinants are involved in the virulence of influenza A viruses. In this study, we identified two naturally occurring amino acid mutations, located at residues 100 and 122 in the polymerase acidic (PA) protein, which are associated with viral polymerase activity, replication competence, and pathogenicity in mice. In particular, we clarified the specific mechanism by which the two residues play an important role in viral transcription and replication. These findings will help to improve understanding the functions of amino acid residues in the N-terminal region of the PA protein involved in the pathogenicity of influenza A viruses.
Collapse
Affiliation(s)
- Yuying Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Chengzhi Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Naixin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Yunfei Wan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Yunpu Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Fei Meng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Yan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Huanliang Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Liling Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Chuanling Qiao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| |
Collapse
|
2
|
Wu Y, Guo P, Luo D, Deng J, Yao H, Sun W. Feasibility analysis of inactivating influenza A(H1N1) virus using UVC robot in classroom environment. Heliyon 2024; 10:e29540. [PMID: 38681599 PMCID: PMC11046110 DOI: 10.1016/j.heliyon.2024.e29540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
Background Starting from 2009, H1N1 has been one of the respiratory diseases that afflict the global population. Concurrently, due to the influence of COVID-19, it has become widely accepted that preventing the virus's spread necessitates personal protection measures and disinfection in public spaces. Experiments This study conducted two experiments. In the classroom experiment, six UVC dose test points were calibrated to test whether the UVC dose at each testing point met the standards for inactivating IAVs and the time required to meet the standards. In the simulated classroom experiment, seven square slides made of IAVs were placed. After 10 min of robot movement, irradiated sterile square slides were made into suspension and injected into chicken embryos. Cultivate chicken embryos and conduct IAVs testing. Results Classroom experiment has shown that 5 testing points can meet the standards for inactivating IAVs(3 mJ/cm2), with a required time of 80 min, 40 min, 15 min, 5 min and 10 min. The UVC dose for testing points that do not meet the standards in 80 min is only 0.5 mJ/cm2. The simulation classroom experiment outcomes revealed that 99.99 % of IAVs were deactivated. Furthermore, this study established both a desktop control group and a chair arm control group, both of which yielded identical results, indicating an inactivation logarithm of IAVs≥4log. Conclusion The study presented that IAVs on the surface of an object can be effectively and rapidly deactivated at an irradiation density of 1.8 mW/cm2. Meanwhile, the study provides evidence of the feasibility of using the GXU robot to inactivate IAVs in a classroom environment.
Collapse
Affiliation(s)
- Yizhen Wu
- Research Center for Optoelectronic Materials and Devices, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| | - Peiyao Guo
- Research Center for Optoelectronic Materials and Devices, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| | - Dekun Luo
- Research Center for Optoelectronic Materials and Devices, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| | - Jianyu Deng
- Research Center for Optoelectronic Materials and Devices, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| | - Huilu Yao
- Research Center for Optoelectronic Materials and Devices, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| | - Wenhong Sun
- Research Center for Optoelectronic Materials and Devices, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004 Guangxi, China
- Third Generation Semiconductor Industry Research Institute, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Sun W, Xu J, Wang Z, Li D, Sun Y, Zhu M, Liu X, Li Y, Li F, Wang T, Feng N, Guo Z, Xia X, Gao Y. Clade 2.3.4.4 H5 chimeric cold-adapted attenuated influenza vaccines induced cross-reactive protection in mice and ferrets. J Virol 2023; 97:e0110123. [PMID: 37916835 PMCID: PMC10688331 DOI: 10.1128/jvi.01101-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Clade 2.3.4.4 H5Nx avian influenza viruses (AIVs) have circulated globally and caused substantial economic loss. Increasing numbers of humans have been infected with Clade 2.3.4.4 H5N6 AIVs in recent years. Only a few human influenza vaccines have been licensed to date. However, the licensed live attenuated influenza virus vaccine exhibited the potential of being recombinant with the wild-type influenza A virus (IAV). Therefore, we developed a chimeric cold-adapted attenuated influenza vaccine based on the Clade 2.3.4.4 H5 AIVs. These H5 vaccines demonstrate the advantage of being non-recombinant with circulated IAVs in the future influenza vaccine study. The findings of our current study reveal that these H5 vaccines can induce cross-reactive protective efficacy in mice and ferrets. Our H5 vaccines may provide a novel option for developing human-infected Clade 2.3.4.4 H5 AIV vaccines.
Collapse
Affiliation(s)
- Weiyang Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jiaqi Xu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences,Shandong Normal University, Jinan, China
| | - Zhenfei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Jilin Agricultural University, Changchun, China
| | - Dongxu Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yue Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Menghan Zhu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, School of Basic Medical Sciences, Kaifeng, China
| | - Xiawei Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, School of Basic Medical Sciences, Kaifeng, China
| | - Yuanguo Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Fangxu Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences,Shandong Normal University, Jinan, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhendong Guo
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Nieves O, Ortiz de Zárate D, Aznar E, Caballos I, Garrido E, Martínez-Máñez R, Dortu F, Bernier D, Mengual-Chuliá B, López-Labrador FX, Sloth JJ, Loeschner K, Duedahl-Olesen L, Prado N, Hervello M, Menéndez A, Gransee R, Klotzbuecher T, Gonçalves MC, Zare F, Fuentes López A, Fernández Segovia I, Baviera JMB, Salcedo J, Recuero S, Simón S, Fernández Blanco A, Peransi S, Gómez-Gómez M, Griol A. Development of Photonic Multi-Sensing Systems Based on Molecular Gates Biorecognition and Plasmonic Sensors: The PHOTONGATE Project. SENSORS (BASEL, SWITZERLAND) 2023; 23:8548. [PMID: 37896641 PMCID: PMC10611383 DOI: 10.3390/s23208548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
This paper presents the concept of a novel adaptable sensing solution currently being developed under the EU Commission-founded PHOTONGATE project. This concept will allow for the quantification of multiple analytes of the same or different nature (chemicals, metals, bacteria, etc.) in a single test with levels of sensitivity and selectivity at/or over those offered by current solutions. PHOTONGATE relies on two core technologies: a biochemical technology (molecular gates), which will confer the specificity and, therefore, the capability to be adaptable to the analyte of interest, and which, combined with porous substrates, will increase the sensitivity, and a photonic technology based on localized surface plasmonic resonance (LSPR) structures that serve as transducers for light interaction. Both technologies are in the micron range, facilitating the integration of multiple sensors within a small area (mm2). The concept will be developed for its application in health diagnosis and food safety sectors. It is thought of as an easy-to-use modular concept, which will consist of the sensing module, mainly of a microfluidics cartridge that will house the photonic sensor, and a platform for fluidic handling, optical interrogation, and signal processing. The platform will include a new optical concept, which is fully European Union Made, avoiding optical fibers and expensive optical components.
Collapse
Affiliation(s)
- Oscar Nieves
- Nanophotonics Technology Center, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain; (O.N.); (D.O.d.Z.)
| | - David Ortiz de Zárate
- Nanophotonics Technology Center, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain; (O.N.); (D.O.d.Z.)
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (E.A.); (I.C.); (E.G.); (R.M.-M.)
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe (IISLAFE) Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 46022 Valencia, Spain
| | - Isabel Caballos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (E.A.); (I.C.); (E.G.); (R.M.-M.)
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe (IISLAFE) Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 46022 Valencia, Spain
| | - Eva Garrido
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (E.A.); (I.C.); (E.G.); (R.M.-M.)
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe (IISLAFE) Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 46022 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (E.A.); (I.C.); (E.G.); (R.M.-M.)
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe (IISLAFE) Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 46022 Valencia, Spain
| | - Fabian Dortu
- Multitel, Parc Initialis 2, Rue Pierre et Marie Curie, 7000 Mons, Belgium; (F.D.); (D.B.)
| | - Damien Bernier
- Multitel, Parc Initialis 2, Rue Pierre et Marie Curie, 7000 Mons, Belgium; (F.D.); (D.B.)
| | - Beatriz Mengual-Chuliá
- Virology Laboratory, Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO-Public Health, Generalitat Valenciana, 46020 Valencia, Spain; (B.M.-C.); (F.X.L.-L.)
| | - F. Xavier López-Labrador
- Virology Laboratory, Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO-Public Health, Generalitat Valenciana, 46020 Valencia, Spain; (B.M.-C.); (F.X.L.-L.)
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departament de Microbiologia i Ecologia, Facultat de Medicina, Universitat de València, 46010 Valencia, Spain
| | - Jens J. Sloth
- National Food Institute, Technical University of Denmark, Kemitorvet B201, DK-2800 KGS. Lyngby, Denmark; (J.J.S.); (K.L.); (L.D.-O.)
| | - Katrin Loeschner
- National Food Institute, Technical University of Denmark, Kemitorvet B201, DK-2800 KGS. Lyngby, Denmark; (J.J.S.); (K.L.); (L.D.-O.)
| | - Lene Duedahl-Olesen
- National Food Institute, Technical University of Denmark, Kemitorvet B201, DK-2800 KGS. Lyngby, Denmark; (J.J.S.); (K.L.); (L.D.-O.)
| | - Natalia Prado
- Asociación de Investigación de Industrias Cárnicas del Principado de Asturias (ASINCAR), Polígono La Barreda, Calle Solelleros 5, 33180 Noreña, Spain; (N.P.); (M.H.); (A.M.)
| | - Martín Hervello
- Asociación de Investigación de Industrias Cárnicas del Principado de Asturias (ASINCAR), Polígono La Barreda, Calle Solelleros 5, 33180 Noreña, Spain; (N.P.); (M.H.); (A.M.)
| | - Armando Menéndez
- Asociación de Investigación de Industrias Cárnicas del Principado de Asturias (ASINCAR), Polígono La Barreda, Calle Solelleros 5, 33180 Noreña, Spain; (N.P.); (M.H.); (A.M.)
| | - Rainer Gransee
- Fraunhofer IMM, Carl-Zeiss-Str. 18-20, 55129 Mainz, Germany; (R.G.); (T.K.)
| | | | - M. Clara Gonçalves
- Instituto Superior Técnico, CQE, Avenida Rovisco País 1, 1049 001 Lisboa, Portugal; (M.C.G.); (F.Z.)
| | - Fahimeh Zare
- Instituto Superior Técnico, CQE, Avenida Rovisco País 1, 1049 001 Lisboa, Portugal; (M.C.G.); (F.Z.)
| | - Ana Fuentes López
- Departamento de Tecnología de Alimentos, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural, Universitat Politècnica de València, 46022 Valencia, Spain; (A.F.L.); (J.M.B.B.)
| | - Isabel Fernández Segovia
- Departamento de Tecnología de Alimentos, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural, Universitat Politècnica de València, 46022 Valencia, Spain; (A.F.L.); (J.M.B.B.)
| | - Jose M. Barat Baviera
- Departamento de Tecnología de Alimentos, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural, Universitat Politècnica de València, 46022 Valencia, Spain; (A.F.L.); (J.M.B.B.)
| | - Jaime Salcedo
- Lumensia Sensors S.L., Camí de Vera s/n, 46020 Valencia, Spain; (J.S.); (S.R.); (A.F.B.)
| | - Sara Recuero
- Lumensia Sensors S.L., Camí de Vera s/n, 46020 Valencia, Spain; (J.S.); (S.R.); (A.F.B.)
| | - Santiago Simón
- Lumensia Sensors S.L., Camí de Vera s/n, 46020 Valencia, Spain; (J.S.); (S.R.); (A.F.B.)
| | - Ana Fernández Blanco
- Lumensia Sensors S.L., Camí de Vera s/n, 46020 Valencia, Spain; (J.S.); (S.R.); (A.F.B.)
| | - Sergio Peransi
- Lumensia Sensors S.L., Camí de Vera s/n, 46020 Valencia, Spain; (J.S.); (S.R.); (A.F.B.)
| | - Maribel Gómez-Gómez
- Nanophotonics Technology Center, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain; (O.N.); (D.O.d.Z.)
| | - Amadeu Griol
- Nanophotonics Technology Center, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain; (O.N.); (D.O.d.Z.)
| |
Collapse
|
5
|
Wells EW, Parker MT. Chimeric Viruses Containing Select Agents: The Biology Behind Their Creation, Attenuation, and Exclusion From Regulation. Health Secur 2023; 21:384-391. [PMID: 37703546 DOI: 10.1089/hs.2023.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
The US Centers for Disease Control and Prevention (CDC), as part of the Federal Select Agent Program, and under the purview of 42 CFR §73.3, has the ability to regulate chimeric viruses that contain portions of pathogens that are part of the select agents and toxins list. In addition, the CDC is responsible for excluding pathogens from regulation, including chimeric viruses, that are sufficiently attenuated. Since 2003, the CDC has excluded over 20 chimeric viruses that contain portions of select agents. But in late 2021, the CDC proposed a regulatory first-the addition of a chimeric virus to the select agents and toxins list. To better understand the importance and applicability of this action, we surveyed the landscape of previous exclusions from select agent regulation. First, we reviewed the exclusion criteria used by the Intragovernmental Select Agents and Toxins Technical Advisory Committee in their advisement of the Federal Select Agent Program. We then reviewed the literature on chimeric viruses that contain portions of select agents and that have been excluded from regulation due to sufficient attenuation, focusing on chimeric alphaviruses and chimeric avian influenza viruses. By analyzing biological commonalities and patterns in the structure and methodology of the development of previously excluded chimeric viruses, we provide insight into how the CDC has used exclusion criteria in the past to regulate chimeric viruses. We conclude by contrasting previous exclusions with the recent addition of SARS-CoV-1/SARS-CoV-2 chimeric viruses to the select agents and toxins list, demonstrating that this addition strays from established, effective regulatory processes, and is thus a regulatory misstep.
Collapse
Affiliation(s)
- Elizabeth W Wells
- Elizabeth W. Wells is a Student, Department of Biology, Georgetown College of Arts & Sciences, Georgetown University, Washington, DC
| | - Michael T Parker
- Michael T. Parker, PhD, is Assistant Dean, Georgetown College of Arts & Sciences, Georgetown University, Washington, DC
| |
Collapse
|
6
|
Qian J, Wu Z, Zhu Y, Liu C. One Health: a holistic approach for food safety in livestock. SCIENCE IN ONE HEALTH 2022; 1:100015. [PMID: 39076604 PMCID: PMC11262287 DOI: 10.1016/j.soh.2023.100015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/07/2023] [Indexed: 07/31/2024]
Abstract
The food safety of livestock is a critical issue between animals and humans due to their complex interactions. Pathogens have the potential to spread at every stage of the animal food handling process, including breeding, processing, packaging, storage, transportation, marketing and consumption. In addition, application of the antibiotic usage in domestic animals is a controversial issue because, while they can combat food-borne zoonotic pathogens and promote animal growth and productivity, they can also lead to the transmission of antibiotic-resistant microorganisms and antibiotic-resistant genes across species and habitats. Coevolution of microbiomes may occur in humans and animals as well which may alter the structure of the human microbiome through animal food consumption. One Health is a holistic approach to systematically understand the complex relationships among humans, animals and environments which may provide effective countermeasures to solve food safety problems aforementioned. This paper depicts the main pathogen spectrum of livestock and animal products, summarizes the flow of antibiotic-resistant bacteria and genes between humans and livestock along the food-chain production, and the correlation of their microbiome is reviewed as well to advocate for deeper interdisciplinary communication and collaboration among researchers in medicine, epidemiology, veterinary medicine and ecology to promote One Health approaches to address the global food safety challenges.
Collapse
Affiliation(s)
- Jing Qian
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zheyuan Wu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongzhang Zhu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chang Liu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
7
|
Abstract
Globally swine influenza is one of the most important diseases of the pig industry, with various subtypes of swine influenza virus co-circulating in the field. Swine influenza can not only cause large economic losses for the pig industry but can also lead to epidemics or pandemics in the human population. We provide an overview of the pathogenic characteristics of the disease, diagnosis, risk factors for the occurrence on pig farms, impact on pigs and humans and methods to control it. This review is designed to promote understanding of the epidemiology of swine influenza which will benefit the control of the disease in both pigs and humans.
Collapse
Affiliation(s)
- Yin Li
- School of Veterinary Medicine, Murdoch University, Perth, WA Australia.,Commonwealth Scientific and Industrial Research Organisation, St. Lucia, QLD Australia
| | - Ian Robertson
- School of Veterinary Medicine, Murdoch University, Perth, WA Australia.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
8
|
Zhu J, Jiang Z, Liu J. The matrix gene of pdm/09 H1N1 contributes to the pathogenicity and transmissibility of SIV in mammals. Vet Microbiol 2021; 255:109039. [PMID: 33740730 DOI: 10.1016/j.vetmic.2021.109039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/10/2021] [Indexed: 01/07/2023]
Abstract
The H1N1 influenza virus of swine-origin was responsible for the H1N1 pandemic in 2009 (pdm/09 H1N1), where the virus was transmitted to humans and then spread between people, and its continued circulation has resulted in it becoming a seasonal human flu virus. Since 2016, the matrix (M) gene of pdm/09 H1N1 has been involved in the reassortment of swine influenza viruses (SIVs) in China and has gradually become a dominant genotype in pigs. However, whether M gene substitution will influence the fitness of emerging SIVs remains unclear. Here, we analyzed the biological characteristics of SIVs with the M gene from Eurasian avian-like (EA) SIV or pdm/09 H1N1 in mammals and found that SIVs containing the pdm/09-M gene exhibit stronger virulence in mice, more efficient respiratory droplet transmission between ferrets, and increased transcription of viral genes in A549 cells compared with those containing EA-M. We also determined the functional significance of the pdm/09-M gene in conferring an elevated release of progeny viruses comprised of largely filamentous virions rather than spherical virions. Our study suggests that pdm/09-M plays a crucial role in the genesis of emerging SIVs in terms of the potential prevalence in the population.
Collapse
Affiliation(s)
- Junda Zhu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100094, China
| | - Zhimin Jiang
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100094, China.
| |
Collapse
|
9
|
Henritzi D, Petric PP, Lewis NS, Graaf A, Pessia A, Starick E, Breithaupt A, Strebelow G, Luttermann C, Parker LMK, Schröder C, Hammerschmidt B, Herrler G, Beilage EG, Stadlbauer D, Simon V, Krammer F, Wacheck S, Pesch S, Schwemmle M, Beer M, Harder TC. Surveillance of European Domestic Pig Populations Identifies an Emerging Reservoir of Potentially Zoonotic Swine Influenza A Viruses. Cell Host Microbe 2020; 28:614-627.e6. [PMID: 32721380 DOI: 10.1016/j.chom.2020.07.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
Swine influenza A viruses (swIAVs) can play a crucial role in the generation of new human pandemic viruses. In this study, in-depth passive surveillance comprising nearly 2,500 European swine holdings and more than 18,000 individual samples identified a year-round presence of up to four major swIAV lineages on more than 50% of farms surveilled. Phylogenetic analyses show that intensive reassortment with human pandemic A(H1N1)/2009 (H1pdm) virus produced an expanding and novel repertoire of at least 31 distinct swIAV genotypes and 12 distinct hemagglutinin/neuraminidase combinations with largely unknown consequences for virulence and host tropism. Several viral isolates were resistant to the human antiviral MxA protein, a prerequisite for zoonotic transmission and stable introduction into human populations. A pronounced antigenic variation was noted in swIAV, and several H1pdm lineages antigenically distinct from current seasonal human H1pdm co-circulate in swine. Thus, European swine populations represent reservoirs for emerging IAV strains with zoonotic and, possibly, pre-pandemic potential.
Collapse
Affiliation(s)
- Dinah Henritzi
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Philipp Peter Petric
- Institute of Virology, Medical Center, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nicola Sarah Lewis
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, Hertfordshire AL9 7TA, UK; OIE/FAO International Reference Laboratory for avian influenza, swine influenza and Newcastle Disease, Animal and Plant Health Agency (APHA) - Weybridge, Addlestone, Surrey KT15 3NB, UK
| | - Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Alberto Pessia
- Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland
| | - Elke Starick
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Günter Strebelow
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Christine Luttermann
- Institute of Immunology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Larissa Mareike Kristin Parker
- Institute of Virology, Medical Center, University of Freiburg, 79104 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Charlotte Schröder
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Bärbel Hammerschmidt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Georg Herrler
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Bünteweg 2, 30559 Hannover, Germany
| | - Elisabeth Große Beilage
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Büscheler Str. 9, 49456 Bakum, Germany
| | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Silke Wacheck
- Ceva Santé Animale (former IDT Biologika GmbH), 06861 Dessau-Rosslau, Germany
| | - Stefan Pesch
- Ceva Santé Animale (former IDT Biologika GmbH), 06861 Dessau-Rosslau, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center, University of Freiburg, 79104 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Timm Clemens Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
10
|
Ayim-Akonor M, Mertens E, May J, Harder T. Exposure of domestic swine to influenza A viruses in Ghana suggests unidirectional, reverse zoonotic transmission at the human-animal interface. Zoonoses Public Health 2020; 67:697-707. [PMID: 32710707 DOI: 10.1111/zph.12751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/14/2020] [Accepted: 06/08/2020] [Indexed: 01/02/2023]
Abstract
Influenza A viruses (IAVs) have both zoonotic and anthroponotic potential and are of public and veterinary importance. Swine are intermediate hosts and 'mixing vessels' for generating reassortants, progenies of which may harbour pandemic propensity. Swine handlers are at the highest risk of becoming infected with IAVs from swine but there is little information on the ecology of IAVs at the human-animal interface in Africa. We analysed and characterized nasal and throat swabs from swine and farmers respectively, for IAVs using RT-qPCR, from swine farms in the Ashanti region, Ghana. Sera were also analysed for IAVs antibodies and serotyped using ELISA and HI assays. IAV was detected in 1.4% (n = 17/1,200) and 2.0% (n = 2/99) of swine and farmers samples, respectively. Viral subtypes H3N2 and H1N1pdm09 were found in human samples. All virus-positive swine samples were subtyped as H1N1pdm09 phylogenetically clustering closely with H1N1pdm09 that circulated among humans during the study period. Phenotypic markers that confer sensitivity to Oseltamivir were found. Serological prevalence of IAVs in swine and farmers by ELISA was 3.2% (n = 38/1,200) and 18.2% (n = 18/99), respectively. Human H1N1pdm09 and H3N2 antibodies were found in both swine and farmers sera. Indigenous swine influenza A viruses and/or antibodies were not detected in swine or farmers samples. Majority (98%, n = 147/150) of farmers reported of not wearing surgical mask and few (4%, n = 6) reported to wear gloves when working. Most (n = 74, 87.7%) farmers reported of working on the farm when experiencing influenza-like illness. Poor husbandry and biosafety practices of farmers could facilitate virus transmission across the human-swine interface. Farmers should be educated on the importance of good farm practices to mitigate influenza transmission at the human-animal interface.
Collapse
Affiliation(s)
- Matilda Ayim-Akonor
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,Department of Animal Health and Food Safety, Council for Scientific and Industrial Research-Animal Research Institute, Accra, Ghana
| | - Eva Mertens
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jürgen May
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Timm Harder
- Institute for Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| |
Collapse
|
11
|
Virus survival and fitness when multiple genotypes and subtypes of influenza A viruses exist and circulate in swine. Virology 2019; 532:30-38. [PMID: 31003122 DOI: 10.1016/j.virol.2019.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/07/2023]
Abstract
We performed swine influenza virus (SIV) surveillance in Midwest USA and isolated 100 SIVs including endemic and reassortant H1 and H3 viruses with 2009 pandemic H1N1 genes. To determine virus evolution when different genotypes and subtypes of influenza A viruses circulating in the same swine herd, a virus survival experiment was conducted in pigs mimicking field situations. Five different SIVs were used to infect five pigs individually, then two groups of sentinel pigs were introduced to investigate virus transmission. Results showed that each virus replicated efficiently in lungs of each infected pig, but only reassortant H3N2 and H1N2v viruses transmitted to the primary contact pigs. Interestingly, the parental H1N2v was the majority of virus detected in the second group of sentinel pigs. These data indicate that the H1N2v seems to be more viable in swine herds than other SIV genotypes, and reassortment can enhance viral fitness and transmission.
Collapse
|
12
|
Haveri A, Ikonen N, Kantele A, Anttila VJ, Ruotsalainen E, Savolainen-Kopra C, Julkunen I. Seasonal influenza vaccines induced high levels of neutralizing cross-reactive antibody responses against different genetic group influenza A(H1N1)pdm09 viruses. Vaccine 2019; 37:2731-2740. [PMID: 30954308 DOI: 10.1016/j.vaccine.2019.03.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/25/2019] [Accepted: 03/31/2019] [Indexed: 12/27/2022]
Abstract
Influenza A(H1N1)pdm09 viruses have been circulating throughout the world since the 2009 pandemic. A/California/07/2009 (H1N1) virus was included in seasonal influenza vaccines for seven years altogether, providing a great opportunity to analyse vaccine-induced immunity in relation to the postpandemic evolution of the A(H1N1)pdm09 virus. Serum antibodies against various epidemic strains of influenza A(H1N1)pdm09 viruses were measured among health care workers (HCWs) by haemagglutination inhibition and microneutralization tests before and after 2010 and 2012 seasonal influenza vaccinations. We detected high responses of vaccine-induced neutralizing antibodies to six distinct genetic groups. Our results indicate antigenic similarity between vaccine and circulating A(H1N1)pdm09 strains, and substantial vaccine-induced immunity against circulating epidemic viruses.
Collapse
MESH Headings
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immunity, Humoral
- Influenza A Virus, H1N1 Subtype/classification
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Neutralization Tests
- Phylogeny
- Seasons
- Serologic Tests
- Structure-Activity Relationship
- Vaccination
Collapse
Affiliation(s)
- Anu Haveri
- Expert Microbiology Unit, Department of Health Security, National Institute for Health and Welfare (THL), POB 30, 00271 Helsinki, Finland.
| | - Niina Ikonen
- Expert Microbiology Unit, Department of Health Security, National Institute for Health and Welfare (THL), POB 30, 00271 Helsinki, Finland
| | - Anu Kantele
- Division of Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, POB 348, 00029 HUS Helsinki, Finland
| | - Veli-Jukka Anttila
- Division of Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, POB 348, 00029 HUS Helsinki, Finland
| | - Eeva Ruotsalainen
- Division of Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, POB 348, 00029 HUS Helsinki, Finland
| | - Carita Savolainen-Kopra
- Expert Microbiology Unit, Department of Health Security, National Institute for Health and Welfare (THL), POB 30, 00271 Helsinki, Finland
| | - Ilkka Julkunen
- Expert Microbiology Unit, Department of Health Security, National Institute for Health and Welfare (THL), POB 30, 00271 Helsinki, Finland; Institute of Biomedicine, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, 20520 Turku, Finland
| |
Collapse
|
13
|
Mendez-Legaza JM, Ortiz de Lejarazu R, Sanz I. Heterotypic Neuraminidase Antibodies Against Different A(H1N1) Strains are Elicited after Seasonal Influenza Vaccination. Vaccines (Basel) 2019; 7:E30. [PMID: 30871198 PMCID: PMC6466453 DOI: 10.3390/vaccines7010030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/01/2019] [Accepted: 03/09/2019] [Indexed: 02/01/2023] Open
Abstract
Neuraminidase (NA) content is not standardized in current seasonal influenza vaccines; neither anti-NA antibodies (anti-NA Abs) are measured nor is it well-defined as a correlate of humoral protection. In this work, the presence of NA1 antibodies against classical A(H1N1) and A(H1N1) pdm09 subtypes was studied before and after vaccination with seasonal vaccines containing A/California/07/2009 strain (A(H1N1) pdm09 subtype). By Enzyme-Linked Lectin Assay (ELLA; Consortium for the Standardization of Influenza Seroepidemiology), we analyzed serum samples from two different cohorts (adults and elderly). The presence of anti-NA Abs at titers ≥1/40 against classical A(H1N1) and A(H1N1) pdm09 subtypes were frequently found in both age groups, in 81.3% and 96.3% of adults and elderly, respectively. The higher titers of anti-NA Abs (NAI titers) were detected more frequently against classical A(H1N1) strains according to the expected age when the first flu infection takes place. In this way, an Original Antigenic Sin phenomenon related to NA seems to be part of the immune response against flu. Seasonal-vaccination induced homologous seroconversion against NA of A(H1N1) pdm09 subtype in 52.5% and 55.0%, and increased the Geometric Mean Titers (GMTs) in 70.0% and 78.8% of adults and elderly, respectively. Seasonal vaccination also induced a heterotypic anti-NA Abs response against classical A(H1N1) strains (seroconversion at least in 8.8% and 11.3% of adults and elderly, respectively, and an increase in GMTs of at least 28.0% in both age groups). These anti-NA Abs responses occur even though the seasonal vaccine does not contain a standardized amount of NA. This work demonstrates that seasonal vaccines containing the A(H1N1) pdm09 subtype induce a broad antibody response against NA1, that may be a target for future influenza vaccines. Our study is one of the first to analyze the presence of Abs against NA and the response mediated by NAI titers after seasonal influenza vaccination.
Collapse
Affiliation(s)
- Jose Manuel Mendez-Legaza
- Microbiology Service, Hospital Clínico Universitario de Valladolid, Avenida Ramón y Cajal s/n, 47005 Valladolid, Spain.
| | - Raúl Ortiz de Lejarazu
- Microbiology Service, Hospital Clínico Universitario de Valladolid, Avenida Ramón y Cajal s/n, 47005 Valladolid, Spain.
- Valladolid National Influenza Centre, Avenida Ramón y Cajal s/n, 47005 Valladolid, Spain.
| | - Ivan Sanz
- Microbiology Service, Hospital Clínico Universitario de Valladolid, Avenida Ramón y Cajal s/n, 47005 Valladolid, Spain.
- Valladolid National Influenza Centre, Avenida Ramón y Cajal s/n, 47005 Valladolid, Spain.
| |
Collapse
|
14
|
Pulit-Penaloza JA, Belser JA, Tumpey TM, Maines TR. Sowing the Seeds of a Pandemic? Mammalian Pathogenicity and Transmissibility of H1 Variant Influenza Viruses from the Swine Reservoir. Trop Med Infect Dis 2019; 4:E41. [PMID: 30818793 PMCID: PMC6473686 DOI: 10.3390/tropicalmed4010041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/02/2019] [Accepted: 02/20/2019] [Indexed: 01/01/2023] Open
Abstract
Emergence of genetically and antigenically diverse strains of influenza to which the human population has no or limited immunity necessitates continuous risk assessments to determine the likelihood of these viruses acquiring adaptations that facilitate sustained human-to-human transmission. As the North American swine H1 virus population has diversified over the last century by means of both antigenic drift and shift, in vivo assessments to study multifactorial traits like mammalian pathogenicity and transmissibility of these emerging influenza viruses are critical. In this review, we examine genetic, molecular, and pathogenicity and transmissibility data from a panel of contemporary North American H1 subtype swine-origin viruses isolated from humans, as compared to H1N1 seasonal and pandemic viruses, including the reconstructed 1918 virus. We present side-by-side analyses of experiments performed in the mouse and ferret models using consistent experimental protocols to facilitate enhanced interpretation of in vivo data. Contextualizing these analyses in a broader context permits a greater appreciation of the role that in vivo risk assessment experiments play in pandemic preparedness. Collectively, we find that despite strain-specific heterogeneity among swine-origin H1 viruses, contemporary swine viruses isolated from humans possess many attributes shared by prior pandemic strains, warranting heightened surveillance and evaluation of these zoonotic viruses.
Collapse
Affiliation(s)
- Joanna A Pulit-Penaloza
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
| | - Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
| |
Collapse
|
15
|
Comparative In Vitro and In Vivo Analysis of H1N1 and H1N2 Variant Influenza Viruses Isolated from Humans between 2011 and 2016. J Virol 2018; 92:JVI.01444-18. [PMID: 30158292 DOI: 10.1128/jvi.01444-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023] Open
Abstract
Influenza A virus pandemics are rare events caused by novel viruses which have the ability to spread in susceptible human populations. With respect to H1 subtype viruses, swine H1N1 and H1N2 viruses occasionally cross the species barrier to cause human infection. Recently isolated from humans (termed variants), swine viruses were shown to display great genetic and antigenic diversity, hence posing considerable public health risk. Here, we utilized in vitro and in vivo approaches to provide characterization of H1 subtype variant viruses isolated since the 2009 pandemic and discuss the findings in context with previously studied H1 subtype human isolates. The variant viruses were well adapted to replicate in the human respiratory cell line Calu-3 and the respiratory tracts of mice and ferrets. However, with respect to hemagglutinin (HA) activation pH, the variant viruses had fusion pH thresholds closer to that of most classical swine and triple-reassortant H1 isolates rather than viruses that had adapted to humans. Consistent with previous observations for swine isolates, the tested variant viruses were capable of efficient transmission between cohoused ferrets but could transmit via respiratory droplets to differing degrees. Overall, this investigation demonstrates that swine H1 viruses that infected humans possess adaptations required for robust replication and, in some cases, efficient respiratory droplet transmission in a mammalian model and therefore need to be closely monitored for additional molecular changes that could facilitate transmission among humans. This work highlights the need for risk assessments of emerging H1 viruses as they continue to evolve and cause human infections.IMPORTANCE Influenza A virus is a continuously evolving respiratory pathogen. Endemic in swine, H1 and H3 subtype viruses sporadically cause human infections. As each zoonotic infection represents an opportunity for human adaptation, the emergence of a transmissible influenza virus to which there is little or no preexisting immunity is an ongoing threat to public health. Recently isolated variant H1 subtype viruses were shown to display extensive genetic diversity and in many instances were antigenically distinct from seasonal vaccine strains. In this study, we provide characterization of representative H1N1v and H1N2v viruses isolated since the 2009 pandemic. Our results show that although recent variant H1 viruses possess some adaptation markers of concern, these viruses have not fully adapted to humans and require further adaptation to present a pandemic threat. This investigation highlights the need for close monitoring of emerging variant influenza viruses for molecular changes that could facilitate efficient transmission among humans.
Collapse
|
16
|
Zhang F, Wang S, Wang Y, Shang X, Zhou H, Cai L. Characterization of pseudoparticles paired with hemagglutinin and neuraminidase from highly pathogenic H5N1 influenza and avian influenza A (H7N9) viruses. Virus Res 2018; 253:20-27. [PMID: 29859234 DOI: 10.1016/j.virusres.2018.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 01/27/2023]
Abstract
The reassortment of two highly pathogenic avian influenza (HPAI) H5N1 and H7N9 viruses presents a potential challenge to human health. The hemagglutinins (HAs) and neuraminidases (NAs) of these simultaneously circulating avian influenza viruses were evaluated using the pseudoparticle (pp) system. Native and mismatched virus pps were generated to investigate their biological characteristics. The HAs and NAs of the two viruses reassorted successfully to generate infectious viral particles. H7 was demonstrated to have the ability to reassort with NA from the H5N1 viruses, resulting in the generation of virions that were highly infectious to bronchial epithelial cells. Although the Anhui H5+Anhui N9 combination showed an moderate infectivity to the four cell lines, it was most sensitive to oseltamivir. The H7 in the pps was found to be predominantly HA0. Further, H5 in the pps primarily presented as HA1, owing to the particular mechanisms underlying its maturation. All NAs predominantly existed in monomer form. In our study, HAs/NAs, in all combinations, were functional and able to perform their corresponding function in the viral life cycle. Our data suggest that HAs/NAs from the (HPAI) H5N1 and H7N9 viruses are capable of assembly into infectious virions, posing a threat topublic health.
Collapse
Affiliation(s)
- Fengwei Zhang
- Central Laboratory, Hang Zhou Red Cross Hospital, Hangzhou city, Zhejiang Prov, 310003, PR China.
| | - Shanshan Wang
- Central Laboratory, Hang Zhou Red Cross Hospital, Hangzhou city, Zhejiang Prov, 310003, PR China
| | - Yanan Wang
- Clinical Laboratory, Yuhang District Maternity and Child Health Care Hospital, Hangzhou city, Zhejiang Prov, 311100, PR China
| | - Xuechai Shang
- Central Laboratory, Hang Zhou Red Cross Hospital, Hangzhou city, Zhejiang Prov, 310003, PR China
| | - Hongjuan Zhou
- Central Laboratory, Hang Zhou Red Cross Hospital, Hangzhou city, Zhejiang Prov, 310003, PR China
| | - Long Cai
- Central Laboratory, Hang Zhou Red Cross Hospital, Hangzhou city, Zhejiang Prov, 310003, PR China.
| |
Collapse
|
17
|
Novel triple-reassortant influenza viruses in pigs, Guangxi, China. Emerg Microbes Infect 2018; 7:85. [PMID: 29765037 PMCID: PMC5953969 DOI: 10.1038/s41426-018-0088-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/10/2018] [Accepted: 04/12/2018] [Indexed: 11/24/2022]
Abstract
Considered a “mixing vessel” for influenza viruses, pigs can give rise to new influenza virus reassortants that can threaten humans. During our surveillance of pigs in Guangxi, China from 2013 to 2015, we isolated 11 H1N1 and three H3N2 influenza A viruses of swine origin (IAVs-S). Out of the 14, we detected ten novel triple-reassortant viruses, which contained surface genes (hemagglutinin and neuraminidase) from Eurasian avian-like (EA) H1N1 or seasonal human-like H3N2, matrix (M) genes from H1N1/2009 pandemic or EA H1N1, nonstructural (NS) genes from classical swine, and the remaining genes from H1N1/2009 pandemic. Mouse studies indicate that these IAVs-S replicate efficiently without prior adaptation, with some isolates demonstrating lethality. Notably, the reassortant EA H1N1 viruses with EA-like M gene have been reported in human infections. Further investigations will help to assess the potential risk of these novel triple-reassortant viruses to humans.
Collapse
|
18
|
Antigenically Diverse Swine Origin H1N1 Variant Influenza Viruses Exhibit Differential Ferret Pathogenesis and Transmission Phenotypes. J Virol 2018. [PMID: 29540597 DOI: 10.1128/jvi.00095-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Influenza A(H1) viruses circulating in swine represent an emerging virus threat, as zoonotic infections occur sporadically following exposure to swine. A fatal infection caused by an H1N1 variant (H1N1v) virus was detected in a patient with reported exposure to swine and who presented with pneumonia, respiratory failure, and cardiac arrest. To understand the genetic and phenotypic characteristics of the virus, genome sequence analysis, antigenic characterization, and ferret pathogenesis and transmissibility experiments were performed. Antigenic analysis of the virus isolated from the fatal case, A/Ohio/09/2015, demonstrated significant antigenic drift away from the classical swine H1N1 variant viruses and H1N1 pandemic 2009 viruses. A substitution in the H1 hemagglutinin (G155E) was identified that likely impacted antigenicity, and reverse genetics was employed to understand the molecular mechanism of antibody escape. Reversion of the substitution to 155G, in a reverse genetics A/Ohio/09/2015 virus, showed that this residue was central to the loss of hemagglutination inhibition by ferret antisera raised against a prototypical H1N1 pandemic 2009 virus (A/California/07/2009), as well as gamma lineage classical swine H1N1 viruses, demonstrating the importance of this residue for antibody recognition of this H1 lineage. When analyzed in the ferret model, A/Ohio/09/2015 and another H1N1v virus, A/Iowa/39/2015, as well as A/California/07/2009, replicated efficiently in the respiratory tract of ferrets. The two H1N1v viruses transmitted efficiently among cohoused ferrets, but respiratory droplet transmission studies showed that A/California/07/2009 transmitted through the air more efficiently. Preexisting immunity to A/California/07/2009 did not fully protect ferrets from challenge with A/Ohio/09/2015.IMPORTANCE Human infections with classical swine influenza A(H1N1) viruses that circulate in pigs continue to occur in the United States following exposure to swine. To understand the genetic and virologic characteristics of a virus (A/Ohio/09/2015) associated with a fatal infection and a virus associated with a nonfatal infection (A/Iowa/39/2015), we performed genome sequence analysis, antigenic testing, and pathogenicity and transmission studies in a ferret model. Reverse genetics was employed to identify a single antigenic site substitution (HA G155E) responsible for antigenic variation of A/Ohio/09/2015 compared to related classical swine influenza A(H1N1) viruses. Ferrets with preexisting immunity to the pandemic A(H1N1) virus were challenged with A/Ohio/09/2015, demonstrating decreased protection. These data illustrate the potential for currently circulating swine influenza viruses to infect and cause illness in humans with preexisting immunity to H1N1 pandemic 2009 viruses and a need for ongoing risk assessment and development of candidate vaccine viruses for improved pandemic preparedness.
Collapse
|
19
|
Tan S, Zhang S, Wu B, Zhao Y, Zhang W, Han M, Wu Y, Shi G, Liu Y, Yan J, Wu G, Wang H, Gao GF, Zhu F, Liu WJ. Hemagglutinin-specific CD4 + T-cell responses following 2009-pH1N1 inactivated split-vaccine inoculation in humans. Vaccine 2017; 35:5644-5652. [PMID: 28917539 DOI: 10.1016/j.vaccine.2017.08.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/08/2017] [Accepted: 08/19/2017] [Indexed: 12/24/2022]
Abstract
Influenza A virus remains a major threat to public health, and the inactivated split-virus vaccine is the most prevalent vaccine used worldwide. However, our knowledge about cellular immune responses to the inactivated influenza virus vaccine and its correlation with humoral responses are yet limited, which has restricted our understanding of the vaccine's protective mechanisms. Herein, in two clinical trials, T-cell responses specific for both previously identified human leucocyte antigen (HLA)-I-restricted epitopes from influenza virus and hemagglutinin (HA) protein were longitudinally investigated before, during, and after a two-dose vaccination with the inactivated 2009 pandemic H1N1 (2009-pH1N1) vaccine. A robust antibody response in all of the donors after vaccination was observed. Though no CD8+ T-cell responses to known epitopes were detected, HA-specific T-cell responses were primed following vaccination, and the responses were found to be mainly CD4+ T-cell dependent. However, HA-specific T-cells circulating in peripheral blood dropped to baseline levels 6weeks after vaccination, but humoral immune responses maintained a high level for 4months post-vaccination. Significant correlations between the magnitude of the HA-specific T-cell responses and hemagglutination inhibition antibody titers were demonstrated, indicating a priming role of HA-specific T-cells for humoral immune responses. In conclusion, our study indicates that HA-specific CD4+ T-cell responses can be primed by the inactivated 2009-pH1N1 vaccine, which may coordinate with the elicitation of antibody protection. These findings would benefit a better understanding of the immune protective mechanisms of the widely used inactivated 2009-pH1N1 vaccine.
Collapse
Affiliation(s)
- Shuguang Tan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China; Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Shihong Zhang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Bin Wu
- Jiangsu Provincial Centre for Disease Prevention and Control, Nanjing, China
| | - Yingze Zhao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Wei Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Min Han
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ying Wu
- School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuchang District, Wuhan, China
| | - Guoli Shi
- National Cancer Institute/HIV dynamics and replication program, Frederick, MD, USA
| | - Yingxia Liu
- Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China; Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Guizhen Wu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Hua Wang
- Jiangsu Provincial Centre for Disease Prevention and Control, Nanjing, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China; Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Fengcai Zhu
- Jiangsu Provincial Centre for Disease Prevention and Control, Nanjing, China.
| | - William J Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China.
| |
Collapse
|
20
|
Structural Definition of Duck Major Histocompatibility Complex Class I Molecules That Might Explain Efficient Cytotoxic T Lymphocyte Immunity to Influenza A Virus. J Virol 2017; 91:JVI.02511-16. [PMID: 28490583 PMCID: PMC5487541 DOI: 10.1128/jvi.02511-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/26/2017] [Indexed: 01/16/2023] Open
Abstract
A single dominantly expressed allele of major histocompatibility complex class I (MHC I) may be responsible for the duck's high tolerance to highly pathogenic influenza A virus (HP-IAV) compared to the chicken's lower tolerance. In this study, the crystal structures of duck MHC I (Anpl-UAA*01) and duck β2-microglobulin (β2m) with two peptides from the H5N1 strains were determined. Two remarkable features were found to distinguish the Anpl-UAA*01 complex from other known MHC I structures. A disulfide bond formed by Cys95 and Cys112 and connecting the β5 and β6 sheets at the bottom of peptide binding groove (PBG) in Anpl-UAA*01 complex, which can enhance IAV peptide binding, was identified. Moreover, the interface area between duck MHC I and β2m was found to be larger than in other species. In addition, the two IAV peptides that display distinctive conformations in the PBG, B, and F pockets act as the primary anchor sites. Thirty-one IAV peptides were used to verify the peptide binding motif of Anpl-UAA*01, and the results confirmed that the peptide binding motif is similar to that of HLA-A*0201. Based on this motif, approximately 600 peptides from the IAV strains were partially verified as the candidate epitope peptides for Anpl-UAA*01, which is a far greater number than those for chicken BF2*2101 and BF2*0401 molecules. Extensive IAV peptide binding should allow for ducks with this Anpl-UAA*01 haplotype to resist IAV infection. IMPORTANCE Ducks are natural reservoirs of influenza A virus (IAV) and are more resistant to the IAV than chickens. Both ducks and chickens express only one dominant MHC I locus providing resistance to the virus. To investigate how MHC I provides IAV resistance, crystal structures of the dominantly expressed duck MHC class I (pAnpl-UAA*01) with two IAV peptides were determined. A disulfide bond was identified in the peptide binding groove that can facilitate Anpl-UAA*01 binding to IAV peptides. Anpl-UAA*01 has a much wider recognition spectrum of IAV epitope peptides than do chickens. The IAV peptides bound by Anpl-UAA*01 display distinctive conformations that can help induce an extensive cytotoxic T lymphocyte (CTL) response. In addition, the interface area between the duck MHC I and β2m is larger than in other species. These results indicate that HP-IAV resistance in ducks is due to extensive CTL responses induced by MHC I.
Collapse
|
21
|
Arunorat J, Charoenvisal N, Woonwong Y, Kedkovid R, Jittimanee S, Sitthicharoenchai P, Kesdangsakonwut S, Poolperm P, Thanawongnuwech R. Protection of human influenza vaccines against a reassortant swine influenza virus of pandemic H1N1 origin using a pig model. Res Vet Sci 2017; 114:6-11. [PMID: 28267619 DOI: 10.1016/j.rvsc.2017.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 01/27/2017] [Accepted: 02/23/2017] [Indexed: 01/03/2023]
Abstract
Since the pandemic H1N1 emergence in 2009 (pdmH1N1), many reassortant pdmH1N1 viruses emerged and found circulating in the pig population worldwide. Currently, commercial human subunit vaccines are used commonly to prevent the influenza symptom based on the WHO recommendation. In case of current reassortant swine influenza viruses transmitting from pigs to humans, the efficacy of current human influenza vaccines is of interest. In this study, influenza A negative pigs were vaccinated with selected commercial human subunit vaccines and challenged with rH3N2. All sera were tested with both HI and SN assays using four representative viruses from the surveillance data in 2012 (enH1N1, pdmH1N1, rH1N2 and rH3N2). The results showed no significant differences in clinical signs and macroscopic and microscopic findings among groups. However, all pig sera from vaccinated groups had protective HI titers to the enH1N1, pdmH1N1 and rH1N2 at 21DPV onward and had protective SN titers only to pdmH1N1and rH1N2 at 21DPV onward. SN test results appeared more specific than those of HI tests. All tested sera had no cross-reactivity against the rH3N2. Both studied human subunit vaccines failed to protect and to stop viral shedding with no evidence of serological reaction against rH3N2. SIV surveillance is essential for monitoring a novel SIV emergence potentially for zoonosis.
Collapse
Affiliation(s)
- Jirapat Arunorat
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Rd, Bangkok 10330, Thailand
| | - Nataya Charoenvisal
- Department of Medicine, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Rd, Bangkok 10330, Thailand
| | - Yonlayong Woonwong
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Rd, Bangkok 10330, Thailand
| | - Roongtham Kedkovid
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Rd, Bangkok 10330, Thailand
| | - Supattra Jittimanee
- Department of Pathobiology, Faculty of Veterinary Medicine, Khonkhaen University, Bangkok 40002, Thailand
| | - Panchan Sitthicharoenchai
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Rd, Bangkok 10330, Thailand
| | - Sawang Kesdangsakonwut
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Rd, Bangkok 10330, Thailand
| | - Pariwat Poolperm
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, KamphaengSaen Campus, Nakhon Pathom 73140, Thailand
| | - Roongroje Thanawongnuwech
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Rd, Bangkok 10330, Thailand; Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
22
|
Hatakeyama D. Structural and Biochemical Analyses on the RNA-dependent RNA Polymerase of Influenza Virus for Development of Novel Anti-influenza Agents. YAKUGAKU ZASSHI 2017; 137:205-214. [PMID: 28154333 DOI: 10.1248/yakushi.16-00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The PA, PB1, and PB2 subunits, components of the RNA-dependent RNA polymerase of influenza A virus, and the nucleoprotein (NP) interact with the genomic RNA of influenza viruses and form ribonucleoproteins. Especially, the PB2 subunit binds to the host RNA cap [7-methylguanosine triphosphate (m7GTP)] and supports the endonuclease activity of PA to "snatch" the cap from host pre-mRNAs. In this study, we describe a novel Val/Arg/Gly (VRG) site in the PB2 cap-binding domain, which is necessary for interaction with acetyl-CoA found in eukaryotic histone acetyltransferases (HATs). In vitro experiments revealed that the recombinant PB2 cap-binding domain that includes the VRG site interacts with acetyl-CoA; moreover, it was found that this interaction could be blocked by CoA and various HAT inhibitors. Interestingly, m7GTP also inhibited this interaction, suggesting that the same active pocket is capable of interacting with acetyl-CoA and m7GTP. To elucidate the importance of the VRG site on PB2 function and viral replication, we constructed a PB2 recombinant protein and recombinant viruses including several patterns of amino acid mutations in the VRG site. Substitutions of 2 or 3 amino acid residues of the VRG site to alanine significantly reduced PB2's binding ability to acetyl-CoA and its RNA polymerase activity. Recombinant viruses containing the same mutations could not be replicated in cultured cells. These results indicate that the PB2 VRG sequence is a functional site that is essential for acetyl-CoA interaction, RNA polymerase activity, and viral replication. I will also discuss some novel functions of NP in this review.
Collapse
Affiliation(s)
- Dai Hatakeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| |
Collapse
|
23
|
Kordyukova L. Structural and functional specificity of Influenza virus haemagglutinin and paramyxovirus fusion protein anchoring peptides. Virus Res 2017; 227:183-199. [DOI: 10.1016/j.virusres.2016.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 02/08/2023]
|
24
|
Influenza A Viruses of Swine (IAV-S) in Vietnam from 2010 to 2015: Multiple Introductions of A(H1N1)pdm09 Viruses into the Pig Population and Diversifying Genetic Constellations of Enzootic IAV-S. J Virol 2016; 91:JVI.01490-16. [PMID: 27795418 DOI: 10.1128/jvi.01490-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/03/2016] [Indexed: 12/18/2022] Open
Abstract
Active surveillance of influenza A viruses of swine (IAV-S) involving 262 farms and 10 slaughterhouses in seven provinces in northern and southern Vietnam from 2010 to 2015 yielded 388 isolates from 32 farms; these viruses were classified into H1N1, H1N2, and H3N2 subtypes. Whole-genome sequencing followed by phylogenetic analysis revealed that the isolates represented 15 genotypes, according to the genetic constellation of the eight segments. All of the H1N1 viruses were entirely A(H1N1)pdm09 viruses, whereas all of the H1N2 and H3N2 viruses were reassortants among 5 distinct ancestral viruses: H1 and H3 triple-reassortant (TR) IAV-S that originated from North American pre-2009 human seasonal H1, human seasonal H3N2, and A(H1N1)pdm09 viruses. Notably, 93% of the reassortant IAV-S retained M genes that were derived from A(H1N1)pdm09, suggesting some advantage in terms of their host adaptation. Bayesian Markov chain Monte Carlo analysis revealed that multiple introductions of A(H1N1)pdm09 and TR IAV-S into the Vietnamese pig population have driven the genetic diversity of currently circulating Vietnamese IAV-S. In addition, our results indicate that a reassortant IAV-S with human-like H3 and N2 genes and an A(H1N1)pdm09 origin M gene likely caused a human case in Ho Chi Minh City in 2010. Our current findings indicate that human-to-pig transmission as well as cocirculation of different IAV-S have contributed to diversifying the gene constellations of IAV-S in Vietnam. IMPORTANCE This comprehensive genetic characterization of 388 influenza A viruses of swine (IAV-S) isolated through active surveillance of Vietnamese pig farms from 2010 through 2015 provides molecular epidemiological insight into the genetic diversification of IAV-S in Vietnam after the emergence of A(H1N1)pdm09 viruses. Multiple reassortments among A(H1N1)pdm09 viruses and enzootic IAV-S yielded 14 genotypes, 9 of which carried novel gene combinations. The reassortants that carried M genes derived from A(H1N1)pdm09 viruses became predominant, replacing those of the IAV-S that had been endemic in Vietnam since 2011. Notably, one of the novel reassortants likely caused a human case in Vietnam. Given that Vietnam is the second-largest pig-producing country in Asia, continued monitoring of IAV-S is highly important from the viewpoints of both the swine industry and human public health.
Collapse
|
25
|
Don ЕS, Emelyanova AG, Yakovleva NN, Petrova NV, Nikiforova MV, Gorbunov EA, Tarasov SА, Morozov SG, Epstein ОI. Dose-dependent antiviral activity of released-active form of antibodies to interferon-gamma against influenza A/California/07/09(H1N1) in murine model. J Med Virol 2016; 89:759-766. [DOI: 10.1002/jmv.24717] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Еlena S. Don
- The Institute of General Pathology and Pathophysiology; Moscow Russian Federation
| | | | | | - Nataliia V. Petrova
- The Institute of General Pathology and Pathophysiology; Moscow Russian Federation
| | | | | | | | - Sergey G. Morozov
- The Institute of General Pathology and Pathophysiology; Moscow Russian Federation
| | - Оleg I. Epstein
- The Institute of General Pathology and Pathophysiology; Moscow Russian Federation
| |
Collapse
|
26
|
Takemae N, Shobugawa Y, Nguyen PT, Nguyen T, Nguyen TN, To TL, Thai PD, Nguyen TD, Nguyen DT, Nguyen DK, Do HT, Le TQA, Hua PT, Van Vo H, Nguyen DT, Nguyen DH, Uchida Y, Saito R, Saito T. Effect of herd size on subclinical infection of swine in Vietnam with influenza A viruses. BMC Vet Res 2016; 12:227. [PMID: 27724934 PMCID: PMC5057248 DOI: 10.1186/s12917-016-0844-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/18/2016] [Indexed: 01/14/2023] Open
Abstract
Background Influenza A viruses of swine (IAV-S) cause acute and subclinical respiratory disease. To increase our understanding of the etiology of the subclinical form and thus help prevent the persistence of IAV-S in pig populations, we conducted active virologic surveillance in Vietnam, the second-largest pig-producing country in Asia, from February 2010 to December 2013. Results From a total of 7034 nasal swabs collected from clinically healthy pigs at 250 farms and 10 slaughterhouses, we isolated 172 IAV-S from swine at the weaning and early-fattening stages. The isolation rate of IAV-S was significantly higher among pigs aged 3 weeks to 4.5 months than in older and younger animals. IAV-S were isolated from 16 large, corporate farms and 6 family-operated farms from among the 250 farms evaluated. Multivariate logistic regression analysis revealed that “having more than 1,000 pigs” was the most influential risk factor for IAV-S positivity. Farms affected by reassortant IAV-S had significantly larger pig populations than did those where A(H1N1)pdm09 viruses were isolated, thus suggesting that large, corporate farms serve as sites of reassortment events. Conclusions We demonstrate the asymptomatic circulation of IAV-S in the Vietnamese pig population. Raising a large number of pigs on a farm has the strongest impact on the incidence of subclinical IAV-S infection. Given that only some of the corporate farms surveyed were IAV-S positive, further active monitoring is necessary to identify additional risk factors important in subclinical infection of pigs with IAV-S in Vietnam. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0844-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nobuhiro Takemae
- Influenza and Prion Diseases Research Center, National Institute of Animal Health, NARO, Ibaraki, Japan.,Thailand-Japan Zoonotic Diseases Collaboration Center, Bangkok, Thailand
| | - Yugo Shobugawa
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Phuong Thanh Nguyen
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Tung Nguyen
- Department of Animal Health, Epidemiology Division, Hanoi, Vietnam
| | - Tien Ngoc Nguyen
- Department of Animal Health, Epidemiology Division, Hanoi, Vietnam
| | - Thanh Long To
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | - Phuong Duy Thai
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Tho Dang Nguyen
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | - Duy Thanh Nguyen
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Dung Kim Nguyen
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Hoa Thi Do
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | - Thi Quynh Anh Le
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Phan Truong Hua
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Hung Van Vo
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Diep Thi Nguyen
- Department of Animal Health, Epidemiology Division, Hanoi, Vietnam
| | - Dang Hoang Nguyen
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | - Yuko Uchida
- Influenza and Prion Diseases Research Center, National Institute of Animal Health, NARO, Ibaraki, Japan.,Thailand-Japan Zoonotic Diseases Collaboration Center, Bangkok, Thailand
| | - Reiko Saito
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takehiko Saito
- Influenza and Prion Diseases Research Center, National Institute of Animal Health, NARO, Ibaraki, Japan. .,Thailand-Japan Zoonotic Diseases Collaboration Center, Bangkok, Thailand. .,United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.
| |
Collapse
|
27
|
Henritzi D, Zhao N, Starick E, Simon G, Krog JS, Larsen LE, Reid SM, Brown IH, Chiapponi C, Foni E, Wacheck S, Schmid P, Beer M, Hoffmann B, Harder TC. Rapid detection and subtyping of European swine influenza viruses in porcine clinical samples by haemagglutinin- and neuraminidase-specific tetra- and triplex real-time RT-PCRs. Influenza Other Respir Viruses 2016; 10:504-517. [PMID: 27397600 PMCID: PMC5059951 DOI: 10.1111/irv.12407] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2016] [Indexed: 12/26/2022] Open
Abstract
Background A diversifying pool of mammalian‐adapted influenza A viruses (IAV) with largely unknown zoonotic potential is maintained in domestic swine populations worldwide. The most recent human influenza pandemic in 2009 was caused by a virus with genes originating from IAV isolated from swine. Swine influenza viruses (SIV) are widespread in European domestic pig populations and evolve dynamically. Knowledge regarding occurrence, spread and evolution of potentially zoonotic SIV in Europe is poorly understood. Objectives Efficient SIV surveillance programmes depend on sensitive and specific diagnostic methods which allow for cost‐effective large‐scale analysis. Methods New SIV haemagglutinin (HA) and neuraminidase (NA) subtype‐ and lineage‐specific multiplex real‐time RT‐PCRs (RT‐qPCR) have been developed and validated with reference virus isolates and clinical samples. Results A diagnostic algorithm is proposed for the combined detection in clinical samples and subtyping of SIV strains currently circulating in Europe that is based on a generic, M‐gene‐specific influenza A virus RT‐qPCR. In a second step, positive samples are examined by tetraplex HA‐ and triplex NA‐specific RT‐qPCRs to differentiate the porcine subtypes H1, H3, N1 and N2. Within the HA subtype H1, lineages “av” (European avian‐derived), “hu” (European human‐derived) and “pdm” (human pandemic A/H1N1, 2009) are distinguished by RT‐qPCRs, and within the NA subtype N1, lineage “pdm” is differentiated. An RT‐PCR amplicon Sanger sequencing method of small fragments of the HA and NA genes is also proposed to safeguard against failure of multiplex RT‐qPCR subtyping. Conclusions These new multiplex RT‐qPCR assays provide adequate tools for sustained SIV monitoring programmes in Europe.
Collapse
Affiliation(s)
- Dinah Henritzi
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute (FLI), Greifswald-Insel Riems, Germany
| | - Na Zhao
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute (FLI), Greifswald-Insel Riems, Germany
| | - Elke Starick
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute (FLI), Greifswald-Insel Riems, Germany
| | - Gaelle Simon
- Anses, Ploufragan-Plouzané Laboratory, Swine Virology Immunology Unit, Ploufragan, France
| | - Jesper S Krog
- National Veterinary Institute; Technical University of Denmark (DTU), Frederiksberg C, Denmark
| | - Lars Erik Larsen
- National Veterinary Institute; Technical University of Denmark (DTU), Frederiksberg C, Denmark
| | - Scott M Reid
- Department of Virology, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, UK
| | - Ian H Brown
- Department of Virology, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, UK
| | - Chiara Chiapponi
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Parma, Italy
| | - Emanuela Foni
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Parma, Italy
| | | | | | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute (FLI), Greifswald-Insel Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute (FLI), Greifswald-Insel Riems, Germany
| | - Timm C Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute (FLI), Greifswald-Insel Riems, Germany.
| |
Collapse
|
28
|
Transmission and pathogenicity of novel reassortants derived from Eurasian avian-like and 2009 pandemic H1N1 influenza viruses in mice and guinea pigs. Sci Rep 2016; 6:27067. [PMID: 27252023 PMCID: PMC4890009 DOI: 10.1038/srep27067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/20/2016] [Indexed: 11/08/2022] Open
Abstract
Given the present extensive co-circulation in pigs of Eurasian avian-like (EA) swine H1N1 and 2009 pandemic (pdm/09) H1N1 viruses, reassortment between them is highly plausible but largely uncharacterized. Here, experimentally co-infected pigs with a representative EA virus and a pdm/09 virus yielded 55 novel reassortant viruses that could be categorized into 17 genotypes from Gt1 to Gt17 based on segment segregation. Majority of novel reassortants were isolated from the lower respiratory tract. Most of reassortant viruses were more pathogenic and contagious than the parental EA viruses in mice and guinea pigs. The most transmissible reassortant genotypes demonstrated in guinea pigs (Gt2, Gt3, Gt7, Gt10 and Gt13) were also the most lethal in mice. Notably, nearly all these highly virulent reassortants (all except Gt13) were characterized with possession of EA H1 and full complement of pdm/09 ribonucleoprotein genes. Compositionally, we demonstrated that EA H1-222G contributed to virulence by its ability to bind avian-type sialic acid receptors, and that pdm/09 RNP conferred the most robust polymerase activity to reassortants. The present study revealed high reassortment compatibility between EA and pdm/09 viruses in pigs, which could give rise to progeny reassortant viruses with enhanced virulence and transmissibility in mice and guinea pig models.
Collapse
|
29
|
Ma H, Dong JP, Zhou N, Pu W. Military-civilian cooperative emergency response to infectious disease prevention and control in China. Mil Med Res 2016; 3:39. [PMID: 28050261 PMCID: PMC5203723 DOI: 10.1186/s40779-016-0109-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/26/2016] [Indexed: 12/03/2022] Open
Abstract
In recent years, the incidence of severe infectious diseases has increased, and the number of emerging infectious diseases continues to increase. The Chinese government and military forces have paid a great deal of attention to infectious disease prevention and control, and using military-civilian cooperation, they have successfully prevented numerous severe epidemic situations, such as severe acute respiratory syndrome (SARS), influenza A (H1N1), avian influenza H5N1 and H7N9, and Ebola hemorrhagic fever, while actively maintained public health, economic development, and national construction. This paper focuses on the mechanisms of the military-cooperative emergency response to infectious diseases--the joint working mechanism, the information-sharing mechanism, the research collaboration mechanism, and the joint disposal mechanism--and presents a sorted summary of the practices and experiences of cooperative emergency responses to infectious diseases. In the future, the Chinese military and the civilian sector will further strengthen the cooperative joint command system and emergency rescue force and will reinforce their collaborative information-sharing platform and technical equipment system to further improve military-civilian collaborative emergency infectious diseases disposal, advance the level of infectious disease prevention and control, and maintain public health.
Collapse
Affiliation(s)
- Hui Ma
- Health Bureau, Logistics Support Department of Central Military Commission, Chinese PLA, Beijing, 100842 China
| | - Ji-Ping Dong
- Health Bureau, Logistics Support Department of Central Military Commission, Chinese PLA, Beijing, 100842 China
| | - Na Zhou
- Health Bureau, Logistics Support Department of Central Military Commission, Chinese PLA, Beijing, 100842 China
| | - Wei Pu
- Health Bureau, Logistics Support Department of Central Military Commission, Chinese PLA, Beijing, 100842 China
| |
Collapse
|