1
|
Kupczyk D, Bilski R, Szeleszczuk Ł, Mądra-Gackowska K, Studzińska R. The Role of Diet in Modulating Inflammation and Oxidative Stress in Rheumatoid Arthritis, Ankylosing Spondylitis, and Psoriatic Arthritis. Nutrients 2025; 17:1603. [PMID: 40362911 PMCID: PMC12073256 DOI: 10.3390/nu17091603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
Rheumatic diseases such as rheumatoid arthritis (RA), ankylosing spondylitis (AS), and psoriatic arthritis (PsA) are chronic autoimmune disorders characterized by persistent inflammation and oxidative stress, leading to joint damage and reduced quality of life. In recent years, increasing attention has been given to diet as a modifiable environmental factor that can complement pharmacological therapy. This review summarizes current evidence on how key dietary components-such as omega-3 fatty acids, fiber, polyphenols, and antioxidant vitamins-affect inflammatory pathways and oxidative balance. Special emphasis is placed on the Mediterranean diet, low-starch diets, and hypocaloric regimens, which have shown potential in improving disease activity. The gut microbiota emerges as a critical mediator between diet and immune function, with dietary interventions capable of restoring eubiosis and strengthening the intestinal barrier. Additionally, this paper discusses challenges in the clinical implementation of diet therapy, the need for personalized nutritional strategies, and the importance of integrating diet into holistic patient care. Collectively, findings suggest that dietary interventions may reduce disease activity, mitigate systemic inflammation, and enhance patients' overall well-being.
Collapse
Affiliation(s)
- Daria Kupczyk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| | - Rafał Bilski
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-093 Warsaw, Poland;
| | - Katarzyna Mądra-Gackowska
- Department of Geriatrics, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 Skłodowskiej Curie Str., 85-094 Bydgoszcz, Poland;
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland;
| |
Collapse
|
2
|
Brown EM, Nguyen PNU, Xavier RJ. Emerging biochemical, microbial and immunological evidence in the search for why HLA-B ∗27 confers risk for spondyloarthritis. Cell Chem Biol 2025; 32:12-24. [PMID: 39168118 PMCID: PMC11741937 DOI: 10.1016/j.chembiol.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/25/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
The strong association of the human leukocyte antigen B∗27 alleles (HLA-B∗27) with spondyloarthritis and related rheumatic conditions has long fascinated researchers, yet the precise mechanisms underlying its pathogenicity remain elusive. Here, we review how interplay between the microbiome, the immune system, and the enigmatic HLA-B∗27 could trigger spondyloarthritis, with a focus on whether HLA-B∗27 presents an arthritogenic peptide. We propose mechanisms by which the unique biochemical characteristics of the HLA-B∗27 protein structure, particularly its peptide binding groove, could dictate its propensity to induce pathological T cell responses. We further provide new insights into how TRBV9+ CD8+ T cells are implicated in the disease process, as well as how the immunometabolism of T cells modulates tissue-specific inflammatory responses in spondyloarthritis. Finally, we present testable models and suggest approaches to this problem in future studies given recent advances in computational biology, chemical biology, structural biology, and small-molecule therapeutics.
Collapse
Affiliation(s)
- Eric M Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
3
|
Doytchinova I, Atanasova M, Sotirov S, Dimitrov I. In Silico Identification of Peanut Peptides Suitable for Allergy Immunotherapy in HLA-DRB1*03:01-Restricted Patients. Pharmaceuticals (Basel) 2024; 17:1097. [PMID: 39204201 PMCID: PMC11357649 DOI: 10.3390/ph17081097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/24/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Peanut allergy, a prevalent and potentially severe condition affecting millions worldwide, has been linked to specific human leukocyte antigens (HLAs), suggesting increased susceptibility. Employing an immunoinformatic strategy, we developed a "logo model" based on amino acid frequencies in the peptide binding core and used it to predict peptides originating from 28 known peanut allergens binding to HLA-DRB1*03:01, one of the susceptibility alleles. These peptides hold promise for immunotherapy in HLA-DRB1*03:01 carriers, offering reduced allergenicity compared to whole proteins. By targeting essential epitopes, immunotherapy can modulate immune responses with minimal risk of severe reactions. This precise approach could induce immune tolerance with fewer adverse effects, presenting a safer and more effective treatment for peanut allergy and other allergic conditions.
Collapse
Affiliation(s)
- Irini Doytchinova
- Drug Design and Bioinformatics Lab, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (M.A.); (S.S.); (I.D.)
| | | | | | | |
Collapse
|
4
|
Yemula N, Sheikh R. Gut microbiota in axial spondyloarthritis : genetics, medications and future treatments. ARP RHEUMATOLOGY 2024; 3:216-225. [PMID: 39243363 DOI: 10.63032/wuii1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Axial spondyloarthritis, also referred to as ankylosing spondylitis, is a chronic inflammatory condition that predominantly affects the axial spine but may also present with peripheral arthritis. It falls within the umbrella of disorders known as spondyloarthropathies. In addition to axial spondyloarthritis, this group includes psoriatic arthritis, enteropathic arthritis, reactive arthritis, and undifferentiated spondyloarthropathy, with axial spondyloarthritis being one of the most common. The overall mechanisms underlying the development of axial spondyloarthritis are complex and multifactorial. There is a significant and well-recognized association between axial spondyloarthritis and the HLA-B27 gene, but there have also been non-HLA genes identified in the disease process, as well as certain inflammatory cytokines that play a role in the inflammatory process, such as tumor necrosis factor (TNF). More recently, there has been research and new evidence linking changes in the gut microbiota to the disease process of axial spondyloarthritis. Research into the role of the gut microbiota and gut dysbiosis is a large, ever-growing field. It has been associated with a multitude of conditions, including axial spondyloarthritis. This mini-review highlights the symbiotic relationship of the gut microbiota with the pathogenesis, therapeutic agents and future treatments of axial spondyloarthritis.
Collapse
|
5
|
Guo Z, Yiu N, Hu Z, Zhou W, Long X, Yang M, Liao J, Zhang G, Lu Q, Zhao M. Alterations of fecal microbiome and metabolome in pemphigus patients. J Autoimmun 2023; 141:103108. [PMID: 37714737 DOI: 10.1016/j.jaut.2023.103108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/12/2023] [Accepted: 08/24/2023] [Indexed: 09/17/2023]
Abstract
The role of gut microbiome and metabolic substances in the development of autoimmune diseases has gradually been revealed. However, the relevant gut features in pemphigus have not been well clarified. We collected stool samples from pemphigus patients and healthy controls (HCs). Metagenomic sequencing and liquid chromatography-mass spectrometry (LC/MS) metabolome sequencing were performed to analyze the compositional and metabolic alternations of the gut microbiome in pemphigus patients and HCs. We observed the reduced richness and diversity and greater heterogeneity in pemphigus patients, which was characterized by a significant decrease in Firmicutes and an increase in Proteobacteria. At the species level, Intestinal pathogenic bacteria such as Escherichia coli and Bacteroides fragilis were significantly enriched, while anti-inflammatory bacteria and butyric acid-producing bacteria were significantly reduced, which were related to clinical indicators (Dsg1/3 and PDAI). 4 species were selected by the machine learning algorithm to better distinguish pemphigus patients from healthy people. Metabolomic analysis showed that the composition of pemphigus patients was different from that of HCs. PE (18:3 (6Z,9Z, 12Z)/14:1 (9Z)) was the main metabolic substance in pemphigus and involved in a variety of metabolic pathways. While Retinol, flavonoid compounds and various amino acids decreased significantly compared with HCs. Furthermore, we found that differences in the levels of these metabolites correlated with changes in the abundance of specific species. Our study provides a comprehensive picture of gut microbiota and metabolites in pemphigus patients and suggests a potential mechanism of the aberrant gut microbiota and metabolites in the pathogenesis of pemphigus.
Collapse
Affiliation(s)
- Ziyu Guo
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Nam Yiu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Zhi Hu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Wenyu Zhou
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Xuan Long
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Miao Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Jieyue Liao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Guiying Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
6
|
Luan Z, Wang Y. Association between ankylosing spondylitis and m6A methylation. J Orthop Surg Res 2023; 18:757. [PMID: 37805597 PMCID: PMC10559441 DOI: 10.1186/s13018-023-04254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND N6-methyl adenosine (m6A) is the most common reversible mRNA modification in eukaryotes implicated in key roles in various biological processes. The purpose of our analysis was to examine the association of ankylosing spondylitis (AS) with m6A methylation. METHOD We obtained 72 samples from the data set GSE73754, including 52 AS patients and 20 healthy people. We divided the samples into two groups: the experimental group and the control group, and then observed the differences of 26 m6A related genes in the two groups. We also analyzed the correlation between different m6A genes. We used a random forest tree model to screen seven m6A signature genes associated with AS to evaluate its prevalence. Next, the samples were classified according to the m6a content and differential genes. Immune analysis, gene ontology, and KEGG enrichment analyses were performed. Finally, we scored each sample with m6a and analyzed the relationship between different samples and inflammation-related factors. RESULTS AND CONCLUSION In conclusion, we screened out AS-related genes and the nomogram showed that they were negatively correlated with the incidence of AS. And we found that AS may have some relationship with immunity. Our analysis results could provide further insights into the treatment of AS.
Collapse
Affiliation(s)
- Zhiwei Luan
- Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Yansong Wang
- Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
7
|
Li H, Wang L, Zhu J, Xiao J, Yang H, Hai H, Hu J, Li L, Shi Y, Yu M, Shuai P, Liu Y, Ju X, Wu G, Zhou Y, Deng B, Gong B. Diagnostic serum biomarkers associated with ankylosing spondylitis. Clin Exp Med 2023; 23:1729-1739. [PMID: 36459277 DOI: 10.1007/s10238-022-00958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
Ankylosing spondylitis (AS) is an autoimmune rheumatic disease that mostly affects the axial skeleton. This study aimed to investigate reliable diagnostic serum biomarkers for AS. Serum samples were collected from 20 AS patients and 20 healthy controls (HCs) and analyzed using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The differential metabolites between the AS patients and HCs were profiled using univariate and multivariate statistical analyses. Pathway analysis and a heat map were also conducted. Random forest (RF) analysis and the least absolute shrinkage and selection operator (LASSO) were used to establish predictive and diagnostic models. After controlling the variable importance in the projection (VIP) value > 1 and false discovery rate (FDR) < 0.05, a total of 61 differential metabolites were identified from 995 metabolites, which exhibited significant differences in the pathway analysis and heat map between the AS patients and HCs. RF as a predictive model also identified differential metabolites with 95% predictive accuracy and a high area under the curve (AUC) of 1. A diagnostic model comprising nine metabolites (cysteinylglycine disulfide, choline, N6, N6, N6-trimethyllysine, histidine, sphingosine, fibrinopeptide A, glycerol 3-phosphate, 1-linoleoyl-GPA (18:2), and fibrinopeptide A (3-16)) was generated using LASSO regression, capable of distinguishing HCs from AS with a high AUC of 1. Our results indicated that the UPLC-MS/MS analysis method is a powerful tool for identifying AS metabolite profiles. We developed a nine-metabolites-based model serving as a diagnostic tool to separate AS patients from HCs, and the identified diagnostic biomarkers appeared to have a diagnostic value for AS.
Collapse
Affiliation(s)
- Huan Li
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Liang Wang
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jing Zhu
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jialing Xiao
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Huining Yang
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Huanyue Hai
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jiarui Hu
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lin Li
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Shi
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Man Yu
- Department of Ophthalmology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China
| | - Ping Shuai
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yuping Liu
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xueming Ju
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Gang Wu
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yu Zhou
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bolin Deng
- Department of Ophthalmology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China.
| | - Bo Gong
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
8
|
Fan L, Cai J. Reply. Arthritis Rheumatol 2023; 75:1293. [PMID: 36599059 DOI: 10.1002/art.42437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Affiliation(s)
- Luyun Fan
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Wu L, Zhou L, An J, Shao X, Zhang H, Wang C, Zhao G, Chen S, Cui X, Zhang X, Yang F, Li X, Zhang X. Comprehensive profiling of extracellular vesicles in uveitis and scleritis enables biomarker discovery and mechanism exploration. J Transl Med 2023; 21:388. [PMID: 37322475 PMCID: PMC10273650 DOI: 10.1186/s12967-023-04228-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Uveitis and posterior scleritis are sight-threatening diseases with undefined pathogenesis and accurate diagnosis remains challenging. METHODS Two plasma-derived extracellular vesicle (EV) subpopulations, small and large EVs, obtained from patients with ankylosing spondylitis-related uveitis, Behcet's disease uveitis, Vogt-Koyanagi-Harada syndrome, and posterior scleritis were subjected to proteomics analysis alongside plasma using SWATH-MS. A comprehensive bioinformatics analysis was performed on the proteomic profiles of sEVs, lEVs, and plasma. Candidate biomarkers were validated in a new cohort using ELISA. Pearson correlation analysis was performed to analyze the relationship between clinical parameters and proteomic data. Connectivity map database was used to predict therapeutic agents. RESULTS In total, 3,668 proteins were identified and over 3000 proteins were quantified from 278 samples. When comparing diseased group to healthy control, the proteomic profiles of the two EV subgroups were more correlated with disease than plasma. Comprehensive bioinformatics analysis highlighted potential pathogenic mechanisms for these diseases. Potential biomarker panels for four diseases were identified and validated. We found a negative correlation between plasma endothelin-converting enzyme 1 level and mean retinal thickness. Potential therapeutic drugs were proposed, and their targets were identified. CONCLUSIONS This study provides a proteomic landscape of plasma and EVs involved in ankylosing spondylitis-related uveitis, Behcet's disease uveitis, Vogt-Koyanagi-Harada syndrome, and posterior scleritis, offers insights into disease pathogenesis, identifies valuable biomarker candidates, and proposes promising therapeutic agents.
Collapse
Affiliation(s)
- Lingzi Wu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Lei Zhou
- Department of Applied Biology and Chemical Technology, School of Optometry, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Jinying An
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xianfeng Shao
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Hui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Chunxi Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | | | - Shuang Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xuexue Cui
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xinyi Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Fuhua Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| |
Collapse
|
10
|
Decreased fecal calprotectin levels in Spondyloarthritis patients colonized by Blastocystis spp. Sci Rep 2022; 12:15840. [PMID: 36151228 PMCID: PMC9508226 DOI: 10.1038/s41598-022-18308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 08/09/2022] [Indexed: 11/08/2022] Open
Abstract
Spondyloarthritis (SpA) is a group of chronic inflammatory systemic diseases mainly characterized by inflammation in the spine and/or peripheral joints. Although a link between SpA-pathogenesis, intestinal inflammation and gut dysbiosis has been proposed, studies have been focused on bacteria-host interactions and very little has been reported regarding intestinal parasites. Here, intestinal parasitic infection of 51 SpA-patients were evaluated and compared to healthy control individuals. No significant differences in the frequency of any parasite between SpA-patients and control individuals were found. Significantly higher levels of fecal calprotectin (FCP) were found in the SpA-patients compared to the control individuals. However, FCP levels were the same when comparing SpA-patients and control individuals, both colonized by Blastocystis spp. On the other hand, when comparing Blastocystis spp. colonized and Blastocystis spp. free SpA-patients, FCP levels were significantly higher in those Blastocystis spp. free. Without ignoring the small sample size as a study limitation, the results showed that in the SpA-patients colonized by Blastocystis spp., the FCP levels were significantly lower than those in the Blastocystis spp. free group and comparable to those in the control group. These findings seem to suggest a relationship between Blastocystis spp. and intestinal inflammation in SpA-patients, but studies intended to explore that interaction specifically should be designed.
Collapse
|
11
|
Kelty E, Ognjenovic M, Raymond W, Inderjeeth C, Keen H, Preen DB, Nossent J. Mortality rates in patients with ankylosing spondylitis with and without extra-articular manifestations and co-morbidities: A retrospective cohort study. J Rheumatol 2022; 49:688-693. [DOI: 10.3899/jrheum.210909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Objective To examine the mortality rates in hospitalised patients with ankylosing spondylitis (AS), and the association of extra-articular manifestations (EAM) and co-morbidities with mortality rates. Methods The study was a retrospective population-based cohort study using linked administrative data of hospitalised AS patients (n=1,791) and a matched comparison group (n=8,955). Mortality data for patients were obtained from the Western Australian Death Register. The presence of EAM and co-morbidities were identified from hospital records. Mortality rates were compared between the two groups using Cox proportional hazard models, overall and stratified by a history of EAM, comorbidities and smoking status. Results Crude mortality rates were significantly higher in AS patients than the comparison group (HR:1.85, 95%CI:1.62-2.12) with excess mortality in the AS group associated with cardiovascular disease (HR:5.32, 95%:3.84-7.35), cancer (HR:1.68, 95%CI:1.27-2.23), external causes (HR:3.92, 95%CI:2.28-6.77) and infections (HR:25.92, 95%CI:7.50-89.56). When patients were stratified by a history of EAM, cardiovascular disease, and smoking the risk of mortality was elevated in both patients with and without each risk factor. Within patients with AS, a history of cardiovascular disease (HR:6.33, 95%CI:4.79-8.38), diabetes (HR:2.81, 95%CI:1.99-3.95), smoking (HR:1.49, 95%CI:1.18-1.89) and EAM (HR:1.62, 95%CI: 1.24–2.11) were associated with an increased risk of mortality. Conclusion The presence of co-morbidities, EAMs, and smoking contribute to an increased risk of all-cause mortality in hospitalised AS patients compared to the comparison group. These results support the need to prevent or reduce the occurrence of co-morbidity and smoking in AS patients.
Collapse
|
12
|
Sheng W, Jiang H, Yuan H, Li S. miR‑148a‑3p facilitates osteogenic differentiation of fibroblasts in ankylosing spondylitis by activating the Wnt pathway and targeting DKK1. Exp Ther Med 2022; 23:365. [PMID: 35493425 PMCID: PMC9019766 DOI: 10.3892/etm.2022.11292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory form of arthritis. MicroRNAs (miRNAs) have been identified to serve as therapeutic targets in various inflammatory diseases. The aim of the present study was to determine the functional mechanism of miR-148a-3p on AS. Specimens were collected from AS patients and non-AS patients. Fibroblasts were delivered with the aid of miR-148a-3p inhibitor. Cell staining was performed to observe the morphological changes, calcified nodules, and mineralization degree. The binding sites of miR-148a-3p and DKK1 were predicted on the Starbase website and subsequently verified by means of dual-luciferase reporter assay. AS fibroblasts with silenced miR-148a-3p were transfected with si-DKK1. Levels of RUNX2 and Osteocalcin, DKK1 and Wnt1 protein and phosphorylation level of β-catenin were detected by means of western blot analysis. Results of the present study denoted that AS upregulated miR-148a-3p in fibroblasts to exacerbate osteogenic differentiation, resulting in increased calcified nodules and mineralization degree. Silencing miR-148a-3p could reverse the upregulation of RUNX2 and Osteocalcin in AS fibroblasts and reduce the calcified nodules and mineralization degree. miR-148a-3p targeted DKK1. DKK1 knockdown averted the effect of silencing miR-148a-3p in AS fibroblasts. In addition, silencing miR-148a-3p reversed the upregulation of Wnt1 and β-catenin proteins in AS fibroblasts. To conclude, miR-148a-3p exacerbated the osteogenic differentiation of AS fibroblasts by inhibiting DKK1 expression and activating the Wnt pathway.
Collapse
Affiliation(s)
- Wenbo Sheng
- Department of Spine Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Haitao Jiang
- Department of Spine Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Hantao Yuan
- Department of Spine Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Sibo Li
- Department of Spine Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| |
Collapse
|
13
|
Feng HY, Chan CH, Chu YC, Qu XM, Wang YH, Wei JCC. Patients with ankylosing spondylitis have high risk of irritable bowel syndrome: a long-term nationwide population-based cohort study. Postgrad Med 2022; 134:290-296. [PMID: 35139724 DOI: 10.1080/00325481.2022.2041338] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Ankylosing spondylitis (AS) is a chronic inflammatory disease, might carry a high risk of irritable bowel syndrome (IBS) due to abnormal gut microbiota or inflammatory reaction. METHODS We conducted a 14-year retrospective cohort study based on Taiwan's National Health Insurance Research Database (NHIRD). A total of 4007 patients with newly diagnosed AS (outpatient visits≧3 times, or hospitalization≧1 time) and 988,084 non-AS comparisons were enrolled during 2000-2012. To ensure baseline comparability, the propensity score was matched by age, gender, comorbidities, and other possible confounders. The outcome was the incidence of IBS, followed up to the end of 2013. Cox proportional hazard model calculated adjusted hazard ratio (aHR) and the cumulative incidence of both groups was analyzed by the Kaplan-Meier method. RESULT After propensity score matching, baseline demographic characteristics were comparable between AS patients and the comparison group. The crude HR for IBS in the AS group was significantly higher 2.41 (95%C.I. = 1.84-3.16) than comparison group. After adjusting for possible confounders, adjusted HR was 2.50 (95%C.I. = 1.91-3.29). The cumulative incidence of IBS in AS was significantly higher than non-AS comparisons during the 14-year follow-up (P < 0.001). CONCLUSION This nationwide population-based cohort study showed that patients with AS have higher risks of IBS than those of the non-AS comparison group.
Collapse
Affiliation(s)
- Hao-Yuan Feng
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chi-Ho Chan
- Department of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Cheng Chu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Xin-Man Qu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hsun Wang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - James Cheng-Chung Wei
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Allergy, Immunology & Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
14
|
Popa SL, Dumitrascu DI, Brata VD, Duse TA, Florea MD, Ismaiel A, Muntean LM, Grad S. Nutrition in Ankylosing Spondyloarthropathies and Related Immune-Mediated Disorders. Nutrients 2022; 14:nu14061278. [PMID: 35334935 PMCID: PMC8951113 DOI: 10.3390/nu14061278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022] Open
Abstract
Recent research on the pathogenesis of spondyloarthritis and related immune-mediated diseases associated with human leukocyte antigen class I molecule B27 (HLA-B27) has led to significant progress in terms of management and prognosis, with multiple treatments being constantly evaluated and implemented. Correlations between the genetic background of spondyloarthritis and inflammatory bowel diseases and the inflammatory processes involving gut microbiota have been established. This knowledge has allowed progress in pharmacological therapy. The role of diet in the pathogenesis and treatment of diseases pertaining to the HLA-B27 spectrum is of great significance, considering possible future applications in individualized medicine. Diet impacts the composition of gut microbiota, representing a substrate for the synthesis of metabolites affecting the mucosal immune system. Certain pro-inflammatory mediators, such as emulsifiers and microparticles, induce a more profound cytokine response, promoting inflammation. Numerous diets, including the low-starch diet, the Mediterranean diet, diets with low contents of fermentable oligosaccharides, disaccharides, monosaccharides and polyols (low-FODMAP diets), gluten-free diets and fasting, have been analysed and correlated with patients’ symptomatology and dietary adherence. The aim of this review is to provide an extensive perspective on the diets available to patients with spondyloarthritis and related immune-mediated disorders.
Collapse
Affiliation(s)
- Stefan Lucian Popa
- 2nd Medical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (S.L.P.); (A.I.); (S.G.)
| | - Dinu Iuliu Dumitrascu
- Department of Anatomy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
- Correspondence:
| | - Vlad Dumitru Brata
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (V.D.B.); (T.A.D.); (M.D.F.)
| | - Traian Adrian Duse
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (V.D.B.); (T.A.D.); (M.D.F.)
| | - Maria Delia Florea
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (V.D.B.); (T.A.D.); (M.D.F.)
| | - Abdulrahman Ismaiel
- 2nd Medical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (S.L.P.); (A.I.); (S.G.)
| | - Laura Mirela Muntean
- Rheumatology Department, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj, 400012 Cluj-Napoca, Romania;
| | - Simona Grad
- 2nd Medical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (S.L.P.); (A.I.); (S.G.)
| |
Collapse
|
15
|
Long F, Wang T, Li Q, Xiong Y, Zeng Y. Association between Klebsiella pneumoniae and ankylosing spondylitis: A systematic review and meta-analysis. Int J Rheum Dis 2022; 25:422-432. [PMID: 35019225 DOI: 10.1111/1756-185x.14283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/12/2021] [Accepted: 01/02/2022] [Indexed: 02/05/2023]
Abstract
AIM The aim of this study is to evaluate the association between Klebsiella pneumoniae infection and ankylosing spondylitis (AS). METHOD Five electronic databases, PubMed, Embase, Medline, Web of Science, and Scopes, were searched until September 29, 2021. Cohort and case-control studies that assessed the association between K. pneumoniae infection and AS were included. Pooled odds ratio (OR) was selected to show the effect size. Subgroup analysis (active or inactive AS) and 2 forms of sensitivity analysis were conducted. All statistical analyses were conducted by using STATA 12.0. RESULTS There were 25 case-control studies finally included, including 8 studies concerning presence of K. pneumoniae in feces, and 17 studies concerning serum antibody (immunoglobulin [Ig]G, IgM, IgA) against K. pneumoniae. The results suggested that when compared with healthy people, presence of K. pneumoniae in feces was associated with AS (OR: 5.65; 95% CI: 1.68-19.00). Similarly, when compared with healthy people, higher positive rates of IgA (OR: 6.28; 95% CI: 3.32-11.91) and IgG (OR: 5.22; 95% CI: 1.36-19.99) were observed. Subgroup analyses suggested that association between K. pneumoniae and AS appears stronger in active AS. CONCLUSION When compared with healthy people, a significantly higher positive rate of K. pneumoniae in feces, serum IgA and IgG were observed in patients with AS, suggesting that K. pneumoniae probably plays a crucial role in the occurrence of AS. The findings in this study need further prospective investigations for confirmation.
Collapse
Affiliation(s)
- Fayu Long
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, China
| | - Taiping Wang
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, China
| | - Qing Li
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, China
| | - Yiquan Xiong
- Chinese Evidence-based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Zeng
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, China
| |
Collapse
|
16
|
Zhang L, Chu CQ. Gut Microbiota-Medication Interaction in Rheumatic Diseases. Front Immunol 2021; 12:796865. [PMID: 34925383 PMCID: PMC8678121 DOI: 10.3389/fimmu.2021.796865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023] Open
Abstract
Besides its contribution to the development of rheumatic diseases, the gut microbiota interact with anti-rheumatic drugs. The intestinal microbiota can directly metabolize many drugs and indirectly change drug metabolism through a complex multi-dimensional interaction with the host, thus affecting individual response to drug therapy and adverse effects. The focus of the current review is to address recent advances and important progress in our understanding of how the gut microbiota interact with anti-rheumatic drugs and provide perspectives on promoting precision treatment, drug discovery, and better therapy for rheumatic diseases.
Collapse
Affiliation(s)
- Lingshu Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, OR, United States
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, OR, United States.,Section of Rheumatology, Veterans Affairs (VA) Portland Healthcare System, Portland, OR, United States
| |
Collapse
|
17
|
Tang Q, Wang Q, Sun Z, Kang S, Fan Y, Hao Z. Bergenin Monohydrate Attenuates Inflammatory Response via MAPK and NF-κB Pathways Against Klebsiella pneumonia Infection. Front Pharmacol 2021; 12:651664. [PMID: 34017253 PMCID: PMC8129520 DOI: 10.3389/fphar.2021.651664] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Background:Klebsiella pneumonia has emerged as a critical pathogen causing severe clinical problems, such as pneumonia and sepsis. Meanwhile, intensified drug resistance induced by antibiotic therapy necessitates discovering novel and active molecules from Traditional Chinese Medicine (TCM) for treatment. Methods and results: In this study, the isolated Bergenin monohydrate showed an anti-inflammatory effect in Klebsiella-infected mice. We initially investigated the anti-inflammatory effects and cytoprotection against oxidative stress in vitro and in vivo. Interestingly, a specific dose of Bm can effectively ameliorate lung injury and suppress the expression of inflammatory cytokines such as TNF-α, IL-6, IL-1β and PEG2. Moreover, Bm was also shown to reduced the levels of MPO, MDA and increased SOD and GSH activities. Moreover, we assessed the intracellular signaling molecules including p38, ERK, JNK, IκB, NF-κB-p65 by western blotting and verified through MAPK and NF-κB pathways inhibition experiments. These results reveal that Bm executed its effects via the classical MAPK signaling pathway and NF-κB pathway. Conclusion: Given its underlying anti-inflammatory effect, Bm may be used as a promising therapeutic against Klebsiella-induced infection, thus providing a benefit for the future clinical therapy of pneumonia and medicine design.
Collapse
Affiliation(s)
- Qihe Tang
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China.,College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Qingyu Wang
- National Centre for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhuojian Sun
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Songyao Kang
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Yimeng Fan
- National Centre for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhihui Hao
- National Centre for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Hwang MC, Ridley L, Reveille JD. Ankylosing spondylitis risk factors: a systematic literature review. Clin Rheumatol 2021; 40:3079-3093. [PMID: 33754220 DOI: 10.1007/s10067-021-05679-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 12/16/2022]
Abstract
Radiographic axial spondyloarthritis (also known as ankylosing spondylitis [AS]) is a chronic immune-mediated arthritis characterized by inflammation of the axial skeleton, peripheral joints, and entheses. It is estimated that 1 in every 200 people are affected by AS, making it an important healthcare and socioeconomic issue. In this review, we aim to explore the current understanding of AS risk factors and provide a comprehensive update. Multiple search strings were used to identify articles of interest published in PubMed between January 1, 2013, and February 1, 2021. On the basis of the literature review and analysis, we present up-to-date information on the risk factors of developing AS and our viewpoints on disease onset and progression. Multiple genetic and nongenetic risk factors have been suggested in the onset of AS. HLA-B27 is known to have a strong association with the disease, but other genes have been implicated in disease development. Aside from genetics, other factors are thought to be involved; up to 70% of patients with AS have subclinical intestinal inflammation, suggesting that the origin of the disease may be in the gut. The exact mechanism by which AS onset begins is most likely complex and multifactorial. Key Points • It remains unclear how interactions between genes, microbes, mechanical stress, gender, and other environmental and lifestyle factors predispose patients to the development of ankylosing spondylitis (AS). • The exact mechanisms of AS are complex and multifactorial which will require much future research • Recognizing the risk factors, as well as understanding gene-environment interactions, may offer valuable insights into the etiology of AS and have important implications for diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Mark C Hwang
- Department of Internal Medicine, Division of Rheumatology, McGovern Medical School at The University of Texas Health Science Center, 6431 Fannin, MSB 1.150, Houston, TX, 77030, USA
| | - Lauren Ridley
- Department of Internal Medicine, Division of Rheumatology, McGovern Medical School at The University of Texas Health Science Center, 6431 Fannin, MSB 1.150, Houston, TX, 77030, USA
| | - John D Reveille
- Department of Internal Medicine, Division of Rheumatology, McGovern Medical School at The University of Texas Health Science Center, 6431 Fannin, MSB 1.150, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Haran JP, McCormick BA. Aging, Frailty, and the Microbiome-How Dysbiosis Influences Human Aging and Disease. Gastroenterology 2021; 160:507-523. [PMID: 33307030 PMCID: PMC7856216 DOI: 10.1053/j.gastro.2020.09.060] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
The human gut microbiome is a collection of bacteria, protozoa, fungi, and viruses that coexist in our bodies and are essential in protective, metabolic, and physiologic functions of human health. Gut dysbiosis has traditionally been linked to increased risk of infection, but imbalances within the intestinal microbial community structure that correlate with untoward inflammatory responses are increasingly recognized as being involved in disease processes that affect many organ systems in the body. Furthermore, it is becoming more apparent that the connection between gut dysbiosis and age-related diseases may lie in how the gut microbiome communicates with both the intestinal mucosa and the systemic immune system, given that these networks have a common interconnection to frailty. We therefore discuss recent advances in our understanding of the important role the microbiome plays in aging and how this knowledge opens the door for potential novel therapeutics aimed at shaping a less dysbiotic microbiome to prevent or treat age-related diseases.
Collapse
Affiliation(s)
- John P Haran
- Department of Emergency Medicine; Department of Microbiology and Physiological Systems; Center for Microbiome Research, University of Massachusetts Medical School, Worcester, Massachusetts.
| | - Beth A McCormick
- Department of Microbiology and Physiological Systems; Center for Microbiome Research, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
20
|
Nambam B, Haller MJ, Winter WE, Schatz D. Autoimmune Polyglandular Syndromes. SPERLING PEDIATRIC ENDOCRINOLOGY 2021:884-903. [DOI: 10.1016/b978-0-323-62520-3.00022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Suárez LJ, Garzón H, Arboleda S, Rodríguez A. Oral Dysbiosis and Autoimmunity: From Local Periodontal Responses to an Imbalanced Systemic Immunity. A Review. Front Immunol 2020; 11:591255. [PMID: 33363538 PMCID: PMC7754713 DOI: 10.3389/fimmu.2020.591255] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The current paradigm of onset and progression of periodontitis includes oral dysbiosis directed by inflammophilic bacteria, leading to altered resolution of inflammation and lack of regulation of the inflammatory responses. In the construction of explanatory models of the etiopathogenesis of periodontal disease, autoimmune mechanisms were among the first to be explored and historically, for more than five decades, they have been described in an isolated manner as part of the tissue damage process observed in periodontitis, however direct participation of these mechanisms in the tissue damage is still controversial. Autoimmunity is affected by genetic and environmental factors, leading to an imbalance between the effector and regulatory responses, mostly associated with failed resolution mechanisms. However, dysbiosis/infection and chronic inflammation could trigger autoimmunity by several mechanisms including bystander activation, dysregulation of toll-like receptors, amplification of autoimmunity by cytokines, epitope spreading, autoantigens complementarity, autoantigens overproduction, microbial translocation, molecular mimicry, superantigens, and activation or inhibition of receptors related to autoimmunity by microorganisms. Even though autoreactivity in periodontitis is biologically plausible, the associated mechanisms could be related to non-pathologic responses which could even explain non-recognized physiological functions. In this review we shall discuss from a descriptive point of view, the autoimmune mechanisms related to periodontitis physio-pathogenesis and the participation of oral dysbiosis on local periodontal autoimmune responses as well as on different systemic inflammatory diseases.
Collapse
Affiliation(s)
- Lina J. Suárez
- Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Hernan Garzón
- Grupo de Investigación en Salud Oral, Universidad Antonio Nariño, Bogotá, Colombia
| | - Silie Arboleda
- Unidad de Investigación en Epidemiologia Clínica Oral (UNIECLO), Universidad El Bosque, Bogotá, Colombia
| | - Adriana Rodríguez
- Centro de Investigaciones Odontológicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
22
|
The Expression Levels of MicroRNAs Associated with T and B Cell Differentiation/stimulation in Ankylosing Spondylitis. Balkan J Med Genet 2020; 23:25-32. [PMID: 32953406 PMCID: PMC7474224 DOI: 10.2478/bjmg-2020-0006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spondyloarthropathies (SpAs), are a group of chronic inflammatory diseases with a number of genetic, physiopathological, clinical and radiological features. Ankylosing spondylitis (AS) is the most common type of spondylo-arthropathies, and >90.0% of patients with ankylosing spondylitis are human leukocyte antigen-B27 (HLA-B2 7)-positive. In recent years, non-HLA genetic factors have been reported to have an effect on ankylosing spondylitis. MicroRNAs (miRNAs), are endogenous non coding RNA molecules containing 18-23 nucleotides that play a role in the post-transcriptional regulation of gene expression. In this study, we aimed to determine the expression levels of miRNAs associated with T- and B-cell differentiation/stimulation in peripheral blood mononuclear cells and their relationship with the etiology of the AS in patients and healthy controls. In a molecular study, peripheral blood mononuclear cell isolation, and total RNA isolation were performed first. In the second step, cDNA synthesis and quantitative real-time PCR (qPCR) expression analysis were completed. Ultimately, in the patient and control group, the expression levels of miR-142-5p and miR-143 were found to be significantly different (p <0.05). According to current knowledge, miR-142-5p andmiR-143 expressions were found to be important for those diseases that share similar etiology with AS. We suggest that miR-142-5p and miR-143 may play a role in the pathogenesis, especially miR- 142-5p may be a potential biomarker and a target molecule for the treatment.
Collapse
|
23
|
Castro Rocha FA, Duarte-Monteiro AM, Henrique da Mota LM, Matias Dinelly Pinto AC, Fonseca JE. Microbes, helminths, and rheumatic diseases. Best Pract Res Clin Rheumatol 2020; 34:101528. [PMID: 32448639 PMCID: PMC7203059 DOI: 10.1016/j.berh.2020.101528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There has been a progressive interest on modifications of the human defense system following insults occurring in the interface between our body and the external environment, as they may provoke or worsen disease states. Studies suggest that billions of germs, which compose the gut microbiota influence one's innate and adaptive immune responses at the intestinal level, but these microorganisms may also impact rheumatic diseases. The microbiota of the skin, respiratory, and urinary tracts may also be relevant in rheumatology. Evidence indicates that changes in the gut microbiome alter the pathogenesis of immune-mediated diseases such as rheumatoid arthritis and ankylosing spondylitis but also of other disorders like atherosclerosis and osteoarthritis. Therapeutic strategies to modify the microbiota, including probiotics and fecal microbiota transplantation, have been received with skepticism, which, in turn, has drawn attention back to previously developed interventions such as antibiotics. Helminths adapted to humans over the evolution process, but their role in disease modulation, particularly immune-mediated diseases, remains to be understood. The present review focuses on data concerning modifications of the immune system induced by interactions with microbes and pluricellular organisms, namely helminths, and their impact on rheumatic diseases. Practical aspects, including specific microbiota-targeted therapies, are also discussed.
Collapse
Affiliation(s)
- Francisco Airton Castro Rocha
- Departamento de Medicina Clínica, Liga de Reumatologia e Doenças Autoimunes, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| | - Ana Margarida Duarte-Monteiro
- Serviço de Reumatologia e Doenças Ósseas Metabólicas, Hospital de Santa Maria, CHULN and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - Licia Maria Henrique da Mota
- Hospital Universitário de Brasília, Programa de Pós-graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brazil
| | - Ana Carolina Matias Dinelly Pinto
- Departamento de Medicina Clínica, Liga de Reumatologia e Doenças Autoimunes, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - João Eurico Fonseca
- Serviço de Reumatologia e Doenças Ósseas Metabólicas, Hospital de Santa Maria, CHULN and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| |
Collapse
|
24
|
Abstract
A causal link between the wealth of microbes that populate our body surfaces, designated as microbiota, and inflammatory disorders, including ankylosing spondylitis and the related spondyloarthritis (SpA) has been suspected for decades. This specially concerns the gut microbiota that became only recently accessible to thorough description thanks to massive sequencing methods or metagenomics. Here, we review evidences supporting the existence of microbiota imbalance or dysbiosis in the context of SpA. We also discuss currently existing evidences for a causal relationship between such dysbiosis and disease development, as well as putative therapeutic implications.
Collapse
Affiliation(s)
- Maxime Breban
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, 2 Ave de La Source de La Bièvre, 78180, Montigny-le-Bretonneux, France; Service de Rhumatologie, Hôpital Ambroise Paré, AP-HP, 9 Ave Charles de Gaulle, 92100, Boulogne, France; Laboratoire D'Excellence Inflamex, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Marie Beaufrère
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, 2 Ave de La Source de La Bièvre, 78180, Montigny-le-Bretonneux, France; Service de Rhumatologie, Hôpital Ambroise Paré, AP-HP, 9 Ave Charles de Gaulle, 92100, Boulogne, France; Laboratoire D'Excellence Inflamex, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Simon Glatigny
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, 2 Ave de La Source de La Bièvre, 78180, Montigny-le-Bretonneux, France; Laboratoire D'Excellence Inflamex, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
25
|
Zhu W, He X, Cheng K, Zhang L, Chen D, Wang X, Qiu G, Cao X, Weng X. Ankylosing spondylitis: etiology, pathogenesis, and treatments. Bone Res 2019; 7:22. [PMID: 31666997 PMCID: PMC6804882 DOI: 10.1038/s41413-019-0057-8] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023] Open
Abstract
Ankylosing spondylitis (AS), a common type of spondyloarthropathy, is a chronic inflammatory autoimmune disease that mainly affects spine joints, causing severe, chronic pain; additionally, in more advanced cases, it can cause spine fusion. Significant progress in its pathophysiology and treatment has been achieved in the last decade. Immune cells and innate cytokines have been suggested to be crucial in the pathogenesis of AS, especially human leukocyte antigen (HLA)‑B27 and the interleukin‑23/17 axis. However, the pathogenesis of AS remains unclear. The current study reviewed the etiology and pathogenesis of AS, including genome-wide association studies and cytokine pathways. This study also summarized the current pharmaceutical and surgical treatment with a discussion of future potential therapies.
Collapse
Affiliation(s)
- Wei Zhu
- 1Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Xuxia He
- 2Department of Clinical Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Kaiyuan Cheng
- 1Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Linjie Zhang
- 1Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Di Chen
- 3Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA
| | - Xiao Wang
- 4Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Guixing Qiu
- 1Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Xu Cao
- 4Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Xisheng Weng
- 1Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| |
Collapse
|
26
|
The Gut Microbiome in Inflammatory Bowel Disease: Lessons Learned From Other Immune-Mediated Inflammatory Diseases. Am J Gastroenterol 2019; 114:1051-1070. [PMID: 31232832 DOI: 10.14309/ajg.0000000000000305] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a growing appreciation for the role of the gut microbiome in human health and disease. Aided by advances in sequencing technologies and analytical methods, recent research has shown the healthy gut microbiome to possess considerable diversity and functional capacity. Dysbiosis of the gut microbiota is believed to be involved in the pathogenesis of not only diseases that primarily affect the gastrointestinal tract but also other less obvious diseases, including neurologic, rheumatologic, metabolic, hepatic, and other illnesses. Chronic immune-mediated inflammatory diseases (IMIDs) represent a group of diseases that share many underlying etiological factors including genetics, aberrant immunological responses, and environmental factors. Gut dysbiosis has been reported to be common to IMIDs as a whole, and much effort is currently being directed toward elucidating microbiome-mediated disease mechanisms and their implications for causality. In this review, we discuss gut microbiome studies in several IMIDs and show how these studies can inform our understanding of the role of the gut microbiome in inflammatory bowel disease.
Collapse
|
27
|
Zhang L, Hu Y, Xu Y, Li P, Ma H, Li X, Li M. The correlation between intestinal dysbiosis and the development of ankylosing spondylitis. Microb Pathog 2019; 132:188-192. [PMID: 31039390 DOI: 10.1016/j.micpath.2019.04.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/31/2022]
Abstract
The pathogenesis and development of ankylosing spondylitis (AS) is concealed and complicated. In recent years, alterations in gut microbiota of AS patients have been largely investigated, although the underlying mechanisms remain unclear. This article reviews the recent studies on changes of gut microbiota in AS patients, and discusses the possible correlation between intestinal dysbiosis and AS development from aspects including genetic factor HLA-B27, mucosal immune responses and the depression accompanying AS.
Collapse
Affiliation(s)
- Lilong Zhang
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Lvshunkou District, 116044, Dalian, China
| | - Yuqi Hu
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Lvshunkou District, 116044, Dalian, China
| | - Yao Xu
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Lvshunkou District, 116044, Dalian, China
| | - Pengfei Li
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Lvshunkou District, 116044, Dalian, China
| | - Hong Ma
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Lvshunkou District, 116044, Dalian, China
| | - Xia Li
- Department of Immunology, School of Basic Medical Science, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Lvshunkou District, 116044, Dalian, China
| | - Ming Li
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Lvshunkou District, 116044, Dalian, China.
| |
Collapse
|
28
|
Fan X, Qi B, Ma L, Ma F. Screening of underlying genetic biomarkers for ankylosing spondylitis. Mol Med Rep 2019; 19:5263-5274. [PMID: 31059041 PMCID: PMC6522869 DOI: 10.3892/mmr.2019.10188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/06/2019] [Indexed: 12/17/2022] Open
Abstract
Genetic biomarkers for the diagnosis of ankylosing spondylitis (AS) remain unreported except for human leukocyte antigen B27 (HLA-B27). Therefore, the aim of the present study was to screen the differentially expressed genes (DEGs), and those that also possess differential single nucleotide polymorphism (SNP) loci in the whole blood of AS patients compared with healthy controls by integrating two mRNA expression profiles (GSE73754 and GSE25101) and SNP microarray data (GSE39428) collected from the Gene Expression Omnibus (GEO). Using the t-test, 1,056 and 1,073 DEGs were identified in the GSE73754 and GSE25101 datasets, respectively. Among them, 234 DEGs were found to be shared in both datasets, which were subsequently overlapped with 122 differential SNPs of genes in the GSE39428 dataset, resulting in identification of two common genes [eukaryotic translation elongation factor 1 epsilon 1 (EEF1E1) and serpin family A member 1 (SERPINA1)]. Their expression levels were significantly upregulated and the average expression log R ratios of SNP sites in these genes were significantly higher in AS patients than those in controls. Function enrichment analysis revealed that EEF1E1 was involved in AS by influencing the aminoacyl-tRNA biosynthesis, while SERPINA1 may be associated with AS by participating in platelet degranulation. However, only the genotype and allele frequencies of SNPs (rs7763907 and rs7751386) in EEF1E1 between AS and controls were significantly different between AS and the controls, but not SERPINA1. These findings suggest that EEF1E1 may be an underlying genetic biomarker for the diagnosis of AS.
Collapse
Affiliation(s)
- Xutao Fan
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Bao Qi
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Longfei Ma
- Graduate School of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Fengyu Ma
- Department of Spine Surgery, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| |
Collapse
|
29
|
Cristea D, Trandafir M, Bojinca VC, Ciontea AS, Andrei MM, Popa A, Lixandru BE, Militaru CM, Nascutiu AM, Predeteanu D, Ionescu R, Popescu C, Cotar AI, Popa MI, Spandidos DA, Codita I. Usefulness of complex bacteriological and serological analysis in patients with spondyloarthritis. Exp Ther Med 2019; 17:3465-3476. [PMID: 30988725 PMCID: PMC6447817 DOI: 10.3892/etm.2019.7336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/14/2019] [Indexed: 12/17/2022] Open
Abstract
Spondyloarthritis (SpA) is a group of associated chronic systemic inflammatory immune-mediated rheumatic diseases affecting axial and peripheral joints and entheses. The aim of the present study was to identify what parameters are useful to determine in order to better understand the correlation between the disease activity/severity and the microbiological results/immune status against intestinal and/or urogenital pathogens. Microorganisms known to trigger SpA, including Klebsiella spp., Yersinia spp., Salmonella spp., Campylobacter spp. and Chlamydia spp., were analyzed in various specimens (stool, urine, synovial fluid and serum) collected from 27 randomly selected SpA patients and 26 healthy controls using a combined direct and indirect approach relying on conventional culture technique and nucleic acid-based assays together with serological testing by ELISA. Although Escherichia coli derived from phylogroup A prevailed in the gut microflora of the patients and controls, differences were observed regarding the representatives of the other phylogroups with a higher prevalence of E.coli members of phylogenetic group B1 in the stool specimens of patients. Antibodies against the targeted species were detected in SpA patients and controls, and the serological profiles of the former were more diverse and complex. In conclusion, the detection of anti-bacterial antibodies combined with other specific laboratory investigations should be more extensively used to monitor SpA patients in association with their symptoms and in order to determine and administer more effective therapeutics.
Collapse
Affiliation(s)
- Daniela Cristea
- 'Cantacuzino' National Medico-Military Institute for Research and Development, Bucharest 0050096, Romania
| | - Marius Trandafir
- 'Carol Davila' University of Medicine and Pharmacy, Bucharest 050474, Romania.,Department of Internal Medicine and Rheumatology, Hospital Sfanta Maria, Bucharest 011172, Romania
| | - Violeta Claudia Bojinca
- 'Carol Davila' University of Medicine and Pharmacy, Bucharest 050474, Romania.,Department of Internal Medicine and Rheumatology, Hospital Sfanta Maria, Bucharest 011172, Romania
| | - Adriana Simona Ciontea
- 'Cantacuzino' National Medico-Military Institute for Research and Development, Bucharest 0050096, Romania
| | - Melania Mihaela Andrei
- 'Cantacuzino' National Medico-Military Institute for Research and Development, Bucharest 0050096, Romania
| | - Andrei Popa
- 'Cantacuzino' National Medico-Military Institute for Research and Development, Bucharest 0050096, Romania
| | - Brandusa Elena Lixandru
- 'Cantacuzino' National Medico-Military Institute for Research and Development, Bucharest 0050096, Romania
| | - Cornelia Madalina Militaru
- 'Cantacuzino' National Medico-Military Institute for Research and Development, Bucharest 0050096, Romania
| | - Alexandra Maria Nascutiu
- 'Cantacuzino' National Medico-Military Institute for Research and Development, Bucharest 0050096, Romania.,'Carol Davila' University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Denisa Predeteanu
- Department of Internal Medicine and Rheumatology, Hospital Sfanta Maria, Bucharest 011172, Romania
| | - Ruxandra Ionescu
- 'Carol Davila' University of Medicine and Pharmacy, Bucharest 050474, Romania.,Department of Internal Medicine and Rheumatology, Hospital Sfanta Maria, Bucharest 011172, Romania
| | - Claudiu Popescu
- 'Carol Davila' University of Medicine and Pharmacy, Bucharest 050474, Romania.,'Dr Ion Stoia' Clinical Center for Rheumatic Diseases, Bucharest 030167, Romania
| | - Ani Ioana Cotar
- 'Cantacuzino' National Medico-Military Institute for Research and Development, Bucharest 0050096, Romania
| | - Mircea Ioan Popa
- 'Cantacuzino' National Medico-Military Institute for Research and Development, Bucharest 0050096, Romania.,'Carol Davila' University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Irina Codita
- 'Cantacuzino' National Medico-Military Institute for Research and Development, Bucharest 0050096, Romania.,'Carol Davila' University of Medicine and Pharmacy, Bucharest 050474, Romania
| |
Collapse
|
30
|
Colbert RA, Navid F, Gill T. The role of HLA-B*27 in spondyloarthritis. Best Pract Res Clin Rheumatol 2018; 31:797-815. [PMID: 30509441 DOI: 10.1016/j.berh.2018.07.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/20/2018] [Indexed: 02/08/2023]
Abstract
The mechanism by which HLA-B*27 predisposes to spondyloarthritis remains unresolved. Arthritogenic peptides have not been defined in humans and are not involved in experimental models of spondyloarthritis. Aberrant properties of HLA-B*27 can activate the IL-23/IL-17 axis in HLA-B*27 transgenic rats and humans. In HLA-B*27-independent rodent models, spondyloarthritis can be driven by IL-23 triggering entheseal-resident CD4-/CD8- T cells or CD4+ Th17 T cells. These findings point toward noncanonical mechanisms linking HLA-B*27 to the disease and provide a potential explanation for HLA-B*27-negative spondyloarthritis. Gut microbial dysbiosis may be important in the development of spondyloarthritis. HLA-B*27-induced changes in gut microbiota are complex and suggest an ecological model of dysbiosis in rodents. The importance of the IL-23/IL-17 axis in ankylosing spondylitis has been demonstrated by studies showing efficacy of IL-17. Although deciphering the precise role(s) of HLA-B*27 in disease requires further investigation, considerable progress has been made in understanding this complex relationship.
Collapse
Affiliation(s)
- Robert A Colbert
- Pediatric Translational Research Branch, NIAMS Intramural Research Program, NIH, USA.
| | - Fatemeh Navid
- Pediatric Translational Research Branch, NIAMS Intramural Research Program, NIH, USA.
| | - Tejpal Gill
- Pediatric Translational Research Branch, NIAMS Intramural Research Program, NIH, USA.
| |
Collapse
|