1
|
Yadav B, Karad DD, Kharat KR, Makwana N, Jaiswal A, Chawla R, Mani M, Boro HH, Joshi PR, Kamble DP, Mercier C, Kharat AS. Environmental and clinical impacts of antibiotics' sub-minimum inhibitory concentrations on the development of resistance in acinetobacter baumannii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 979:179521. [PMID: 40288165 DOI: 10.1016/j.scitotenv.2025.179521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Acinetobacter baumannii has emerged as a critical nosocomial and environmental pathogen associated with high mortality rates and alarming levels of antibiotic resistance. The World Health Organization has classified A. baumannii as a top-priority pathogen due to its ability to rapidly acquire and disseminate resistance mechanisms. Prevalent in environmental reservoirs such as hospital effluents, agricultural runoff and pharmaceutical effluents, antibiotics' sub-minimum inhibitory concentrations (sub-MICs) drive resistance evolution in A. baumannii, posing challenges to treatment and public health strategies. This review examines the role of antibiotics' sub-MICs in driving resistance in A. baumannii across environmental and clinical contexts. Antibiotics' sub-MICs enhance bacterial resistance by inducing genetic and phenotypic adaptations. These include upregulated efflux pump activities, biofilm formation, horizontal gene transfers, and altered gene expression, enabling A. baumannii to persist in adverse conditions. Environmental reservoirs further exacerbate resistance, with antibiotics' sub-MICs of tigecycline and colistin promoting adaptive changes in bacterial physiology and virulence. Understanding these pathways in both environmental and clinical settings is essential to develop integrated strategies that mitigate resistance and improve therapeutic options against A. baumannii. This review emphasizes the need to address environmental reservoirs alongside clinical interventions to keep control on the resistance in a one health's approach.
Collapse
Affiliation(s)
- Bipin Yadav
- Laboratory of Applied Microbiology & Cancer Remedies, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Dilip D Karad
- Department of Microbiology, Shri Shivaji Mahavidyalaya, Barshi, MS 413401, India
| | - Kiran R Kharat
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796004, India.
| | - Nilesh Makwana
- Laboratory of Applied Microbiology & Cancer Remedies, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Anjali Jaiswal
- Laboratory of Applied Microbiology & Cancer Remedies, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Richa Chawla
- Laboratory of Applied Microbiology & Cancer Remedies, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Meenakshi Mani
- Laboratory of Applied Microbiology & Cancer Remedies, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Hathorkhi H Boro
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796004, India.
| | - Prashant R Joshi
- Laboratory of Applied Microbiology & Cancer Remedies, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Chemistry, S.B.E.S's Science College, Chhatrapati Sambhainagar, MS 431001, India.
| | - Dhanraj P Kamble
- Department of Chemistry, S.B.E.S's Science College, Chhatrapati Sambhainagar, MS 431001, India
| | - Corinne Mercier
- Translational Innovation in Medicine and Complexity (TIMC), Université Grenoble Alpes, CNRS UMR 5525, VetAgro Sup, Grenoble INP, 38000 Grenoble, France.
| | - Arun S Kharat
- Laboratory of Applied Microbiology & Cancer Remedies, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
2
|
Rühl-Teichner J, Müller D, Stamm I, Göttig S, Leidner U, Semmler T, Ewers C. Inhibitory Effect of Antimicrobial Peptides Bac7(17), PAsmr5-17 and PAβN on Bacterial Growth and Biofilm Formation of Multidrug-Resistant Acinetobacter baumannii. Microorganisms 2025; 13:639. [PMID: 40142531 PMCID: PMC11944726 DOI: 10.3390/microorganisms13030639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Acinetobacter (A.) baumannii is a major nosocomial pathogen in human and veterinary medicine. The emergence of certain international clones (ICs), often with multidrug-resistant (MDR) phenotypes and biofilm formation (BF), facilitates its spread in clinical environments. The global rise in antimicrobial resistance demands alternative treatment strategies, such as antimicrobial peptides (AMPs). In this study, 45 human and companion animal MDR-A. baumannii isolates, belonging to the globally spread IC1, IC2 and IC7, were tested for antimicrobial resistance and biofilm-associated genes (BAGs) and their capacity for BF. Of these, 13 were used to test the inhibitory effect of AMPs on bacterial growth (BG) and BF through the application of a crystal violet assay. The two novel AMP variants Bac7(17) (target cell inactivation) and Pasmr5-17 (efflux pump inhibition) and the well-known AMP phenylalanine-arginine-β-naphthylamide (PAβN) were tested at concentrations of 1.95 to 1000 µg/mL. Based on whole-genome sequence data, identical patterns of BAGs were detected within the same IC. AMPs inhibited BG and BF in a dose-dependent manner. Bac7(17) and PAsmr5-17 were highly effective against BG, with growth inhibition (GI) of >99% (62.5 and 125 µg/mL, respectively). PAβN achieved only 95.7% GI at 1000 µg/mL. Similar results were obtained for BF. Differences between the ICs were found for both GI and BF when influenced by AMPs. PAsmr5-17 had hardly any inhibitory effect on the BF of IC1 isolates, but for IC2 and IC7 isolates, 31.25 µg/mL was sufficient. Our data show that the susceptibility of animal MDR-A. baumannii to AMPs most likely resembles that of human isolates, depending on their assignment to a particular IC. Even low concentrations of AMPs had a significant effect on BG. Therefore, AMPs represent a promising alternative in the treatment of MDR-A. baumannii, either as the sole therapy or in combination with antibiotics.
Collapse
Affiliation(s)
- Johanna Rühl-Teichner
- Institute of Hygiene and Infectious Diseases of Animals, Department of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.R.-T.); (U.L.)
| | - Daniela Müller
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, 35032 Marburg, Germany;
| | - Ivonne Stamm
- Vet Med Labor GmbH, 70806 Kornwestheim, Germany;
| | - Stephan Göttig
- Institute of Medical Microbiology and Infection Control, Hospital of Johann Wolfgang Goethe University, 60596 Frankfurt, Germany;
| | - Ursula Leidner
- Institute of Hygiene and Infectious Diseases of Animals, Department of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.R.-T.); (U.L.)
| | - Torsten Semmler
- NG1, Microbial Genomics, Robert Koch Institute, 13353 Berlin, Germany;
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Department of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.R.-T.); (U.L.)
| |
Collapse
|
3
|
Pathoor NN, Ganesh PS, Anshad AR, Gopal RK, Ponmalar EM, Suvaithenamudhan S, Rudrapathy P, Shankar EM. 3-Hydroxybenzoic acid inhibits the virulence attributes and disrupts biofilm production in clinical isolates of Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis 2025; 44:653-669. [PMID: 39739165 DOI: 10.1007/s10096-024-05009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/29/2024] [Indexed: 01/02/2025]
Abstract
PURPOSE Acinetobacter baumannii (A. baumannii) is an emerging global public health threat owing to its ability to form biofilms. Here, we evaluated 3-hydroxybenzoic acid (3-HBA), a promising organic compound, for its ability to disrupt biofilm formation and virulence attributes in clinical isolates of A. baumannii. MATERIALS AND METHODS The effect of 3-HBA on A. baumannii was assessed by determining the minimum inhibitory concentration (MIC) and certain other in vitro investigations viz., extracellular polymeric substance (EPS) estimation, crystal violet staining assay, motility assay, and the hydrogen peroxide (H2O2) assay to examine its impact on bacterial virulence. Biofilm formation was also evaluated at the air-liquid interface. In situ visualization investigations were employed to confirm biofilm dispersion at the lowest effective concentration. The cytotoxic effects of 3-HBA on MCF-7 cells were investigated using the MTT assay. RESULTS At a sub-inhibitory concentration of 0.078 mg/mL, 3-HBA reduced biofilm formation in A. baumannii LSAB-04 and A. baumannii LSAB-06 by 61.22% and 59.21%, respectively, and decreased EPS production by 64% in LSAB-04 and 58.31% in LSAB-06. Microscopic examination confirmed significant biofilm dispersion. 3-HBA also significantly impaired swarming motility and increased their sensitivity to H2O2. The MTT assay showed a dose-dependent decrease in MCF-7 cell viability (43.67%) at a concentration of 0.078 mg/mL. CONCLUSION Our findings underscore the likely role of 3-HBA as a promising A. baumannii biofilm-disrupting agent. Further, by downplaying against the virulence factors of A. baumannii, 3-HBA could be a compelling alternative to conventional antibiotics that however requires to be investigated.
Collapse
Affiliation(s)
- Naji Naseef Pathoor
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, 600 077, Tamil Nadu, India
| | - Pitchaipillai Sankar Ganesh
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, 600 077, Tamil Nadu, India.
| | - Abdul R Anshad
- Infection and Inflammation, Department of Biotechnology, School of Integrative Biology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610 005, India
| | - Rajesh Kanna Gopal
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, 600 077, Tamil Nadu, India
| | - Esaki Muthu Ponmalar
- Sri Sairam Siddha Medical College and Research Centre, West Tambaram, Chennai, 600 044, Tamil Nadu, India
| | - Suvaiyarasan Suvaithenamudhan
- Department of Research, Meenakshi Academy of Higher Education and Research (MAHER) (Deemed to be University), Chennai, 600 078, India
| | - Parthiban Rudrapathy
- Microbiology Division, Department of Clinical Laboratory Services and Translational Research, Malabar Cancer Centre (Post Graduate Institute of Oncology Sciences and Research), Thalassery, 670 103, Kerala, India
| | - Esaki M Shankar
- Infection and Inflammation, Department of Biotechnology, School of Integrative Biology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610 005, India
| |
Collapse
|
4
|
Kakavan M, Gholami M, Ahanjan M, Ebrahimzadeh MA, Salehian M, Roozbahani F, Goli HR. Expression of bap gene in multidrug-resistant and biofilm-producing Acinetobacter baumannii clinical isolates. BMC Microbiol 2025; 25:108. [PMID: 40025431 PMCID: PMC11871766 DOI: 10.1186/s12866-025-03806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/05/2025] [Indexed: 03/04/2025] Open
Abstract
INTRODUCTION Acinetobacter baumannii is a significant biofilm-producer and antibiotic-resistant pathogen associated with various infections caused in humans. This study aimed to investigate the expression level of the bap gene in multidrug-resistant and biofilm-producer clinical isolates of A. baumannii. MATERIALS AND METHODS One Hundred A. baumannii clinical isolates were collected from hospitalized patients and identified by phenotypic and genotypic tests. The antibiotic resistance pattern of the isolates was determined by the disk agar diffusion method. The ability of biofilm production was investigated using the microtiter plate test. This study employed the Real-time PCR method to evaluate the expression level of the bap gene. RESULTS Ninety nine percent A. baumannii isolates were MDR. However, the highest resistance rate was observed against ciprofloxacin (100%), while ceftazidime was the most effective drug. Also, 49%, 49%, and 2% of the isolates were strong, moderate, and weak biofilm-producing, respectively. However, we detected no strain without the ability to produce biofilm. Most strong and moderate biofilm-former isolates were non-susceptible to all tested antibiotics. An increased expression level of the bap gene was detected in 99% of the isolates. The results of the present study suggest a correlation between the bap gene expression level and the development of multidrug resistance and biofilm formation in A. baumannii isolates. CONCLUSION This research emphasizes the importance of biofilm formation in the emergence of multidrug-resistant A. baumannii strains in healthcare settings, making them progressively difficult to control. The bap gene may be a considerable target for the development of novel anti-A. baumannii treatment option and eradication of the biofilm formation by this organism.
Collapse
Affiliation(s)
- Maedeh Kakavan
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehrdad Gholami
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ahanjan
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Salehian
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Roozbahani
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Reza Goli
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
5
|
Javadi K, Ghaemian P, Baziboron M, Pournajaf A. Investigating the Link Between Biofilm Formation and Antibiotic Resistance in Clinical Isolates of Acinetobacter baumannii. Int J Microbiol 2025; 2025:1009049. [PMID: 39974278 PMCID: PMC11839262 DOI: 10.1155/ijm/1009049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025] Open
Abstract
Background: Acinetobacter baumannii has become a significant problem in hospitals worldwide during the last decades. Biofilm formation is a virulence factor that may affect antibiotic resistance. This study aimed to elucidate the correlation between biofilm formation and biofilm-related and oxacillinase genes in A. baumannii clinical isolates. Methods: This study was conducted on 53 A. baumannii isolates collected from hospitals affiliated with Babol University of Medical Sciences (Babol, Iran) from April to October 2023. Kirby-Bauer disc diffusion was used to determine antibacterial resistance. Biofilm formation was examined using crystal violet staining. Polymerase chain reaction was used to detect oxacillinase (bla OXA-23, bla OXA-24, bla OXA-51, and bla OXA-58) and biofilm-encoding (bap and bla PER-1) genes using specific primers. Results: The strains showed the highest resistance to trimethoprim/sulfamethoxazole and ciprofloxacin (98.11%) and the lowest resistance to ampicillin/sulbactam (66.03%). All isolates formed biofilms. Also, 67.92%, 18.86%, and 11.32% were strong, moderate, and weak biofilm producers, respectively. The frequencies of bla OXA-23, bla OXA-24, bla OXA-51, bap, and bla PER-1 genes were 92.45%, 71.69%, 100%, 73.58%, and 58.49%, respectively. None of the isolates harbored bla OXA-58. Conclusions: A high prevalence of antibiotic-resistant strains was found among A. baumannii clinical isolates. There was no significant correlation between the clinical sample type and biofilm formation, but a notable link was found between antimicrobial resistance and biofilm formation, except for ciprofloxacin. Oxacillinase genes were not significantly correlated with biofilm formation, but biofilm production was associated with bap rather than bla PER-1. Understanding the A. baumannii biofilm formation process is crucial for effective control of associated infections by targeting this mechanism.
Collapse
Affiliation(s)
- Kasra Javadi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Poorya Ghaemian
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mana Baziboron
- Infectious Department, Rouhani Hospital, Bobol University of Medical Science, Babol, Iran
| | - Abazar Pournajaf
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
6
|
Din NS, Mohd. Rani F, Alattraqchi AG, Ismail S, A. Rahman NI, Cleary DW, Clarke SC, Yeo CC. Whole-genome sequencing of Acinetobacter baumannii clinical isolates from a tertiary hospital in Terengganu, Malaysia (2011-2020), revealed the predominance of the Global Clone 2 lineage. Microb Genom 2025; 11:001345. [PMID: 39908088 PMCID: PMC11798184 DOI: 10.1099/mgen.0.001345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/13/2024] [Indexed: 02/06/2025] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii is recognized by the World Health Organization (WHO) as one of the top priority pathogens. Despite its public health importance, genomic data of clinical isolates from Malaysia remain scarce. In this study, whole-genome sequencing was performed on 126 A. baumannii isolates collected from the main tertiary hospital in the state of Terengganu, Malaysia, over a 10-year period (2011-2020). Antimicrobial susceptibilities determined for 20 antibiotics belonging to 8 classes showed that 77.0% (n=97/126) of the isolates were categorized as multidrug resistant (MDR), with all MDR isolates being carbapenem resistant. Multilocus sequence typing analysis categorized the Terengganu A. baumannii clinical isolates into 34 Pasteur and 44 Oxford sequence types (STs), with ST2Pasteur of the Global Clone 2 lineage identified as the dominant ST (n=76/126; 60.3%). The ST2Pasteur isolates could be subdivided into six Oxford STs with the majority being ST195Oxford (n=35) and ST208Oxford (n=17). Various antimicrobial resistance genes were identified with the bla OXA-23-encoded carbapenemase being the predominant acquired carbapenemase gene (n=90/126; 71.4%). Plasmid-encoded rep genes were identified in nearly all (n=122/126; 96.8%) of the isolates with the majority being Rep_3 family (n=121). Various virulence factors were identified, highlighting the pathogenic nature of this bacterium. Only 14/126 (11.1%) of the isolates were positive for the carriage of CRISPR-Cas arrays with none of the prevalent ST2Pasteur isolates harbouring them. This study provided a genomic snapshot of the A. baumannii isolates obtained from a single tertiary healthcare centre in Malaysia over a 10-year period and showed the predominance of a single closely related ST2Pasteur lineage, indicating the entrenchment of this clone in the hospital.
Collapse
Affiliation(s)
- Nurul Saidah Din
- Centre for Research in Infectious Diseases and Biotechnology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Farahiyah Mohd. Rani
- Centre for Research in Infectious Diseases and Biotechnology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Ahmed Ghazi Alattraqchi
- Centre for Research in Infectious Diseases and Biotechnology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Salwani Ismail
- Centre for Research in Infectious Diseases and Biotechnology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Nor Iza A. Rahman
- Centre for Research in Infectious Diseases and Biotechnology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - David W. Cleary
- Department of Microbes, Infections and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Stuart C. Clarke
- Centre for Research in Infectious Diseases and Biotechnology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton, UK
- Global Health Research Institute, University of Southampton, Southampton, UK
- Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur, Malaysia
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| |
Collapse
|
7
|
Yadav B, Jaiswal A, Kumar D, Karad DD, Joshi PR, Kamble DP, Mercier C, Kharat AS. Sub-minimum inhibitory concentrations in ceftazidime exacerbate the formation of Acinetobacter baumannii biofilms. Microb Pathog 2025; 199:107229. [PMID: 39675437 DOI: 10.1016/j.micpath.2024.107229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Associated with nosocomial infections, the environmental Gram-negative coccobacillus A. baumannii leads to various kinds of high mortality-rate infections among which pneumonias mainly in immune-compromised people from health-care facilities. A critical component of the current antibiotic resistance problem is the presence of antibiotics sub-minimum inhibitory concentrations (sub-MICs) in a variety of natural settings including drinking water, sewage water, rivers, lakes, and natural sludge. In India, third-generation cephalosporins such as ceftazidime (CAZ) count among the most often prescribed β-lactams to treat infections by A. baumannii. In this study, we showed that CAZ sub-MICs 1/reduce adhesion to lung epithelial cells and slow down the growth of the A. baumannii KSK1 strain, which nevertheless quickly resumes its growth; 2/alter the morphology of A. baumannii KSK1 planktonic cells and induce the formation of bacterial aggregates that resemble biofilms; 3/increase the in vitro formation of biofilms by A. baumannii KSK1 bacterial cells. Our findings underscore the importance of considering sub-MICs in antibiotic therapy and environmental contamination as the antibiotics sub-MICs potentially found in wastewater may contribute to the selection causing antibiotic resistance and persistence of antibiotic-resistant strains.
Collapse
Affiliation(s)
- Bipin Yadav
- Laboratory of Applied Microbiology and Cancer Remedies, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anjali Jaiswal
- Laboratory of Applied Microbiology and Cancer Remedies, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Durgesh Kumar
- Laboratory of Applied Microbiology and Cancer Remedies, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Dilip D Karad
- Department of Microbiology, Shri Shivaji Mahavidyalaya, Barshi, 413401, India
| | - Prashant R Joshi
- Laboratory of Applied Microbiology and Cancer Remedies, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; Department of Chemistry, S. B. E. S. College of Sciences, Chattrapati Sambhajinagar, 431001, India
| | - Dhanraj P Kamble
- Department of Chemistry, S. B. E. S. College of Sciences, Chattrapati Sambhajinagar, 431001, India
| | - Corinne Mercier
- Translational Innovation in Medicine and Complexity (TIMC) Laboratory, Translational Microbiology - Evolution - Engineering (TrEE) Team, UMR5525 CNRS/Université Grenoble Alpes/VetAgro'Sup, Grenoble, France.
| | - Arun S Kharat
- Laboratory of Applied Microbiology and Cancer Remedies, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
8
|
Almoghrabi Y, Daghistani H, Niyazi HA, Niyazi HA, AbdulMajed H, Juma NA, Daffa N, Helmi NR, Al-Rabia MW, Mokhtar JA, Saleh BH, Attallah DM, Matar M, Shukri HA, Moqaddam SA, Alamoudi S, Alkuwaity KK, Abujamel T, Sait AM, Mufrrih M, Al-Zahrani IA, O’hagan S, Ismail MA, Alharbi OS, Momin HJ, Abu IM, Alfadil A, Ibrahem K. Epidemiological and Clinical Insights into Acinetobacter baumannii: A Six-Year Study on Age, Antibiotics, and Specimens. Int J Gen Med 2024; 17:5715-5725. [PMID: 39650788 PMCID: PMC11625184 DOI: 10.2147/ijgm.s489514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 12/11/2024] Open
Abstract
Background This six-year retrospective study provides an in-depth analysis of the epidemiological and clinical patterns associated with Acinetobacter baumannii (A. baumannii) infections, focusing on age distribution, antibiotic resistance profiles, and specimen types. Aim The research examines the incidence and characteristics of both non-Multi-Drug Resistant (non-MDR) and Multi-Drug Resistant (MDR) A. baumannii strains by reviewing patient records from January 2016 to December 2022. Methods Through a statistical analysis, the study highlights the incidence rates across diverse age groups and explores the impact of antibiotic treatment regimens on infection outcomes. Additionally, it identifies the primary clinical specimen types for each strain, noting an association between non-MDR A. baumannii and midstream urine samples, while MDR A. baumannii strains were more frequently found in respiratory, wound, peripheral, and central line swaps/specimens. Results The results indicate that in 2016, non-MDR A. baumannii infections were notably more frequent compared to MDR A. baumannii cases. However, a significant shift occurred in 2021 and 2022, with a marked decrease in non-MDR A. baumannii cases and an increase in MDR A. baumannii infections. Antibiotic susceptibility testing revealed that non-MDR strains were commonly tested against cefazolin, ceftazidime, ciprofloxacin, gentamicin, nitrofurantoin, oxacillin, piperacillin/tazobactam, and trimethoprim/sulfamethoxazole. In contrast, MDR strains were frequently tested against amikacin, cefepime, colistin, meropenem, imipenem, and tigecycline. Conclusion This study enhances the understanding of A. baumannii clinical behaviour and resistance patterns, offering valuable insights to support future research and inform strategies for infectious disease management and control.
Collapse
Affiliation(s)
- Yousef Almoghrabi
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hussam Daghistani
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hanouf A Niyazi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hatoon A Niyazi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hind AbdulMajed
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noha A Juma
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noura Daffa
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noof R Helmi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed W Al-Rabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jawahir A Mokhtar
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Bandar Hasan Saleh
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dalya M Attallah
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Maram Matar
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Hani Ahmed Shukri
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Shahd A Moqaddam
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Sara Alamoudi
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Khalil K Alkuwaity
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Turki Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahmad M Sait
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed Mufrrih
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Special Infectious Agents Unit BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahim A Al-Zahrani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Special Infectious Agents Unit BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Stephen O’hagan
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Mazen A Ismail
- Department of Medical Education, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ohood S Alharbi
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hattan Jamal Momin
- Medical Service Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ibrahim Mohammed Abu
- Department of Community Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdelbagi Alfadil
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Karem Ibrahem
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Shi W, Li Y, Zhang W. Screening and functional characterization of isocitrate lyase AceA in the biofilm formation of Vibrio alginolyticus. Appl Environ Microbiol 2024; 90:e0069724. [PMID: 39377591 PMCID: PMC11577800 DOI: 10.1128/aem.00697-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/25/2024] [Indexed: 10/09/2024] Open
Abstract
Biofilm is a well-known sessile lifestyle for bacterial pathogens, but a little is known about the mechanism on biofilm formation in Vibrio alginolyticus. In this study, we screened V. alginolyticus strains with strong biofilm formation ability from coastal seawater. The antibiotic resistance of the biofilm cells (BFs) was higher than that of the planktonic cells (PTs). To study the genes and pathways involved in biofilm formation, we performed transcriptome analysis of the BFs and PTs of V. alginolyticus R9. A total of 685 differentially expressed genes (DEGs) were upregulated, and 517 DEGs were downregulated in the BFs. The upregulated DEGs were significantly enriched in several pathways including glyoxylate and dicarboxylate metabolism, while the downregulated genes were significantly enriched in the flagellar assembly pathways. The key gene involved in glyoxylate shunt, aceA, was cloned, and ΔaceA mutant was constructed to determine the function of AceA in carbon source utilization, biofilm formation, and virulence. Real-time reverse transcription PCR showed that the expression of aceA was higher at the mature stage but lower at the disperse stage of biofilm formation, and the expression of the flagellar related genes was upregulated in ΔaceA. This is the first study to illustrate the global gene expression profile during the biofilm formation of V. alginolyticus, and isocitrate lyase AceA, the key enzyme involved in glyoxylate shunt, was shown to maintain biofilms accompanied by downregulation of flagellation but promoted dispersal of BFs at the late stage.IMPORTANCEBiofilms pose serious public problems, not only protecting the cells in it from environmental hazard but also affecting the composition and abundance of bacteria, algae, fungi, and protozoa. The important opportunistic pathogen Vibrio alginolyticus is extremely ubiquitously present in seawater, and it also exhibited a strong ability to form biofilm; thus, investigation on the biofilm formation of V. alginolyticus at molecular level is fundamental for the deeper exploration of the environmental concerns arose by biofilm. In this study, transcriptome analysis of biofilm cells (BFs) and planktonic cells (PTs) from V. alginolyticus was performed and AceA was screened to play an important role in biofilm formation. AceA was shown to maintain biofilms accompanied by downregulation of flagellation but promoted dispersal of BFs at the disperse stage. This method was helpful to further understand the ability and mechanism of V. alginolyticus biofilm formation and provide clues for prevention of V. alginolyticus infection.
Collapse
Affiliation(s)
- Weibo Shi
- School of Marine Sciences, Ningbo University, Ningbo, P. R. China
| | - Ya Li
- School of Marine Sciences, Ningbo University, Ningbo, P. R. China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, P. R. China
| |
Collapse
|
10
|
da Silva AT, Cândido AECM, Júnior EDCM, do É GN, Moura MPS, Souza RDFS, Guimarães ML, Peixoto RDM, de Oliveira HP, da Costa MM. Bactericidal and Synergistic Effects of Lippia origanoides Essential Oil and Its Main Constituents against Multidrug-Resistant Strains of Acinetobacter baumannii. ACS OMEGA 2024; 9:43927-43939. [PMID: 39493982 PMCID: PMC11525495 DOI: 10.1021/acsomega.4c07565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
Bacterial resistance in Acinetobacter baumannii is a significant public health challenge, as these bacteria can evade multiple antibiotics, leading to difficult-to-treat infections with high mortality rates. As part of the search for alternatives, essential oils from medicinal plants have shown promising antibacterial potential due to their diverse chemical constituents. This study evaluated the antibacterial, antibiofilm, and synergistic activities of the essential oil of Lippia origanoides (EOLo) and its main constituents against multidrug-resistant clinical isolates of A. baumannii. Additionally, the antibacterial and antibiofilm potential of a nanoemulsion containing carvacrol (NE-CAR) was assessed. EOLo was extracted through hydrodistillation, and its components were identified via gas chromatography coupled with mass spectrometry. The A. baumannii isolates (n = 9) were identified and tested for antimicrobial susceptibility using standard disk diffusion methods. Antibacterial activity was determined by broth microdilution, while antibiofilm activity was measured using colorimetric methods with crystal violet and scanning electron microscopy. Synergism tests with antibiotics (meropenem, ciprofloxacin, gentamicin, and ampicillin+sulbactam) were performed using the checkerboard method. The primary constituents of EOLo included carvacrol (48.44%), p-cymene (14.58%), and thymol (10.16%). EOLo, carvacrol, and thymol demonstrated significant antibacterial activity, with carvacrol showing the strongest effect. They were also effective in reducing biofilm formation, as was NE-CAR. The combinations with antibiotics revealed significant synergistic effects, lowering the minimum inhibitory concentration of the tested antibiotics. Therefore, this study confirms the notable antibacterial activity of the essential oil of L. origanoides and its constituents, especially carvacrol, suggesting its potential as a therapeutic alternative for A. baumannii infections.
Collapse
Affiliation(s)
- Alisson T. da Silva
- Animal
Microbiology and Immunology Laboratory, Universidade Federal do Vale do São Francisco (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco 56300-000, Brazil
| | - Ana Elisa C. M. Cândido
- Animal
Microbiology and Immunology Laboratory, Universidade Federal do Vale do São Francisco (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco 56300-000, Brazil
| | - Edilson do C. M. Júnior
- Animal
Microbiology and Immunology Laboratory, Universidade Federal do Vale do São Francisco (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco 56300-000, Brazil
| | - Gutiele N. do É
- Animal
Microbiology and Immunology Laboratory, Universidade Federal do Vale do São Francisco (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco 56300-000, Brazil
| | - Marigilson P. S. Moura
- College
of Pharmaceutical Sciences (CFARM), Universidade
Federal do Vale do São Francisco (UNIVASF), Av. José de Sá Maniçoba, Centro, Petrolina, Pernambuco 56304-205, Brazil
| | - Renata de F. S. Souza
- Animal
Microbiology and Immunology Laboratory, Universidade Federal do Vale do São Francisco (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco 56300-000, Brazil
| | - Milena L. Guimarães
- Laboratory
of Impedance Spectroscopy and Organic Materials, Institute of Materials
Science, Universidade Federal do Vale do
São Francisco (UNIVASF), Juazeiro, Bahia 48902-300, Brazil
| | - Rodolfo de M. Peixoto
- Animal
Microbiology and Immunology Laboratory, Universidade Federal do Vale do São Francisco (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco 56300-000, Brazil
| | - Helinando P. de Oliveira
- Laboratory
of Impedance Spectroscopy and Organic Materials, Institute of Materials
Science, Universidade Federal do Vale do
São Francisco (UNIVASF), Juazeiro, Bahia 48902-300, Brazil
| | - Mateus M. da Costa
- Animal
Microbiology and Immunology Laboratory, Universidade Federal do Vale do São Francisco (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco 56300-000, Brazil
| |
Collapse
|
11
|
Dessenne C, Ménart B, Acket S, Dewulf G, Guerardel Y, Vidal O, Rossez Y. Lipidomic analyses reveal distinctive variations in homeoviscous adaptation among clinical strains of Acinetobacter baumannii, providing insights from an environmental adaptation perspective. Microbiol Spectr 2024; 12:e0075724. [PMID: 39254344 PMCID: PMC11448061 DOI: 10.1128/spectrum.00757-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
Acinetobacter baumannii is known for its antibiotic resistance and is increasingly found outside of healthcare settings. To survive colder temperatures, bacteria, including A. baumannii, adapt by modifying glycerophospholipids (GPL) to maintain membrane flexibility. This study examines the lipid composition of six clinical A. baumannii strains, including the virulent AB5075, at two temperatures. At 18°C, five strains consistently show an increase in palmitoleic acid (C16:1), while ABVal2 uniquely shows an increase in oleic acid (C18:1). LC-HRMS2 analysis identifies shifts in GPL and glycerolipid composition between 18°C and 37°C, highlighting variations in phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) lipids. ABVal2 shows increased PE with C18:1 and C16:1 at 18°C, but no change in PG, in contrast to other strains that show increased PE and PG with C16:1. Notably, although A. baumannii typically lacks FabA, a key enzyme for unsaturated fatty acid synthesis, this enzyme was found in both ABVal2 and ABVal3. In addition, ABVal2 contains five candidate desaturases that may contribute to its lipid profile. The study also reveals variations in strain motility and biofilm formation over temperature. These findings enhance our understanding of A. baumannii's physiological adaptations, survival strategies and ecological fitness in different environments.IMPORTANCEAcinetobacter baumannii, a bacterium known for its resistance to antibiotics, is a concern in healthcare settings. This study focused on understanding how this bacterium adapts to different temperatures and how its lipid composition changes. Lipids are the building blocks of cell membranes. By studying these changes, scientists can gain insights into how the bacterium survives and behaves in various environments. This understanding improves our understanding of its global dissemination capabilities. The results of the study contribute to our broader understanding of how Acinetobacter baumannii works, which is important for developing strategies to combat its impact on patient health.
Collapse
Affiliation(s)
- Clara Dessenne
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Benoît Ménart
- Centre Hospitalier de valenciennes, Laboratoire de Biologie Hygiène-service de Microbiologie, Valenciennes, France
| | - Sébastien Acket
- Université de technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne Cedex, Compiègne, France
| | - Gisèle Dewulf
- Centre Hospitalier de valenciennes, Laboratoire de Biologie Hygiène-service de Microbiologie, Valenciennes, France
| | - Yann Guerardel
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Olivier Vidal
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yannick Rossez
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Université de technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne Cedex, Compiègne, France
| |
Collapse
|
12
|
Sun C, Zhou D, He J, Liu H, Fu Y, Zhou Z, Leptihn S, Yu Y, Hua X, Xu Q. A panel of genotypically and phenotypically diverse clinical Acinetobacter baumannii strains for novel antibiotic development. Microbiol Spectr 2024; 12:e0008624. [PMID: 38916336 PMCID: PMC11302250 DOI: 10.1128/spectrum.00086-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Acinetobacter baumannii is one of the most important pathogens worldwide. The intrinsic and acquired resistance of A. baumannii, coupled with the slow pace of novel antimicrobial drug development, poses an unprecedented and enormous challenge to clinical anti-infective therapy of A. baumannii. Recent studies in the field of pathogenicity, antibiotic resistance, and biofilms of A. baumannii have focused on the model strains, including ATCC 17978, ATCC 19606, and AB5075. However, these model strains represent only a limited portion of the heterogeneity in A. baumannii. Furthermore, variants of these model strains have emerged that show significant diversity not only at the genotypic level but also reflected in differences at the phenotypic levels of capsule, virulence, pathogenicity, and antibiotic resistance. Research on A. baumannii, a key pathogen, would benefit from a standardized approach, which characterizes heterogeneous strains in order to facilitate rapid diagnosis, discovery of new therapeutic targets, and efficacy assessment. Our study provides and describes a standardized, genomically and phenotypically heterogeneous panel of 45 different A. baumannii strains for the research community. In addition, we performed comparative analyses of several phenotypes of this panel. We found that the sequence type 2 (ST2) group showed significantly higher rates of resistance, lower fitness cost for adaptation, and yet less biofilm formation. The Macrocolony type E (MTE, flat center and wavy edge phenotype reported in the literature) group showed a less clear correlation of resistance rates and growth rate, but was observed to produce more biofilms. Our study sheds light on the complex interplay of resistance fitness and biofilm formation within distinct strains, offering insights crucial for combating A. baumannii infection. IMPORTANCE Acinetobacter baumannii is globally notorious, and in an effort to combat the spread of such pathogens, several emerging candidate therapies have already surfaced. However, the strains used to test these therapies vary across studies (the sources and numbers of test strains are varied and often very large, with little heterogeneity). The variation complicates the studies. Furthermore, the limited standardized resources of A. baumannii strains have greatly restricted the research on the physiology, pathogenicity, and antibiotic resistance. Therefore, it is crucial for the research community to acquire a standardized and heterogeneous panel of A. baumannii. Our study meticulously selected 45 diverse A. baumannii strains from a total of 2,197 clinical isolates collected from 64 different hospitals across 27 provinces in China, providing a scientific reference for the research community. This assistance will significantly facilitate scientific exchange in academic research.
Collapse
Affiliation(s)
- Chunli Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, Zhejiang, China
| | - Danyan Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haiyang Liu
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Fu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Zhihui Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sebastian Leptihn
- Department of Antimicrobial Biotechnology, Fraunhofer Institute for Cell Therapy & Immunology (IZI), Leipzig, Germany
- Department of Biochemistry, Health and Medical University, Erfurt, Germany
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingye Xu
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Son SM, Ahn E, Ahn S, Cho S, Ryu S. Prevalence of antibiotic-resistant Acinetobacter spp. on soil and crops collected from agricultural fields in South Korea. Food Sci Biotechnol 2024; 33:1931-1937. [PMID: 38752113 PMCID: PMC11091005 DOI: 10.1007/s10068-023-01496-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 05/18/2024] Open
Abstract
The emergence of antibiotic resistance in Acinetobacter spp. is a rising public health concern worldwide. The objective of this study was to investigate the prevalence of antibiotic-resistance genes and the virulence of Acinetobacter spp. isolated from soil and crops obtained from agricultural fields in South Korea. Eight Acinetobacter spp. isolates carried various antibiotic resistance genes, such as emrAB (100%), cat/craA (100%), and aadA gene (87.5%). Minimum inhibitory concentration (MIC) analysis revealed that strains harboring antibiotic resistance genes exhibited high resistance to the respective antibiotics, such as colistin, chloramphenicol, and streptomycin. Interestingly, most of these isolates had high capability of biofilm formation and swarming motility, along with faster growth rates. Taken together, our study demonstrated that antibiotic-resistant Acinetobacter isolated from agricultural settings in South Korea not only frequently carries antibiotic resistance genes but also has virulence-related traits. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01496-7.
Collapse
Affiliation(s)
- Su Min Son
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826 Republic of Korea
| | - Eunbyeol Ahn
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sojin Ahn
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826 Republic of Korea
- eGnome Inc., Seoul, 05836 Republic of Korea
| | - Seoae Cho
- eGnome Inc., Seoul, 05836 Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
14
|
Lysitsas M, Triantafillou E, Chatzipanagiotidou I, Antoniou K, Spyrou V, Billinis C, Valiakos G. Phenotypic Investigation and Detection of Biofilm-Associated Genes in Acinetobacter baumannii Isolates, Obtained from Companion Animals. Trop Med Infect Dis 2024; 9:109. [PMID: 38787042 PMCID: PMC11125616 DOI: 10.3390/tropicalmed9050109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Bacteria of the genus Acinetobacter, especially Acinetobacter baumannii (Ab), have emerged as pathogens of companion animals during the last two decades and are commonly associated with hospitalization and multidrug resistance. A critical factor for the distribution of relevant strains in healthcare facilities, including veterinary facilities, is their adherence to both biotic and abiotic surfaces and the production of biofilms. A group of 41 A. baumannii isolates obtained from canine and feline clinical samples in Greece was subjected to phenotypic investigation of their ability to produce biofilms using the tissue culture plate (TCP) method. All of them (100%) produced biofilms, while 23 isolates (56.1%) were classified as strong producers, 11 (26.8%) as moderate producers, and 7 (17.1%) as weak producers. A correlation between the MDR and XDR phenotypes and weak or moderate biofilm production was identified. Moreover, the presence of four biofilm-associated genes bap, blaPER, ompA, and csuE was examined by PCR, and they were detected in 100%, 65.9%, 97.6%, and 95.1% of the strains respectively. All isolates carried at least two of the investigated genes, whereas most of the strong biofilm producers carried all four genes. In conclusion, the spread and persistence of biofilm-producing Ab strains in veterinary facilities is a matter of concern, since they are regularly obtained from infected animals, indicating their potential as challenging pathogens for veterinarians due to multidrug resistance and tolerance in conventional eradication measures. Furthermore, considering that companion animals can act as reservoirs of relevant strains, public health concerns emerge.
Collapse
Affiliation(s)
- Marios Lysitsas
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (M.L.); (C.B.)
| | | | | | - Konstantina Antoniou
- Vet Analyseis, Private Diagnostic Laboratory, 41335 Larissa, Greece; (E.T.); (K.A.)
| | - Vassiliki Spyrou
- Department of Animal Science, University of Thessaly, 41334 Larissa, Greece;
| | - Charalambos Billinis
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (M.L.); (C.B.)
| | - George Valiakos
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (M.L.); (C.B.)
| |
Collapse
|
15
|
Yousefi Nojookambari N, Eslami G, Sadredinamin M, Vaezjalali M, Nikmanesh B, Dehbanipour R, Yazdansetad S, Ghalavand Z. Sub-minimum inhibitory concentrations (sub-MICs) of colistin on Acinetobacter baumannii biofilm formation potency, adherence, and invasion to epithelial host cells: an experimental study in an Iranian children's referral hospital. Microbiol Spectr 2024; 12:e0252323. [PMID: 38230925 PMCID: PMC10846280 DOI: 10.1128/spectrum.02523-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/07/2023] [Indexed: 01/18/2024] Open
Abstract
Here, we described the efficacy of colistin sub-minimum inhibitory concentrations (sub-MICs) on biofilm-forming activity, host epithelial cell adherence, and invasion capacity of Acinetobacter baumannii strains collected from children admitted to the Children's Medical Center Hospital. Biofilm formation potency of A. baumannii clinical isolates was measured using a 96-well microtiter plate assay. Distribution of biofilm-related genes, including bap, abaI, ompA, csuE, and blaPER-1, was detected by PCR. The mRNA expression level of ompA and csuE was measured by qPCR in the presence of ¼ and ½ MICs of colistin. A. baumannii adhesion and invasion to eukaryotic host cells were phenotypically assayed at sub-MICs of colistin. Eighty percent (56/70) and 35.7% (25/70) of A. baumannii isolates were multidrug-resistant (MDR) and extensively drug-resistant (XDR) phenotypes, respectively. The strong, moderate, and weak biofilm producers of A. baumannii were 37.1% (26/70), 32.8%, (23/70), and 22.8% (16/70), respectively. The frequencies of biofilm-associated genes were 100% for abaI, ompA, and csuE, followed by 22.8% (16/70) and 24.3% (17/70) for bap and blaPER-1, respectively. The downregulation of csuE and ompA expression levels was observed in the sub-MIC of colistin. In vitro cell culture study showed a decreased capability of A. baumannii to adhere to the human epithelial cells at sub-inhibitory doses of colistin; however, none of the isolates could invade HEp-2 cells. Our study showed that the genes encoding biofilm-associated proteins undergo downregulation in expression levels after exposure to sub-MICs of colistin in A. baumannii. Longitudinal in vivo studies are needed to fully understand the clinical aspects of pathogenicity mechanisms and evolutionary dynamics of drug resistance.IMPORTANCESince the toxicity of colistin is dose dependent, there is a focus on strategies that reduce the dose while maintaining the therapeutic effect of the drug. Our findings about sub-inhibitory doses of colistin provide a novel insight into the logical use of colistin to treat and control Acinetobacter baumannii-related infections in clinical practice.
Collapse
Affiliation(s)
- Neda Yousefi Nojookambari
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gita Eslami
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrzad Sadredinamin
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Vaezjalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Nikmanesh
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Dehbanipour
- Department of Microbiology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sajjad Yazdansetad
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Yang H, Ma R, Chen J, Xie Q, Luo W, Sun P, Liu Z, Guo J. Discovery of Melittin as Triple-Action Agent: Broad-Spectrum Antibacterial, Anti-Biofilm, and Potential Anti-Quorum Sensing Activities. Molecules 2024; 29:558. [PMID: 38338303 PMCID: PMC10856726 DOI: 10.3390/molecules29030558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
The development of antibiotic-resistant microorganisms is a major global health concern. Recently, there has been an increasing interest in antimicrobial peptides as a therapeutic option. This study aimed to evaluate the triple-action (broad-spectrum antibacterial, anti-biofilm, and anti-quorum sensing activities) of melittin, a membrane-active peptide present in bee venom. The minimum inhibitory concentration and minimum bactericidal concentration of the melittin were determined using the microdilution method and agar plate counting. Growth curve analysis revealed that melittin showed a concentration-dependent antibacterial activity. Scanning electron microscope analysis revealed that melittin treatment altered the morphology. Confocal laser scanning microscope revealed that melittin increased the membrane permeability and intracellular ROS generation in bacteria, all of which contribute to bacterial cell death. In addition, the crystal violet (CV) assay was used to test the anti-biofilm activity. The CV assay demonstrated that melittin inhibited biofilm formation and eradicated mature biofilms. Biofilm formation mediated by quorum sensing (QS) plays a major role in this regard, so molecular docking and molecular dynamics analysis confirmed that melittin interacts with LasR receptors through hydrogen bonds, and further evaluates the anti-QS activity of melittin through the production of virulence factors (pyocyanin, elastase, and rhamnolipid), exopolysaccharides secretion, and bacterial motility, that may be the key to inhibiting the biofilm formation mechanism. The present findings highlight the promising role of melittin as a broad-spectrum antibacterial, anti-biofilm agent, and potential QS inhibitor, providing a new perspective and theoretical basis for the development of alternative antibiotics.
Collapse
Affiliation(s)
- Hongyan Yang
- School of Medicine, Foshan University, Foshan 528000, China (J.C.); (Q.X.)
- College of Pharmacy, Jinan University, Guangzhou 510632, China;
| | - Rong Ma
- School of Medicine, Foshan University, Foshan 528000, China (J.C.); (Q.X.)
| | - Jiarou Chen
- School of Medicine, Foshan University, Foshan 528000, China (J.C.); (Q.X.)
| | - Qian Xie
- School of Medicine, Foshan University, Foshan 528000, China (J.C.); (Q.X.)
| | - Wenhui Luo
- Guangdong Yifang Pharmaceutical Co., Ltd., Foshan 528244, China;
| | - Pinghua Sun
- College of Pharmacy, Jinan University, Guangzhou 510632, China;
| | - Zheng Liu
- School of Medicine, Foshan University, Foshan 528000, China (J.C.); (Q.X.)
| | - Jialiang Guo
- School of Medicine, Foshan University, Foshan 528000, China (J.C.); (Q.X.)
- College of Pharmacy, Jinan University, Guangzhou 510632, China;
| |
Collapse
|
17
|
Mendes SG, Combo SI, Allain T, Domingues S, Buret AG, Da Silva GJ. Co-regulation of biofilm formation and antimicrobial resistance in Acinetobacter baumannii: from mechanisms to therapeutic strategies. Eur J Clin Microbiol Infect Dis 2023; 42:1405-1423. [PMID: 37897520 PMCID: PMC10651561 DOI: 10.1007/s10096-023-04677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 10/30/2023]
Abstract
In recent years, multidrug-resistant Acinetobacter baumannii has emerged globally as a major threat to the healthcare system. It is now listed by the World Health Organization as a priority one for the need of new therapeutic agents. A. baumannii has the capacity to develop robust biofilms on biotic and abiotic surfaces. Biofilm development allows these bacteria to resist various environmental stressors, including antibiotics and lack of nutrients or water, which in turn allows the persistence of A. baumannii in the hospital environment and further outbreaks. Investigation into therapeutic alternatives that will act on both biofilm formation and antimicrobial resistance (AMR) is sorely needed. The aim of the present review is to critically discuss the various mechanisms by which AMR and biofilm formation may be co-regulated in A. baumannii in an attempt to shed light on paths towards novel therapeutic opportunities. After discussing the clinical importance of A. baumannii, this critical review highlights biofilm-formation genes that may be associated with the co-regulation of AMR. Particularly worthy of consideration are genes regulating the quorum sensing system AbaI/AbaR, AbOmpA (OmpA protein), Bap (biofilm-associated protein), the two-component regulatory system BfmRS, the PER-1 β-lactamase, EpsA, and PTK. Finally, this review discusses ongoing experimental therapeutic strategies to fight A. baumannii infections, namely vaccine development, quorum sensing interference, nanoparticles, metal ions, natural products, antimicrobial peptides, and phage therapy. A better understanding of the mechanisms that co-regulate biofilm formation and AMR will help identify new therapeutic targets, as combined approaches may confer synergistic benefits for effective and safer treatments.
Collapse
Affiliation(s)
- Sérgio G Mendes
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Sofia I Combo
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Thibault Allain
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
| | - Sara Domingues
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Andre G Buret
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
| | - Gabriela J Da Silva
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada.
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal.
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548, Coimbra, Portugal.
| |
Collapse
|
18
|
Cavallo I, Oliva A, Pages R, Sivori F, Truglio M, Fabrizio G, Pasqua M, Pimpinelli F, Di Domenico EG. Acinetobacter baumannii in the critically ill: complex infections get complicated. Front Microbiol 2023; 14:1196774. [PMID: 37425994 PMCID: PMC10325864 DOI: 10.3389/fmicb.2023.1196774] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Acinetobacter baumannii is increasingly associated with various epidemics, representing a serious concern due to the broad level of antimicrobial resistance and clinical manifestations. During the last decades, A. baumannii has emerged as a major pathogen in vulnerable and critically ill patients. Bacteremia, pneumonia, urinary tract, and skin and soft tissue infections are the most common presentations of A. baumannii, with attributable mortality rates approaching 35%. Carbapenems have been considered the first choice to treat A. baumannii infections. However, due to the widespread prevalence of carbapenem-resistant A. baumannii (CRAB), colistin represents the main therapeutic option, while the role of the new siderophore cephalosporin cefiderocol still needs to be ascertained. Furthermore, high clinical failure rates have been reported for colistin monotherapy when used to treat CRAB infections. Thus, the most effective antibiotic combination remains disputed. In addition to its ability to develop antibiotic resistance, A. baumannii is also known to form biofilm on medical devices, including central venous catheters or endotracheal tubes. Thus, the worrisome spread of biofilm-producing strains in multidrug-resistant populations of A. baumannii poses a significant treatment challenge. This review provides an updated account of antimicrobial resistance patterns and biofilm-mediated tolerance in A. baumannii infections with a special focus on fragile and critically ill patients.
Collapse
Affiliation(s)
- Ilaria Cavallo
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Rebecca Pages
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Francesca Sivori
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Truglio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Giorgia Fabrizio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Martina Pasqua
- Department of Biology and Biotechnology "C. Darwin" Sapienza University of Rome, Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Enea Gino Di Domenico
- Department of Biology and Biotechnology "C. Darwin" Sapienza University of Rome, Rome, Italy
| |
Collapse
|
19
|
Shields RK, Paterson DL, Tamma PD. Navigating Available Treatment Options for Carbapenem-Resistant Acinetobacter baumannii-calcoaceticus Complex Infections. Clin Infect Dis 2023; 76:S179-S193. [PMID: 37125467 PMCID: PMC10150276 DOI: 10.1093/cid/ciad094] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii-calcoaceticus complex (CRAB) is one of the top-priority pathogens for new antibiotic development. Unlike other antibiotic-resistant threats, none of the available therapies have been shown to consistently reduce mortality or improve patient outcomes in clinical trials. Antibiotic combination therapy is routinely used in clinical practice; however, the preferred combination has not been defined. This narrative review focuses on evidence-based solutions for the treatment of invasive CRAB infections. We dissect the promise and perils of traditional agents used in combination, such as colistin, sulbactam, and the tetracyclines, and offer clinical pearls based on our interpretation of the available data. Next, we investigate the merits of newly developed β-lactam agents like cefiderocol and sulbactam-durlobactam, which have demonstrated contrasting results in recent randomized clinical trials. The review concludes with the authors' perspective on the evolving treatment landscape for CRAB infections, which is complicated by limited clinical data, imperfect treatment options, and a need for future clinical trials. We propose that effective treatment for CRAB infections requires a personalized approach that incorporates host factors, the site of infection, pharmacokinetic-pharmacodynamic principles, local molecular epidemiology of CRAB isolates, and careful interpretation of antibiotic susceptibility testing results. In most clinical scenarios, a dose-optimized, sulbactam-based regimen is recommended with the addition of at least one other in vitro active agent. Should sulbactam-durlobactam receive regulatory approval, recommendations will need to be re-evaluated with the most recent evidence.
Collapse
Affiliation(s)
- Ryan K Shields
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David L Paterson
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Nwabor LC, Chukamnerd A, Nwabor OF, Pomwised R, Voravuthikunchai SP, Chusri S. Rifampicin Enhanced Carbapenem Activity with Improved Antibacterial Effects and Eradicates Established Acinetobacter baumannii Biofilms. Pharmaceuticals (Basel) 2023; 16:ph16040477. [PMID: 37111234 PMCID: PMC10141143 DOI: 10.3390/ph16040477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Biofilm-mediated infections are critical to public health and a leading cause of resistance among pathogens, amounting to a prolonged hospital stay and increased mortality rate in the intensive care unit. In this study, the antibacterial and antibiofilm activities of rifampicin or carbapenem monotherapies were compared with rifampicin and carbapenem combination therapies against rifampicin-resistant and carbapenem-resistant Acinetobacter baumannii isolates. Among 29 CRAB isolates, 24/29 (83%) were resistant to rifampicin, with MIC values between 2-256 µg/mL. Checkerboard assays disclosed that combination therapies at FICIs between 1/8 and 1/4 improved the activity of carbapenems at subinhibitory concentrations. Time-kill kinetics indicated a 2- to 4-log reduction at 1/2 MIC rifampicin + 1/4 MIC carbapenem and 1/4 MIC rifampicin + 1/4 MIC carbapenem against the isolates, with the MIC values ranging from 2-8 µg/mL. The MTT assay revealed a dose-dependent decrease of the cell viability of established bacterial biofilm at 4 MIC rifampicin + 2 MIC carbapenems, with a percentage reduction of 44-75%, compared with monotherapies at 16 MIC. Scanning electron microscopy further confirmed bacterial cell membrane disruption, suggesting a synergism between carbapenem and rifampicin against a representative isolate. The findings demonstrated that the combination of rifampicin with carbapenems could improve antibacterial activities and eradicate established Acinetobacter baumannii biofilm.
Collapse
Affiliation(s)
- Lois Chinwe Nwabor
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Arnon Chukamnerd
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Ozioma Forstinus Nwabor
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Supayang P Voravuthikunchai
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sarunyou Chusri
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
21
|
Jha NG, Dkhar DS, Singh SK, Malode SJ, Shetti NP, Chandra P. Engineered Biosensors for Diagnosing Multidrug Resistance in Microbial and Malignant Cells. BIOSENSORS 2023; 13:235. [PMID: 36832001 PMCID: PMC9954051 DOI: 10.3390/bios13020235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
To curtail pathogens or tumors, antimicrobial or antineoplastic drugs have been developed. These drugs target microbial/cancer growth and survival, thereby improving the host's health. In attempts to evade the detrimental effects of such drugs, these cells have evolved several mechanisms over time. Some variants of the cells have developed resistances against multiple drugs or antimicrobial agents. Such microorganisms or cancer cells are said to exhibit multidrug resistance (MDR). The drug resistance status of a cell can be determined by analyzing several genotypic and phenotypic changes, which are brought about by significant physiological and biochemical alterations. Owing to their resilient nature, treatment and management of MDR cases in clinics is arduous and requires a meticulous approach. Currently, techniques such as plating and culturing, biopsy, gene sequencing, and magnetic resonance imaging are prevalent in clinical practices for determining drug resistance status. However, the major drawbacks of using these methods lie in their time-consuming nature and the problem of translating them into point-of-care or mass-detection tools. To overcome the shortcomings of conventional techniques, biosensors with a low detection limit have been engineered to provide quick and reliable results conveniently. These devices are highly versatile in terms of analyte range and quantities that can be detected to report drug resistance in a given sample. A brief introduction to MDR, along with a detailed insight into recent biosensor design trends and use for identifying multidrug-resistant microorganisms and tumors, is presented in this review.
Collapse
Affiliation(s)
- Niharika G. Jha
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | - Daphika S. Dkhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | - Sumit K. Singh
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | - Shweta J. Malode
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| | - Nagaraj P. Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
- University Center for Research & Development (UCRD), Chandigarh University, Mohali 140413, Panjab, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
22
|
Ghadiri A, Doosti A, Shakhsi-Niaei M. Prevalence, Antimicrobial Susceptibility, and Distribution of Virulence Genes Involved in Biofilm Formation in Multidrug-Resistant Acinetobacter baumannii Isolated from Shahrekord Medical Centers, Chaharmahal and Bakhtiari, Iran. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2023. [DOI: 10.30699/ijmm.17.1.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
23
|
Mohamed HMA, Abd-Elhafeez HH, Al-Jabr OA, El-Zamkan MA. Characterization of Acinetobacter baumannii Isolated from Raw Milk. BIOLOGY 2022; 11:biology11121845. [PMID: 36552354 PMCID: PMC9775129 DOI: 10.3390/biology11121845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Acinetobacter baumannii (A. baumannii) is an opportunistic pathogen associated with nosocomial infections. In this study, 100 raw milk samples were collected from Qena, Egypt, and subjected to conventional and molecular assays to determine the presence of A. baumannii and investigate their antimicrobial resistance and biofilm formation. Our findings revealed that, among the 100 samples, Acinetobacter spp. were found in 13 samples based on CHROM agar results. We further characterized them using rpoB and 16S-23SrRNA sequencing and gyrB multiplex PCR analysis and confirmed that 9 out of the 13 Acinetobacter spp. isolates were A. baumannii and 4 were other species. The A. baumannii isolates were resistant to β-lactam drugs, including cefotaxime (44%), ampicillin-sulbactam and levofloxacin (33.3% for each), imipenem, meropenem and aztreonam (22.2% for each). We observed different antimicrobial resistance patterns, with a multi-antibiotic resistant (MAR) index ranging from 0.2 to 0.3. According to the PCR results, blaOXA-51 and blaOXA-23 genes were amplified in 100% and 55.5% of the A. baumannii isolates, respectively, while the blaOXA-58 gene was not amplified. Furthermore, the metallo-β-lactamases (MBL) genes blaIMP and blaNDM were found in 11.1% and 22.2% of isolates, respectively, while blaVIM was not amplified. Additionally, eight A. baumannii isolates (88.8%) produced black-colored colonies on Congo red agar, demonstrating their biofilm production capacity. These results showed that, besides other foodborne pathogens, raw milk should also be examined for A. baumannii, which could be a public health concern.
Collapse
Affiliation(s)
- Hams M. A. Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Hanan H. Abd-Elhafeez
- Department of Cells and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
- Correspondence:
| | - Omar A. Al-Jabr
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Mona A. El-Zamkan
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| |
Collapse
|
24
|
Blehm CJ, Monteiro MSG, Bessa MC, Leyser M, Dias AS, Sumienski J, Gallo SW, da Silva AB, Barros A, Marco R, Preve CP, Ferreira CAS, Ramos F, de Oliveira SD. Copper-coated hospital surfaces: reduction of total bacterial loads and resistant Acinetobacter spp. AMB Express 2022; 12:146. [DOI: 10.1186/s13568-022-01491-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
AbstractHealthcare-associated infections (HAIs) represent a global challenge and an even more staggering concern when related to microorganisms capable of resisting and surviving for long periods in the environment, such as Acinetobacter spp. Strategies that allow a reduction of pathogens from hospital environments represent an additional barrier in infection control protocols, minimizing transmission to hospitalized patients. Considering the antimicrobial properties of copper, here, the bacterial load and the presence of Acinetobacter spp. were monitored on high handling surfaces covered by 99.9% copper films on intensive and non-intensive care unit bedrooms in a tertiary care hospital. Firstly, copper-coated films were able to inhibit the adhesion and biofilm formation of A. baumannii strains in in vitro assays. On the other hand, Acinetobacter spp. were isolated from both copper-coated and uncoated surfaces in the hospital, although the majority was detected on surfaces without copper. All carbapenem-resistant A. baumannii isolates identified harbored the blaoxa-23 gene, while the A. nosocomialis isolates were susceptible to most antimicrobials tested. All isolates were susceptible to polymyxin B. Regarding the total aerobic bacteria, surfaces with copper-coated films presented lower total loads than those detected for controls. Copper coating films may be a workable strategy to mitigate HAIs, given their potential in reducing bacterial loads in nosocomial environments, including threatening pathogens like A. baumannii.
Collapse
|
25
|
Mirzaei R, Yousefimashouf R, Arabestani MR, Sedighi I, Alikhani MY. The issue beyond resistance: Methicillin-resistant Staphylococcus epidermidis biofilm formation is induced by subinhibitory concentrations of cloxacillin, cefazolin, and clindamycin. PLoS One 2022; 17:e0277287. [PMID: 36350834 PMCID: PMC9645612 DOI: 10.1371/journal.pone.0277287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Staphylococcus epidermis is one of the most frequent causes of device-associated infections due to biofilm formation. Current reports noted that subinhibitory concentrations of antibiotics induce biofilm production in some bacteria. Accordingly, we evaluated the effect of exposure of different subinhibitory concentrations of cloxacillin, cefazolin, clindamycin, and vancomycin on the biofilm formation of methicillin-resistant S. epidermidis (MRSE). Antimicrobial susceptibility testing and minimum inhibitory/bactericidal concentration of antimicrobial agents were determined. MRSE isolates were selected, and their biofilm formation ability was evaluated. The effect of subinhibitory concentrations of cloxacillin, cefazolin, clindamycin, and vancomycin, antibiotics selected among common choices in the clinic, on MRSE biofilm formation was determined by the microtitre method. Besides, the effect of subinhibitory concentrations of cloxacillin, cefazolin, clindamycin, and vancomycin on the expression of the biofilm-associated genes icaA and atlE was evaluated by Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR). Antimicrobial susceptibility patterns of MRSE strains showed a high level of resistance as follows: 80%, 53.3%, 33.3%, 33.3%, and 26.6%, for erythromycin, trimethoprim-sulfamethoxazole, tetracycline, clindamycin, and gentamicin, respectively. Besides, 73.3% of S. epidermidis strains were Multidrug-resistant (MDR). Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were in the range of 0.5 to512 μg/mL and 1 to1024 μg/mL for cloxacillin, 0.125 to256 μg/mL and 1 to512 μg/mL for cefazolin, 0.125 to64 μg/mL and 4 to>1024 μg/mL for clindamycin, and 2 to32 μg/mL and 4 to32 μg/mL for vancomycin, respectively. The findings showed that subinhibitory concentrations of cloxacillin, cefazolin, and clindamycin induce biofilm production in MRSE strains. In particular, the OD values of strains were in the range of 0.09-0.95, 0.05-0.86, and 0.06-1 toward cloxacillin, cefazolin, and clindamycin, respectively. On the other hand, exposure to subinhibitory vancomycin concentrations did not increase the biofilm formation in MRSE strains. The findings also demonstrated that sub-MIC of antibiotics up-regulated biofilm-associated genes. In particular, atlE and icaA were up-regulated 0.062 to 1.16 and 0.078 to 1.48 folds, respectively, for cloxacillin, 0.11 to 0.8, and 0.1 to 1.3 folds for cefazolin, 0.18 to 0.98, and 0.19 to 1.4 folds, respectively, for clindamycin. In contrast, the results showed that sub-MIC of vancomycin did not increase the biofilm-associated genes. These findings overall show that exposure to sub-MIC of traditional antibiotics can cause biofilm induction in MRSE, thereby increasing the survival and persistence on various surfaces that worsen the condition of comorbid infections.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Sedighi
- Department of Pediatrics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
26
|
Denysko TV, Nazarchuk OA, Gruzevskyi O, Bahniuk NÀ, Dmytriiev DV, Chornopyschuk RM, Bebyk VV. In vitro evaluation of the antimicrobial activity of antiseptics against clinical Acinetobacter baumannii strains isolated from combat wounds. Front Microbiol 2022; 13:932467. [PMID: 36267170 PMCID: PMC9577188 DOI: 10.3389/fmicb.2022.932467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Healthcare-associated infections (HCAIs) are among the most prominent medical problems worldwide. In the context of increasing antibiotic resistance globally, the use of antiseptics as the main active agent and potentiator of antibiotics for the treatment of purulent-inflammatory complications of traumatic wounds, burns, and surgical wounds can be considered to tackle opportunistic infections and their prevention during war. This study presents a comparative investigation of the antimicrobial efficacy of antiseptics used for surgical antisepsis and antiseptic treatment of skin, mucous membranes, and wounds against multidrug-resistant clinical isolates of Acinetobacter baumannii as a wound pathogen of critical priority (according to the WHO). It was found that strains of A. baumannii, which have natural and acquired resistance to antimicrobial drugs, remain susceptible to modern antiseptics. Antiseptic drugs based on decamethoxine, chlorhexidine, octenidine, polyhexanide, and povidone-iodine 10% and 2% provide effective bactericidal activity against A. baumannii within the working concentrations of these drugs. Chlorhexidine and decamethoxine can inhibit biofilm formation by A. baumannii cells. In terms of bactericidal properties and biofilm formation inhibition, chlorhexidine and decamethoxine are the most effective of all tested antiseptics.
Collapse
Affiliation(s)
- Tetyana Valeriyivna Denysko
- Department of Microbiology, Virology and Immunology, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| | - Oleksandr Adamovych Nazarchuk
- Department of Microbiology, Virology and Immunology, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
- *Correspondence: Oleksandr Adamovych Nazarchuk,
| | - Oleksandr Gruzevskyi
- Department of Microbiology, Virology and Immunology Odessa National Medical University, Odessa, Ukraine
| | - Nataliia Ànatoliivna Bahniuk
- Department of Microbiology, Virology and Immunology, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| | - Dmytro Valeriiovych Dmytriiev
- Department of Anesthesiology, Intensive care, and Emergency Medicine, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| | | | - Vira Volodymyrivna Bebyk
- Department of Microbiology, Virology and Immunology, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| |
Collapse
|
27
|
Alam M, Rasool MH, Khan I, Khurshid M, Aslam B. Multilocus Sequence Typing of Carbapenem-Resistant Acinetobacter baumannii Isolates Harboring blaOXA-23 and blaIMP in Cattle from Punjab, Pakistan. Microb Drug Resist 2022; 28:997-1002. [PMID: 35985003 DOI: 10.1089/mdr.2022.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acinetobacter baumannii is a notorious bacterial pathogen that can cause an array of nosocomial infections in clinical settings. However, the data from the veterinary settings is limited and especially in Pakistan, no such study is conducted so far. To investigate the prevalence, antimicrobial resistance, and distribution of specific sequence types of A. baumannii in cattle, a total of 1,960 samples were collected from cattle over 18 months from Punjab, Pakistan. The isolates obtained were identified using the API20NE system and confirmed through PCR. The isolated A. baumannii isolates were further screened for antimicrobial susceptibility and the presence of resistance genes. Multilocus sequence typing was carried out to characterize the carbapenem-resistant A. baumannii (CRAB) isolates. Results revealed an overall prevalence of A. baumannii at 3.31% (65/1,960) with a higher prevalence of 7.38% (54/731) in dairy cattle compared to beef cattle at 4.41% (11/249). Among 65 A. baumannii isolates, 27.7% (18/65) were CRAB. All CRAB isolates harbor class D β-lactamases genes blaOXA-23 and blaOXA-51, whereas 94.4% (17/18) CRAB isolates carried class B β-lactamases gene blaIMP, and only one isolate had blaNDM-1 gene. The commonly found sequence types for CRAB isolates were ST2 and ST642 corresponding to 10 and 05 isolates, respectively. The presence of CRAB in cattle indicates an alarming situation that necessitates an urgent and efficient surveillance system to limit the transmission of CRAB among the cattle population and its possible transmission to humans and the environment.
Collapse
Affiliation(s)
- Minhas Alam
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Iahtasham Khan
- Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
28
|
Insights into mucoid Acinetobacter baumannii: A review of microbiological characteristics, virulence, and pathogenic mechanisms in a threatening nosocomial pathogen. Microbiol Res 2022; 261:127057. [DOI: 10.1016/j.micres.2022.127057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/25/2023]
|
29
|
Dong JF, Liu CW, Wang P, Li L, Zou QH. The type VI secretion system in Acinetobacter baumannii clinical isolates and its roles in antimicrobial resistance acquisition. Microb Pathog 2022; 169:105668. [PMID: 35811021 DOI: 10.1016/j.micpath.2022.105668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
Acinetobacter baumannii is a successful pathogen that can acquire various antibiotic resistance in a short time. However, little is known about how it can evolve from an antibiotic sensitive to a resistant phenotype. In this study, we investigated the roles of the type VI secretion system (T6SS) in the acquisition of antibiotic resistance of A. baumannii. T6SS gene cluster was found to be present in 51 of 77 A. baumannii clinical isolates, of which, it was found in 62% (8/13) of the multiple drug resistant (MDR) isolates, 90% (36/40) of the extensively drug-resistant (XDR) isolates and 26% (6/23) of the antibiotic sensitive isolates. There is a close relationship between the antimicrobial resistance and the presence of T6SS. Besides, T6SS + isolates showed lower biofilm formation activity and higher survival ability in the presence of normal human serum than T6SS- isolates. A. baumannii A152 with complete T6SS can outcompete E.coli effectively and can acquire the antibiotic resistance plasmids released by E.coli. In contrast, the T6SS core gene mutant A152Δhcp showed significantly decreased ability to acquire antimicrobial resistance plasmids from the prey bacteria. These results suggest that T6SS mediated bacterial competition plays important roles in the antimicrobial resistance of A. baumannii, which points out a new direction for us to study the antimicrobial resistance of A. baumannii.
Collapse
Affiliation(s)
- Jun-Fang Dong
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Cun-Wei Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ping Wang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lei Li
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China
| | - Qing-Hua Zou
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
30
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
31
|
Kim HR, Eom YB. Auranofin promotes antibacterial effect of doripenem against carbapenem-resistant Acinetobacter baumannii. J Appl Microbiol 2022; 133:1422-1433. [PMID: 35633297 DOI: 10.1111/jam.15644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/10/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
AIMS This study was performed to identify the potential for repurposing auranofin as an antibiotic adjuvant against carbapenemase-producing A. baumannii. METHODS AND RESULTS The clinically isolated A. baumannii strains used in this study were all resistant to carbapenems and harbored the blaOXA-23 gene. The synergistic effect of auranofin and doripenem against carbapenemase-producing A. baumannii was confirmed through checkerboard and growth kinetic analyses. This study also demonstrated the inhibitory effects of auranofin against A. baumannii biofilms. The anti-biofilm effects of auranofin were visualized by confocal laser scanning microscopy (CLSM). Furthermore, auranofin inhibited motility, one of the virulence factors. Additionally, the changes in the expression of carbapenemase-, biofilm- and efflux pump-related genes induced by auranofin were confirmed via quantitative polymerase chain reaction (qPCR). CONCLUSIONS Our results demonstrated that auranofin has an antibacterial effect with doripenem and an inhibitory effect on several factors related to carbapenem resistance. SIGNIFICANCE AND IMPACT OF THE STUDY This study suggests that auranofin is a promising antibiotic adjuvant that can be used to prevent antibiotic resistance in carbapenem-resistant A. baumannii.
Collapse
Affiliation(s)
- H-R Kim
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Y-B Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea.,Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| |
Collapse
|
32
|
Hubeny J, Korzeniewska E, Buta-Hubeny M, Zieliński W, Rolbiecki D, Harnisz M. Characterization of carbapenem resistance in environmental samples and Acinetobacter spp. isolates from wastewater and river water in Poland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153437. [PMID: 35122847 DOI: 10.1016/j.scitotenv.2022.153437] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 05/29/2023]
Abstract
The aim of this study was to analyze the prevalence of carbapenem resistance genes in Acinetobacter spp. isolated from wastewater in a municipal WWTP and to determine their spread from treated wastewater to river water with the use of conventional and molecular microbiology methods (qualitative and quantitative PCR and metagenomic analysis). Samples of untreated and treated wastewater and samples of river water obtained upstream and downstream from the wastewater discharge point were collected in 3 seasons (February, June, and September) of 2019. Acinetobacter spp. isolates were obtained by the culture method on the CHROMagar™ Acinetobacter medium. Additionally, environmental DNA was extracted from the samples for metagenomic and qPCR analyses. The presence of beta-lactam resistance genes (Ambler class B and D), insertion sequence ISAba1, and class I, II, and III integron-integrase genes was determined, and the bacterial taxonomic structure and wastewater and river samples was analyzed. Out of the 301 isolates obtained on the CHROMagar™ Acinetobacter medium, 258 belonged to the genus Acinetobacter, including 21 isolates that were identified as Acinetobacter baumannii. The highest number of Acinetobacter spp. and A. baumannii isolates were obtained from wastewater and river water samples collected in June and September. The ISAba1/blaOXA-51 complex was identified in 13 isolates, which confirms the occurrence of carbapenem-resistance isolates in the analyzed samples. The number of Acinetobacter isolates carrying antibiotic resistance genes (ARGs) increased in river water samples collected downstream from the wastewater discharge point (48 out of 258 isolates - 18.6%) compared to river water samples collected upstream from the wastewater discharge point (34 out of 258 isolates - 13.2%), which suggests that WWTP is a source of pollution in the natural environment. The conducted research provides evidence that bacteria of the genus Acinetobacter may spread alarming beta-lactam resistance in the environment and, therefore, pose a serious epidemiological threat.
Collapse
Affiliation(s)
- Jakub Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Martyna Buta-Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Damian Rolbiecki
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland.
| |
Collapse
|
33
|
Krzyżek P, Migdał P, Grande R, Gościniak G. Biofilm Formation of Helicobacter pylori in Both Static and Microfluidic Conditions Is Associated With Resistance to Clarithromycin. Front Cell Infect Microbiol 2022; 12:868905. [PMID: 35402304 PMCID: PMC8990135 DOI: 10.3389/fcimb.2022.868905] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022] Open
Abstract
It is widely accepted that production of biofilm is a protective mechanism against various type of stressors, including exposure to antibiotics. However, the impact of this structure on the spread of antibiotic resistance in Helicobacter pylori is still poorly understood. Therefore, the aim of the current research was to determine the relationship between biofilm formation and antibiotic resistance of H. pylori. The study was carried out on 24 clinical strains with different resistance profiles (antibiotic-sensitive, mono-resistant, double-resistant and multidrug-resistant) against clarithromycin (CLR), metronidazole (MTZ) and levofloxacin (LEV). Using static conditions and a crystal violet staining method, a strong correlation was observed between biofilm formation and resistance to CLR but not MTZ or LEV. Based on the obtained results, three the strongest and three the weakest biofilm producers were selected and directed for a set of microfluidic experiments performed in the Bioflux system combined with fluorescence microscopy. Under continuous flow conditions, it was observed that strong biofilm producers formed twice as much of biofilm and created significantly more eDNA and in particular proteins within the biofilm matrix when compared to weak biofilm producers. Additionally, it was noticed that strong biofilm producers had higher tendency for autoaggregation and presented morphostructural differences (a greater cellular packing, shorter cells and a higher amount of both OMVs and flagella) in relation to weak biofilm counterparts. In conclusion, resistance to CLR in clinical H. pylori strains was associated with a broad array of phenotypical features translating to the ability of strong biofilm formation.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
- *Correspondence: Paweł Krzyżek,
| | - Paweł Migdał
- Department of Environment, Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Rossella Grande
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Grażyna Gościniak
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
34
|
Roy S, Chowdhury G, Mukhopadhyay AK, Dutta S, Basu S. Convergence of Biofilm Formation and Antibiotic Resistance in Acinetobacter baumannii Infection. Front Med (Lausanne) 2022; 9:793615. [PMID: 35402433 PMCID: PMC8987773 DOI: 10.3389/fmed.2022.793615] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/31/2022] [Indexed: 07/30/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a leading cause of nosocomial infections as this pathogen has certain attributes that facilitate the subversion of natural defenses of the human body. A. baumannii acquires antibiotic resistance determinants easily and can thrive on both biotic and abiotic surfaces. Different resistance mechanisms or determinants, both transmissible and non-transmissible, have aided in this victory over antibiotics. In addition, the propensity to form biofilms (communities of organism attached to a surface) allows the organism to persist in hospitals on various medical surfaces (cardiac valves, artificial joints, catheters, endotracheal tubes, and ventilators) and also evade antibiotics simply by shielding the bacteria and increasing its ability to acquire foreign genetic material through lateral gene transfer. The biofilm formation rate in A. baumannii is higher than in other species. Recent research has shown how A. baumannii biofilm-forming capacity exerts its effect on resistance phenotypes, development of resistome, and dissemination of resistance genes within biofilms by conjugation or transformation, thereby making biofilm a hotspot for genetic exchange. Various genes control the formation of A. baumannii biofilms and a beneficial relationship between biofilm formation and "antimicrobial resistance" (AMR) exists in the organism. This review discusses these various attributes of the organism that act independently or synergistically to cause hospital infections. Evolution of AMR in A. baumannii, resistance mechanisms including both transmissible (hydrolyzing enzymes) and non-transmissible (efflux pumps and chromosomal mutations) are presented. Intrinsic factors [biofilm-associated protein, outer membrane protein A, chaperon-usher pilus, iron uptake mechanism, poly-β-(1, 6)-N-acetyl glucosamine, BfmS/BfmR two-component system, PER-1, quorum sensing] involved in biofilm production, extrinsic factors (surface property, growth temperature, growth medium) associated with the process, the impact of biofilms on high antimicrobial tolerance and regulation of the process, gene transfer within the biofilm, are elaborated. The infections associated with colonization of A. baumannii on medical devices are discussed. Each important device-related infection is dealt with and both adult and pediatric studies are separately mentioned. Furthermore, the strategies of preventing A. baumannii biofilms with antibiotic combinations, quorum sensing quenchers, natural products, efflux pump inhibitors, antimicrobial peptides, nanoparticles, and phage therapy are enumerated.
Collapse
Affiliation(s)
- Subhasree Roy
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Molecular Microbiology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K. Mukhopadhyay
- Division of Molecular Microbiology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sulagna Basu
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
35
|
Decoding Acinetobacter baumannii biofilm dynamics and associated protein markers: proteomic and bioinformatics approach. Arch Microbiol 2022; 204:200. [PMID: 35239017 DOI: 10.1007/s00203-022-02807-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022]
Abstract
Biofilm formation by Acinetobacter baumannii is one of the major cause of its persistence in hospital environment. Biofilm phenotypes are more resistant to physical as well as chemical stresses than their planktonic counterparts. The present study was carried in quest of biofilm-associated protein markers and their association with various biological pathways of A. baumannii. The study was designed with an aim to highlight the crucial common factor present in the majority of the A. baumannii strains irrespective of its resistance nature. A label-free proteome comparison of biofilm and planktonic phenotypes of A. baumannii was done using QExactive tandem mass spectrometry. Our investigation suggests key elevation of adhesion factors, acetate metabolism, nutrient transporters, and secretion system proteins are required for biofilm formation in A. baumannii. Elevation of biofilm-associated proteins revealed that biofilm is the unique phenotype with the potential to form robust matrix-embedded colonies and defeat stress condition. Further, core protein markers of biofilm phenotypes could be used as targets for new clinical interventions to combat biofilm-associated infections.
Collapse
|
36
|
Mirzaei R, Alikhani MY, Arciola CR, Sedighi I, Yousefimashouf R, Bagheri KP. Prevention, inhibition, and degradation effects of melittin alone and in combination with vancomycin and rifampin against strong biofilm producer strains of methicillin-resistant Staphylococcus epidermidis. Biomed Pharmacother 2022; 147:112670. [PMID: 35123230 DOI: 10.1016/j.biopha.2022.112670] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus epidermidis (MRSE) bacteria are being recognized as true pathogens as they are able to resist methicillin and commonly form biofilms. Recent studies have shown that antimicrobial peptides (AMPs) are promising agents against biofilm-associated bacterial infections. In this study, we aimed to explore the antibiofilm activity of melittin, either alone or in combination with vancomycin and rifampin, against biofilm-producing MRSE strains. Minimum biofilm preventive concentration (MBPC), minimum biofilm inhibition concentration (MBIC), and minimum biofilm eradication concentration (MBEC), as well as fractional biofilm preventive-, inhibitory-, and eradication concentrations (FBPCi, FBICi, and FBECi), were determined for the antimicrobial agents tested. Cytotoxicity and hemolytic activity of melittin at its synergistic concentration were examined on human embryonic kidney cells (HEK-293) and Red Blood Cells (RBCs), respectively. The effect of melittin on the downregulation of biofilm-associated genes was explored using Real-Time PCR. MBPC, MBIC, and MBEC values for melittin were in the range of 0.625-20, 0.625-20, and 10-40 μg/μL, respectively. Melittin showed high synergy (FBPCi, FBICi and FBECi < 0.5). The synergism resulted in a 64-512-fold, 2-16 and 2-8-fold reduction in melittin, rifampicin and vancomycin concentrations, respectively. The synergistic melittin concentration found to be effective did not manifest either cytotoxicity on HEK-293 or hemolytic activity on RBCs. Results showed that melittin downregulated the expression of biofilm-associated icaA, aap, and psm genes in all isolates tested, ranging from 0.04-folds to 2.11-folds for icaA and from 0.05 to 3.76-folds for aap and psm. The preventive and therapeutic indexes of melittin were improved 8-fold when combined with vancomycin and rifampin. Based on these findings, the combination of melittin with conventional antibiotics could be proposed for treating or preventing biofilm-associated MRSE infections.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Carla Renata Arciola
- Laboratorio di Patologia delle Infezioni Associate all'Impianto IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Iraj Sedighi
- Department of Pediatrics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
37
|
Abdul-Mutakabbir JC, Griffith NC, Shields RK, Tverdek FP, Escobar ZK. Contemporary Perspective on the Treatment of Acinetobacter baumannii Infections: Insights from the Society of Infectious Diseases Pharmacists. Infect Dis Ther 2021; 10:2177-2202. [PMID: 34648177 PMCID: PMC8514811 DOI: 10.1007/s40121-021-00541-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/23/2021] [Indexed: 01/10/2023] Open
Abstract
The purpose of this narrative review is to bring together the most recent epidemiologic, preclinical, and clinical findings to offer our perspective on best practices for managing patients with A. baumannii infections with an emphasis on carbapenem-resistant A. baumannii (CRAB). To date, the preferred treatment for CRAB infections has not been defined. Traditional agents with retained in vitro activity (aminoglycosides, polymyxins, and tetracyclines) are limited by suboptimal pharmacokinetic characteristics, emergence of resistance, and/or toxicity. Recently developed and US Food and Drug Administration (FDA)-approved β-lactam/β-lactamase inhibitor agents do not provide enhanced activity against CRAB. On balance, cefiderocol and eravacycline demonstrate potent in vitro activity and are well tolerated, but clinical data for patients with CRAB infections do not yet support widespread use. Given that CRAB has the capacity to infect vulnerable patients and preferred regimens have not been identified, we advocate for combination therapy. Our preferred regimen for critically ill patients infected, or considered to be at high risk for CRAB, includes meropenem, polymyxin B, and ampicillin/sulbactam. Importantly, site of infection, severity of illness, and local epidemiology are essential factors to be considered in selecting combination therapies. Molecular mechanisms of resistance may unveil preferred combinations at individual centers; however, such data are often unavailable to treating clinicians and have not been linked to improved clinical outcomes. Combination strategies may also pose an increased risk for antibiotic toxicity and Clostridioides difficile infection, and should therefore be balanced by understanding patient goals of care and underlying health conditions. Promising therapies that are in clinical development and/or under investigation include durlobactam-sulbactam, cefiderocol combination regimens, and bacteriophage therapy, which may over time eliminate the need for the continued use of polymyxins. Future goals for CRAB management include pathogen-focused treatment paradigms that are based on molecular mechanisms of resistance, local susceptibility rates, and the availability of well-tolerated, effective treatment options.
Collapse
Affiliation(s)
- Jacinda C Abdul-Mutakabbir
- Department of Pharmacy Practice, Loma Linda University School of Pharmacy, Loma Linda, CA, USA.
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Nicole C Griffith
- University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Ryan K Shields
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Frank P Tverdek
- University of Washington, Seattle Cancer Care Alliance, Seattle, WA, USA
| | - Zahra Kassamali Escobar
- University of Washington Medicine, Valley Medical Center, University of Washington School of Pharmacy, Renton, WA, USA
| |
Collapse
|
38
|
Virulence Characteristics of Biofilm-Forming Acinetobacter baumannii in Clinical Isolates Using a Galleria mellonella Model. Microorganisms 2021; 9:microorganisms9112365. [PMID: 34835490 PMCID: PMC8625498 DOI: 10.3390/microorganisms9112365] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative coccobacillus responsible for severe hospital-acquired infections, particularly in intensive care units (ICUs). The current study was designed to characterize the virulence traits of biofilm-forming carbapenem-resistant A. baumannii causing pneumonia in ICU patients using a Galleria mellonella model. Two hundred and thirty patients with hospital-acquired or ventilator-associated pneumonia were included in our study. Among the total isolates, A. baumannii was the most frequently isolated etiological agent in ICU patients with pneumonia (54/165, 32.7%). All A. baumannii isolates were subjected to antimicrobial susceptibility testing by the Kirby–Bauer disk diffusion method, while the minimum inhibitory concentrations of imipenem and colistin were estimated using the broth microdilution technique. The biofilm formation activity of the isolates was tested using the microtiter plate technique. Biofilm quantification showed that 61.1% (33/54) of the isolates were strong biofilm producers, while 27.7% (15/54) and 11.1% (6/54) showed moderate or weak biofilm production. By studying the prevalence of carbapenemases-encoding genes among isolates, blaOXA-23-like was positive in 88.9% of the isolates (48/54). The BlaNDM gene was found in 27.7% of the isolates (15/54 isolates). BlaOXA-23-like and blaNDM genes coexisted in 25.9% (14/54 isolates). Bap and blaPER-1 genes, the biofilm-associated genes, coexisted in 5.6% (3/54) of the isolates. For in vivo assessment of A. baumannii pathogenicity, a Galleria mellonella survival assay was used. G. mellonella survival was statistically different between moderate and poor biofilm producers (p < 0.0001). The killing effect of the strong biofilm-producing group was significantly higher than that of the moderate and poor biofilm producers (p < 0.0001 for each comparison). These findings highlight the role of biofilm formation as a powerful virulence factor for carbapenem-resistant A. baumannii that causes pneumonia in the ICU.
Collapse
|
39
|
Sherif MM, Elkhatib WF, Khalaf WS, Elleboudy NS, Abdelaziz NA. Multidrug Resistant Acinetobacter baumannii Biofilms: Evaluation of Phenotypic-Genotypic Association and Susceptibility to Cinnamic and Gallic Acids. Front Microbiol 2021; 12:716627. [PMID: 34650528 PMCID: PMC8508616 DOI: 10.3389/fmicb.2021.716627] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii armed with multidrug resistance (MDR) and biofilm-forming ability is increasingly recognized as an alarming pathogen. A deeper comprehension of the correlation between these two armories is required in circumventing its infections. This study examined the biofilm-forming ability of the isolates by crystal violet staining and the antibiotic susceptibility by broth microdilution method. The genetic basis of the MDR and biofilm-forming phenotypes was screened by polymerase chain reaction. The antimicrobial activities of cinnamic and gallic acids against planktonic cells and biofilms of A. baumannii were investigated, and the findings were confirmed with scanning electron microscopy (SEM). Among 90 A. baumannii isolates, 69 (76.6%) were MDR, and all were biofilm formers; they were classified into weak (12.2%), moderate (53.3%), and strong (34.5%) biofilm formers. Our results underlined a significant association between MDR and enhanced biofilm formation. Genotypically, the presence of blaVIM and blaOXA–23 genes along with biofilm-related genes (ompA, bap, and csuE) was statistically associated with the biofilm-forming abilities. Impressively, both gallic and cinnamic acids could significantly reduce the MDR A. baumannii biofilms with variable degrees dependent on the phenotype–genotype characteristics of the tested isolates. The current findings may possess future therapeutic impact through augmenting antimicrobial arsenal against life-threatening infections with MDR A. baumannii biofilms.
Collapse
Affiliation(s)
- Mahmoud M Sherif
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
| | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Al Galala, Egypt
| | - Wafaa S Khalaf
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Nooran S Elleboudy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Neveen A Abdelaziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
| |
Collapse
|
40
|
Usmani Y, Ahmed A, Faizi S, Versiani MA, Shamshad S, Khan S, Simjee SU. Antimicrobial and biofilm inhibiting potential of an amide derivative [N-(2', 4'-dinitrophenyl)-3β-hydroxyurs-12-en-28-carbonamide] of ursolic acid by modulating membrane potential and quorum sensing against colistin resistant Acinetobacter baumannii. Microb Pathog 2021; 157:104997. [PMID: 34048890 DOI: 10.1016/j.micpath.2021.104997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
Acinetobacter baumannii is Gram-negative, an opportunistic pathogen responsible for life-threatening ventilator-associated pneumonia. World Health Organization (WHO) enlisted it as a priority pathogen for which therapeutic options need speculations. Biofilm further benefits this pathogen and aids 100-1000 folds more resistant against antimicrobials and the host immune system. In this study, ursolic acid (1) and its amide derivatives (2-4) explored for their antimicrobial and antibiofilm potential against colistin-resistant A. baumannii (CRAB) reference and clinical strains. Viability, crystal violet, microscopic, and gene expression assays further detailed the active compounds' antimicrobial and biofilm inhibition potential. Compound 4 [N-(2',4'-dinitrophenyl)-3β-hydroxyurs-12-en-28-carbonamide)], a synthetic amide derivate of ursolic acid significantly inhibits bacterial growth with MIC in the range of 78-156 μg/mL against CRAB isolates. This compound failed to completely kill the CRAB isolates even at 500 μg/mL concentration, suggesting the compound's anti-virulence and bacteriostatic nature. Short and prolonged exposure of 4 inhibited or delayed the bacterial growth at sub MIC, MIC, and 2× MIC, as evident in time-kill and post-antibacterial assay. It significantly inhibited and eradicated >70% of biofilm formation at MIC and sub MIC levels compared to colistin required in high concentrations. Microscopic analysis showed disintegrated biofilm after treatment with the 4 further strengthened its antibiofilm potential. Atomic force microscopy (AFM) hinted the membrane disrupting effect of 4 at MIC's. Further it was confirmed by DiBAC4 using fluorescence-activating cells sorting (FACS), suggesting a depolarized membrane at MIC. Gene expression analysis also supported our data as it showed reduced expression of biofilm-forming (bap) and quorum sensing (abaR) genes after treatment with sub MIC of 4. The results suggest that 4 significantly inhibit bacterial growth and biofilm mode of colistin-resistant A. baumannii. Thus, further studies are required to decipher the complete mechanism of action to develop 4 as a new pharmacophore against A. baumannii.
Collapse
Affiliation(s)
- Yamina Usmani
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Shaheen Faizi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Ali Versiani
- Department of Chemistry, Federal Urdu University of Arts, Science, and Technology, Gulshan-e-Iqbal, Karachi, 75300, Pakistan
| | - Shumaila Shamshad
- Department of Chemistry, Federal Urdu University of Arts, Science, and Technology, Gulshan-e-Iqbal, Karachi, 75300, Pakistan
| | - Saeed Khan
- Department of Pathology, Dow International Medical College, Dow Diagnostic Research and Reference Laboratory, Dow University of Health Sciences, Karachi, Pakistan
| | - Shabana U Simjee
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
41
|
Biofilm Formation by Pathogens Causing Ventilator-Associated Pneumonia at Intensive Care Units in a Tertiary Care Hospital: An Armor for Refuge. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8817700. [PMID: 34136573 PMCID: PMC8179767 DOI: 10.1155/2021/8817700] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/26/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
Background Emerging threat of drug resistance among pathogens causing ventilator-associated pneumonia (VAP) has resulted in higher hospital costs, longer hospital stays, and increased hospital mortality. Biofilms in the endotracheal tube of ventilated patients act as protective shield from host immunity. They induce chronic and recurrent infections that defy common antibiotics. This study intended to determine the biofilm produced by pathogens causing VAP and their relation with drug resistance. Methods Bronchoalveolar lavage and deep tracheal aspirates (n = 70) were obtained from the patients mechanically ventilated for more than 48 hours in the intensive care units of Tribhuvan University Teaching Hospital, Kathmandu, and processed according to the protocol of the American Society for Microbiology (ASM). Antibiotic susceptibility testing was done following Clinical and Laboratory Standards Institute (CLSI) 2017 guidelines. Biofilm formation was determined using the microtiter plate method described by Christensen and modified by Stepanovoic et al. Results Significant microbial growth was seen in 78.6% of the total samples with 52.7% monomicrobial, 45.5% polymicrobial, and 1.8% fungal infection. Among the 71 isolates obtained, bulk was gram-negative (n = 64, 90.1%). Pseudomonas aeruginosa (31.0%) was the predominant isolate followed by Acinetobacter calcoaceticus baumannii complex (16.9%), Klebsiella pneumoniae (16.9%), Citrobacter freundii (15.5%), Staphylococcus aureus (7.0%), Escherichia coli (5.6%), Citrobacter koseri (2.8%), Enterococcus faecalis (1.4%), Burkholderia cepacia complex (1.4%), and Candida albicans (1.4%). Of the total isolates, 56.3% were biofilm producers. Multidrug-resistant (MDR) organisms, extended-spectrum β-lactamase (ESBL), and metallo-β-lactamase (MBL) producers were preeminent among the biofilm producers. The highest producer of biofilm was P. aeruginosa (19.7%). Among gram-negative biofilm producers, 42.2% were MDR, 21.9% were ESBL producers, and 7.8% were MBL producers. Conclusion Gram-negative nonfermenter bacteria account for the bulk of nosocomial pneumonia. MDR, ESBL, and MBL production was preponderant among the biofilm producers. The rampant spread of drug resistance among biofilm producers is summoning novel interventions to combat multidrug resistance.
Collapse
|
42
|
Phenotypic and genotypic characteristics of Acinetobacter baumannii enrolled in the relationship among antibiotic resistance, biofilm formation and motility. Microb Pathog 2021; 155:104922. [PMID: 33932545 DOI: 10.1016/j.micpath.2021.104922] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/30/2022]
Abstract
Acinetobacter baumannii is an important pathogen in clinical. The factors of biofilm formation, antibiotic resistance and motility contribute great to A. baumannii in persisting in stressed environment, and further leads to nosocomial infections. 70 A. baumannii clinical isolates were investigated for their clinical characteristics of infection. Among the tested strains, 54 (77.1%) isolates were obtained from ICUs, with the frequency of multidrug-resistance (MDR) at 55.7%, and that of extensively drug-resistance (XDR) at 31.4%. 97.1% of the clinical isolates could form biofilms, in which 4.3% possessed weak biofilm formation ability, while 41.4% and 51.4% were moderate and strong biofilm producers, respectively. A strong correlation between antibiotic resistance and biofilm formation ability was found that all the resistant strains could form biofilms, with the majority in moderate and strong levels, but 2.9% sensitive isolates had no such ability. However, the sensitive strains that could produce biofilms showed stronger biofilm formation capacity in the early stage before 24 h compared to the resistant isolates, though they became weaker afterwards. 24 biofilm-related genes and two blaOXA genes were found in both biofilm-forming and non-biofilm-forming strains, but with higher prevalence in the strains that could produce biofilms. No correlation was detected between twitching motility with antibiotic susceptibility or biofilm formation. These results raised a viewpoint that examining timepoint is a key factor for determining the biofilm formation ability, and further highlighted the importance of the appropriate surveillance and control measures in preventing the emergence and transmission of MDR and XDR A. baumannii.
Collapse
|
43
|
Asaad AM, Ansari S, Ajlan SE, Awad SM. Epidemiology of Biofilm Producing Acinetobacter baumannii Nosocomial Isolates from a Tertiary Care Hospital in Egypt: A Cross-Sectional Study. Infect Drug Resist 2021; 14:709-717. [PMID: 33654415 PMCID: PMC7914062 DOI: 10.2147/idr.s261939] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 02/04/2021] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE This cross-sectional study aims to determine the prevalence and associated risk factors of biofilm-producing A. baumannii nosocomial isolates from a tertiary care hospital, as well as to investigate any possible association of biofilm formation with the distribution of biofilm-related genotypes and antibiotic resistance phenotypes. METHODS A total of 94 non-duplicate A. baumannii nosocomial isolates were identified, their biofilm formation was quantitatively detected using the modified microtiter plate assay, and their susceptibilities to different antibiotics were determined using the breakpoint method. Isolates were then subjected to PCR assays targeting bap, ompA and bla PER-1 genes. RESULTS The majority (70.1%) of isolates were biofilm producers. The most prevalent biofilm gene was ompA (63.8%), followed by bap (13.8%) and bla PER-1 (10.6%). The presence of multi- and extensive-drug resistance (MDR and XDR) was significantly associated with biofilm producers (p = 0.017 and 0.002, respectively). The length of hospital stay (aOR= 0.023), the presence of ompA gene (aOR = 0.286) or bap gene (aOR = 0.346), ampicillin/sulbactam resistance (aOR = 1), and the presence of MDR (aOR = -0.329) or XDR (aOR = -0.252) were considered significant risk factors associated with biofilm-producing isolates. CONCLUSION The high prevalence of biofilm-producing MDR and XDR nosocomial isolates in this study is worrisome and alarming. Characterization of risk factors could help control the continuous selection and transfer of this serious A. baumannii phenotype inside hospitals and improve the quality of patients' care.
Collapse
Affiliation(s)
- Ahmed Morad Asaad
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Shamshul Ansari
- Department of Microbiology and Immunology, Chitwan Medical College School of Medicine, Bharatpur, 44200, Nepal
| | - Soma Elsayed Ajlan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Samah Mohammed Awad
- Department of Clinical Microbiology and Immunology, Molecular Microbiology in Liver and GIT, National Liver Institute, Menoufia, Egypt
| |
Collapse
|
44
|
Mea HJ, Yong PVC, Wong EH. An overview of Acinetobacter baumannii pathogenesis: Motility, adherence and biofilm formation. Microbiol Res 2021; 247:126722. [PMID: 33618061 DOI: 10.1016/j.micres.2021.126722] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
The Gram-negative opportunistic pathogen Acinetobacter baumannii has gain notoriety in recent decades, primarily due to its propensity to cause nosocomial infections in critically ill patients. Its global spread, multi-drug resistance features and plethora of virulence factors make it a serious threat to public health worldwide. Though much effort has been expended in uncovering its successes, it continues to confound researchers due to its highly adaptive nature, mutating to meet the needs of a given environment. Its persistence in the clinical setting allows it to be in close proximity to a potential host, where contact can be made facilitating infection and colonization. In this article, we aim to provide a current overview of the bacterial virulence factors, specifically focusing on factors involved in the initial stages of infection, highlighting the role of adaptation facilitated by two-component systems and biofilm formation. Finally, the study of host-pathogen interactions using available animal models, their suitability, notable findings and some perspectives moving forward are also discussed.
Collapse
Affiliation(s)
- Hing Jian Mea
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Phelim Voon Chen Yong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
45
|
Acinetobacter baumannii as a community foodborne pathogen: Peptide mass fingerprinting analysis, genotypic of biofilm formation and phenotypic pattern of antimicrobial resistance. Saudi J Biol Sci 2020; 28:1158-1166. [PMID: 33424412 PMCID: PMC7783781 DOI: 10.1016/j.sjbs.2020.11.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 01/02/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is one of the most common Gram-negative pathogens that represent a major threat to human life. Because the prevalence of Multidrug-resistant biofilm-forming A. baumannii is increasing all over the world, this may lead to outbreaks of hospital infections. Nonetheless, the role of raw meat as a reservoir for A. baumannii remains unclear. Here our research was aimed to exhibit the frequency, precise identification, and genotyping of biofilm-related genes as well as antimicrobial resistance of A. baumannii isolates of raw meat specimens. Fifty-five A. baumannii strains were recovered from 220 specimens of different animal meat and then identified by Peptide Mass Fingerprinting Technique (PMFT). All identified isolates were genotyped by the qPCR method for the existence of biofilm-related genes (ompA, bap, blaPER-1, csuE, csgA, and fimH). In addition, the antimicrobial resistance against A. baumannii was detected by the Kirby-Bauer method. Based on our findings, the frequency rate of 55 A. baumannii isolates was 46.55%, 32.50%, 15.00%, and 9.68% of sheep, chicken, cow, and camel raw meat samples, respectively. The PMFT was able to identify all strains by 100%. the percentages of csuE, ompA, blaPER-1, bap, and csgA genes in biofilm and non-biofilm producer A. baumannii were 72.73%, 60%, 58.2%, 52.74%, and 25.45%, respectively. In contrast, the fimH was not detected in all non-biofilm and biofilm producer strains. The ompA, bap, blaPER-1, csgA were detected only in biofilm-producing A. baumannii isolates. The maximum degree of resistance was observed against amoxicillin/clavulanic acid (89.10%), gentamicin (74.55%), tetracycline (72.73%), ampicillin (65.45%), and tobramycin (52.73%). In conclusion, our investigation demonstrated the high incidence of multi-drug resistant A. baumannii in raw meat samples, with a high existence of biofilm-related virulence genes of ompA, bap, blaPER-1, csgA. Therefore, it has become necessary to take the control measures to limit the development of A. baumannii.
Collapse
|
46
|
Özkul C, Hazırolan G. Oxacillinase Gene Distribution, Antibiotic Resistance, and Their Correlation with Biofilm Formation in Acinetobacter baumannii Bloodstream Isolates. Microb Drug Resist 2020; 27:637-646. [PMID: 32991256 DOI: 10.1089/mdr.2020.0130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objectives: The limitations of treatment options in bloodstream infections caused by multidrug-resistant Acinetobacter baumannii (MDRAB) have been related to high morbidity and mortality. The aim of our present study was to determine antimicrobial susceptibility profiles, molecular resistance patterns, and biofilm properties of A. baumannii isolated from bloodstream infections. Materials and Methods: In the present study, a total of 44 A. baumannii bloodstream isolates were included. Antimicrobial susceptibility profiles and biofilm formation ability were assessed. The distribution of class D carbapenemases, ISAba1, ISAba1/blaOXA-23, blaNDM-1, mcr-1, and ompA was investigated by polymerase chain reaction (PCR). Arbitrarily primed-PCR (AP-PCR) was performed to evaluate clonal relationships. Results: A total of 32 isolates were MDRAB, whereas 6 isolates were also resistant to colistin without mcr-1 positivity. All isolates were harboring blaOXA-51 gene, whereas blaOXA-23 positivity was 63.6%. Fifty percent of the isolates had ISAba1. ISAba1 upstream of blaOXA-23 was determined in 18 isolates. None of the isolates were positive for blaNDM-1 gene. Majority of the strains were strong biofilm producers (86.8%). A total of 56.8% of the isolates were positive for ompA gene with no direct association with strong biofilm formation. However, blaOXA-51 + 23 genotype and trimethoprim-sulfamethoxazole resistance showed a significant relationship with biofilm formation. AP-PCR analysis revealed six distinct clusters of A. baumannii. Conclusions: Herein, majority of the A. baumannii blood isolates were characterized as blaOXA-51+OXA-23 carbapenemase genotype and were strong biofilm formers. None of the isolates were positive for blaNDM-1, which was promising. Resistant isolates were tended to form strong biofilms. Our results highlight the emergence of oxacillinase-producing MDRAB isolated from bloodstream with high biofilm formation ability.
Collapse
Affiliation(s)
- Ceren Özkul
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy and Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gülşen Hazırolan
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
47
|
Malta RCR, Ramos GLDPA, Nascimento JDS. From food to hospital: we need to talk about Acinetobacter spp. Germs 2020; 10:210-217. [PMID: 33134199 DOI: 10.18683/germs.2020.1207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/18/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
Some species of the genus Acinetobacter are admittedly important hospital pathogens. Additionally, various animal and plant foods have been linked to the presence of Acinetobacter, including resistant strains. However, due to isolation difficulties and the lack of official standard methods, there is a dearth of work and epidemiological data on foodborne diseases caused by this microorganism. Considering that Acinetobacter spp. may represent a serious public health problem, especially because of their resistance to carbapenems and colistin, and because of the fact that these pathogens may transfer resistance genes to other bacteria, studies are needed to evaluate the pathogenicity of both food and clinical isolates and to search for them using control strategies, such as the adoption of more efficient disinfection measures and use of antimicrobial substances (AMS). In contrast, AMS production by strains of the genus Acinetobacter has already been described, and its potential for application against other Gram-negative food or clinical pathogens, reveals a new field to be explored.
Collapse
Affiliation(s)
- Rogerio Caldeira Rodrigues Malta
- Departamento de Microbiologia, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rua Senador Furtado, 121 - Laboratório 412 - Maracanã, Rio de Janeiro, RJ, CEP 20270-021, Brazil
| | - Gustavo Luis de Paiva Anciens Ramos
- MD, Departamento de Bromatologia, Faculdade de Farmácia, Universidade Federal Fluminense (UFF), Rua Doutor Mário Viana, 523 - Santa Rosa - Niterói, CEP 24241-002, Brazil
| | - Janaína Dos Santos Nascimento
- PhD, Departamento de Microbiologia, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rua Senador Furtado, 121 - Laboratório 412 - Maracanã, Rio de Janeiro, RJ, CEP 20270-021, Brazil
| |
Collapse
|
48
|
Salmani A, Mohsenzadeh M, Pirouzi A, Khaledi A. A comprehensive meta-analysis of antibiotic resistance pattern among biofilm production strains of Acinetobacter baumannii recovered from clinical specimens of patients. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Khoshnood S, Savari M, Abbasi Montazeri E, Farajzadeh Sheikh A. Survey on Genetic Diversity, Biofilm Formation, and Detection of Colistin Resistance Genes in Clinical Isolates of Acinetobacter baumannii. Infect Drug Resist 2020; 13:1547-1558. [PMID: 32547124 PMCID: PMC7266307 DOI: 10.2147/idr.s253440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction Acinetobacter baumannii is an opportunistic pathogen responsible for nosocomial infections. The emergence of colistin-resistant A. baumannii is a significant threat to public health. The aim of this study was to investigate the molecular characterization and genotyping of clinical A. baumannii isolates in Southwestern Iran. Methods A total of 70 A. baumannii isolates were collected from patients admitted to Imam Khomeini Hospital in Ahvaz, Southwestern Iran. Minimum inhibitory concentration test was conducted by using Vitek 2 system. The presence of biofilm-forming genes and colistin resistance-related genes were evaluated by PCR. The isolates were also examined for their biofilm formation ability and the expression of pmrA and pmrB genes. Finally, multilocus sequence typing (MLST) and PCR-based sequence group were used to determine the genetic relationships of the isolates. Results Overall, 61 (87.1%) and 9 (12.8%) isolates were multidrug-resistant (MDR) and extensively drug-resistant (XDR), respectively. Colistin and tigecycline with 2 (2.8%) and 32 (45.7%) resistance rates had the highest effect. Among all the isolates, 55 (78.5%), 7 (10%), and 3 (4.3%) were strong, moderate, and weak biofilm producers, respectively. The frequency rates of biofilm-related genes were 64 (91.4%), 70 (100%), 56 (80%), and 22 (31.42%) for bap, ompA, csuE, and blaPER1, respectively. Overexpression of pmrA and pmrB genes was observed in two colistin-resistance isolates, but the expression of these genes did not change in colistin-sensitive isolates. Additionally, 37 (52.8%) and 8 (11.4%) isolates belonged to groups 1 (ICII) and 2 (IC I), respectively. MLST analysis revealed a total of nine different sequence types that six isolates belonged to clonal complex 92 (corresponding to ST801, ST118, ST138, ST 421, and ST735). Other isolates were belonging to ST133 and ST216, and two colistin-resistant (Ab4 and Ab41) isolates were belonging to ST387 and ST1812. Conclusion The present study revealed the presence of MDR and XDR A. baumannii isolates harboring biofilm genes and emergence of colistin-resistant isolates in Southwestern Iran. These isolates had high diversity, which was affirmed by typing techniques. The control measures and regular surveillance are urgently needed to preclude the spread of these isolates.
Collapse
Affiliation(s)
- Saeed Khoshnood
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Savari
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Effat Abbasi Montazeri
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Farajzadeh Sheikh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
50
|
Zhou H, Larkin PMK, Huang J, Yao Y, Zhu B, Yang Q, Hua X, Zhou J, Yang S, Yu Y. Discovery of a Novel Hypervirulent Acinetobacter baumannii Strain in a Case of Community-Acquired Pneumonia. Infect Drug Resist 2020; 13:1147-1153. [PMID: 32368105 PMCID: PMC7183332 DOI: 10.2147/idr.s244044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/02/2020] [Indexed: 01/12/2023] Open
Abstract
Purpose Acinetobacter baumannii is associated with both hospital-acquired infections and community-acquired pneumonia (CAP). Here, we describe a novel strain of A. baumannii in a case of CAP in a previously healthy rural villager from Central Eastern China. Materials and Methods A. baumannii isolated from the patient (LS01) was compared to well-characterized pathogenic strain (AB5075), nosocomial circulating strain in China (ZJ06), and wild-type strain (ATCC17978). Growth rate studies were conducted under different environmental stressors, and virulence studies were performed using Galleria mellonella larvae. Whole genome sequencing (WGS) was performed using MinIon and MiSeq. Center for Genomic Epidemiology, CLCbio, Geneious, and Virulence Factors of Pathogenic Bacteria database were used for genomic analysis. Results LS01 grew significantly faster at 37°C and 42°C and in the presence of zinc compared to other strains. LS01 was more virulent in G. mellonella, killing all larvae within 8 h. Although WGS revealed 44 virulence genes, these genes were also present in the other strains. While two chromosomally encoded β-lactamases were identified, there were no plasmids identified and LS01 was pan-susceptible to all antibiotics tested. Phylogenetic analysis revealed that the closest related strains were only 72.552% identical, supporting a novel strain. Conclusion LS01 is a novel strain of hypervirulent yet pan-drug susceptible A. baumannii isolated from a patient with no prior hospitalizations, sick contacts, or any of the typical risk factors. This raises concerns for an emerging pathogen, and more epidemiological studies should be conducted to assess the prevalence of this A. baumannii strain.
Collapse
Affiliation(s)
- Hua Zhou
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Paige M K Larkin
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jinwei Huang
- Department of Respiratory Diseases, Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, People's Republic of China
| | - Yake Yao
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Bingquan Zhu
- Department of Child Health Care, Zhejiang University Children's Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Qing Yang
- State Key Laboratory for Diagnostic and Treatment of Infectious Diseases, First Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China
| | - Jianying Zhou
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Shangxin Yang
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, People's Republic of China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|