1
|
Kadkhoda H, Gholizadeh P, Ghotaslou R, Nabizadeh E, Pirzadeh T, Ahangarzadeh Rezaee M, Feizi H, Samadi Kafil H, Aghazadeh M. Role of CRISPR-cas system on virulence traits and carbapenem resistance in clinical Klebsiella pneumoniae isolates. Microb Pathog 2025; 199:107151. [PMID: 39615707 DOI: 10.1016/j.micpath.2024.107151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/08/2024]
Abstract
BACKGROUND AND OBJECTIVES The bacterial adaptive immune system known as CRISPR-Cas (clustered regularly interspersed short palindromic repeats-CRISPR-associated protein) is engaged in defense against various mobile genetic elements (MGEs) such as plasmids and bacteriophages. The purpose of this study was to characterize the CRISPR-Cas systems in carbapenem-resistant Klebsiella pneumoniae isolates and assess any possible correlation between these systems with antibiotic susceptibility, biofilm formation, and bacterial virulence. MATERIALS AND METHODS A total of 156 CRKP isolates were collected from different specimens of the inpatients. Biofilm formation and antibiotic susceptibility testing were evaluated using standard methods. Furthermore, the CRISPR-Cas system subtype genes, 11 carbapenemase genes, and 17 virulence genes were identified using separate standard PCR reactions. The diversity of the isolates was determined by random amplified polymorphic DNA (RAPD)-PCR. RESULTS The development of biofilms and antibiotic susceptibility of several CRKP isolates were significantly correlated with the absence or presence of the CRISPR-Cas system. PCR analysis of carbapenemase genes revealed that the frequency of the blaNDM-1 gene was significantly higher in the isolates with the subtype I-E CRISPR-Cas system. Moreover, the isolates with the subtype I-E CRISPR-Cas system exhibited a propensity to possess more virulence genes such as allS, k2A, wcaG, aerobactin, rmpA, iroN, magA, rmpA2, kfu, iutA, iucB, ybtS, repA, and terW. CONCLUSION CRISPR-Cas systems could affect the antibiotic susceptibility, capacity for biofilm formation, and virulence of Klebsiella pneumoniae. Our findings showed that the isolates containing the CRISPR-Cas system were moderate or strong biofilm producers and had a higher frequency of virulence genes.
Collapse
Affiliation(s)
- Hiva Kadkhoda
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Ghotaslou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Edris Nabizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Pirzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Feizi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology, Aalinasab Hospital, Social Security Organization, Tabriz, Iran
| | - Hossein Samadi Kafil
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Aghazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Nezhadi J, Ahmadi A. Assessing the efficacy of postbiotics derived from Lactobacillus plantarum on antibiotic resistance genes in nosocomial pathogens such as Enterococcus faecalis and Pseudomonas aeruginosa. Lett Appl Microbiol 2024; 77:ovae127. [PMID: 39657994 DOI: 10.1093/lambio/ovae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
This study investigated the antibacterial and anti-biofilm properties of postbiotics derived from Lactobacillus plantarum and their effect on the expression of antibiotic resistance genes (ermB and blaKPC) in Enterococcus faecalis and Pseudomonas aeruginosa, respectively. Cell-free supernatants (CFSs) were analyzed through gas chromatography-mass spectrometry (GC-MS), which showed that butyric acid (14.31%) was the major compound, other metabolites present in CFSs included lactic acid (5.94%), hdroxyacetone (5,21%), benzoic acid (3.12%), Pyrrolo[1,2-a] pyrazine-1,4-dione (1.91%), 2,3-Butanediol (1.04%), and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (0.73.%). To investigate the effect of postbiotics on bacterial growth and biofilm formation, minimal inhibitory concentration (MIC) and microtiter plate assays were used. MIC results showed that resistant En. faecalis and P. aeruginosa can grow at concentrations of 2.5 and 5 mg/ml, respectively, after exposure to postbiotics. Furthermore, the microtiter plate results showed that postbiotics significantly reduced biofilm formation: 51%, 45%, and 39% in En. faecalis and 46%, 38%, and 27% in P. aeruginosa at different concentrations. Real-time polymerase chain reaction also confirmed the reduction of resistance genes (ermB; P = 0.007 and blaKPC; P = 0.02) expression. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay showed that the cell survival rate was 80%. These findings suggest that postbiotics from L. plantarum may be a promising approach for combating bacterial growth, biofilm formation, and antibiotic resistance.
Collapse
Affiliation(s)
- Javad Nezhadi
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| |
Collapse
|
3
|
Nezhadi J, Fadaee M, Ahmadi S, Kafil HS. Microbiota transplantation. Heliyon 2024; 10:e39047. [PMID: 39640634 PMCID: PMC11620042 DOI: 10.1016/j.heliyon.2024.e39047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
Microbiota refers to a collection of living microorganisms, including bacteria, yeasts, and viruses, that coexist in various sites of the human body. Microbiota can perform multiple functions in the body, which have an essential effect on human health and homeostasis. For example, the microbiota can digest polysaccharides, produce vitamins, modulate the immune system, and protect the body against pathogens. Various factors can occasionally alter the microbiota population in the human body, a condition known as dysbiosis. Dysbiosis can disrupt the homeostasis of a person's body and cause disease. Recent years have witnessed efforts to restore the microbiota population of an individual's body to its original state and eradicate dysbiosis through microbiota transplantation. The noteworthy point is that different methods such as fecal microbiota transplantation, vaginal microbiota transplantation (VMT), skin microbiota transplantation (SMT), oral microbiota transplantation (OMT), washed microbiota transplantation (WMT), and sinonasal microbiota transplantation (SiMT) are used for microbiota transplantation (MT). According to the results of studies and the usefulness of MT in improving a person's health, the purpose of this study is to investigate different methods of MT to eliminate dysbiosis.
Collapse
Affiliation(s)
- Javad Nezhadi
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Manouchehr Fadaee
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Somayeh Ahmadi
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Hossein Samadi Kafil
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Hyeon GE, Eom YB. Totarol exhibits antibacterial effects through antibiofilm and combined interaction against vancomycin-resistant Enterococcus faecalis. Can J Microbiol 2024; 70:426-432. [PMID: 39058360 DOI: 10.1139/cjm-2024-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The rise of vancomycin-resistant enterococci (VRE) due to antibiotic overuse poses a significant threat to long-term care patients and those with impaired immune systems. Therefore, it is imperative to seek alternatives to overcome multidrug resistance. This study aimed to evaluate totarol, a natural compound derived from Podocarpus totara, for its antibacterial activity against vancomycin-resistant Enterococcus faecalis (VREF). Totarol exhibited potent antibacterial activity at a very low concentration of 0.25 µg/mL and demonstrated antibiofilm effects through biofilm inhibitory concentration and biofilm eradication concentration assays. Confocal laser scanning microscopy confirmed that totarol inhibited not only biofilm mass but also bacterial cell viability. The combinatorial use of sublethal concentrations of totarol and vancomycin showed antibacterial activity, as observed in the time-kill assay. Quantitative polymerase chain reaction assays revealed a concentration-dependent downregulation of key virulence genes (vanA, ace, asa, efaA, and esp) in VREF when exposed to totarol. In summary, totarol emerges as a promising adjuvant with vancomycin for inhibiting VREF, addressing vancomycin resistance and biofilm formation-critical challenges associated with VRE infection. Since this was an in vitro study, the role of totarol in the clinical implications of VREF treatment remains to be demonstrated.
Collapse
Affiliation(s)
- Ga-Eun Hyeon
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam, 31538, Republic of Korea
| | - Yong-Bin Eom
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam, 31538, Republic of Korea
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam, 31538, Republic of Korea
| |
Collapse
|
5
|
Xiang Y, Wang S, Huang H, Li X, Wei Y, Li H, Ji X. A novel endolysin from an Enterococcus faecalis phage and application. Microb Pathog 2024; 192:106689. [PMID: 38750777 DOI: 10.1016/j.micpath.2024.106689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/03/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
Enterococcus faecalis is the primary species detected in cases of secondary persistent infection resulting from root canal therapy failure. Due to the overuse of antibacterial agents, E. faecalis has developed resistance to these drugs, making it challenging to treat clinical diseases caused by E. faecalis infection. Therefore, there is an urgent need to explore new alternative drugs for treating E. faecalis infections. We aimed to clone and express the genes of phage endolysins, purify the recombinant proteins, and analyze their antibacterial activity, lysis profile, and ability to remove biofilm. The crude enzyme of phage endolysin pEF51 (0.715 mg/mL), derived from phage PEf771 infecting E. faecalis, exhibited superior bacterial inhibitory activity and a broader bactericidal spectrum than its parental phage PEf771. Furthermore, pEF51 demonstrated high efficacy in eliminating E. faecalis biofilm. Therapeutic results of the infected Sprague-Dawley (SD) rat model indicated that among 10 SD rats, only one developed a thoracic peritoneal abscess and splenic peritoneal abscess after 72 h of treatment with pEF51. This suggests that pEF51 could provide protection against E. faecalis infection in SD rats. Based on the 16S rDNA metagenomic data of the intestinal microbial community of SD rats, endolysin pEF51 exerted a certain influence on the diversity of intestinal microorganisms at the genus level. Thus, pEF51 may serve as a promising alternative to antibiotics in the management of E. faecalis infection.
Collapse
Affiliation(s)
- Yingying Xiang
- -Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650031, China
| | - Suping Wang
- -Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hao Huang
- -Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650031, China
| | - Xuelin Li
- -Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650031, China
| | - Yunlin Wei
- -Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Haiyan Li
- -Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiuling Ji
- -Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
6
|
Yousefi L, Kadkhoda H, Shirmohammadi M, Moaddab SY, Ghotaslou R, Tahereh pirzadeh, Sadeghi J, Somi MH, Ahangarzadeh Rezaee M, Ganbarov K, Samadi Kafil H. CRISPR-like sequences association with antibiotic resistance and biofilm formation in Helicobacter pylori clinical isolates. Heliyon 2024; 10:e26809. [PMID: 38449645 PMCID: PMC10915373 DOI: 10.1016/j.heliyon.2024.e26809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024] Open
Abstract
Role of clustered regularly interspaced short palindromic repeats (CRISPR)-like sequences in antibiotic resistance and biofilm formation isn't clear. This study investigated association of CRISPR-like sequences with antibiotic resistance and biofilm formation in H. pylori isolates. Thirty-six of H. pylori isolates were studied for existence of CRISPR-like sequences using PCR method and their correlation with biofilm formation and antibiotic resistance. Microtiter-plate technique was utilized for investigating antibiotic resistance profile of isolates against amoxicillin, tetracycline, metronidazole and clarithromycin. Biofilm formation of isolates was analyzed by microtiter-plate-based-method. Out of 23 CRISPR-like positive isolates, 19 had ability of biofilm formation and 7 of 13 CRISPR-like negative isolates were able to form biofilm (Pvalue = 0.445). In CRISPR-like positive isolates, 11 (48%), 18 (78%), 18 (78%) and 23 (100%) were resistant to amoxicillin, tetracycline, metronidazole and clarithromycin, respectively. Since CRISPR-like sequences have role in antibiotic resistance, may be applied as genetic markers of antibiotic resistance. But there was no substantial correlation between biofilm formation and existence of CRISPR-like sequences. These results indicate possible importance of CRISPR-like sequences on acquisition of resistance to antibiotics in this bacterium.
Collapse
Affiliation(s)
- Leila Yousefi
- Student Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hiva Kadkhoda
- Drug Applied Research center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Shirmohammadi
- Liver and Gastrointestinal Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Yaghoub Moaddab
- Liver and Gastrointestinal Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Drug Applied Research center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh pirzadeh
- Stem Cell Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadeghi
- Drug Applied Research center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Z. Khalilov str., 23 AZ1148, Baku, Azerbaijan
| | - Hossein Samadi Kafil
- Drug Applied Research center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Feizi H, Alizadeh M, Azimi H, Khodadadi E, Kamounah FS, Ganbarov K, Ghotaslou R, Rezaee MA, Kafil HS. Induction of proteome changes involved in the cloning of mcr-1 and mcr-2 genes in Escherichia coli DH5-α strain to evaluate colistin resistance. J Glob Antimicrob Resist 2024; 36:151-159. [PMID: 38154746 DOI: 10.1016/j.jgar.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023] Open
Abstract
OBJECTIVES Plasmid genes, termed mobile colistin resistance-1 (mcr-1) and mobile colistin resistance-2 (mcr-2), are associated with resistance to colistin in Escherichia coli (E. coli). These mcr genes result in a range of protein modifications contributing to colistin resistance. This study aims to discern the proteomic characteristics of E. coli-carrying mcr-1 and mcr-2 genes. Furthermore, it evaluates the expression levels of various proteins under different conditions (with and without colistin). METHODS Plasmid extraction was performed using an alkaline lysis-based plasmid extraction kit, whereas polymerase chain reaction was used to detect the presence of mcr-1 and mcr-2 plasmids. The E. coli DH5α strain served as the competent cell for accepting and transforming mcr-1 and mcr-2 plasmids. We assessed proteomic alterations in the E. coli DH5α strain both with and without colistin in the growth medium. Proteomic data were analysed using mass spectrometry. RESULTS The findings revealed significant protein changes in the E. coli DH5α strain following cloning of mcr-1 and mcr-2 plasmids. Of the 20 proteins in the DH5α strain, expression in 8 was suppressed following transformation. In the presence of colistin in the culture medium, 39 new proteins were expressed following transformation with mcr-1 and mcr-2 plasmids. The proteins with altered expression play various roles. CONCLUSION The results of this study highlight numerous protein alterations in E. coli resulting from mcr-1 and mcr-2-mediated resistance to colistin. This understanding can shed light on the resistance mechanism. Additionally, the proteomic variations observed in the presence and absence of colistin might indicate potential adverse effects of indiscriminate antibiotic exposure on treatment efficacy and heightened pathogenicity of microorganisms.
Collapse
Affiliation(s)
- Hadi Feizi
- Department of Medical Microbiology, Aalinasab Hospital, Social Security Organization, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Alizadeh
- Pharmaceutical Nanotechnology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Azimi
- Department of Microbiology, Islamic Azad University of Zanjan, Zanjan, Iran
| | - Ehsaneh Khodadadi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Baku, Azerbaijan
| | - Reza Ghotaslou
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Samadi Kafil
- Drug Applied Research Centre, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Abd El-Hamid MI, Ibrahim D, Elazab ST, Gad WM, Shalaby M, El-Neshwy WM, Alshahrani MA, Saif A, Algendy RM, AlHarbi M, Saleh FM, Alharthi A, Mohamed EAA. Tackling strong biofilm and multi-virulent vancomycin-resistant Staphylococcus aureus via natural alkaloid-based porous nanoparticles: perspective towards near future eradication. Front Cell Infect Microbiol 2024; 13:1287426. [PMID: 38282617 PMCID: PMC10811083 DOI: 10.3389/fcimb.2023.1287426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/16/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction As a growing direction, nano-based therapy has become a successful paradigm used to address the phytogenic delivery-related problems in overcoming multivirulent vancomycin-resistant Staphylococcus aureus (VRSA) infection. Methods Hence, our aim was to develop and assess a novel nanocarrier system (mesoporous silica nanoparticles, MPS-NPs) for free berberine (Free-BR) as an antimicrobial alkaloid against strong biofilm-producing and multi-virulent VRSA strains using in vitro and in vivo mouse model. Results and discussion Our outcomes demonstrated vancomycin resistance in 13.7% of Staphylococcus aureus (S. aureus) strains categorized as VRSA. Notably, strong biofilm formation was observed in 69.2% of VRSA strains that were all positive for icaA gene. All strong biofilm-producing VRSA strains harbored a minimum of two virulence genes comprising clfA and icaA with 44.4% of them possessing all five virulence genes (icaA, tst, clfA, hla, and pvl), and 88.9% being multi-virulent. The study findings affirmed excellent in vitro antimicrobial and antibiofilm properties of BR-loaded MPS-NPs. Real-time quantitative reverse transcription PCR (qRT-PCR) assay displayed the downregulating role of BR-loaded MPS-NPs on strong biofilm-producing and multi-virulent VRSA strains virulence and agr genes in both in vitro and in vivo mice models. Additionally, BR-loaded MPS-NPs supplementation has a promising role in attenuating the upregulated expression of pro-inflammatory cytokines' genes in VRSA-infected mice with attenuation in pro-apoptotic genes expression resulting in reduced VRSA-induced apoptosis. In essence, the current study recommends the future scope of using BR-loaded MPS-NPs as auspicious alternatives for antimicrobials with tremendous antimicrobial, antibiofilm, anti-quorum sensing (QS), and anti-virulence effectiveness against problematic strong biofilm-producing and multi-virulent VRSA-associated infections.
Collapse
Affiliation(s)
- Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Wafaa M. Gad
- Department of Bacteriology, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center, Mansoura, Egypt
| | - Marwa Shalaby
- Department of Bacteriology, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center, Mansoura, Egypt
| | - Wafaa M. El-Neshwy
- Department of Animal Medicine, Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Ahmed Saif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Reem M. Algendy
- Food Hygiene, Safety and Technology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Maha AlHarbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fayez M. Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Afaf Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Eman A. A. Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Hajiagha MN, Kafil HS. Efflux pumps and microbial biofilm formation. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023:105459. [PMID: 37271271 DOI: 10.1016/j.meegid.2023.105459] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
Biofilm-related infections are resistant forms of pathogens that are regarded as a medical problem, particularly due to the spread of multiple drug resistance. One of the factors associated with biofilm drug resistance is the presence of various types of efflux pumps in bacteria. Efflux pumps also play a role in biofilm formation by influencing Physical-chemical interactions, mobility, gene regulation, quorum sensing (QS), extracellular polymeric substances (EPS), and toxic compound extrusion. According to the findings of studies based on efflux pump expression analysis, their role in the anatomical position within the biofilm will differ depending on the biofilm formation stage, encoding gene expression level, the type and concentration of substrate. In some cases, the function of the efflux pumps can overlap with each other, so it seems necessary to accurate identify the efflux pumps of biofilm-forming bacteria along with their function in this process. Such studies will help to choose treatment strategy, at least in combination with antibiotics. Furthermore, if the goal of treatment is an efflux pump manipulation, we should not limit it to inhibition.
Collapse
Affiliation(s)
- Mahdyeh Neghabi Hajiagha
- Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Carrasco Calzada F, Jairo Aguilera J, Moreno JE, Cuadros González J, Roca Biosca D, Prieto-Pérez L, Pérez-Tanoira R. Differences in Virulence Factors and Antimicrobial Susceptibility of Uropathogenic Enterococcus spp. Strains in a Rural Area of Uganda and a Spanish Secondary Hospital. Trop Med Infect Dis 2023; 8:tropicalmed8050282. [PMID: 37235330 DOI: 10.3390/tropicalmed8050282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Enterococcus faecalis and Enterococcus faecium have become two of the most important agents of nosocomial diseases due to their constantly growing resistance. Enterococcal infections are associated with biofilms, which are intrinsically sensitive to antimicrobials. The main goal of this study was to compare and relate their capacity to form biofilm and their antimicrobial sensitivity, as well as their virulence factors and their implicated genes, of strains isolated from patients with urinary tract infection (UTI) in a rural hospital in Uganda and a secondary hospital in Spain. A prospective study was conducted with 104 strains of E. faecalis and E. faecium isolated from patients with suspected UTI and who presented leukocyturia at the Saint Joseph Kitgum hospital (Uganda) and at the Hospital Universitario Principe de Asturias (Spain). All microorganisms were identified in Spain by MALDI-TOF mass spectrometry. Antimicrobial susceptibility studies were carried out using the Vitek® 2 system (Biomériux, France). The biofilm formation capacity was studied by photospectrometry. Phenotypic and genotypic virulence factors were studied in all cases by PCR or expression techniques. In Uganda, we found a higher incidence of E. faecium (65.3%, n = 32), contrary to the situation found in Spain where most of the bacteria found belonged to E. faecalis (92.7%, n = 51). All E. faecalis strains were found to have very low levels of resistance to ampicillin, imipenem, and nitrofurantoin. However, E. faecium exhibited more than 25% resistance to these antibiotics. Although the esp gene has been shown in the results obtained to be an important initial agent in biofilm formation, we have also demonstrated in this study the intervention of other genes when esp is not present, such as the ace1 gene. No statistically significant relationships were found between the presence of agg and gelE genes and increased biofilm formation. The significant difference between the incidence of E. faecalis and E. faecium and biofilm formation, between samples from Spain and Uganda, shows us very different profiles between countries.
Collapse
Affiliation(s)
- Félix Carrasco Calzada
- Clinical Microbiology Department, Hospital Universitario Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- Health Sciences Department, Faculty of Med, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - John Jairo Aguilera
- IIS-Fundación Jiménez Díaz, 28007 Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Jaime Esteban Moreno
- IIS-Fundación Jiménez Díaz, 28007 Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Juan Cuadros González
- Clinical Microbiology Department, Hospital Universitario Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- Health Sciences Department, Faculty of Med, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Máster Medicina Tropical y Salud Internacional, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - David Roca Biosca
- Máster Medicina Tropical y Salud Internacional, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Fundación El Alto, 12500 Vinaroz, Spain
| | - Laura Prieto-Pérez
- IIS-Fundación Jiménez Díaz, 28007 Madrid, Spain
- Máster Medicina Tropical y Salud Internacional, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ramón Pérez-Tanoira
- Clinical Microbiology Department, Hospital Universitario Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- Health Sciences Department, Faculty of Med, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Máster Medicina Tropical y Salud Internacional, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
11
|
Rezaei T, Kamounah FS, Khodadadi E, Mehramouz B, Gholizadeh P, Yousefi L, Ganbarov K, Ghotaslou R, Yousefi M, Asgharzadeh M, Eslami H, Taghizadeh S, Pirzadeh T, Kafil HS. Comparing proteome changes involved in biofilm formation by Streptococcus mutans after exposure to sucrose and starch. Biotechnol Appl Biochem 2023. [PMID: 36588392 DOI: 10.1002/bab.2442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Streptococcus mutans is a main organism of tooth infections including tooth decay and periodontitis. The aim of this study was to assess the influence of sucrose and starch on biofilm formation and proteome profile of S. mutans ATCC 35668 strain. The biofilm formation was assessed by microtiter plating method. Changes in bacterial proteins after exposure to sucrose and starch carbohydrates were analyzed using matrix-assisted laser desorption/ionization mass spectrometry. The biofilm formation of S. mutans was increased to 391.76% in 1% sucrose concentration, 165.76% in 1% starch, and 264.27% in the 0.5% sucrose plus 0.5% starch in comparison to biofilm formation in the media without sugars. The abundance of glutamines, adenylate kinase, and 50S ribosomal protein L29 was increased under exposure to sucrose. Upregulation of lactate utilization protein C, 5-hydroxybenzimidazole synthase BzaA, and 50S ribosomal protein L16 was formed under starch exposure. Ribosome-recycling factor, peptide chain release factor 1, and peptide methionine sulfoxide reductase MsrB were upregulated under exposure to sucrose in combination with starch. The results demonstrated that the carbohydrates increase microbial pathogenicity. In addition, sucrose and starch carbohydrates can induce biofilm formation of S. mutans via various mechanisms such as changes in the expression of special proteins.
Collapse
Affiliation(s)
- Tohid Rezaei
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Ehsaneh Khodadadi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Bahareh Mehramouz
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Yousefi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Baku, Azerbaijan
| | - Reza Ghotaslou
- Research Laboratory of Microbiology and Virology, Baku State University, Baku, Azerbaijan
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hosein Eslami
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Taghizadeh
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Pirzadeh
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Noumi E, Ahmad I, Bouali N, Patel H, Ghannay S, ALrashidi AA, Abdulhakeem MA, Patel M, Ceylan O, Badraoui R, Mousa Elayyan AE, Adnan M, Kadri A, Snoussi M. Thymus musilii Velen. Methanolic Extract: In Vitro and In Silico Screening of Its Antimicrobial, Antioxidant, Anti-Quorum Sensing, Antibiofilm, and Anticancer Activities. Life (Basel) 2022; 13:62. [PMID: 36676011 PMCID: PMC9862435 DOI: 10.3390/life13010062] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Thymus musilii Velen. is a rare plant species cultivated in the Ha'il region (Saudi Arabia) under greenhouse conditions. In this work, we described, for the first time, the phytochemical composition, antimicrobial, antioxidant, anti-quorum sensing, and anticancer activities of T. musilii methanolic extract using both experimental and computational approaches. The obtained results showed the identification of eight small-like peptides and eighteen phyto-compounds by using high-resolution liquid chromatography-mass spectrometry (HR-LCMS) dominated mainly by compounds belonging to isoprenoid, fatty acyl, flavonoid, and alkaloid classes. The tested extracts exhibited high antifungal and antibacterial activity with the mean diameter of growth inhibition zones ranging from 12.33 ± 0.57 mm (Pseudomonas aeruginosa ATCC 27853) to 29.33 ± 1.15 mm (Candida albicans ATCC 10231). Low minimal inhibitory concentrations were recorded for the tested micro-organisms ranging from 0.781 mg/mL to 12.5 mg/mL. While higher doses were necessary to completely kill all tested bacterial and fungal strains. Thyme extract was able to scavenge DPPH•, ABTS•+, β-carotene, and FRAP free radicals, and the IC50 values were 0.077 ± 0.0015 mg/mL, 0.040 ± 0.011 mg/mL, 0.287 ± 0.012 mg/mL, and 0.106 ± 0.007 mg/mL, respectively. The highest percentage of swarming and swimming inhibition was recorded at 100 µg/mL with 39.73 ± 1.5% and 25.18 ± 1%, respectively. The highest percentage of biofilm inhibition was recorded at 10 mg/mL for S. typhimurium ATCC 14028 (53.96 ± 4.21%) and L. monocytogenes ATCC 7644 (49.54 ± 4.5 mg/mL). The in silico docking study revealed that the observed antimicrobial, antioxidant, and anticancer activities of the constituent compounds of T. musilii are thermodynamically feasible, notably, such as those of the tripeptides (Asn-Met-His, His-Cys-Asn, and Phe-His-Gln), isoprenoids (10-Hydroxyloganin), and diterpene glycosides (4-Ketoretinoic acid glucuronide).
Collapse
Affiliation(s)
- Emira Noumi
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, India
| | - Nouha Bouali
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, P.O. Box 6688, Buraidah 51452, Saudi Arabia
| | - Ayshah Aysh ALrashidi
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
| | - Mohammad A Abdulhakeem
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
| | - Mitesh Patel
- Centre of Research for Development, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India
| | - Ozgur Ceylan
- Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla 48147, Turkey
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
- Department of Histo Embryology and Cytogenetics, Medicine Faculty of Sfax, University of Sfax, Road of Majida Boulia, Sfax 3029, Tunisia
| | - Afnan Elayyan Mousa Elayyan
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
| | - Adel Kadri
- Faculty of Science and Arts in Baljurashi, Albaha University, P.O. Box 1988, Albaha 65527, Saudi Arabia
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| |
Collapse
|
13
|
Asgharzadeh M, Taghinejad Z, Asgharzadeh V, Mehramouz B, Rashedi J, Mahdavipoor B, Pourostadi M, Vegari A, Vishkaei AS, Taghizadeh S, Kafil HS. Polymorphism of the IL-10 gene in Azeri population of Iran. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00324-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Interleukin (IL)-10 is one of the key interleukins in the immune system. It plays an anti-inflammatory role in body by inhibition of the synthesis of pro-inflammatory cytokines and reducing the expression of major histocompatibility complex II molecules. The single-nucleotide polymorphism in the gene of this interleukin affects its expression level. Thus, this study was conducted to investigate the IL-10 gene polymorphism at position -1082A/G in Azeri population of Iran.
Methods
Blood samples were taken from 254 healthy and non-relevant Iranian Azeri individuals. After DNA extraction, the frequency of IL-10 genotypes and alleles at -1082A/G position was determined by allele specific-PCR method. Then, q-square test was used to compare allele frequencies and IL-10 genotypes with other populations, and p value of < 0.05 was considered significant.
Results
In Iranian Azeri population, the frequency percentage of AA, AG and GG genotypes in IL-10 gene at the -1082A/G location was 37.4, 43.3 and 19.3%, respectively. The frequency percentage of A and G alleles also were 59.1 and 40.9%, respectively. Based on statistical analysis, frequency of IL-10 genotypes in the current study was very similar to the population of Saudi Arabia, but it had a significant difference with East Asia and Ireland populations.
Conclusion
Results of the present study indicate similar polymorphism of IL-10 genotype with neighbor ethnicities in Middle East country. Based on patients backgrounds mentioned in their questioners, this polymorphism was associated with the susceptibility to asthma and Alzheimer in this population which are common in the region.
Collapse
|
14
|
Biofilms and Benign Colonic Diseases. Int J Mol Sci 2022; 23:ijms232214259. [PMID: 36430737 PMCID: PMC9698058 DOI: 10.3390/ijms232214259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
The colon has a very large surface area that is covered by a dense mucus layer. The biomass in the colon includes 500-1000 bacterial species at concentrations of ~1012 colony-forming units per gram of feces. The intestinal epithelial cells and the commensal bacteria in the colon have a symbiotic relationship that results in nutritional support for the epithelial cells by the bacteria and maintenance of the optimal commensal bacterial population by colonic host defenses. Bacteria can form biofilms in the colon, but the exact frequency is uncertain because routine methods to undertake colonoscopy (i.e., bowel preparation) may dislodge these biofilms. Bacteria in biofilms represent a complex community that includes living and dead bacteria and an extracellular matrix composed of polysaccharides, proteins, DNA, and exogenous debris in the colon. The formation of biofilms occurs in benign colonic diseases, such as inflammatory bowel disease and irritable bowel syndrome. The development of a biofilm might serve as a marker for ongoing colonic inflammation. Alternatively, the development of biofilms could contribute to the pathogenesis of these disorders by providing sanctuaries for pathogenic bacteria and reducing the commensal bacterial population. Therapeutic approaches to patients with benign colonic diseases could include the elimination of biofilms and restoration of normal commensal bacteria populations. However, these studies will be extremely difficult unless investigators can develop noninvasive methods for measuring and identifying biofilms. These methods that might include the measurement of quorum sensing molecules, measurement of bile acids, and identification of bacteria uniquely associated with biofilms in the colon.
Collapse
|
15
|
Caixeta Magalhães Tibúrcio AA, Paiva AD, Pedrosa AL, Rodrigues WF, Bernardes da Silva R, Oliveira AG. Effect of sub-inhibitory concentrations of antibiotics on biofilm formation and expression of virulence genes in penicillin-resistant, ampicillin-susceptible Enterococcus faecalis. Heliyon 2022; 8:e11154. [PMID: 36303921 PMCID: PMC9593294 DOI: 10.1016/j.heliyon.2022.e11154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/11/2021] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Biofilm formation is a key factor in the pathogenesis of enterococcal infections. Thus, the biofilm-forming ability and frequency of biofilm-related genes in penicillin-resistant, ampicillin-susceptible Enterococcus faecalis (PRASEF) compared to penicillin- and ampicillin-susceptible E. faecalis (PSASEF) were assessed in the present study. In addition, the effect of sub-inhibitory concentrations (sub-MICs) of antibiotics on biofilm formation and expression of virulence genes was evaluated. Twenty PRASEF and 21 PSASEF clinical isolates were used to determine the effect of sub-MICs of antibiotics (ampicillin, penicillin, and gentamicin) on biofilm formation, and ten selected isolates were subjected to RT-qPCR to detect the transcript levels of virulence genes (efaA, asa1, esp, and ace). Antibiotic susceptibility was evaluated by the microdilution broth method. Biofilm formation assay was performed using the microtiter plate method. All PSASEF and PRASEF isolates produced biofilms in vitro. Most isolates had three or four virulence genes. Sub-MICs of ampicillin significantly decreased biofilm production and expression of ace and asa1 genes, although the transcript levels were significantly lower (−350% and −606.2%, respectively) among the PSASEF isolates only. Sub-MICs of gentamicin did not have any significant effect on biofilm formation, but slightly increased the transcript levels of efaA. In conclusion, this study showed that the biofilm-forming ability and frequency of the evaluated virulence genes were similar among the PRASEF and PSASEF isolates. Further, in vitro antibiotic sub-MICs were confirmed to interfere with the expression pattern of virulence genes and biofilm formation by E. faecalis. However, further studies are required to clarify the role of sublethal doses of antibiotics on enterococcal biofilms.
Collapse
Affiliation(s)
| | - Aline Dias Paiva
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - André Luiz Pedrosa
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Wellington Francisco Rodrigues
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Raíssa Bernardes da Silva
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Adriana Gonçalves Oliveira
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil,Corresponding author.
| |
Collapse
|
16
|
Ali IAA, Neelakantan P. Antibiofilm activity of phytochemicals against Enterococcus faecalis: A literature review. Phytother Res 2022; 36:2824-2838. [PMID: 35522168 DOI: 10.1002/ptr.7488] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
Enterococcus faecalis is a leading causative pathogen of recalcitrant infections affecting heart valves, urinary tract, surgical wounds and dental root canals. Its robust biofilm formation, production of virulence factors and antibiotic resistance contribute significantly to its pathogenicity in persistent infections. The decreased effectiveness of most of antibiotics in preventing and/or eradicating E. faecalis biofilms mandates the discovery of alternative novel antibiofilm agents. Phytochemicals are potential sources of antibiofilm agents due to their antivirulence activity, diversity of chemical structure and multiple mechanisms of action. In this review, we describe the phenotypic and genetic attributes that contribute to antimicrobial tolerance of E. faecalis biofilms. We illuminate the benefits of implementing the phytochemicals to tackle microbial pathogens. Finally, we report the antibiofilm activity of phytochemicals against E. faecalis, and explain their mechanisms of action. These compounds belong to different chemical classes such as terpenes, phenylpropenes, flavonoids, curcuminoids and alkaloids. They demonstrate the ability to inhibit the formation of and/or eradicate E. faecalis biofilms. However, the exact mechanisms of action of most of these compounds are not fully understood. Therefore, the future studies should elucidate the underlying mechanisms in detail.
Collapse
Affiliation(s)
- Islam A A Ali
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| | | |
Collapse
|
17
|
Akpınar Kankaya D, Tuncer Y. Detection of Virulence Factors, Biofilm Formation and Biogenic Amine Production in
Vancomycin‐Resistant
Lactic Acid Bacteria (
VRLAB
) Isolated From Foods of Animal Origin. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Didem Akpınar Kankaya
- Department of Food Technology, Gelendost Vocational School Isparta University of Applied Sciences Isparta Turkey
| | - Yasin Tuncer
- Department of Food Engineering, Faculty of Engineering Süleyman Demirel University Isparta Turkey
| |
Collapse
|
18
|
Calix[4]arene-based thiosemicarbazide Schiff-base ligand and its transition metal complexes: synthesis and biological assessment. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Du Q, Yuan S, Zhao S, Fu D, Chen Y, Zhou Y, Cao Y, Gao Y, Xu X, Zhou X, He J. Coexistence of Candida albicans and Enterococcus faecalis increases biofilm virulence and periapical lesions in rats. BIOFOULING 2021; 37:964-974. [PMID: 34839774 DOI: 10.1080/08927014.2021.1993836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present study utilized an in vitro dual-species biofilm model and an in vivo rat post-treatment endodontic disease (PTED) model to investigate whether co-infection of Candida albicans and Enterococcus faecalis would aggravate periapical lesions. The results showed that co-culturing yielded a thicker and denser biofilm more tolerant to detrimental stresses compared with the mono-species biofilm, such as a starvation-alkalinity environment, mechanical shear force and bactericidal chemicals. Consistently, co-inoculation of E. faecalis and C. albicans significantly increased the extent of in vivo periapical lesions compared with mono-species infection. Specifically, coexistence of both microorganisms increased osteoclastic bone resorption and suppressed osteoblastic bone formation. The synergistic effects also up-regulated inflammatory cytokines including TNF-α and IL-6. In summary, coexistence of C. albicans and E. faecalis increased periapical lesions by enhanced biofilm virulence.
Collapse
Affiliation(s)
- Qian Du
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Shasha Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuangyuan Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Di Fu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yifei Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yuan Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yangpei Cao
- Woody L. Hunt School of Dental Medicine, Texas Tech University Health Sciences Center, EI Paso, TX, USA
| | - Yuan Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinzhi He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Li R, Zhou M, Lu J, Wei J. Antibiofilm Effects of Epigallocatechin Gallate Against Proteus mirabilis Wild-Type and Ampicillin-Induced Strains. Foodborne Pathog Dis 2021; 19:136-142. [PMID: 34726503 DOI: 10.1089/fpd.2021.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proteus mirabilis is an opportunistic pathogen associated with nosocomial infections and foodborne diseases. The resistance and biofilm formation of P. mirabilis have been a great concern. In this study a multidrug-resistant P. mirabilis strain 012 was exposed to a lethal dose of ampicillin (10 mg/mL, 2.5-fold minimal bactericidal concentration) for 24 h at 37°C. After resuscitation and isolation, five variant isolates were selected and subjected to ampicillin induction by repeatedly streaking on ampicillin-containing plates (10 mg/mL) for at least three times. In biofilm formation assays by using crystal violet staining, we found that the variant strains had enhanced biofilm-forming abilities. (-)-epigallocatechin-3-gallate (EGCG) at a minimum inhibitory concentration (MIC) (256 μg/mL) significantly reduced the biofilm formation of all variant strains and the wild-type strain (p < 0.01). Sub-MIC of EGCG (128 μg/mL) suppressed the biofilms of wild-type and two variants. However, it stimulated the biofilms of the other three variants. The antibiofilm effects of EGCG against the wild-type strain were further confirmed by confocal laser scanning microscopy. Scanning electron microscopy revealed that EGCG induced variants to form more fibrous structures. Our results revealed that a lethal dose of antibiotic exposure increased antibiotic resistance and biofilm formation of P. mirabilis. EGCG may be used as a promising antibiofilm agent to prevent the P. mirabilis biofilm formation in the food industry. However, the sub-MIC of EGCG is not effective and will not be applied.
Collapse
Affiliation(s)
- Rui Li
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Min Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jieyuan Lu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Jiajun Wei
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Fathizadeh H, Pakdel F, Saffari M, Esmaeili DD, Momen-Heravi M, Dao S, Ganbarov K, Kafil HS. Bacteriocins: Recent advances in application as an antimicrobial alternative. Curr Pharm Biotechnol 2021; 23:1028-1040. [PMID: 34493194 DOI: 10.2174/1389201022666210907121254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 11/22/2022]
Abstract
Due to the emergence and development of antibiotic resistance in the treatment of bacterial infections, efforts to discover new antimicrobial agents have increased. One of these antimicrobial agents is a compound produced by a large number of bacteria called bacteriocin. Bacteriocins are small ribosomal polypeptides that can exert their antibacterial effects against bacteria close to their producer strain or even non-closely strains. Adequate knowledge of the structure and functional mechanisms of bacteriocins and their spectrum of activity, as well as knowledge of the mechanisms of possible resistance to these compounds will lead to further development of their use as an alternative to antibiotics. Furthermore, most bacteria that live in the gastrointestinal tract (GIT) have the ability to produce bacteriocins, which spread throughout the GIT. Despite antimicrobial studies in vitro, our knowledge of bacteriocins in the GIT and the migration of these bacteriocins from the epithelial barrier is low. Hence, in this study, we reviewed general information about bacteriocins, such as classification, mechanism of action and resistance, emphasizing their presence, stability, and spectrum of activity in the GIT.
Collapse
Affiliation(s)
- Hadis Fathizadeh
- Department of Microbiology and immunology, Kashan University of Medical Sciences, Kashan. Iran
| | - Farzaneh Pakdel
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Mahmood Saffari
- Department of Microbiology and immunology, Kashan University of Medical Sciences, Kashan. Iran
| | - Davoud Davoud Esmaeili
- Department of Microbiology and Applied Microbiology Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical sciences, Tehran. Iran
| | - Mansooreh Momen-Heravi
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan. Iran
| | - Sounkalo Dao
- Faculté de Médecine, de Pharmacie et d'Odonto-Stomatologie (FMPOS), University of Bamako, Bamako. Mali
| | | | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, IR. Iran
| |
Collapse
|
22
|
Gholizadeh P, Aghazadeh M, Ghotaslou R, Rezaee MA, Pirzadeh T, Cui L, Watanabe S, Feizi H, Kadkhoda H, Kafil HS. Role of CRISPR-Cas system on antibiotic resistance patterns of Enterococcus faecalis. Ann Clin Microbiol Antimicrob 2021; 20:49. [PMID: 34321002 PMCID: PMC8317297 DOI: 10.1186/s12941-021-00455-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems are one of the factors which can contribute to limiting the development and evolution of antibiotic resistance in bacteria. There are three genomic loci of CRISPR-Cas in Enterococcus faecalis. In this study, we aimed to assess correlation of the CRISPR-Cas system distribution with the acquisition of antibiotic resistance among E. faecalis isolates. A total of 151 isolates of E. faecalis were collected from urinary tract infections (UTI) and dental-root canal (DRC). All isolates were screened for phenotypic antibiotic resistance. In addition, antibiotic resistance genes and CRISPR loci were screened by using polymerase chain reaction. Genomic background of the isolates was identified by random amplified polymorphic DNA (RAPD)-PCR. The number of multidrug-resistant E. faecalis strains were higher in UTI isolates than in DRC isolates. RAPD-PCR confirmed that genomic background was diverse in UTI and DRC isolates used in this study. CRISPR loci were highly accumulated in gentamycin-, teicoplanin-, erythromycin-, and tetracycline-susceptible strains. In concordance with drug susceptibility, smaller number of CRISPR loci were identified in vanA, tetM, ermB, aac6’-aph(2”), aadE, and ant(6) positive strains. These data indicate a negative correlation between CRISPR-cas loci and antibiotic resistance, as well as, carriage of antibiotic resistant genes in both of UTI and DRC isolates.
Collapse
Affiliation(s)
- Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Aghazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Tahereh Pirzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hadi Feizi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hiva Kadkhoda
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Trans-Cinnamaldehyde Attenuates Enterococcus faecalis Virulence and Inhibits Biofilm Formation. Antibiotics (Basel) 2021; 10:antibiotics10060702. [PMID: 34208134 PMCID: PMC8230787 DOI: 10.3390/antibiotics10060702] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
Enterococcus faecalis as an important nosocomial pathogen is critically implicated in the pathogenesis of endocarditis, urinary tract, and persistent root canal infections. Its major virulence attributes (biofilm formation, production of proteases, and hemolytic toxins) enable it to cause extensive host tissue damage. With the alarming increase in enterococcal resistance to antibiotics, novel therapeutics are required to inhibit E. faecalis biofilm formation and virulence. Trans-cinnamaldehyde (TC), the main phytochemical in cinnamon essential oils, has demonstrated promising activity against a wide range of pathogens. Here, we comprehensively investigated the effect of TC on planktonic growth, biofilm formation, proteolytic and hemolytic activities, as well as gene regulation in E. faecalis. Our findings revealed that sub-inhibitory concentrations of TC reduced biofilm formation, biofilm exopolysaccharides, as well as its proteolytic and hemolytic activities. Mechanistic studies revealed significant downregulation of the quorum sensing fsr locus and downstream gelE, which are major virulence regulators in E. faecalis. Taken together, our study highlights the potential of TC to inhibit E. faecalis biofilm formation and its virulence.
Collapse
|
24
|
Ozma MA, Khodadadi E, Rezaee MA, Kamounah FS, Asgharzadeh M, Ganbarov K, Aghazadeh M, Yousefi M, Pirzadeh T, Kafil HS. Induction of proteome changes involved in biofilm formation of Enterococcus faecalis in response to gentamicin. Microb Pathog 2021; 157:105003. [PMID: 34087388 DOI: 10.1016/j.micpath.2021.105003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Enterococcus faecalis is a significant cause of nosocomial infections and other diseases, including endocarditis, bacteremia, and urinary tract infections. This microorganism forms biofilms to overcome difficult environmental conditions, such as lack of oxygen, lack of water, and the presence of antimicrobials. These biofilms make diseases difficult by changing their proteome contents, protecting the bacterium, and increasing their pathogenicity. This study aimed to evaluate gentamicin's effect on proteome changes and biofilm formation in E. faecalis. METHOD Twenty-five clinical isolates and one standard isolate were selected for the experiments. A label-free/gel-free proteomic and microtiter plate techniques were used to study proteome changes and biofilm formation, respectively. RESULTS Gentamicin significantly increased the biofilm formation in 62% of isolates and the rest of the isolates; no significant change was observed. The abundance of lactate utilization protein C, ribosomal RNA small subunit methyltransferase H, and protein translocase subunit SecA were increased. However, the abundances of proteins effective in cell division and metabolism, such as replication initiation protein and segregation and condensation protein A, were decreased. CONCLUSION The present study's findings exhibited that antibiotics might have adverse effects on treatment and increase microorganisms' pathogenicity. It was observed in gentamicin as induction of biofilm formation through different mechanisms, particularly changes in the expression of specific proteins in E. faecalis.
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsaneh Khodadadi
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK- 2100, Copenhagen, Denmark
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Aghazadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Pirzadeh
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
|
26
|
MALDI-TOF Mass Spectroscopy Applications in Clinical Microbiology. Adv Pharmacol Pharm Sci 2021; 2021:9928238. [PMID: 34041492 PMCID: PMC8121603 DOI: 10.1155/2021/9928238] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
There is a range of proteomics methods to spot and analyze bacterial protein contents such as liquid chromatography-mass spectrometry (LC-MS), two-dimensional gel electrophoresis, and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS), which give comprehensive information about the microorganisms that may be helpful within the diagnosis and coverings of infections. Microorganism identification by mass spectrometry is predicted on identifying a characteristic spectrum of every species so matched with an outsized database within the instrument. MALDI-TOF MS is one of the diagnostic methods, which is a straightforward, quick, and precise technique, and is employed in microbial diagnostic laboratories these days and may replace other diagnostic methods. This method identifies various microorganisms such as bacteria, fungi, parasites, and viruses, which supply comprehensive information. One of the MALDI-TOF MS's crucial applications is bacteriology, which helps identify bacterial species, identify toxins, and study bacterial antibiotic resistance. By knowing these cases, we will act more effectively against bacterial infections.
Collapse
|
27
|
Abedini E, Khodadadi E, Zeinalzadeh E, Moaddab SR, Asgharzadeh M, Mehramouz B, Dao S, Samadi Kafil H. A Comprehensive Study on the Antimicrobial Properties of Resveratrol as an Alternative Therapy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8866311. [PMID: 33815561 PMCID: PMC7987421 DOI: 10.1155/2021/8866311] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 02/16/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Resveratrol is a polyphenolic antioxidant whose possible health benefits include anticarcinogenic, antiaging, and antimicrobial properties that have gained significant attention. The compound is well accepted by individuals and has been commonly used as a nutraceutical in recent decades. Its widespread usage makes it essential to study as a single agent as well as in combination with traditional prescription antibiotics as regards to antimicrobial properties. Resveratrol demonstrates the action of antimicrobials against a remarkable bacterial diversity, viruses, and fungus. This report explains resveratrol as an all-natural antimicrobial representative. It may modify the bacterial virulence qualities resulting in decreased toxic substance production, biofilm inhibition, motility reduction, and quorum sensing disturbance. Moreover, in conjunction with standard antibiotics, resveratrol improves aminoglycoside efficacy versus Staphylococcus aureus, while it antagonizes the deadly function of fluoroquinolones against S. aureus and also Escherichia coli. The present study aimed to thoroughly review and study the antimicrobial potency of resveratrol, expected to help researchers pave the way for solving antimicrobial resistance.
Collapse
Affiliation(s)
- Ehsan Abedini
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsaneh Khodadadi
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Zeinalzadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Reza Moaddab
- Pharmaceutical Nanotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Mehramouz
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sounkalo Dao
- Faculté de Médecine, de Pharmacie et d'Odonto-Stomatologie (FMPOS), University of Bamako, Bamako, Mali
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
El-Telbany M, El-Didamony G, Askora A, Ariny E, Abdallah D, Connerton IF, El-Shibiny A. Bacteriophages to Control Multi-Drug Resistant Enterococcus faecalis Infection of Dental Root Canals. Microorganisms 2021; 9:microorganisms9030517. [PMID: 33802385 PMCID: PMC7998577 DOI: 10.3390/microorganisms9030517] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 01/04/2023] Open
Abstract
Phage therapy is an alternative treatment to antibiotics that can overcome multi-drug resistant bacteria. In this study, we aimed to isolate and characterize lytic bacteriophages targeted against Enterococcus faecalis isolated from root canal infections obtained from clinics at the Faculty of Dentistry, Ismalia, Egypt. Bacteriophage, vB_ZEFP, was isolated from concentrated wastewater collected from hospital sewage. Morphological and genomic analysis revealed that the phage belongs to the Podoviridae family with a linear double-stranded DNA genome, consisting of 18,454, with a G + C content of 32.8%. Host range analysis revealed the phage could infect 10 of 13 E. faecalis isolates exhibiting a range of antibiotic resistances recovered from infected root canals with efficiency of plating values above 0.5. One-step growth curves of this phage showed that it has a burst size of 110 PFU per infected cell, with a latent period of 10 min. The lytic activity of this phage against E. faecalis biofilms showed that the phage was able to control the growth of E. faecalis in vitro. Phage vB_ZEFP could also prevent ex-vivo E. faecalis root canal infection. These results suggest that phage vB_ZEFP has potential for application in phage therapy and specifically in the prevention of infection after root canal treatment.
Collapse
Affiliation(s)
- Mohamed El-Telbany
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.E.-T.); (G.E.-D.); (A.A.); (E.A.)
| | - Gamal El-Didamony
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.E.-T.); (G.E.-D.); (A.A.); (E.A.)
| | - Ahmed Askora
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.E.-T.); (G.E.-D.); (A.A.); (E.A.)
| | - Eman Ariny
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.E.-T.); (G.E.-D.); (A.A.); (E.A.)
| | - Dalia Abdallah
- Department of Endodontics, Faculty of Dentistry, Suez Canal University, Ismaïlia 41522, Egypt;
| | - Ian F. Connerton
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
- Correspondence: (I.F.C.); (A.E.-S.); Tel.: +44-115-9516119 (I.F.C.)
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, 6th of October City 12578, Egypt
- Correspondence: (I.F.C.); (A.E.-S.); Tel.: +44-115-9516119 (I.F.C.)
| |
Collapse
|
29
|
Antibacterial Properties of Aloe vera on Intracanal Medicaments against Enterococcus faecalis Biofilm at Different Stages of Development. Int J Dent 2020; 2020:8855277. [PMID: 33488716 PMCID: PMC7803133 DOI: 10.1155/2020/8855277] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/07/2020] [Accepted: 12/17/2020] [Indexed: 12/26/2022] Open
Abstract
Background Use of herbal compounds as an intracanal medicament in the field of endodontics has become noteworthy, one of which is the Aloe vera compound whose antibacterial effect has already been proven in the planktonic form of Enterococcus faecalis. The purpose of this study is to evaluate the antibacterial effect of Aloe vera on E. faecalis biofilms at the 4th and 6th week of development. Materials and Methods 130 single root canal teeth without anomalies and caries were used. They were divided into two groups of 65 teeth for four and six weeks of biofilm production. Five samples of each group were examined for confirmation of biofilm formation under an electron microscope. Study groups were investigated with an antimicrobial agent as an intracanal medicament including 20 samples treated with Aloe vera, calcium hydroxide, and phosphate-buffered saline, and biofilm and survival of pathogens were investigated. Dentin chip suspensions were used for colony-forming unit (CFU) counting to estimate remaining E. faecalis counts. Results The CFU mean in the 4th week subgroup in Aloe vera, phosphate-buffered saline, and calcium hydroxide was 0, 69166.66 ± 31688.58, and 25000 ± 30822.07, and in the 6th week, it was 136.36 ± 323.33, 95000 ± 12247.44, and 27501.66 ± 36570.34, respectively, which showed a significant difference between the used materials (p < 0.05). Conclusion Aloe vera, in contrast to calcium hydroxide, eliminated 4th and 6th week biofilms and showed remarkable antibacterial properties against E. faecalis biofilm. These results support potency of Aloe vera to use as a natural antimicrobial material in the intracanal medicament.
Collapse
|
30
|
Gholizadeh P, Aghazadeh M, Ghotaslou R, Ahangarzadeh Rezaee M, Pirzadeh T, Köse Ş, Ganbarov K, Yousefi M, Kafil HS. CRISPR- cas system in the acquisition of virulence genes in dental-root canal and hospital-acquired isolates of Enterococcus faecalis. Virulence 2020; 11:1257-1267. [PMID: 32930628 PMCID: PMC7549939 DOI: 10.1080/21505594.2020.1809329] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/23/2020] [Accepted: 08/08/2020] [Indexed: 01/20/2023] Open
Abstract
Enterococcus faecalis is one of the important causative agents of nosocomial and life-threatening infections in human. Several studies have demonstrated that the presence of CRISPR-cas is associated with antibiotic susceptibility and lack of virulence traits. In this study, we aimed to assess the phenotypic and genotypic virulence determinants in relation to CRISPR elements from the dental-root canals and hospital-acquired isolates of E. faecalis. Eighty-eight hospital-acquired and 73 dental-root canal isolates of E. faecalis were assessed in this study. Phenotypic screening of the isolates included biofilm formation, and gelatinase and hemolysis activities. Genotypical screening using PCR was further used to evaluate the presence of CRISPR elements and different virulence-associated genes such as efaA, esp, cylA, hyl, gelE, ace, ebpR, and asa1. Biofilm formation, gelatinase, and hemolysis activities were detected in 93.8%, 29.2%, and 19.2% of the isolates, respectively. The most prevalent virulence-associated gene was ace, which was followed by efaA, whereas cylA was the least identified. The presence of CRISPR1-cas, orphan CRISPR2, and CRISPR3-cas was determined in 13%, 55.3%, and 17.4% of the isolates, respectively. CRISPR elements were significantly more prevalent in the dental-root canal isolates. An inverse significant correlation was found between CRISPR-cas loci, esp, and gelE, while direct correlations were observed in the case of cylA, hyl, gelE (among CRISPR-loci 1 and 3), asa1, ace, biofilm formation, and hemolysis activity. Findings, therefore, indicate that CRISPR-cas might prevent the acquisition of some respective pathogenicity factors in some isolates, though not all; so selective forces could not influence pathogenic traits. Abbreviations: BHI: brain-heart infusion agar; CRISPRs: Clustered regularly interspaced short palindromic repeats; Esp: Cell wall-associated protein; ENT: ear-nose-throat; ICU: intensive care units; OD: optical densities; PCR: polymerase chain reaction; SDS: sodium dodecyl sulfate; UTI: urinary tract infection.
Collapse
Affiliation(s)
- Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Mohammad Aghazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Reza Ghotaslou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | | | - Tahereh Pirzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Şükran Köse
- Department of Infectious Diseases and Clinical Microbiology, University of Health Sciences, Tepecik Training and Research Hospital, İzmir, Turkey
| | | | - Mehdi Yousefi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| |
Collapse
|
31
|
Thymol, cardamom and Lactobacillus plantarum nanoparticles as a functional candy with high protection against Streptococcus mutans and tooth decay. Microb Pathog 2020; 148:104481. [DOI: 10.1016/j.micpath.2020.104481] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 11/23/2022]
|
32
|
Shadbad MA, Kafil HS, Rezaee MA, Farzami MR, Dehkharghani AD, Sadeghi J, Gholizadeh P, Khodaei F, Aghazadeh M. Streptococcus agalactiae clinical isolates in Northwest Iran: antibiotic susceptibility, molecular typing, and biofilm formation. GMS HYGIENE AND INFECTION CONTROL 2020; 15:Doc23. [PMID: 33214988 PMCID: PMC7656979 DOI: 10.3205/dgkh000358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: Group B Streptococcus (S. agalactiae) is one of the colonizing bacteria in pregnant women which can be a causative agent of meningitis and neonatal sepsis. This organism has also been increasingly related to invasive infections in non-pregnant adults. Objective: In present study, we aimed to characterize the clonality of biofilm-producing S. agalactiae isolates from various sources from two different clinical laboratories in Tehran, Iran. Materials and Methods: S. agalactiae isolates were collected from community-acquired (CA) and hospital-acquired (HA) infections in pregnant and non-pregnant adults. The antimicrobial susceptibility patterns and biofilm formation ability were determined. In addition, pulse field gel electrophoresis (PFGE) was used to verify the clonal diversity of isolates. Results: Out of the 87 isolates, 15 (16.6%) formed biofilm. The antibiotic resistance rate was 98.85% for clindamycin, 98.85% for tetracycline, followed by 29.88% for erythromycin, 9.19% for moxifloxacin and 6.89% for levofloxacin. The PFGE patterns revealed a total of 16 different clusters consisting of 6 single types (STs). Conclusion: This study evaluated the biofilm formation of clinical S. agalactiae, which may be a step towards understanding its role in pathological processes. Biofilm formation was significant only in the hypervirulent ST-17 clone. Intraclonal spread of isolates indicates that a local lineage of isolates is responsible for infection by these bacteria.
Collapse
Affiliation(s)
- Mohammad Alipour Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Ahangarzadeh Rezaee
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Javid Sadeghi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Khodaei
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Aghazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Thiazolidine-2-Thione and 2-Imino-1,3-Dithiolane Derivatives: Synthesis and Evaluation of Antimicrobial Activity. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Hemmati F, Salehi R, Ghotaslou R, Samadi Kafil H, Hasani A, Gholizadeh P, Nouri R, Ahangarzadeh Rezaee M. Quorum Quenching: A Potential Target for Antipseudomonal Therapy. Infect Drug Resist 2020; 13:2989-3005. [PMID: 32922047 PMCID: PMC7457774 DOI: 10.2147/idr.s263196] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
There has been excessive rate of use of antibiotics to fight Pseudomonas aeruginosa (P. aeruginosa) infections worldwide, which has consequently caused the increased resistance to multiple antibiotics in this pathogen. Due to the widespread resistance and the current poor effect of antibiotics consumed to treat P. aeruginosa infections, finding some novel alternative therapeutic methods are necessary for the treatment of infections. The P. aeruginosa biofilms can cause severe infections leading to the increased antibiotic resistance and mortality rate among the patients. In this regard, there are no approaches that can efficiently manage these infections; therefore, novel and effective antimicrobial and antibiofilm agents are needed to control and treat these bacterial infections. Quorum sensing inhibitors (QSIs) or quorum quenchings (QQs) are now considered as potential therapeutic alternatives and/or adjuvants to the current failing antibiotics, which can control the virulence traits of the pathogens, so as a result, the host immune system can quickly eliminate bacteria. Thus, the aims of this review article were presenting a brief explanation of the research reports on the natural and synthetic QSIs of P. aeruginosa, and the assessment of the current understanding on the QS mechanisms and various QQ strategies in P. aeruginosa.
Collapse
Affiliation(s)
- Fatemeh Hemmati
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Reza Ghotaslou
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran.,Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Nouri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Eveno M, Belguesmia Y, Bazinet L, Gancel F, Fliss I, Drider D. In silico analyses of the genomes of three new bacteriocin-producing bacteria isolated from animal's faeces. Arch Microbiol 2020; 203:205-217. [PMID: 32803347 DOI: 10.1007/s00203-020-02016-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
Here, we have analysed and explored the genome sequences of three newly isolated bacteria that were recently characterised for their probiotic activities and ability to produce bacteriocins. These strains, isolated from faeces of animals living in captivity at the zoological garden of Lille (France), are Escherichia coli ICVB443, Enterococcus faecalis ICVB501 and Pediococcus pentosaceus ICVB491. Their genomes have been analysed and compared to those of their pathogenic or probiotic counterparts. The genome analyses of E. coli ICVB443 and Ent. faecalis ICVB501 displayed similarities to those of probiotics E. coli 1917 Nissle, and Ent. faecalis Symbioflor 1, respectively. Furthermore, E. coli ICVB443 shares at least 89 genes with the enteroaggregative E. coli 55989 (EAEC), and Ent. faecalis ICVB501 shares at least 315 genes with the pathogenic Ent. faecalis V583 strain. Unlike Ped. pentosaceus ICVB491, which is devoid of virulence genes, E. coli ICVB443 and Ent. faecalis ICVB501 both carry genes encoding virulence factors on their genomes. Of note, the bioinformatics analysis of these two genomes located the bsh gene, which codes for bile salt hydrolase (BSH). The presence of BSH is of major importance, as it can help to increase the viability of these two strains in the gastrointestinal tract (GIT). The genome analysis of Ped. pentosaceus ICVB491 confirmed its GRAS status (Generally Recognised As Safe), as no genomic virulence factor determinant was found.
Collapse
Affiliation(s)
- Mégane Eveno
- UMR Transfrontalière BioEcoAgro INRAE 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV - Institut Charles Viollette, 59000, Lille, France.,Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Dairy Research Center (STELA), Pavillon Paul-Comtois, Université Laval, 2425, rue de l'Agriculture, Québec, G1V 0A6, Canada
| | - Yanath Belguesmia
- UMR Transfrontalière BioEcoAgro INRAE 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV - Institut Charles Viollette, 59000, Lille, France
| | - Laurent Bazinet
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Dairy Research Center (STELA), Pavillon Paul-Comtois, Université Laval, 2425, rue de l'Agriculture, Québec, G1V 0A6, Canada
| | - Frédérique Gancel
- UMR Transfrontalière BioEcoAgro INRAE 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV - Institut Charles Viollette, 59000, Lille, France
| | - Ismail Fliss
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Dairy Research Center (STELA), Pavillon Paul-Comtois, Université Laval, 2425, rue de l'Agriculture, Québec, G1V 0A6, Canada
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro INRAE 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV - Institut Charles Viollette, 59000, Lille, France.
| |
Collapse
|
36
|
Khanmohammadi S, Karimian R, Ghanbari Mehrabani M, Mehramuz B, Ganbarov K, Ejlali L, Tanomand A, Kamounah FS, Ahangarzadeh Rezaee M, Yousefi M, Sheykhsaran E, Samadi Kafil H. Poly (ε-Caprolactone)/Cellulose Nanofiber Blend Nanocomposites Containing ZrO2 Nanoparticles: A New Biocompatible Wound Dressing Bandage with Antimicrobial Activity. Adv Pharm Bull 2020; 10:577-585. [PMID: 33072535 PMCID: PMC7539316 DOI: 10.34172/apb.2020.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 11/09/2022] Open
Abstract
Purpose: In the present study, the poly (ε-caprolactone)/cellulose nanofiber containing ZrO2 nanoparticles (PCL/CNF/ZrO2 ) nanocomposite was synthesized for wound dressing bandage with antimicrobial activity. Methods: PCL/CNF/ZrO2 nanocomposite was synthesized in three different zirconium dioxide amount (0.5, 1, 2%). Also the prepared nanocomposites were characterized by Infrared spectroscopy (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). In addition, the morphology of the samples was observed by scanning electron microscopy (SEM). Results: Analysis of the XRD spectra showed a preserved structure for PCL semi-crystalline in nanocomposites and an increase in the concentrations of ZrO2 nanoparticles, the structure of nanocomposite was amorphous as well. The results of TGA, DTA, DSC showed thermal stability and strength properties for the nanocomposites which were more thermal stable and thermal integrate compared to PCL. The contact angles of the nanocomposites narrowed as the amount of ZrO2 in the structure increased. The evaluation of biological activities showed that the PCL/CNF/ZrO2 nanocomposite with various concentrations of ZrO2 nanoparticles exhibited moderate to good antimicrobial activity against all tested bacterial and fungal strains. Furthermore, cytocompatibility of the scaffolds was assessed by MTT assay and cell viability studies proved the non-toxic nature of the nanocomposites. Conclusion: The results show that the biodegradability of nanocomposite has advantages that can be used as wound dressing.
Collapse
Affiliation(s)
- Sina Khanmohammadi
- Faculty of Chemistry, Department of Organic Chemistry, Azad University of Tabriz, Tabriz, Iran.,Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Karimian
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Bahareh Mehramuz
- Connective Tissues Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khudaverdi Ganbarov
- Department of Microbiology, Baku State University, Baku, Republic of Azerbaijan
| | - Ladan Ejlali
- Faculty of Chemistry, Department of Organic Chemistry, Azad University of Tabriz, Tabriz, Iran
| | - Asghar Tanomand
- Department of Basic Sciences, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | | | - Mehdi Yousefi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Sheykhsaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
|
38
|
Narenji H, Teymournejad O, Rezaee MA, Taghizadeh S, Mehramuz B, Aghazadeh M, Asgharzadeh M, Madhi M, Gholizadeh P, Ganbarov K, Yousefi M, Pakravan A, Dal T, Ahmadi R, Samadi Kafil H. Antisense peptide nucleic acids againstftsZ andefaA genes inhibit growth and biofilm formation of Enterococcusfaecalis. Microb Pathog 2019; 139:103907. [PMID: 31811888 DOI: 10.1016/j.micpath.2019.103907] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 12/25/2022]
Abstract
Enterococcus faecalis is one of the important causes of nosocomial infections. Nowadays, increasing prevalence of antibiotic-resistant bacteria and slow progress in recognizing new antimicrobial agents has limited the efficiency of conventional antibiotics, which cause to find novel strategies to overcome bacteria. Therefore, in this study, we aimed to assess the role of efaA gene in the biofilm formation and the role of ftsZ gene in the controlling of bacterial growth by the anti-sense PNAs(Peptide Nucleic Acid).E. faecalis ATCC® 29212™was used for the study of PNAs designed to targeting the start codon section of the ftsZ andefaA genes. PNA attachment to RNA was confirmed by blotting. Electroporation technique was used for the intracellular transfer of anti-ftsZ PNAs. The spot-plating method was used to the assessment of alteration in bacterial growth. Biofilm formation assay and real-time PCR were used for detection of biofilm inhibitory effect of cell penetrating peptide (CPP) conjugated to anti-efaA PNAs.ByftsZ PNAs treatment, no growth was seen from the strain in agar by a spot plating method and the inhibition zone of anti-ftsZ PNAs was not seen. PNAs against the efaA gene decreased by 95% the expression of the efaA gene and biofilm formation. In addition, the(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) MTT assay showed no toxicity on MCF7 cells for both of anti-ftsZand anti-efaA PNAs.This study used new genetic and molecular tools to inhibit pathogenicity and infection by E. faecalis. In this study, we suggested that efaA gene plays a critical role in the biofilm formation and anti-efaA PNAs could decrease the formation of biofilm, as well as, anti-ftsZ PNAs could eliminate bacterial growth.
Collapse
Affiliation(s)
- Hanar Narenji
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Teymournejad
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, 43210, United States
| | | | - Sepehr Taghizadeh
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Mehramuz
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Aghazadeh
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Madhi
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Yousefi
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asrin Pakravan
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Tuba Dal
- Department of Clinical Microbiology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Raman Ahmadi
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
39
|
|
40
|
Evaluation of two novel biofilm-specific antibiotic resistance genes in clinical Pseudomonas aeruginosa isolates. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
41
|
Microbes involving in carcinogenesis; growing state of the art. Microb Pathog 2018; 125:1-6. [PMID: 30172904 DOI: 10.1016/j.micpath.2018.08.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/26/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022]
Abstract
Lateral gene transfer (LGT) has been demonstrated as a transfer process of novel genes between different species. LGT proceedings are occurring between microbes and plants, as well as between microbes and animals. New evidence demonstrates that bacterial insertional mutagenesis may occur in cancer cells. Due to the important role of genetic changes in the increase of cell proliferation and cancer development, we reviewed the effects of microbial-animal LGT in human oncogenesis. In addition, viral DNA can induce cancer development by random insertion into cancer-related genes or by inducing translocations. In conclusion, growing evidence shows the contribution of the microbial genome in cancer and autoimmune disease.
Collapse
|
42
|
Whiteside SA, Dave S, Seney SL, Wang P, Reid G, Burton JP. Enterococcus faecalis persistence in pediatric patients treated with antibiotic prophylaxis for recurrent urinary tract infections. Future Microbiol 2018; 13:1095-1115. [DOI: 10.2217/fmb-2018-0048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: Enterococcus faecalis is one of the most common causes of recurrent urinary tract infection (RUTI), yet enterococcal pathogenesis is poorly understood. Our aims were to identify the prevalence of enterococci in RUTI patients and characterize the enterococcal response to nitrofurantoin and trimethoprim-sulfamethoxazole. Materials & methods: We studied pediatric patients receiving antibiotic prophylaxis and those only under clinical observation for 12 months (n = 39). We then assessed the response of uropathogenic E. faecalis to nitrofurantoin and trimethoprim–sulfamethoxazole. Results: Enterococci were isolated from almost half of patients and exposure of Enterococcus to nitrofurantoin increased virulence properties; this did not correlate with increased expression of virulence factors. Conclusion: Our results demonstrate that antibiotic prophylaxis may not be suitable for treatment of enterococcal RUTI (NCT02357758).
Collapse
Affiliation(s)
- Samantha A Whiteside
- Department of Surgery, Division of Urology, London, Ontario, Canada
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Sumit Dave
- Department of Surgery, Division of Urology, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | | | - Peter Wang
- Department of Surgery, Division of Urology, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Gregor Reid
- Department of Surgery, Division of Urology, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Jeremy P Burton
- Department of Surgery, Division of Urology, London, Ontario, Canada
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
43
|
Determining the Antibacterial Activity of Chlorhexidine Mouthwashes with and without Alcohol against Common Oral Pathogens. JOURNAL OF ADVANCED ORAL RESEARCH 2018. [DOI: 10.1177/2229411218762045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aims and Objectives Mouthwashes with antibacterial activity inhibit the growth of bacteria in the mouth and teeth. Chlorhexidine is one of the most widely used mouthwashes that inhibits dental plaque and prevents tooth surface decay. Recently, concerns have been raised that alcohol-containing mouthwashes may have carcinogenic properties and may be harmful to children and pregnant and lactating women. The aim of this study was to determine the antibacterial effects of chlorhexidine mouthwashes with and without alcohol on common oral bacteria. Material and Methods In this in vitro study, bacterial species were purchased from a research center and were cultured separately in proprietary environments in test tubes. Thereafter, mouthwashes with alcohol, without alcohol, and with salt water (saline) were added to test tubes containing the bacteria grown. The samples were then analyzed using a spectrophotometer to determine viability, growth rate, and bacteria waste. Finally, the data were analyzed using SPSS version 17 through analysis of variance (ANOVA) and Tukey statistical tests. Results The obtained results showed that the saline group had the highest antibacterial activity and that the average antibacterial activity of the alcohol and alcohol-free groups did not differ significantly (P > 0.05). Post hoc test results showed that the antibacterial activity of the saline group was significantly different statistically from that of the other two groups. Conclusion On the basis of the results, it can be concluded that both alcohol-free chlorhexidine and alcohol-containing chlorhexidine are effective in removing oral microbes. Moreover, by using alcohol-free chlorhexidine, the harmful effects of alcohol can be prevented.
Collapse
|
44
|
Chen D, Zhang Y, Huang J, Liang X, Zeng T, Lan C, Duan X, Zhao Z, Zeng G, Tiselius HG, Lu X, Wu W. The analysis of microbial spectrum and antibiotic resistance of uropathogens isolated from patients with urinary stones. Int J Clin Pract 2018; 72:e13205. [PMID: 29790623 DOI: 10.1111/ijcp.13205] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/15/2018] [Indexed: 11/29/2022] Open
Abstract
PURPOSE The characteristics and resistance patterns of urine bacteriology in patients with urinary tract stones have not been extensively studied. This study aims to investigate the microbial spectrum and antibiotic resistance of uropathogens isolated from urinary tract infections in patients with urinary stones and provide a basis for appropriate antimicrobial treatments. METHODS The results of positive bladder midstream urine cultures and their antimicrobial susceptibility were retrospectively analysed from hospitalised patients with diagnosis of urinary calculi and urinary tract infections between January 2010 and December 2015. RESULTS A total of 3892 samples were analysed during the study period: 2201 were female patients (56.6%) and 1691 were male patients (43.4%). The 4 most common uropathogens were Escherichia coli (48.7%), Klebsiella pneumoniae (10.4%), Enterococcus faecalis (8.7%) and Proteus mirabilis (5.2%). Both E. coli (60.8%) and Proteus mirabilis (7.5%) were higher in female patients than in male patients (32.8%; 2.3%; P < .05). ESBL-positive E. coli accounted for 59.5% of total number of E. coli, while ESBL-positive K. pneumoniae comprised 42.0% of total K. pneumoniae. The majority of uropathogens in patients with stones had high resistance to fluoroquinolones, ceftriaxone, ceftazidime, cefepime, penicillins, sulfonamides and monobactams (resistance >20%). CONCLUSIONS The microbial spectrum in patients with urinary stones had a complex pattern. The uropathogens showed marked multidrug resistance and a large proportion of the uropathogens were able to produce β-lactamase.
Collapse
Affiliation(s)
- Dong Chen
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Yuyan Zhang
- Department of Pharmacy, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Jian Huang
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Xiongfa Liang
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Tao Zeng
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Chuangxin Lan
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Xiaolu Duan
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Zhijian Zhao
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Guohua Zeng
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Hans-Göran Tiselius
- Division of Urology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaogang Lu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Wenqi Wu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, China
| |
Collapse
|
45
|
Ashjari HR, Dorraji MSS, Fakhrzadeh V, Eslami H, Rasoulifard MH, Rastgouy-Houjaghan M, Gholizadeh P, Kafil HS. Starch-based polyurethane/CuO nanocomposite foam: Antibacterial effects for infection control. Int J Biol Macromol 2018; 111:1076-1082. [PMID: 29366900 DOI: 10.1016/j.ijbiomac.2018.01.137] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/06/2018] [Accepted: 01/19/2018] [Indexed: 10/18/2022]
Abstract
In the present study, a new method for the synthesis of the open cell flexible polyurethane foams (PUFs) was developed by using starch powder and the modification of closed cell foam formulation. Starch is the second largest polymeric carbohydrate as a macromolecule on this planet with a large number of glucose units. Copper oxide nanoparticles (CuO NPs) were synthesized by thermal degradation method at different temperatures of 400, 600 and 800 °C as antimicrobial agents. The antimicrobial activity of CuO NPs and commercial CuO powder against the main causes of hospital infections were tested. CuO600 was the most effective antimicrobial agent and enhanced polymer matrix tensile strength with starch powder as new polyurethane foams (PUFs) cell opener with high tensile strength. The effects of parameters on tensile strength were optimized using response surface methodology (RSM). CuO NPs and PUF had optimal conditions and were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Foam synthesized at the optimal conditions had an open cell structure with high tensile strength and efficient antimicrobial activity that made them suitable to be used as an antimicrobial hospital mattress to control hospital infections.
Collapse
Affiliation(s)
- Hamid Reza Ashjari
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Mir Saeed Seyed Dorraji
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran.
| | - Vahid Fakhrzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hosein Eslami
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Rasoulifard
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Mehrdad Rastgouy-Houjaghan
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Pourya Gholizadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Iranian Center of Excellence in Health Management, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
46
|
Gharenaghadeh S, Karimi N, Forghani S, Nourazarian M, Gharehnaghadeh S, jabbari V, khiabani MS, Kafil HS. Application of Salvia multicaulis essential oil-containing nanoemulsion against food-borne pathogens. FOOD BIOSCI 2017. [DOI: 10.1016/j.fbio.2017.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Plakunov VK, Mart’yanov SV, Teteneva NA, Zhurina MV. Controlling of microbial biofilms formation: Anti- and probiofilm agents. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717040129] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
48
|
Jo A, Ahn J. Phenotypic and genotypic characterisation of multiple antibiotic-resistant Staphylococcus aureus exposed to subinhibitory levels of oxacillin and levofloxacin. BMC Microbiol 2016; 16:170. [PMID: 27473500 PMCID: PMC4966875 DOI: 10.1186/s12866-016-0791-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The emergence and spread of multidrug resistant methicillin-resistant Staphylococcus aureus (MDR-MRSA) has serious health consequences in the presence of sub-MIC antibiotics. Therefore, this study was designed to evaluate β-lactamase activity, efflux activity, biofilm formation, and gene expression pattern in Staphylococcus aureus KACC 10778, S. aureus ATCC 15564, and S. aureus CCARM 3080 exposed to sublethal concentrations of levofloxacin and oxacillin. RESULTS The decreased MICs were observed in S. aureus KACC and S. aureus ATCC when exposed to levofloxacin and oxacillin, while and S. aureus CCARM remained resistance to streptomycin (512 μg/mL) in the presence of levofloxacin and imipenem (>512 μg/mL) in the presence of oxacillin. The considerable increase in extracellular and membrane-bound β-lactamase activities was observed in S. aureus ATCC exposed to oxacillin (>26 μmol/min/mL). The antibiotic susceptibility of all strains exposed to EPIs (CCCP and PAβN) varied depending on the classes of antibiotics. The relative expression levels of adhesion-related genes (clfA, clfB, fnbA, fnnB, and icaD), efflux-related genes (norB, norC, and qacA/B), and enterotoxin gene (sec) were increased more than 5-fold in S. aureus CCARM. The eno and qacA/B genes were highly overexpressed by more than 12- and 9-folds, respectively, in S. aureus CCARM exposed to levofloxacin. The antibiotic susceptibility, lactamase activity, biofilm-forming ability, efflux activity, and gene expression pattern varied with the intrinsic antibiotic resistance of S. aureus KACC, S. aureus ATCC, and S. aureus CCARM exposed to levofloxacin and oxacillin. CONCLUSIONS This study would provide useful information for better understating of combination therapy related to antibiotic resistance mechanisms and open the door for designing effective antibiotic treatment protocols to prevent excessive use of antibiotics in clinical practice.
Collapse
Affiliation(s)
- Ara Jo
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea. .,Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
49
|
Azimi S, Kafil HS, Baghi HB, Shokrian S, Najaf K, Asgharzadeh M, Yousefi M, Shahrivar F, Aghazadeh M. Presence of exoY, exoS, exoU and exoT genes, antibiotic resistance and biofilm production among Pseudomonas aeruginosa isolates in Northwest Iran. GMS HYGIENE AND INFECTION CONTROL 2016; 11:Doc04. [PMID: 26958458 PMCID: PMC4766921 DOI: 10.3205/dgkh000264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background:Pseudomonas aeruginosa, as Gram-negative rod bacilli, has an important role in human infection. In the present study we aimed to investigate the presence of exo genes and biofilm production among Pseudomonas aeruginosa isolates in Northwest Iran. Material and methods: 160 isolates of P. aeruginosa were collected and identified by biochemical tests and were characterized for antibiotic resistance. Biofilm production was evaluated by microtiter plate assay and the presence of exo genes was evaluated by allele-specific PCR (polymerase chain reaction). Chi-square test was used for statistical analysis. Results: The most effective antibiotics against isolates were colistin and polymyxin B. 87% of the isolates were biofilm producers of which 69% were strongly biofilm producers. 55% of the isolates carried exoY, 52% of the isolates carried exoU, and 26.3% and 5% carried exoS and exoT, respectively. Conclusion: Our findings showed different distribution of exo genes in clinical isolates of P. aeruginosa in Northwest Iran. ExoS and exoU were more prevalent in non-biofilm producers and exoY was more prevalent in biofilm producer isolates. These results might indicate the importance of exoY in biofilm production of Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Somayeh Azimi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saeed Shokrian
- Infectious Disease and Tropical Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Najaf
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Infectious Disease and Tropical Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Firooz Shahrivar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Aghazadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|