1
|
Aguilar-Colomer A, Jiménez-Jiménez C, González B, Esteban J, Vallet-Regí M, Colilla M, Izquierdo-Barba I. Mucolytic and antibiotic combination therapy using silica-based nanocarriers to eradicate Escherichia coli biofilms. NANOSCALE ADVANCES 2025; 7:3414-3425. [PMID: 40270836 PMCID: PMC12012629 DOI: 10.1039/d5na00006h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/04/2025] [Indexed: 04/25/2025]
Abstract
This research provides new insights into the treatment of E. coli biofilm-related infections through the design of new antimicrobial nanoformulations based on mesoporous silica nanoparticles (MSNs) for mucolytic and antibiotic combination therapy against E. coli biofilms. The development of nanosystems with well-defined compartments to house and sequentially deliver different antimicrobial agents was carried out. A relatively simple and direct straightforward approach was carried out, consisting of loading MSNs with levofloxacin (LVX) by an impregnation method followed by external coating with a gelatin shell embedding a mixture of N-acetylcysteine (AC) plus LVX. Thus, the release of the mucolytic agent, AC, at the earliest stage causes disaggregation of the outer mucopolysaccharide layer of the mature E. coli biofilm, as confirmed by confocal laser scanning microscopy studies. This biofilm disruption effect facilitates the antimicrobial action of LVX, which is released in a more sustained manner over longer periods of time than AC, achieving a remarkable reduction (ca. 99.8%) of mature E. coli biofilms. These results are supported by the combined effect of AC and LVX strategically combined in the same nanocarrier. Preliminary in vitro studies with preosteoblastic cells point to the good biocompatibility of these nanosystems.
Collapse
Affiliation(s)
- Anna Aguilar-Colomer
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Carla Jiménez-Jiménez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Jaime Esteban
- Unidad de Microbiología Clínica, IIS-Fundación Jiménez Díaz Avenida de los Reyes Católicos 2 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC) Madrid Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Montserrat Colilla
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) Spain
| |
Collapse
|
2
|
Kendir G, Kızılyıldırım S, Kandemir T, Muhammed MT, Köroğlu A. The antibacterial activity of Cornus mas L. against uropathogenic Escherichia coli strains producing extended-spectrum β-lactamase. Microb Pathog 2025; 205:107677. [PMID: 40339621 DOI: 10.1016/j.micpath.2025.107677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 04/27/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
The emergence of uropathogenic Escherichia coli strains that produce ESBLs is a major global health issue. The purpose of this work is to examine the fruit pulp extract from Cornus mas L.'s in vitro antibacterial efficacy against uropathogenic E. coli strains that produce ESBLs. In this study, the antibacterial activity of C. mas extract against E. coli isolates that produced ESBLs was evaluated using the microdilution method. The MIC value of C. mas against sensitive E.coli strains was reported to be 62.5 μg/mL. The MIC values for E. coli strains with β-lactamase resistance genes were 62.5 μg/mL (35 %) and 125 μg/mL (65 %). As a result, C. mas can be used to prevent UTIs and may help limit the spread of resistant uropathogenic bacterial strains. High concentrations of rutin (1.0249 ± 0.0081 mg/g) and gallic acid (1.0582 ± 0.0003 mg/g) were found in the HPLC analysis research conducted on the methanol extract of C. mas fruit pulp. The binding potential of the major phytocomponents of C. mas extract, gallic acid, and rutin, to form a stable complex with CTX-M-15 was explored through molecular docking and molecular dynamics (MD) simulation. The docking study showed that rutin had the highest binding potential to bind to the protein relative to gallic acid as well as the co-crystallized ligand. According to the MD analysis results, the stability of the protein-rutin complex procured from the docking was found to be stable. Furthermore, rutin is anticipated to remain inside the binding region of the target protein during the simulation period.
Collapse
Affiliation(s)
- Gülsen Kendir
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Türkiye.
| | - Suna Kızılyıldırım
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Çukurova University, Adana, Türkiye
| | - Tülay Kandemir
- Department of Medical Microbiology, Faculty of Medicine, Çukurova University, Adana, Türkiye
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Türkiye
| | - Ayşegül Köroğlu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara, Türkiye
| |
Collapse
|
3
|
Zhang Z, Cao M, Shang Z, Xu J, Chen X, Zhu Z, Wang W, Wei X, Zhou X, Bai Y, Zhang J. Research Progress on the Antibacterial Activity of Natural Flavonoids. Antibiotics (Basel) 2025; 14:334. [PMID: 40298463 PMCID: PMC12023951 DOI: 10.3390/antibiotics14040334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
The use of antibiotics has greatly improved the treatment of bacterial infections; however, its abuse and misuse has led to a rapid rise in multidrug-resistant (MDR) bacteria. Therefore, the search for new antimicrobial strategies has become critical. Natural flavonoids, a class of widely existing phytochemicals, have gained significant research interest for their diverse biological activities and antibacterial effects on various drug-resistant bacteria. This review summarizes the latest research progress on flavonoids, with a particular focus on several flavonoids exhibiting certain antibacterial activity, and explores their antibacterial mechanisms, including disruption of cell membranes and cell walls, inhibition of proteins and nucleic acids, interference with signal transduction, suppression of efflux pump activity, and inhibition of biofilm formation and virulence factor production. Additionally, we have reviewed the synergistic combinations of flavonoids with antibiotics, such as the combination of quercetin with colistin or EGCG with tetracycline, which significantly enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Zhijin Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- College of Life Science and Food Engineering, Hebei University of Engineering, Congtai District, Handan 056038, China; (M.C.); (Z.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Mingze Cao
- College of Life Science and Food Engineering, Hebei University of Engineering, Congtai District, Handan 056038, China; (M.C.); (Z.Z.)
| | - Zixuan Shang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- College of Life Science and Food Engineering, Hebei University of Engineering, Congtai District, Handan 056038, China; (M.C.); (Z.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Jing Xu
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xu Chen
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- College of Life Science and Food Engineering, Hebei University of Engineering, Congtai District, Handan 056038, China; (M.C.); (Z.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Zhen Zhu
- College of Life Science and Food Engineering, Hebei University of Engineering, Congtai District, Handan 056038, China; (M.C.); (Z.Z.)
| | - Weiwei Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xiaojuan Wei
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xuzheng Zhou
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Yubin Bai
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| |
Collapse
|
4
|
Li F, Li M, Nie L, Zuo J, Fan W, Lian L, Hu J, Chen S, Jiang W, Han X, Wang H. Molecular Epidemiology and Antibiotic Resistance Associated with Avian Pathogenic Escherichia coli in Shanxi Province, China, from 2021 to 2023. Microorganisms 2025; 13:541. [PMID: 40142434 PMCID: PMC11946381 DOI: 10.3390/microorganisms13030541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Avian Pathogenic Escherichia coli (APEC) constitutes a major etiological agent of avian colibacillosis, which significantly hinders the development of the poultry industry. Conducting molecular epidemiological studies of APEC plays a crucial role in its prevention and control. This study aims to elucidate the molecular epidemiological characteristics of Avian Pathogenic Escherichia coli in Shanxi Province. In this study, 135 APEC strains were isolated and identified from 150 liver samples of diseased and deceased chickens exhibiting clinical symptoms, which were collected from farms in Shanxi Province between 2021 and 2023. The isolates were then analyzed for phylogenetic clustering, drug resistance, resistance genes, virulence genes, and biofilm formation capabilities. The results revealed that the proportions of the A, B1, B2, and D evolutionary subgroups were 26.67%, 32.59%, 17.78%, and 15.56%, respectively. The drug resistance testing results indicated that 92% of the isolates exhibited resistance to cotrimoxazole, kanamycin, chloramphenicol, amoxicillin, tetracycline, and other antibiotics. In contrast, 95% of the strains were sensitive to ofloxacin, amikacin, and ceftazidime. The most prevalent resistance genes included tetracycline-related (tetA) at 88.15%, followed by beta-lactam-related (bla-TEM) at 85.19%, and peptide-related (mcr1) at 12.59%. The virulence gene analysis revealed that ibeB, ompA, iucD, and mat were present in more than 90% of the isolates. The results revealed that 110 strains were biofilm-positive, corresponding to a detection rate of 81.48%. No significant correlation was found between the drug resistance genes, virulence genes, and the drug resistance phenotype. A moderate negative correlation was observed between the adhesion-related gene tsh and biofilm formation ability (r = -0.38). This study provides valuable insights into the prevention and control of avian colibacillosis in Shanxi Province.
Collapse
Affiliation(s)
- Fangfang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (F.L.); (M.L.); (L.N.); (W.F.); (S.C.)
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (L.L.); (J.H.); (W.J.)
| | - Mengya Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (F.L.); (M.L.); (L.N.); (W.F.); (S.C.)
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (L.L.); (J.H.); (W.J.)
| | - Lianhua Nie
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (F.L.); (M.L.); (L.N.); (W.F.); (S.C.)
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (L.L.); (J.H.); (W.J.)
| | - Jiakun Zuo
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (L.L.); (J.H.); (W.J.)
| | - Wenyan Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (F.L.); (M.L.); (L.N.); (W.F.); (S.C.)
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (L.L.); (J.H.); (W.J.)
| | - Liyan Lian
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (L.L.); (J.H.); (W.J.)
| | - Jiangang Hu
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (L.L.); (J.H.); (W.J.)
| | - Shuming Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (F.L.); (M.L.); (L.N.); (W.F.); (S.C.)
| | - Wei Jiang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (L.L.); (J.H.); (W.J.)
| | - Xiangan Han
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (L.L.); (J.H.); (W.J.)
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (F.L.); (M.L.); (L.N.); (W.F.); (S.C.)
| |
Collapse
|
5
|
Yang S, Su P, Li L, Liu S, Wang Y. Advances and mechanisms of traditional Chinese medicine and its active ingredients against antibiotic-resistant Escherichia coli infections. J Pharm Anal 2025; 15:101117. [PMID: 40026356 PMCID: PMC11871446 DOI: 10.1016/j.jpha.2024.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 03/05/2025] Open
Abstract
In clinical practice, antibiotics have historically been utilized for the treatment of pathogenic bacteria. However, the gradual emergence of antibiotic resistance among bacterial strains has posed a significant challenge to this approach. In 2022, Escherichia coli, a Gram-negative bacterium renowned for its widespread pathogenicity and high virulence, emerged as the predominant pathogenic bacterium in China. The rapid emergence of antibiotic-resistant E. coli strains has rendered antibiotics insufficient to fight E. coli infections. Traditional Chinese medicine (TCM) has made remarkable contributions to the health of Chinese people for thousands of years, and its significant therapeutic effects have been proven in clinical practice. In this paper, we provide a comprehensive review of the advances and mechanisms of TCM and its active ingredients against antibiotic-resistant E. coli infections. First of all, this review introduces the classification, antibiotic resistance characteristics and mechanisms of E. coli. Then, the TCM formulas and extracts are listed along with their active ingredients against E. coli, including extraction solution, minimum inhibitory concentration (MIC), and the antibacterial mechanisms. In addition, there is growing evidence supporting the synergistic therapeutic strategy of combining TCM with antibiotics for the treatment of antibiotic-resistant E. coli infections, and we provide a summary of this evidence and its underlying mechanisms. In conclusion, we present a comprehensive review of TCM and highlight its potential and advantages in the prevention and treatment of E. coli infections. We hold the opinion that TCM will play an important role in global health, pharmaceutical development, and livestock farming in the future.
Collapse
Affiliation(s)
- Shuo Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lu Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuang Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
6
|
Fydrych D, Jeziurska J, Wełna J, Kwiecińska-Piróg J. Potential Use of Selected Natural Compounds with Anti-Biofilm Activity. Int J Mol Sci 2025; 26:607. [PMID: 39859320 PMCID: PMC11765509 DOI: 10.3390/ijms26020607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Antibiotic resistance in microorganisms is an escalating global concern, exacerbated by their formation of biofilms, which provide protection through an extracellular matrix and communication via quorum sensing, enhancing their resistance to treatment. This situation has driven the search for alternative approaches, particularly those using natural compounds. This study explores the potential of phytochemicals, such as quercetin, apigenin, arbutin, gallic acid, proanthocyanidins, and rutin, known for their antibacterial properties and ability to inhibit biofilm formation and disrupt mature biofilms. The methods used in this study included a comprehensive review of current literature assessing the bioavailability, distribution, and effective concentrations of these compounds in treating biofilm-associated infections. The results indicate that these phytochemicals exhibit significant antibacterial effects, reduce biofilm's structural integrity, and inhibit bacterial communication pathways. Moreover, their potential use in combination with existing antibiotics may enhance therapeutic outcomes. The findings support the conclusion that phytochemicals offer promising additions to anti-biofilm strategies and are capable of complementing or replacing conventional treatments, with appropriate therapeutic levels and delivery mechanisms being key to their effectiveness. This insight underscores the need for further research into their clinical applications for treating infections complicated by biofilms.
Collapse
Affiliation(s)
| | | | - Jana Wełna
- Department of Microbiology, Collegium Medicum of L. Rydygier in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej-Curie Street, 85-094 Bydgoszcz, Poland
| | - Joanna Kwiecińska-Piróg
- Department of Microbiology, Collegium Medicum of L. Rydygier in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej-Curie Street, 85-094 Bydgoszcz, Poland
| |
Collapse
|
7
|
Nawaz S, Wang Z, Zhang Y, Jia Y, Jiang W, Chen Z, Yin H, Huang C, Han X. Avian pathogenic Escherichia coli (APEC): current insights and future challenges. Poult Sci 2024; 103:104359. [PMID: 39388979 PMCID: PMC11490931 DOI: 10.1016/j.psj.2024.104359] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis in avian species, and new investigations have implicated APEC as a possible foodborne zoonotic pathogen. This review analyzes APEC's pathogenic and virulence features, assesses the zoonotic potential, provides an update on antibiotic resistance and vaccine research efforts, and outlines alternate management approaches. Aside from established virulence factors, various additional components, including 2-component systems (TCS), adhesins, secretion systems (SS), invasions, iron acquisition systems, quorum sensing systems (QS), transcriptional regulators (TR), toxins, and genes linked with metabolism, contribute to APEC pathogenesis. APEC may spread to diverse species of birds in all business sectors and can infect birds of varying ages. However, younger birds experience more severe sickness than mature ones, probably due to their developing immune systems, and stress factors such as vaccination, Mycoplasma Infections, poor housing circumstances, respiratory viruses, and other risk factors for secondary infections can all make APEC both primary and secondary pathogens. Understanding these factors will help in generating new and effective treatments. Moreover, APEC O145 was the most prevalent serotype recently reported in all of China. Thus, the APEC's zoonotic potential should not be underrated. Furthermore, it has already been noted that APEC is resistant to almost all antibiotic classes, including carbapenems. A robust vaccine capable of protecting against multiple APEC serotypes is urgently needed. Alternative medications, particularly virulence inhibitors, can provide a special method with a decreased likelihood of acquiring resistance.
Collapse
Affiliation(s)
- Saqib Nawaz
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, 364012, Fujian, China; Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Zhihao Wang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Yan Zhang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Yuanzheng Jia
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Wei Jiang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Zhaoguo Chen
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Huifang Yin
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, 364012, Fujian, China
| | - Cuiqin Huang
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, 364012, Fujian, China
| | - Xiangan Han
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, 364012, Fujian, China; Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China.
| |
Collapse
|
8
|
Judan Cruz KG, Takumi O, Bongulto KA, Gandalera EE, Kagia N, Watanabe K. Natural compound-induced downregulation of antimicrobial resistance and biofilm-linked genes in wastewater Aeromonas species. Front Cell Infect Microbiol 2024; 14:1456700. [PMID: 39469451 PMCID: PMC11513397 DOI: 10.3389/fcimb.2024.1456700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/18/2024] [Indexed: 10/30/2024] Open
Abstract
Addressing the global antimicrobial resistance (AMR) crisis requires a multifaceted innovative approach to mitigate impacts on public health, healthcare and economic systems. In the complex evolution of AMR, biofilms and the acquisition of antimicrobial resistance genes (ARGs) play a pivotal role. Aeromonas is a major AMR player that often forms biofilm, harbors ARGs and is frequently detected in wastewater. Existing wastewater treatment plants (WWTPs) do not have the capacity to totally eliminate antimicrobial-resistant bacteria favoring the evolution of ARGs in wastewater. Besides facilitating the emergence of AMR, biofilms contribute significantly to biofouling process within the activated sludge of WWTP bioreactors. This paper presents the inhibition of biofilm formation, the expression of biofilm-linked genes and ARGs by phytochemicals andrographolide, docosanol, lanosterol, quercetin, rutin and thymohydroquinone. Aeromonas species were isolated and purified from activated sludge samples. The ARGs were detected in the isolated Aeromonas species through PCR. Aeromonas biofilms were quantified following the application of biocompounds through the microtiter plate assay. qPCR analyses of related genes were done for confirmation. Findings showed that the natural compounds inhibited the formation of biofilms and reduced the expression of genes linked to biofilm production as well as ARGs in wastewater Aeromonas. This indicates the efficacy of these compounds in targeting and controlling both ARGs and biofilm formation, highlighting their potential as innovative solutions for combating antimicrobial resistance and biofouling.
Collapse
Affiliation(s)
- Khristina G. Judan Cruz
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
- Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | - Okamoto Takumi
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Kenneth A. Bongulto
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Emmanuel E. Gandalera
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
- Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | - Ngure Kagia
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
9
|
Li L, He Y, Zou Q, Chen W, Liu Y, He H, Zhang J. In vitro and in vivo synergistic inhibition of Malassezia furfur targeting cell membranes by Rosa rugosa Thunb. and Coptidis Rhizoma extracts. Front Microbiol 2024; 15:1456240. [PMID: 39323889 PMCID: PMC11423746 DOI: 10.3389/fmicb.2024.1456240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/06/2024] [Indexed: 09/27/2024] Open
Abstract
Background Malassezia furfur (M. furfur) is a prevalent dermatophyte that significantly impairs patients' quality of life. This study aimed to evaluate the synergistic antifungal effects of combined extracts from Rosa rugosa Thunb. (MG) and Coptidis Rhizoma (HL) against M. furfur, both in vitro and in vivo. Methods High-performance liquid chromatography (HPLC) was used to identify the major active compounds present in MG and HL. The antifungal activity of the combined Meilian extract (ML) was assessed using the checkerboard method and time-kill curves. Microstructural alterations in the fungi were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The impact of the extracts on the fungal cell membrane was investigated through propidium iodide staining, protein concentration assays, and ergosterol quantification. Transcriptomic analysis was conducted to elucidate the molecular mechanisms underlying the effects of the extracts. Furthermore, the synergistic antifungal effects of ML were evaluated in a mouse model of seborrheic dermatitis induced by M. furfur. Results The study demonstrated that the combined application of MG and HL significantly affected the integrity of the M. furfur cell membrane and potentially modulated its formation processes. In the M. furfur-induced seborrheic dermatitis model, ML exhibited synergistic antifungal effects and effectively alleviated skin inflammation. These findings provide an important theoretical basis for understanding the antifungal mechanisms of ML and its potential application in dermatological therapy.
Collapse
Affiliation(s)
- Li Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanyuan He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qinghui Zou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiwei Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanxia Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huifen He
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Alidoust FA, Rasti B, Zamani H, Mirpour M, Mirzaie A. Rutin-coated zinc oxide nanoparticles: a promising antivirulence formulation against pathogenic bacteria. World J Microbiol Biotechnol 2024; 40:184. [PMID: 38683406 DOI: 10.1007/s11274-024-03984-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024]
Abstract
The use of engineered nanoparticles against pathogenic bacteria has gained attention. In this study, zinc oxide nanoparticles conjugated with rutin were synthesized and their antivirulence properties against Pseudomonas aeruginosa and Staphylococcus aureus. The physicochemical characteristics of ZnO-Rutin NPs were investigated using SEM, FT-IR, XRD, DLS, EDS, and zeta potential analyses. Antimicrobial properties were evaluated by well diffusion, microdilution, growth curve, and hemolytic activity assays. The expression of quorum sensing (QS) genes including the lasI and rhlI in P. aeruginosa and agrA in S. aureus was assessed using real-time PCR. Swimming, swarming, twitching, and pyocyanin production by P. aeruginosa were evaluated. The NPs were amorphous, 14-100 nm in diameter, surface charge of -34.3 mV, and an average hydrodynamic size of 161.7 nm. Regarding the antibacterial activity, ZnO-Rutin NPs were more potent than ZnO NPs and rutin, and stronger inhibitory effects were observed on S. aureus than on P. aeruginosa. ZnO-Rutin NPs inhibited the hemolytic activity of P. aeruginosa and S. aureus by 93.4 and 92.2%, respectively, which was more efficient than bare ZnO NPs and rutin. ZnO-Rutin NPs reduced the expression of the lasI and rhlI in P. aeruginosa by 0.17-0.43 and 0.37-0.70 folds, respectively while the expression of the agrA gene in S. aureus was decreased by 0.46-0.56 folds. Furthermore, ZnO-Rutin NPs significantly reduced the swimming and twitching motility and pyocyanin production of P. aeruginosa. This study demonstrates the antivirulence features of ZnO-Rutin NPs against pathogenic bacteria which can be associated with their QS inhibitory effects.
Collapse
Affiliation(s)
- Fatemeh Azizi Alidoust
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran.
| | | | - Mirsasan Mirpour
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| | - Amir Mirzaie
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| |
Collapse
|
11
|
Mahdavi M, Findlay BL. Discovery of an adjuvant that resensitizes polymyxin B-resistant bacteria. Bioorg Med Chem 2024; 97:117541. [PMID: 38096681 DOI: 10.1016/j.bmc.2023.117541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Infections caused by antibiotic-resistant bacteria are a major threat to health, increasing mortality rates and straining health systems worldwide. Adjuvants targeted to beta-lactamase function are able to resensitize bacteria to beta-lactam antibiotics, but there is comparatively little research into the use of adjuvants against other resistance phenotypes. In this study, we performed a high-throughput screen of 74 natural products to identify adjuvants that synergized with antibiotics to eradicate resistant Gram-negative bacteria. From this, we identified six adjuvant hits which restored growth inhibition when combined with the relevant antibiotic, and pursued a lead candidate, perforone, which possessed selective adjuvant activity in combination with polymyxin B against polymyxin-resistant Escherichia coli cells. These results suggest that pairing adjuvants with antibiotics could be a useful general intervention against resistant bacteria, helping to mitigate the effects of antimicrobial resistance.
Collapse
Affiliation(s)
- Michael Mahdavi
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
| | - Brandon L Findlay
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada; Department of Biology, Concordia University, Montréal, Québec, Canada.
| |
Collapse
|
12
|
Ashrafudoulla M, Mevo SIU, Song M, Chowdhury MAH, Shaila S, Kim DH, Nahar S, Toushik SH, Park SH, Ha SD. Antibiofilm mechanism of peppermint essential oil to avert biofilm developed by foodborne and food spoilage pathogens on food contact surfaces. J Food Sci 2023; 88:3935-3955. [PMID: 37477280 DOI: 10.1111/1750-3841.16712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/10/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
Establishing efficient methods to combat bacterial biofilms is a major concern. Natural compounds, such as essential oils derived from plants, are among the favored and recommended strategies for combatting bacteria and their biofilm. Therefore, we evaluated the antibiofilm properties of peppermint oil as well as the activities by which it kills bacteria generally and particularly their biofilms. Peppermint oil antagonistic activities were investigated against Vibrio parahaemolyticus, Listeria monocytogenes, Pseudomonas aeruginosa, Escherichia coli O157:H7, and Salmonella Typhimurium on four food contact surfaces (stainless steel, rubber, high-density polyethylene, and polyethylene terephthalate). Biofilm formation on each studied surface, hydrophobicity, autoaggregation, metabolic activity, and adenosine triphosphate quantification were evaluated for each bacterium in the presence and absence (control) of peppermint oil. Real-time polymerase chain reaction, confocal laser scanning microscopy, and field-emission scanning electron microscopy were utilized to analyze the effects of peppermint oil treatment on the bacteria and their biofilm. Results showed that peppermint oil (1/2× minimum inhibitory concentration [MIC], MIC, and 2× MIC) substantially lessened biofilm formation, with high bactericidal properties. A minimum of 2.5-log to a maximum of around 5-log reduction was attained, with the highest sensitivity shown by V. parahaemolyticus. Morphological experiments revealed degradation of the biofilm structure, followed by some dead cells with broken membranes. Thus, this study established the possibility of using peppermint oil to combat key foodborne and food spoilage pathogens in the food processing environment.
Collapse
Affiliation(s)
- Md Ashrafudoulla
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | | | - Minsu Song
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | | | - Shanjida Shaila
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | - Duk Hyun Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | - Shamsun Nahar
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | - Sazzad Hossen Toushik
- Department of Biochemistry & Microbiology, School of Health & Life Sciences, North South University, Dhaka, Bangladesh
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| |
Collapse
|
13
|
Lima MDC, Magnani M, Lima MDS, Macarisin D, de Sousa CP, Dubreuil JD, de Souza EL. Exploring the antimicrobial effects of a phenolic-rich extract from jabuticaba depulping waste against enterotoxigenic Escherichia coli. Lett Appl Microbiol 2023; 76:6991430. [PMID: 36715328 DOI: 10.1093/lambio/ovad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/19/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
This study evaluated the effects of a phenolic-rich extract from jabuticaba [Myrciaria jaboticaba (Vell.) Berg] depulping waste (PEJ) on the survival, antibiotic susceptibility, virulence, and cellular functions of various enterotoxigenic Escherichia coli (ETEC) strains. The minimum inhibitory concentration of PEJ against the five tested ETEC strains was 125 mg mL-1. PEJ at 125 and 250 mg mL-1 caused reductions in viable cell counts of ≥ 3 and ≥ 5 log CFU mL-1 in ETEC over 24 h, respectively. PEJ at subinhibitory concentrations (31.25 and 62.5 mg mL-1) reduced the viable cell counts of ETEC when exposed to in vitro gastrointestinal conditions, besides decreasing the biofilm formation, cell surface hydrophobicity, mucin adhesion, and swimming and swarming motility. PEJ (31.25 and 62.5 mg mL-1) increased the susceptibility of the tested ETEC strains to various clinically relevant antibiotics. The exposure to PEJ (62.5 and 125 mg mL-1) impaired the membrane permeability and enzymatic and efflux pump activities in ETEC cells. PEJ effectively reduces survival, increases antibiotic susceptibility, and attenuates virulence in ETEC. These effects could be linked to a PEJ multi-target action disturbing various cellular functions in ETEC cells. PEJ could be a candidate for developing innovative solutions to prevent and treat ETEC infections.
Collapse
Affiliation(s)
- Maiara da Costa Lima
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa, PB 58051-900,Brazil
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology,Federal Institute of Sertão de Pernambuco,Petrolina, PE 56316-686,Brazil
| | - Dumitru Macarisin
- Center for Food Safety and Applied Nutrition, Division of Microbiology, Food and Drug Administration, College Park, MD HFS-009, USA
| | - Cristina Paiva de Sousa
- Department of Morphology and Pathology, Center of Biological Sciences and Health, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil.,Biotechnology Graduation Program, Center of Exact Sciences and Technologies, Federal University of São Carlos,São Carlos, SP 13565-905,Brazil
| | - J Daniel Dubreuil
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa, PB 58051-900,Brazil
| |
Collapse
|
14
|
Detection of changes in biological characteristics of Aeromonas veronii TH0426 after deletion of lsrB gene by homologous recombination. Microb Pathog 2023; 174:105938. [PMID: 36526036 DOI: 10.1016/j.micpath.2022.105938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Aeromonas veronii is a widespread pathogenic microorganism that can infect humans, animals, and a variety of aquatilia, at the same time, can cause diseases, mainly sepsis and ulcer syndrome. In this research, we first deleted the gene of lsrB's nucleotide sequences by homologous recombination. The results showed that the median lethal dose (LD50) of the mutant strain (ΔlsrB) for zebrafish was 1.28-times higher than that of the TH0426 strain. The toxicity of TH0426 to epithelioma papulosum cyprini (EPC) cells was 1.15-times and 1.64-times higher than that of ΔlsrB, 1 and 2 h after infection. The production ability of the biofilm of ΔlsrB decreased by 1.38-times, and the adhesion ability of ΔlsrB to EPC cells greatly decreased by 1.96-times than the TH0426. The result of motility detection pointed out that the swimming ability of ΔlsrB was down by 1.67-times. The results indicated that almost all of them lost their flagella after deleting the lsrB gene. In general, the virulence of TH0426 was reduced after deleting the lsrB gene. The final results point out that the lsrB gene of TH0426 is related to motility, biofilm formation, adhesion, and virulence.
Collapse
|
15
|
Xue B, Shen Y, Zuo J, Song D, Fan Q, Zhang X, Yi L, Wang Y. Bringing Antimicrobial Strategies to a New Level: The Quorum Sensing System as a Target to Control Streptococcus suis. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122006. [PMID: 36556371 PMCID: PMC9782415 DOI: 10.3390/life12122006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Streptococcus suis (S. suis) is an important zoonotic pathogen. It mainly uses quorum sensing (QS) to adapt to complex and changeable environments. QS is a universal cell-to-cell communication system that has been widely studied for its physiological functions, including the regulation of bacterial adhesion, virulence, and biofilm formation. Quorum sensing inhibitors (QSIs) are highly effective at interfering with the QS system and bacteria have trouble developing resistance to them. We review the current research status of the S. suis LuxS/AI-2 QS system and QSIs. Studies showed that by inhibiting the formation of AI-2, targeting the LuxS protein, inhibiting the expression of luxs gene can control the LuxS/AI-2 QS system of S. suis. Other potential QSIs targets are summarized, which may be preventing and treating S. suis infections, including AI-2 production, transmission, LuxS protein, blockage of AI-2 binding to receptors, AI-2-mediated QS. Since antibiotics are becoming increasingly ineffective due to the emergence of resistant bacteria, including S. suis, it is thus critical to find new antibacterial drugs with different mechanisms of action. QSIs provide hope for the development of such drugs.
Collapse
Affiliation(s)
- Bingqian Xue
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Dong Song
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Xiaoling Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Li Yi
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
- College of Life Science, Luoyang Normal University, Luoyang 471000, China
- Correspondence: (L.Y.); (Y.W.)
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
- Correspondence: (L.Y.); (Y.W.)
| |
Collapse
|
16
|
Tripathi S, Purchase D, Govarthanan M, Chandra R, Yadav S. Regulatory and innovative mechanisms of bacterial quorum sensing-mediated pathogenicity: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:75. [PMID: 36334179 DOI: 10.1007/s10661-022-10564-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/29/2022] [Indexed: 06/16/2023]
Abstract
Quorum sensing (QS) is a system of bacteria in which cells communicate with each other; it is linked to cell density in the microbiome. The high-density colony population can provide enough small molecular signals to enable a range of cellular activities, gene expression, pathogenicity, and antibiotic resistance that cause damage to the hosts. QS is the basis of chronic illnesses in human due to microbial sporulation, expression of virulence factors, biofilm formation, secretion of enzymes, or production of membrane vesicles. The transfer of antimicrobial resistance gene (ARG) among antibiotic resistance bacteria is a major public health concern. QS-mediated biofilm is a hub for ARG horizontal gene transfer. To develop innovative approach to prevent microbial pathogenesis, it is essential to understand the role of QS especially in response to environmental stressors such as exposure to antibiotics. This review provides the latest knowledge on the relationship of QS and pathogenicity and explore the novel approach to control QS via quorum quenching (QQ) using QS inhibitors (QSIs) and QQ enzymes. The state-of-the art knowledge on the role of QS and the potential of using QQ will help to overcome the threats of rapidly emerging bacterial pathogenesis.
Collapse
Affiliation(s)
- Sonam Tripathi
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025, UP, India
| | - Diane Purchase
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, NW4 4BT, UK
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, South Korea
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025, UP, India.
| | - Sangeeta Yadav
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025, UP, India.
- Department of Botany, Vaishno Devi Prashikshan Mahavidyalaya, Gondahi, Kunda, Pratapgarh, India.
| |
Collapse
|
17
|
Bai YB, Shi MY, Wang WW, Wu LY, Bai YT, Li B, Zhou XZ, Zhang JY. Novel quorum sensing inhibitor Echinatin as an antibacterial synergist against Escherichia coli. Front Microbiol 2022; 13:1003692. [PMID: 36386683 PMCID: PMC9663819 DOI: 10.3389/fmicb.2022.1003692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/14/2022] [Indexed: 12/05/2022] Open
Abstract
A new antibacterial strategy based on inhibiting bacterial quorum sensing (QS) has emerged as a promising method of attenuating bacterial pathogenicity and preventing bacterial resistance to antibiotics. In this study, we screened Echinatin (Ech) with high-efficiency anti-QS from 13 flavonoids through the AI-2 bioluminescence assay. Additionally, crystal violet (CV) staining combined with confocal laser scanning microscopy (CLSM) was used to evaluate the effect of anti-biofilm against Escherichia coli (E. coli). Further, the antibacterial synergistic effect of Ech and marketed antibiotics were measured by broth dilution and Alamar Blue Assay. It was found that Ech interfered with the phenotype of QS, including biofilm formation, exopolysaccharide (EPS) production, and motility, without affecting bacterial growth and metabolic activity. Moreover, qRT-PCR exhibited that Ech significantly reduced the expression of QS-regulated genes (luxS, pfs, lsrB, lsrK, lsrR, flhC, flhD, fliC, csgD, and stx2). More important, Ech with currently marketed colistin antibiotics (including colistin B and colistin E) showed significantly synergistically increased antibacterial activity in overcoming antibiotic resistance of E. coli. In summary, these results suggested the potent anti-QS and novel antibacterial synergist candidate of Ech for treating E. coli infections.
Collapse
Affiliation(s)
- Yu-Bin Bai
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Meng-Yan Shi
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wei-Wei Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ling-Yu Wu
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yu-Ting Bai
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bing Li
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xu-Zheng Zhou
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ji-Yu Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China,*Correspondence: Ji-Yu Zhang,
| |
Collapse
|
18
|
Flavonols and Flavones as Potential anti-Inflammatory, Antioxidant, and Antibacterial Compounds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9966750. [PMID: 36111166 PMCID: PMC9470311 DOI: 10.1155/2022/9966750] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Plant preparations have been used to treat various diseases and discussed for centuries. Research has advanced to discover and identify the plant components with beneficial effects and reveal their underlying mechanisms. Flavonoids are phytoconstituents with anti-inflammatory, antimutagenic, anticarcinogenic, and antimicrobial properties. Herein, we listed and contextualized various aspects of the protective effects of the flavonols quercetin, isoquercetin, kaempferol, and myricetin and the flavones luteolin, apigenin, 3
,4
-dihydroxyflavone, baicalein, scutellarein, lucenin-2, vicenin-2, diosmetin, nobiletin, tangeretin, and 5-O-methyl-scutellarein. We presented their structural characteristics and subclasses, importance, occurrence, and food sources. The bioactive compounds present in our diet, such as fruits and vegetables, may affect the health and disease state. Therefore, we discussed the role of these compounds in inflammation, oxidative mechanisms, and bacterial metabolism; moreover, we discussed their synergism with antibiotics for better disease outcomes. Indiscriminate use of antibiotics allows the emergence of multidrug-resistant bacterial strains; thus, bioactive compounds may be used for adjuvant treatment of infectious diseases caused by resistant and opportunistic bacteria via direct and indirect mechanisms. We also focused on the reported mechanisms and intracellular targets of flavonols and flavones, which support their therapeutic role in inflammatory and infectious diseases.
Collapse
|
19
|
The effect of fluoroquinolones and antioxidans on biofilm formation by Proteus mirabilis strains. Ann Clin Microbiol Antimicrob 2022; 21:22. [PMID: 35655208 PMCID: PMC9161520 DOI: 10.1186/s12941-022-00515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 05/03/2022] [Indexed: 11/18/2022] Open
Abstract
Background Fluoroquinolones are a group of antibiotics used in urinary tract infections. Unfortunately, resistance to this group of drugs is currently growing. The combined action of fluoroquinolones and other antibacterial and anti-biofilm substances may extend the use of this therapeutic option by clinicians. The aim of the study was to determine the effect of selected fluoroquinolones and therapeutic concentrations of ascorbic acid and rutoside on biofilm formation by Proteus mirabilis. Materials and methods The study included 15 strains of P. mirabilis isolated from urinary tract infections in patients of the University Hospital No. 1 dr A. Jurasz in Bydgoszcz (Poland). The metabolic activity of the biofilm treated with 0.4 mg/ml ascorbic acid, 0.02 µg/ml rutoside and chemotherapeutic agents (ciprofloxacin, norfloxacin) in the concentration range of 0.125–4.0 MIC (minimum inhibitory concentration) was assessed spectrophotometrically. Results Both ciprofloxacin and norfloxacin inhibited biofilm formation by the tested strains. The biofilm reduction rate was correlated with the increasing concentration of antibiotic used. No synergism in fluoroquinolones with ascorbic acid, rutoside or both was found. The ascorbic acid and rutoside combination, however, significantly decreased biofilm production. Conclusions Our research proves a beneficial impact of ascorbic acid with rutoside supplementation on biofilm of P. mirabilis strains causing urinary tract infections.
Collapse
|
20
|
Xue M, Fu D, Hu J, Shao Y, Tu J, Song X, Qi K. The Transcription Regulator YgeK Affects Biofilm Formation and Environmental Stress Resistance in Avian Pathogenic Escherichia coli. Animals (Basel) 2022; 12:ani12091160. [PMID: 35565586 PMCID: PMC9100123 DOI: 10.3390/ani12091160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Avian pathogenic Escherichia coli (APEC) is the pathogen responsible for colibacillosis in poultry. Transcriptional regulator ygeK has been shown to decrease APEC’s flagellar formation ability, bacterial motility ability, serum sensitivity, and adhesion ability. However, we did not study the effects of ygeK on biofilm formation and environmental stress resistance in APEC. In this study, we investigated ygeK in APEC biofilm formation and bacterial resistance to different environmental stresses. We also analyzed the multi-level regulation of ygeK in APEC and investigated associations between differentially expressed proteins and key ygeK targets. This work provides a basis for further analysis of APEC pathogenesis mechanisms. Abstract Avian pathogenic Escherichia coli (APEC) is one of the most common pathogens in poultry and a potential gene source of human extraintestinal pathogenic E. coli (ExPEC), leading to serious economic losses in the poultry industry and public health concerns. Exploring the pathogenic mechanisms underpinning APEC and the identification of new targets for disease prevention and treatment are warranted. YgeK is a transcriptional regulator in APEC and is localized to the type III secretion system 2 of E. coli. In our previous work, the transcription factor ygeK significantly affected APEC flagella formation, bacterial motility, serum sensitivity, adhesion, and virulence. To further explore ygeK functions, we evaluated its influence on APEC biofilm formation and resistance to environmental stress. Our results showed that ygeK inactivation decreased biofilm formation and reduced bacterial resistance to environmental stresses, including acid and oxidative stress. In addition, the multi-level regulation of ygeK in APEC was analyzed using proteomics, and associations between differentially expressed proteins and the key targets of ygeK were investigated. Overall, we identified ygeK’s new function in APEC. These have led us to better understand the transcriptional regulatory ygeK and provide new clues about the pathogenicity of APEC.
Collapse
Affiliation(s)
- Mei Xue
- Jinling Institute of Technology, College of Animal Science and Food Engineering, Nanjing 211169, China;
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, China; (D.F.); (J.H.); (Y.S.); (J.T.)
| | - Dandan Fu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, China; (D.F.); (J.H.); (Y.S.); (J.T.)
| | - Jiangang Hu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, China; (D.F.); (J.H.); (Y.S.); (J.T.)
| | - Ying Shao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, China; (D.F.); (J.H.); (Y.S.); (J.T.)
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, China; (D.F.); (J.H.); (Y.S.); (J.T.)
| | - Xiangjun Song
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, China; (D.F.); (J.H.); (Y.S.); (J.T.)
- Correspondence: (X.S.); (K.Q.); Tel.: +86-551-6578-5310 (K.Q.)
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, China; (D.F.); (J.H.); (Y.S.); (J.T.)
- Correspondence: (X.S.); (K.Q.); Tel.: +86-551-6578-5310 (K.Q.)
| |
Collapse
|
21
|
Di Lodovico S, Bacchetti T, D’Ercole S, Covone S, Petrini M, Di Giulio M, Di Fermo P, Diban F, Ferretti G, Cellini L. Complex Chronic Wound Biofilms Are Inhibited in vitro by the Natural Extract of Capparis spinose. Front Microbiol 2022; 13:832919. [PMID: 35479636 PMCID: PMC9035792 DOI: 10.3389/fmicb.2022.832919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Resistant wound microorganisms are becoming an extremely serious challenge in the process of treating infected chronic wounds, leading to impaired healing. Thus, additional approaches should be taken into consideration to improve the healing process. The use of natural extracts can represent a valid alternative to treat/control the microbial infections in wounds. This study investigates the antimicrobial/antivirulence effects of Capparis spinose aqueous extract against the main chronic wound pathogens: Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. The extract shows phenolic characterization with rutin (1.8 ± 0.14 μg/mg) as the major compound and antibacterial effect against bacteria (S. aureus PECHA 10 MIC 6.25%; P. aeruginosa PECHA 4 MIC 12.50%) without action against C. albicans (MIC and MFC ≥ 50%). Capparis spinose also shows a significant antivirulence effect in terms of antimotility/antibiofilm actions. In particular, the extract acts (i) on P. aeruginosa both increasing its swimming and swarming motility favoring the planktonic phenotype and reducing its adhesive capability, (ii) on S. aureus and P. aeruginosa biofilm formation reducing both the biomass and CFU/ml. Furthermore, the extract significantly displays the reduction of a dual-species S. aureus and P. aeruginosa Lubbock chronic wound biofilm, a complex model that mimics the realistic in vivo microbial spatial distribution in wounds. The results suggest that C. spinose aqueous extract could represent an innovative eco-friendly strategy to prevent/control the wound microbial infection.
Collapse
Affiliation(s)
- Silvia Di Lodovico
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Simonetta D’Ercole
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Sara Covone
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Mara Di Giulio
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Paola Di Fermo
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Firas Diban
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Gianna Ferretti
- Department of Clinical Science, Research Center of Health Education and Health Promotion, Polytechnic University of Marche, Ancona, Italy
| | - Luigina Cellini
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- *Correspondence: Luigina Cellini,
| |
Collapse
|
22
|
Polyphenols as Inhibitors of Antibiotic Resistant Bacteria-Mechanisms Underlying Rutin Interference with Bacterial Virulence. Pharmaceuticals (Basel) 2022; 15:ph15030385. [PMID: 35337182 PMCID: PMC8952364 DOI: 10.3390/ph15030385] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/01/2023] Open
Abstract
The rising incidence of antibiotic resistant microorganisms urges novel antimicrobials development with polyphenols as appealing potential therapeutics. We aimed to reveal the most promising polyphenols among hesperetin, hesperidin, naringenin, naringin, taxifolin, rutin, isoquercitrin, morin, chlorogenic acid, ferulic acid, p-coumaric acid, and gallic acid based on antimicrobial capacity, antibiofilm potential, and lack of cytotoxicity towards HaCaT, and to further test its antivirulence mechanisms. Although the majority of studied polyphenols were able to inhibit bacterial growth and biofilm formation, the most promising activities were observed for rutin. Further investigation proved rutin’s ability to prevent/eradicate Pseudomonas aeruginosa and MRSA urinary catheter biofilms. Besides reduction of biofilm biomass, rutin antibiofilm mechanisms included reduction of cell viability, exopolysaccharide, and extracellular DNA levels. Moderate reduction of bacterial adhesion to human keratinocytes upon treatment was observed. Rutin antivirulence mechanisms included an impact on P. aeruginosa protease, pyocyanin, rhamnolipid, and elastase production and the downregulation of the lasI, lasR, rhlI, rhlR, pqsA and mvfR genes. Rutin also interfered with membrane permeability. Polyphenols could repress antibiotic resistant bacteria. Rutin has shown wide antimicrobial and antibiofilm capacity employing a range of mechanisms that might be used for the development of novel antimicrobials.
Collapse
|
23
|
Alber A, Stevens MP, Vervelde L. The bird's immune response to avian pathogenic Escherichia coli. Avian Pathol 2021; 50:382-391. [PMID: 33410704 DOI: 10.1080/03079457.2021.1873246] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) cause colibacillosis in birds, a syndrome of severe respiratory and systemic disease that constitutes a major threat due to early mortality, condemnation of carcasses and reduced productivity. APEC can infect different types of birds in all commercial settings, and birds of all ages, although disease tends to be more severe in younger birds likely a consequence of an immature immune system. APEC can act as both primary and secondary pathogens, with predisposing factors for secondary infections including poor housing conditions, respiratory viral and Mycoplasma spp. infections or vaccinations. Controlled studies with APEC as primary pathogens have been used to study the bird's immune response to APEC, although it may not always be representative of natural infections which may be more complex due to the presence of secondary agents, stress and environmental factors. Under controlled experimental conditions, a strong early innate immune response is induced which includes host defence peptides in mucus and a cellular response driven by heterophils and macrophages. Both antibody and T-cell mediated adaptive responses have been demonstrated after vaccination. In this review we will discuss the bird's immune response to APEC as primary pathogen with a bias towards the innate immune response, as mechanistic adaptive studies clearly form a much more limited body of work despite numerous vaccine trials.
Collapse
Affiliation(s)
| | - Mark P Stevens
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Lonneke Vervelde
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
24
|
Nahar S, Jeong HL, Kim Y, Ha AJW, Roy PK, Park SH, Ashrafudoulla M, Mizan MFR, Ha SD. Inhibitory effects of Flavourzyme on biofilm formation, quorum sensing, and virulence genes of foodborne pathogens Salmonella Typhimurium and Escherichia coli. Food Res Int 2021; 147:110461. [PMID: 34399461 DOI: 10.1016/j.foodres.2021.110461] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Accepted: 05/23/2021] [Indexed: 12/23/2022]
Abstract
Salmonella enterica and Shiga toxin-producing (or verotoxin-producing) Escherichia coli are major foodborne pathogens, posing substantial food safety risks. Due to the negative effects of chemical treatment against foodborne pathogens, the application of enzyme-based techniques is currently receiving great attention. Here, we evaluated the inhibitory properties of Flavourzyme, a commercial peptidase, against these two foodborne pathogens. We noticed 4.0 and 5.5 log inhibition of biofilm formation by S. Typhimurium and E. coli, respectively, while treated with sub-minimum inhibitory concentrations of Flavourzyme for 24 h. For both bacteria, the enzyme exhibited quorum-quenching activity, preventing autoinducer-2 production completely by E. coli. In addition, Flavourzyme significantly suppressed the relative expression levels of biofilm-forming, quorum sensing, and virulence regulatory genes as measured by qRT-PCR. Based on our results, we suggest the use of Flavourzyme as a preventive agent against foodborne pathogens that possibly acts by inhibiting bacterial self-defense mechanisms following disruption of cellular proteins. This finding may shed light on how enzymes can be applied as a novel weapon to control foodborne illnesses to ensure food safety and public health.
Collapse
Affiliation(s)
- Shamsun Nahar
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Ha Lim Jeong
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Younsoo Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Angela Jie-Won Ha
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Pantu Kumar Roy
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Si Hong Park
- Department of Food Science & Technology, Oregon State University, Corvallis, OR, USA
| | - Md Ashrafudoulla
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Sang-Do Ha
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
25
|
Suresh D, Sabir S, Yu TT, Wenholz D, Das T, Black DS, Kumar N. Natural Product Rottlerin Derivatives Targeting Quorum Sensing. Molecules 2021; 26:molecules26123745. [PMID: 34205355 PMCID: PMC8235494 DOI: 10.3390/molecules26123745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 12/31/2022] Open
Abstract
Rottlerin is a natural product consisting of chalcone and flavonoid scaffolds, both of which have previously shown quorum sensing (QS) inhibition in various bacteria. Therefore, the unique rottlerin scaffold highlights great potential in inhibiting the QS system of Pseudomonas aeruginosa. Rottlerin analogues were synthesised by modifications at its chalcone- and methylene-bridged acetophenone moieties. The synthesis of analogues was achieved using an established five-step synthetic strategy for chalcone derivatives and utilising the Mannich reaction at C6 of the chromene to construct morpholine analogues. Several pyranochromene chalcone derivatives were also generated using aldol conditions. All the synthetic rottlerin derivatives were screened for QS inhibition and growth inhibition against the related LasR QS system. The pyranochromene chalcone structures displayed high QS inhibitory activity with the most potent compounds, 8b and 8d, achieving QS inhibition of 49.4% and 40.6% and no effect on bacterial growth inhibition at 31 µM, respectively. Both compounds also displayed moderate biofilm inhibitory activity and reduced the production of pyocyanin.
Collapse
Affiliation(s)
- Dittu Suresh
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia; (D.S.); (S.S.); (T.T.Y.); (D.W.)
| | - Shekh Sabir
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia; (D.S.); (S.S.); (T.T.Y.); (D.W.)
| | - Tsz Tin Yu
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia; (D.S.); (S.S.); (T.T.Y.); (D.W.)
| | - Daniel Wenholz
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia; (D.S.); (S.S.); (T.T.Y.); (D.W.)
| | - Theerthankar Das
- Department of Infectious Diseases and Immunology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| | - David StC. Black
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia; (D.S.); (S.S.); (T.T.Y.); (D.W.)
- Correspondence: (D.S.B.); (N.K.); Tel.: +61-29385-4698 (N.K.); Fax: +61-29385-6141 (N.K.)
| | - Naresh Kumar
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia; (D.S.); (S.S.); (T.T.Y.); (D.W.)
- Correspondence: (D.S.B.); (N.K.); Tel.: +61-29385-4698 (N.K.); Fax: +61-29385-6141 (N.K.)
| |
Collapse
|
26
|
Avian Pathogenic Escherichia coli (APEC): An Overview of Virulence and Pathogenesis Factors, Zoonotic Potential, and Control Strategies. Pathogens 2021; 10:pathogens10040467. [PMID: 33921518 PMCID: PMC8069529 DOI: 10.3390/pathogens10040467] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis in avian species, and recent reports have suggested APEC as a potential foodborne zoonotic pathogen. Herein, we discuss the virulence and pathogenesis factors of APEC, review the zoonotic potential, provide the current status of antibiotic resistance and progress in vaccine development, and summarize the alternative control measures being investigated. In addition to the known virulence factors, several other factors including quorum sensing system, secretion systems, two-component systems, transcriptional regulators, and genes associated with metabolism also contribute to APEC pathogenesis. The clear understanding of these factors will help in developing new effective treatments. The APEC isolates (particularly belonging to ST95 and ST131 or O1, O2, and O18) have genetic similarities and commonalities in virulence genes with human uropathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC) and abilities to cause urinary tract infections and meningitis in humans. Therefore, the zoonotic potential of APEC cannot be undervalued. APEC resistance to almost all classes of antibiotics, including carbapenems, has been already reported. There is a need for an effective APEC vaccine that can provide protection against diverse APEC serotypes. Alternative therapies, especially the virulence inhibitors, can provide a novel solution with less likelihood of developing resistance.
Collapse
|
27
|
Usman M, Husain FM, Khan RA, Alharbi W, Alsalme A, Al-Lohedan HA, Tabassum S. Organometallic ruthenium (η 6- p-cymene) complexes interfering with quorum sensing and biofilm formation: an anti-infective approach to combat multidrug-resistance in bacteria. NEW J CHEM 2021; 45:2184-2199. [DOI: 10.1039/d0nj05068g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Organometallic ruthenium complexes of flavonoids as antiquorum sensing agents against pathogens likeChromobacterium violaceumATCC 12472,Pseudomonas aeruginosaPAO1 and methicillin-resistantS. aureus(MRSA).
Collapse
Affiliation(s)
- Mohammad Usman
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition
- College of Food and Agriculture Sciences
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Rais Ahmad Khan
- Department of Chemistry
- College of Sciences
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Walaa Alharbi
- Department of Chemistry, Faculty of Science
- King Khalid University
- Abha 62529
- Kingdom of Saudi Arabia
| | - Ali Alsalme
- Department of Chemistry
- College of Sciences
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Hamad A. Al-Lohedan
- Surfactant Research Chair
- Department of Chemistry
- College of Sciences
- King Saud University
- Riyadh 11451
| | - Sartaj Tabassum
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
- Surfactant Research Chair
| |
Collapse
|
28
|
Liu L, Ge C, Zhang Y, Ma W, Su X, Chen L, Li S, Wang L, Mu X, Xu Y. Tannic acid-modified silver nanoparticles for enhancing anti-biofilm activities and modulating biofilm formation. Biomater Sci 2020; 8:4852-4860. [PMID: 32734981 DOI: 10.1039/d0bm00648c] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The formation of bacterial biofilms is a key factor in the emergence of chronic infections due to the strong resistance of biofilms to conventional antibiotics. There is an urgent need to develop an effective strategy to control the formation of biofilms. In this study, a nanocomposite of tannic acid and silver (Tannin-AgNPs) was designed and successfully prepared based on the quorum sensing (QS) inhibitory activity of tannic acid and the anti-bacterial activity of silver. The dynamic light scattering and SEM observations indicated that the obtained Tannin-AgNPs were spherical with a mean particle size of 42.37 nm. Tannic acid was successfully modified on the surface of silver nanoparticles and characterized via Fourier transform infrared (FTIR) spectroscopy. The prepared Tannin-AgNPs demonstrated a more effective anti-bacterial and anti-biofilm activity against E. coli than the unmodified AgNPs or tannic acid. In addition, the Tannin-AgNPs can modulate the formation process of E. coli biofilms, shorten the growth period of biofilms and extend the dispersion period of biofilms. Tannin-AgNPs also showed the function of decreasing the production of the QS signal molecule. The proposed strategy of constructing a nanocomposite using AgNPs and natural components with QS inhibitory activity is effective and promising for inhibiting the formation of biofilms.
Collapse
Affiliation(s)
- Lulu Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China..
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wang XY, Xie J. Quorum Sensing System-Regulated Proteins Affect the Spoilage Potential of Co-cultured Acinetobacter johnsonii and Pseudomonas fluorescens From Spoiled Bigeye Tuna ( Thunnus obesus) as Determined by Proteomic Analysis. Front Microbiol 2020; 11:940. [PMID: 32477317 PMCID: PMC7240109 DOI: 10.3389/fmicb.2020.00940] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
Food spoilage by certain species of bacteria is reported to be regulated by quorum sensing (QS). Acinetobacter johnsonii and Pseudomonas fluorescens, the major specific spoilage organisms, are found to be limited in their QS and co-culture interactions. The aim of this study was to determine how QS-regulated proteins affect the spoilage potential of co-cultured A. johnsonii and P. fluorescens obtained from spoiled bigeye tuna (Thunnus obesus) using a proteomics approach. The A. johnsonii, P. fluorescens, and their co-culture tested the N-acyl-homoserine lactone (AHL) activities using reporter Chromobacterium violaceum CV026 and LC-MS/MS in qualitative and quantitative approaches, respectively. These latter showed that, of the 470 proteins and 444 proteins in A. johnsonii (A) and P. fluorescens (P), respectively, 80 were significantly up-regulated and 97 were significantly down-regulated in A vs. AP, whereas 90 were up-regulated and 65 were down-regulated in P vs. AP. The differentially expressed proteins included the AI-2E family transporter OS, 50S ribosomal protein L3, thioredoxin reductase OS, cysteine synthase CysM OS, DNA-binding response regulator, and amino acid ABC transporter ATPase OS. The cellular process (GO:0009987), metabolic process (GO:0008152), and single-organism process (GO:0044699) were classified into the gene ontology (GO) term. In addition, energy production and conversion, amino acid transport and metabolism, translation, ribosomal structure and biogenesis, post-translational modification, protein turnover, and chaperones were distributed into the clusters of orthologous groups of proteins (COG) terms. The KEGG pathways revealed that 84 and 77 differentially expressed proteins were divided into 20 KEGG pathways in A vs. AP and P vs. AP, respectively, and amino acid metabolism, carbohydrate metabolism, energy metabolism, and translation were significantly enriched. Proteins that correlated with the spoilage-related metabolic pathways, including thioredoxin reductase OS, cysteine synthase OS, and pyridoxal phosphate-dependent enzyme family protein OS, were identified. AI-2E family transporter OS and LuxR family transcriptional regulator OS were identified that related to the QS system. These findings provide a differential proteomic profile of co-culture in A. johnsonii and P. fluorescens, and have potential applications in QS and the regulation of spoilage potential.
Collapse
Affiliation(s)
- Xin-Yun Wang
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
30
|
Li B, Yang X. Rutin-loaded cellulose acetate/poly(ethylene oxide) fiber membrane fabricated by electrospinning: A bioactive material. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110601. [DOI: 10.1016/j.msec.2019.110601] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 11/25/2019] [Accepted: 12/23/2019] [Indexed: 01/16/2023]
|
31
|
Šimunović K, Ramić D, Xu C, Smole Možina S. Modulation of Campylobacter jejuni Motility, Adhesion to Polystyrene Surfaces, and Invasion of INT407 Cells by Quorum-Sensing Inhibition. Microorganisms 2020; 8:E104. [PMID: 31940805 PMCID: PMC7022965 DOI: 10.3390/microorganisms8010104] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 11/17/2022] Open
Abstract
Campylobacter jejuni is a major foodborne pathogen, and the LuxS-mediated quorum-sensing (QS) system influences its motility, biofilm formation, invasion, host colonization, and virulence. QS therefore represents a target for the control of C. jejuni. The aim of this study was to investigate the correlation of QS inhibition with changes in C. jejuni motility, adhesion to polystyrene surfaces, and adhesion to and invasion of INT407 cells. This was achieved by studying (i) the luxS-deficient mutant and (ii) treatment of C. jejuni with 20 natural extracts as six essential oils, 11 ethanolic extracts, and three pure compounds. Compared to the wild-type, the ΔluxS mutant showed decreased motility, adhesion to polystyrene surfaces, and invasion of INT407 cells. The anti-QS effects of the treatments (n = 15/20) were assayed using Vibrio harveyi BB170 bioluminescence. Moderate positive correlation was shown between C. jejuni QS reduction and reduced motility (τ = 0.492, p = 0.024), adhesion to polystyrene surfaces (τ = 0.419, p = 0.008), and invasion (r = 0.394, p = 0.068). The best overall effect was achieved with a Sedum rosea (roseroot) extract, with 96% QS reduction, a 1.41 log (96%) decrease in adhesion to polystyrene surfaces, and an 82% decrease in invasion. We show that natural extracts can reduce motility, adhesion to polystyrene surfaces, and invasion of INT407 cells by C. jejuni through modulation of the LuxS (QS) system.
Collapse
Affiliation(s)
- Katarina Šimunović
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia (D.R.)
| | - Dina Ramić
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia (D.R.)
| | - Changyun Xu
- College of Veterinary Medicine, Iowa State University, 1800 Christensen Dr, Ames, IA 50011, USA;
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia (D.R.)
| |
Collapse
|
32
|
Deepika MS, Thangam R, Sundarraj S, Sheena TS, Sivasubramanian S, Kulandaivel J, Thirumurugan R. Co-delivery of Diverse Therapeutic Compounds Using PEG–PLGA Nanoparticle Cargo against Drug-Resistant Bacteria: An Improved Anti-biofilm Strategy. ACS APPLIED BIO MATERIALS 2019; 3:385-399. [DOI: 10.1021/acsabm.9b00850] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Murugesan Sathiya Deepika
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Ramar Thangam
- Centre for Academic and Research Excellence (CARE), CSIR-Central Leather Research Institute, Chennai, Tamil Nadu 600 020, India
| | - Shenbagamoorthy Sundarraj
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology (Deemed to be University), Jeppiaar Nagar, Chennai, Tamil Nadu 600 119, India
| | - Thankaraj Salammal Sheena
- Centre for Nanoscience and Nanotechnology, Department of Physics, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | | | - Jeganathan Kulandaivel
- Centre for Nanoscience and Nanotechnology, Department of Physics, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Ramasamy Thirumurugan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| |
Collapse
|
33
|
Hassan YI, Kosir V, Yin X, Ross K, Diarra MS. Grape Pomace as a Promising Antimicrobial Alternative in Feed: A Critical Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9705-9718. [PMID: 31393722 DOI: 10.1021/acs.jafc.9b02861] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antimicrobial resistance is among the most urgent global challenges facing sustainable animal production systems. The use of antibiotics as growth promoters and for infectious disease prevention in intensive animal-farming practices has translated into the selection and spread of antimicrobial resistance genes in an unprecedented fashion. Several multi-resistant bacterial strains have been isolated from food-producing animals, thus constituting an alarming food-safety issue. Many industrial byproducts with potential antimicrobial properties are currently being investigated to identify empirical and affordable solutions/alternatives that can potentially be used in feed for animals. Grape pomace is among such byproducts that gained the attention as a result of its low cost, abundance, and, most importantly, its bioactive and antibacterial properties. This review discusses the recently reported studies with regard to exploring the use of grape pomace (and its extracts) in animal production to control pathogens, along with the promotion of beneficial bacterial species in the gut to ultimately alleviate antibacterial resistance. The review further summarizes realistic expectations connected with grape pomace usage and lists the still-to-be-addressed concerns about its application in animal agriculture.
Collapse
Affiliation(s)
- Yousef I Hassan
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , Guelph , Ontario N1G 5C9 , Canada
| | - Veronika Kosir
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , Guelph , Ontario N1G 5C9 , Canada
| | - Xianhua Yin
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , Guelph , Ontario N1G 5C9 , Canada
| | - Kelly Ross
- Summerland Research and Development Centre , Agriculture and Agri-Food Canada , Summerland , British Columbia V0H 1Z0 , Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , Guelph , Ontario N1G 5C9 , Canada
| |
Collapse
|
34
|
Xu Z, Li K, Pan T, Liu J, Li B, Li C, Wang S, Diao Y, Liu X. Lonicerin, an anti-algE flavonoid against Pseudomonas aeruginosa virulence screened from Shuanghuanglian formula by molecule docking based strategy. JOURNAL OF ETHNOPHARMACOLOGY 2019; 239:111909. [PMID: 31026553 DOI: 10.1016/j.jep.2019.111909] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Shuanghuanglian formula (SF) is a famous antimicrobial and antiviral traditional Chinese medicine that is made of Lonicera japonica Thunb., Scutellaria baicalensis Georgi, and Forsythia suspensa (Thunb.) Vahl. According to the Chinese Pharmacopoeia, the SF is commonly administered in the forms of oral liquid, tablets, and injection. It has long been used to treat acute respiratory tract infections, especially lung infection. AIM OF THE STUDY In the light of the increasing incidence of multidrug resistance to conventional antibiotics, the aim of this study was to screen potential anti-virulence agents against Pseudomonas aeruginosa from the extract of the SF. MATERIALS AND METHODS The SF was used for effective compounds screening via the combination of the molecule docking approach and ultra-high-performance liquid chromatography-quadrupole/time of flight mass spectrometry. Fifty-one anti-virulence-related proteins were docked, 26 identified compounds were from SF. Subsequently, the top-scoring screened compound was assessed via bioactive-related assays, including the quantification of alginate biosynthesis, anti-biofilm assays, and the A549 human lung cells infection. RESULT A flavonoid Lonicerin was found to be bonded with the active site of the alginate secretion protein (AlgE) with the highest score in molecule docking. Furthermore, we validated that Lonicerin could significantly reduce alginate secretion (25 μg/mL) and biofilm formation (12.5 μg/mL) at a sub-MIC concentration without inhibiting the proliferation of P. aeruginosa or influencing the expression of AlgE, which suggested that Lonicerin may directly inhibit AlgE. In addition, Lonicerin was proven to inhibit the infection of P. aeruginosa in the A549 cells. CONCLUSION This work reported on the first potential AlgE antagonist that was derived from herbal resources. Lonicerin was proven to be an effective inhibitor in-vitro of P. aeruginosa infection.
Collapse
Affiliation(s)
- Zhongren Xu
- College of Pharmacy, Dalian Medical University, Dalian, PR China
| | - Kun Li
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, PR China
| | - Taowen Pan
- Institute of Integrative Medicine, Dalian Medical University, Dalian, PR China
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian, PR China
| | - Bin Li
- College of Pharmacy, Dalian Medical University, Dalian, PR China
| | - Chuanxun Li
- College of Pharmacy, Dalian Medical University, Dalian, PR China
| | - Shouyu Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Yunpeng Diao
- College of Pharmacy, Dalian Medical University, Dalian, PR China.
| | - Xinguang Liu
- Institute of Integrative Medicine, Dalian Medical University, Dalian, PR China.
| |
Collapse
|
35
|
Mol N, Peng L, Esnault E, Quéré P, Haagsman HP, Veldhuizen EJA. Avian pathogenic Escherichia coli infection of a chicken lung epithelial cell line. Vet Immunol Immunopathol 2019; 210:55-59. [PMID: 30947980 DOI: 10.1016/j.vetimm.2019.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 02/02/2023]
Abstract
Virulent strains of Escherichia coli (Avian Pathogenic E. Coli: APEC) can cause initial infection of the respiratory tract in chickens potentially leading to systemic infection called colibacillosis, which remains a major cause of economic losses in the poultry industry. The role of epithelial lung cells as first targets of APEC and in initiating the innate immune response is unclear and was investigated in this study. APEC was able to adhere and subsequently invade cells from the chicken lung epithelial CLEC213 cell line exhibiting pneumocyte type II-like characteristics. Invasion was confirmed using confocal microscopy after infection with GFP-labelled APEC. Moreover, the infection resulted in a significant increase in IL-8 gene expression, a chemo-attractant of macrophages and heterophils. Gene expression of interferon α and β were not significantly upregulated and chicken Surfactant Protein A, also did not show a significant upregulation on either gene or protein level. The immune response of CLEC213 cells towards APEC was shown to be similar to stimulation with E. coli LPS. These results establish CLEC213 cells as a novel model system for studying bacterial infection of the lung epithelium and show that these cells may play a role in the initial innate response towards bacterial pathogens.
Collapse
Affiliation(s)
- Noëlle Mol
- Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Lianci Peng
- Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Evelyne Esnault
- INRA, Université François Rabelais de Tours, UMR 1282 Infectiologie et Santé Publique, 37380, Nouzilly, France
| | - Pascale Quéré
- INRA, Université François Rabelais de Tours, UMR 1282 Infectiologie et Santé Publique, 37380, Nouzilly, France
| | - Henk P Haagsman
- Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Edwin J A Veldhuizen
- Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
36
|
Anti-bacterial activity of baicalin against APEC through inhibition of quorum sensing and inflammatory responses. Sci Rep 2019; 9:4063. [PMID: 30858423 PMCID: PMC6411720 DOI: 10.1038/s41598-019-40684-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/15/2019] [Indexed: 01/30/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC), collectively known as causative agent of extraintestinal infections, is an important cause of morbidity and mortality in poultry. Currently, quorum sensing (QS), biofilm formation and virulence factors are considered as novel prospective targets for antimicrobial therapy to control APEC invasion. In addition, inflammatory responses are also served as the major pathological features of APEC invasion. This study was aimed to explore the effect of baicalin on APEC and APEC-induced inflammatory responses. After treatment with baicalin, we mainly examined the AI-2 secretion, biofilm formation, expression of virulence genes of APEC, and the levels of inflammatory cytokines, as well as the expression of NF-κB pathway. Our results showed that baicalin significantly inhibited the QS via decreasing the AI-2 secretion, biofilm formation, and the expression of virulence genes of APEC such as LsrB, LsrK, LuxS, pfs, H-NS, fimA, fimB, fyuA, csgA, csgB, and rpoS. Moreover, baicalin significantly attenuated the release of lactate dehydrogenase (LDH), and the adhesion of APEC to chicken type II pneumocytes to reduce cell damage. Furthermore, baicalin also inhibited the expression of pro-inflammatory cytokines and NF-κB activation. Thus, our data revealed that baicalin could interfere with the quorum sensing, biofilm formation and virulence genes expression to relieve the APEC pathogenicity. Additionally, baicalin decreased the inflammatory responses of chicken type II pneumocytes induced by APEC. Taken together, these data provide a novel potential pharmaco-therapeutic approach to chicken colibacillosis.
Collapse
|
37
|
Synthesis of florisil materials modified with aliphatic or aromatic groups and the application for pipette-tip solid-phase extraction of rutin in orange peel. J Sep Sci 2018; 41:3716-3723. [DOI: 10.1002/jssc.201800629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/18/2018] [Accepted: 08/06/2018] [Indexed: 01/31/2023]
|
38
|
Pathogenic flora composition and overview of the trends used for bacterial pathogenicity identifications. Microb Pathog 2018; 121:139-146. [DOI: 10.1016/j.micpath.2018.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 04/28/2018] [Accepted: 05/04/2018] [Indexed: 11/19/2022]
|