1
|
Muneeb M, Khan EU, Ali M, Suleman M, Shaheen MS, Zafar MS, Ahmad S. Effects of replacing antibiotics with probiotics and antimicrobial peptides on performance, gut health, carcass traits, meat quality, and welfare in broilers infected with Eimeria and Clostridium perfringens. Trop Anim Health Prod 2025; 57:184. [PMID: 40272630 DOI: 10.1007/s11250-025-04441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/11/2025] [Indexed: 05/23/2025]
Abstract
This study evaluated the effectiveness of antibiotic, probiotic, and antimicrobial peptide (AMP) supplements in mitigating adverse consequences of necrotic enteritis (NE) in broilers. In total, 720 one-day-old (Ross-308) male broiler chicks were randomly assigned to five distinct feeding regimens (each treatment consisting of six replicates of 24 birds) including: (1) negative control (NC), fed only basal diet; (2) positive control (PC); with C. perfringens challenge + basal diet; (3) CP-Ab: challenged + virginiamycin (Stafac® 500) at 200 g/ton, (4) CP-Pro: challenged + 200 g/ton B. subtilis PB6 (Clostat dry®) probiotic additive, and (5) CP-LS2: challenged and fed an antimicrobial peptide (LassoTide Plus®) at 200 g/ton. The NE challenge was induced by administering 10X coccidia vaccine on day 15 followed by inoculation with a pathogenic field strain of C. perfringens type G (1 × 108 CFU/ml/ bird; 1 ml) on days 19 and 20 through oral gavage. Feeding AMP and probiotic to the NE-affected broilers resulted in 23.93% and 19.70% respectively higher body weight gain and 76.59% and 70.27% lower mortality compared to the PC. Similarly, supplementation with AMP improved (P < 0.05) gut morphology, carcass yield (5.82%), meat water holding capacity (14.73%), and reduced cooking loss (10.01%), dripping loss (20.87%), and shear force (25%) as compared to the PC. Additionally, the excreta score, litter quality and welfare attributes were significantly ameliorated (P < 0.05) with AMP addition. In conclusion, the findings suggest that AMP outperformed both virginiamycin and probiotic, demonstrating its potential as a superior substitute for AGPs in broilers.
Collapse
Affiliation(s)
- Muhammad Muneeb
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ehsaan Ullah Khan
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mubashar Ali
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Suleman
- Department of Pathology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Shabir Shaheen
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Shahbaz Zafar
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Sohail Ahmad
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
2
|
Rezaei AR, Ates F, Sulik A, Toczyłowski K. 'Smart', microbiome-sparing antibacterial therapy with a focus on the novel Lolamicin: an overview. Infection 2025:10.1007/s15010-025-02538-4. [PMID: 40220252 DOI: 10.1007/s15010-025-02538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
PURPOSE Antibiotic resistance (AR) is an escalating worldwide health emergency, requiring inventive strategies for antibiotic treatment. This review examines the tactics used in designing smart antibiotics, with a specific emphasis on the mechanism of action of lolamicin, a newly developed microbiome-sparing antibiotic. METHODS We review the recent advances in smart antibiotic development, particularly those aiming to preserve the gut microbiome while effectively targeting pathogens. The study focuses on lolamicin's selective targeting mechanism, its inhibition of the LolCDE complex in Gram-negative bacteria. RESULTS Lolamicin works by blocking the LolCDE complex, which is crucial for transporting lipoproteins in Gramnegative bacteria. It offers a significant improvement compared to conventional antibiotics and other microbiomesparing options by safeguarding the microbiome and reducing the development of resistance. However, its limited range of effectiveness - namely against certain harmful bacteria such as Pseudomonas aeruginosa - and the possibility of bacteria becoming resistant to it, remain areas of concern. CONCLUSION Lolamicin presents a hopeful resolution by selectively attacking Gram-negative bacteria while leaving the beneficial gut flora unharmed. Further investigation and rigorous clinical testing are essential to fully harness its promise and confirm its long-term utility in combating antibiotic resistance.
Collapse
Affiliation(s)
- Ahmad Reza Rezaei
- 1Department of Pediatric Infectious Diseases, Medical University of Bialystok, Białystok, Poland
| | - Furkan Ates
- 1Department of Pediatric Infectious Diseases, Medical University of Bialystok, Białystok, Poland
| | - Artur Sulik
- 1Department of Pediatric Infectious Diseases, Medical University of Bialystok, Białystok, Poland
| | - Kacper Toczyłowski
- 1Department of Pediatric Infectious Diseases, Medical University of Bialystok, Białystok, Poland.
| |
Collapse
|
3
|
Muneeb M, Khan EU, Ali M, Haque MNU, Khan MUZ, Ahmad S. Comparative Effects of Antibiotic and Antimicrobial Peptide on Growth Performance, Gut Morphology, Intestinal Lesion Score, Ileal Microbial Counts, and Immune Status in Broilers Challenged with Necrotic Enteritis. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10448-y. [PMID: 39789384 DOI: 10.1007/s12602-025-10448-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
This experiment aimed to compare the efficacy of an antimicrobial peptide (AMP) with a conventional antibiotic growth promoter (AGP) during necrotic enteritis (NE) challenge in broilers. In total, 720 1-day-old exclusively male broiler chicks (Ross-308) were allocated to five treatments, each with six replicates of 24 birds (n = 144/treatment), for 35 days. The treatments were as follows: (1) uninfected control (UC) with basal diet, (2) infected control (IC) with C. perfringens challenge and basal diet, (3) CP-AGP with C. perfringens challenge and 200 g/ton enramycin throughout trial, (4) CP-AMP1 with C. perfringens challenge and 200 g/ton AMP in all phases, and (5) CP-AMP2 with C. perfringens challenge and 300 g/ton AMP throughout experiment. To induce NE, the birds were predisposed with 10 × coccidia vaccine (day 15) followed by oral gavage of C. perfringens type G (1 ml; 1 × 108 CFU/ml/bird) at days 19 and 20. The results showed that AMP supplemented at 300 g/ton of diet improved body weight gain and FCR in both non-challenge (days 1-14) and challenge phases (days 15-35) as compared to the infected control (P < 0.05). Moreover, it also enhanced the livability and production efficiency factor (P < 0.0001). AMP at 300 g/ton also reduced NE lesion scores, and coccidia oocyst shedding, and positively affected intestinal morphology, gut microbial balance, immune organ weights, and HI titers against Newcastle disease (P < 0.0001). These findings suggest that AMP at 300 g/ton of diet could effectively mitigate NE and may be used as a viable substitute for AGPs in broiler diets during the NE challenge.
Collapse
Affiliation(s)
- Muhammad Muneeb
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ehsaan Ullah Khan
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mubashar Ali
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Naveed Ul Haque
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Sohail Ahmad
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
4
|
Lima LF, Oliveira KBSD, Osiro KO, Cunha VA, Franco OL. Application of antimicrobial peptides in the poultry industry. Vet Microbiol 2024; 298:110267. [PMID: 39383680 DOI: 10.1016/j.vetmic.2024.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/22/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024]
Abstract
Poultry meat production and exportation contribute significantly to the global economy. However, various infections affect poultry production and consequently affect the economy. Nowadays, antibiotics are widely used in infection treatment and prevention. Antibiotic overuse is problematic because may cause antimicrobial resistance, which can be transferred to humans directly or indirectly, affecting public health. In addition, since antibiotics for animal growth stimulation are banned, it is important to search for new molecules to overcome these difficulties. As an alternative, antimicrobial peptides (AMPs) can show immunomodulatory, antimicrobial, and growth stimulation, which makes these molecules interesting as alternatives to antibiotic use. Studying AMPs can provide new ideas for treating the most important infections that affect poultry. Besides, this can assist in reducing the resistance problem. This review aims to examine recent studies about AMPs used against pathogens that can affect the poultry industry.
Collapse
Affiliation(s)
- Letícia Ferreira Lima
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília 70790-160, Brazil
| | - Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília 70790-160, Brazil; S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco (UCDB), Campo Grande 79117-900, Brazil
| | - Karen Ofuji Osiro
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília 70790-160, Brazil
| | - Victor Albuquerque Cunha
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco (UCDB), Campo Grande 79117-900, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília 70790-160, Brazil; S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco (UCDB), Campo Grande 79117-900, Brazil; Programa de Pós-Graduação Em Patologia Molecular, Universidade de Brasília (UnB), Brasília 70910-900, Brazil.
| |
Collapse
|
5
|
Asghari Baghkheirati A, Golmohammadi R, Sekhavati MH, Razmyar J, Abyazi MA. Recombinant Antimicrobial Peptides (rAMPs); Potential Applications in Medicine and Veterinary Medicine: A Review. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3913. [PMID: 40225299 PMCID: PMC11993234 DOI: 10.30498/ijb.2024.455700.3913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/30/2024] [Indexed: 04/15/2025]
Abstract
Antibiotic resistance has become a major public health concern worldwide. Treatment of humans and animals is becoming increasingly challenging due to antibiotic resistance. Antibiotic-resistant bacteria can be transmitted from animals to humans by several routes, including direct contact, contaminated food or water, or environmental exposure. Various factors contribute to the rising problem, such as the widespread and indiscriminate exploitation of antimicrobials in both human and animal healthcare, over-prescription, misuse of antibiotics, the role of agriculture in spreading antibiotic resistance, and poor animal husbandry practices. According to the preliminary findings, recombinant antimicrobial peptides are an interesting novel area of biotechnology and medical innovation that might be employed as a secure and effective substitute for antibiotics. In this review study, we briefly examine the factors contributing to the rise of antibiotic resistance. We then introduce and discuss recombinant antimicrobial peptides as a promising strategy to address this growing problem.
Collapse
Affiliation(s)
- Amir Asghari Baghkheirati
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of Avian Health and Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Golmohammadi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Sekhavati
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Jamshid Razmyar
- Department of Avian Health and Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Ali Abyazi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Morovati S, Baghkheirati AA, Sekhavati MH, Razmyar J. A Review on cLF36, a Novel Recombinant Antimicrobial Peptide-Derived Camel Lactoferrin. Probiotics Antimicrob Proteins 2024; 16:1886-1905. [PMID: 38722550 DOI: 10.1007/s12602-024-10285-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 10/02/2024]
Abstract
Lactoferrin is an antimicrobial peptide (AMP) playing a pivotal role in numerous biological processes. The primary antimicrobial efficacy of lactoferrin is associated with its N-terminal end, which contains various peptides, such as lactoferricin and lactoferrampin. In this context, our research team has developed a refined chimeric 42-mer peptide known as cLF36 over the past few years. This peptide encompasses the complete amino acid sequence of camel lactoferrampin and partial amino acid sequence of lactoferricin. The peptide's activity against human, avian, and plant bacterial pathogens has been assessed using different biological platforms, including prokaryotic (P170 and pET) and eukaryotic (HEK293) expression systems. The peptide positively influenced the growth performance and intestinal morphology of chickens challenged with pathogen bacteria. Computational methods and in vitro studies showed the peptide's antiviral effects against hepatitis C virus, influenza virus, and rotavirus. The chimeric peptide exhibited higher activity against certain tumor cell lines compared to normal cells, which may be attributed to the peptide's interaction with negatively charged glycosaminoglycans on the surface of tumor cells. Importantly, this peptide exhibited no toxicity against host cells and demonstrated remarkable thermal and protease stability in serum. In conclusion, while our investigations suggest that the chimeric peptide, cLF36, may offer potential as a candidate or complementary option to some available antibiotics, antiviral agents, and chemical pesticides, significant uncertainties remain regarding its cost-effectiveness, as well as its pharmacodynamic and pharmacokinetic characteristics, which require further elucidation.
Collapse
Affiliation(s)
- Solmaz Morovati
- Department of Pathobiology, Division of Biotechnology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Mohammad Hadi Sekhavati
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Jamshid Razmyar
- Department of Avian Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
7
|
Ashraf MF, Zubair D, Bashir MN, Alagawany M, Ahmed S, Shah QA, Buzdar JA, Arain MA. Nutraceutical and Health-Promoting Potential of Lactoferrin, an Iron-Binding Protein in Human and Animal: Current Knowledge. Biol Trace Elem Res 2024; 202:56-72. [PMID: 37059920 PMCID: PMC10104436 DOI: 10.1007/s12011-023-03658-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
Lactoferrin is a natural cationic iron-binding glycoprotein of the transferrin family found in bovine milk and other exocrine secretions, including lacrimal fluid, saliva, and bile. Lactoferrin has been investigated for its numerous powerful influences, including anticancer, anti-inflammatory, anti-oxidant, anti-osteoporotic, antifungal, antibacterial, antiviral, immunomodulatory, hepatoprotective, and other beneficial health effects. Lactoferrin demonstrated several nutraceutical and pharmaceutical potentials and have a significant impact on improving the health of humans and animals. Lactoferrin plays a critical role in keeping the normal physiological homeostasis associated with the development of pathological disorders. The current review highlights the medicinal value, nutraceutical role, therapeutic application, and outstanding favorable health sides of lactoferrin, which would benefit from more exploration of this glycoprotein for the design of effective medicines, drugs, and pharmaceuticals for safeguarding different health issues in animals and humans.
Collapse
Affiliation(s)
| | - Dawood Zubair
- Iqraa Medical Complex, Johar Town Lahore, Punjab, Pakistan
| | | | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, 44519, Egypt.
| | - Shabbir Ahmed
- Faculty of Animal Husbandry & Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Qurban Ali Shah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan
| | - Jameel Ahmed Buzdar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan
| | - Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan.
| |
Collapse
|
8
|
Zhao ZH, Zhang CX, Li J, Zhang AZ, Zhao FF, Yu GP, Jiang N. Effect of tandem repeats of antimicrobial peptide CC34 on production of target proteins and activity of Pichia pastoris. Protein Expr Purif 2023; 212:106342. [PMID: 37536580 DOI: 10.1016/j.pep.2023.106342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Antimicrobial peptides (AMPs) are attracting attention in the fields of medicine, food, and agriculture because of their broad-spectrum antibacterial properties, low resistance, and low-residue in the body. However, the low yield and instability of the prepared AMP drugs limit their application. In this study, we designed a tetramer of the AMP CC34, constructed and transfected two recombinant expression vectors with pGAPZαA containing a haploid CC34 and tetraploid CC34 (CC34-4js) into Pichia pastoris to explore the effect of biosynthesized peptides. The results showed that CC34 and CC34-4js expression levels were 648.2 and 1105.3 mg/L, respectively, in the fermentation supernatant of P. pastoris. The CC34-4js tetramer showed no antibacterial activity, could be cleaved to the monomer using formic acid, and the hemolytic rate of the polyploid was slightly lower than that of monomeric CC34. The average daily gain, average daily feed intake, feed conversion ratio and immune organ index of rats fed CC34 and CC34-4js showed no differences. In conclusion, CC34-4js exhibited a higher yield and lower hemolysis in P. pastoris than those of CC34. Finally, CC34 and CC34-4js enterokinase lysates showed similar antibacterial activity and both expressed peptides potentially improved the growth performance and organ indices of rats.
Collapse
Affiliation(s)
- Zi-Han Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, 163319, China
| | - Chen-Xue Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, 163319, China
| | - Jun Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, 163319, China
| | - Ai-Zhong Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, 163319, China
| | - Fang-Fang Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, 163319, China
| | - Guo-Ping Yu
- Food Science College of Northeast Agricultural University, Harbin, 150030, China.
| | - Ning Jiang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, 163319, China.
| |
Collapse
|
9
|
Abreu R, Semedo-Lemsaddek T, Cunha E, Tavares L, Oliveira M. Antimicrobial Drug Resistance in Poultry Production: Current Status and Innovative Strategies for Bacterial Control. Microorganisms 2023; 11:microorganisms11040953. [PMID: 37110376 PMCID: PMC10141167 DOI: 10.3390/microorganisms11040953] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
The world population’s significant increase has promoted a higher consumption of poultry products, which must meet the specified demand while maintaining their quality and safety. It is well known that conventional antimicrobials (antibiotics) have been used in livestock production, including poultry, as a preventive measure against or for the treatment of infectious bacterial diseases. Unfortunately, the use and misuse of these compounds has led to the development and dissemination of antimicrobial drug resistance, which is currently a serious public health concern. Multidrug-resistant bacteria are on the rise, being responsible for serious infections in humans and animals; hence, the goal of this review is to discuss the consequences of antimicrobial drug resistance in poultry production, focusing on the current status of this agroeconomic sector. Novel bacterial control strategies under investigation for application in this industry are also described. These innovative approaches include antimicrobial peptides, bacteriophages, probiotics and nanoparticles. Challenges related to the application of these methods are also discussed.
Collapse
Affiliation(s)
- Raquel Abreu
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Teresa Semedo-Lemsaddek
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Eva Cunha
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Manuela Oliveira
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
10
|
Hwang YE, Im S, Cho JH, Lee W, Cho BK, Sung BH, Kim SC. Semi-Biosynthetic Production of Surface-Binding Adhesive Antimicrobial Peptides Using Intein-Mediated Protein Ligation. Int J Mol Sci 2022; 23:15202. [PMID: 36499519 PMCID: PMC9738365 DOI: 10.3390/ijms232315202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Microbial infections remain a global health concern, calling for the urgent need to implement effective prevention measures. Antimicrobial peptides (AMPs) have been extensively studied as potential antimicrobial coating agents. However, an efficient and economical method for AMP production is lacking. Here, we synthesized the direct coating adhesive AMP, NKC-DOPA5, composed of NKC, a potent AMP, and repeats of the adhesive amino acid 3,4-dihydroxyphenylalanine (DOPA) via an intein-mediated protein ligation strategy. NKC was expressed as a soluble fusion protein His-NKC-GyrA (HNG) in Escherichia coli, comprising an N-terminal 6× His-tag and a C-terminal Mxe GyrA intein. The HNG protein was efficiently produced in a 500-L fermenter, with a titer of 1.63 g/L. The NKC-thioester was released from the purified HNG fusion protein by thiol attack and subsequently ligated with chemically synthesized Cys-DOPA5. The ligated peptide His-NKC-Cys-DOPA5 was obtained at a yield of 88.7%. The purified His-NKC-Cys-DOPA5 possessed surface-binding and antimicrobial properties identical to those of the peptide obtained via solid-phase peptide synthesis. His-NKC-Cys-DOPA5 can be applied as a practical and functional antimicrobial coating to various materials, such as medical devices and home appliances.
Collapse
Affiliation(s)
- Young Eun Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seonghun Im
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Center for Industrialization of Agricultural and Livestock Microorganisms (CIALM), Jeongeup 56212, Republic of Korea
| | - Ju Hyun Cho
- Division of Applied Life Science (BK21Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
11
|
Nguyen TTT, Shahin K, Allan B, Sarfraz M, Wheler C, Gerdts V, Köster W, Dar A. Enhancement of protective efficacy of innate immunostimulant based formulations against yolk sac infection in young chicks. Poult Sci 2022; 101:102119. [PMID: 36087444 PMCID: PMC9468504 DOI: 10.1016/j.psj.2022.102119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/23/2022] Open
Abstract
This study was conducted to characterize and compare the protective effects of various innate immune stimulants against yolk sac infection (YSI) caused by an avian pathogenic Escherichia coli in young chicks. The immune stimulants were administered alone or in various combinations of unmethylated CpG oligodeoxynucleotides (CpG), polyinosinic:polycytidylic acid (Poly I:C), and avian antimicrobial peptides (AMPs). Routes included in ovo or in ovo followed by a subcutaneous (S/C) injection. CpG alone and in combination with Poly I:C, truncated avian cathelicidin (CATH)-1(6-26), avian beta defensin (AvBD)1, and CATH-1(6-26) + AvBD1, were administered in ovo to 18-day-old embryonated eggs for gene expression and challenge studies. Next, CpG alone and the potentially effective formulation of CpG + Poly I:C, were administrated via the in ovo route using 40 embryonated eggs. At 1 day post-hatch, half of each group also received their respective treatments via the S/C route. Four hours later, all chicks were challenged using E. coli strain EC317 and mortalities were recorded for 14 d. The first challenge study revealed that amongst the single use and combinations of CpG with different innate immune stimulants, a higher protection and a lower clinical score were offered by the combination of CpG + Poly I:C. The second challenge study showed that this combination (CpG + Poly I:C) provides an even higher level of protection when a second dose is administered via the S/C route at 1 day post-hatch. The current research highlights the efficacy of a combination of CpG + Poly I:C administered either in ovo or in ovo along with a S/C injection and its potential use as an alternative to antibiotics against yolk sac infection in young chicks.
Collapse
Affiliation(s)
- Thuy Thi Thu Nguyen
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada.
| | - Khalid Shahin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Brenda Allan
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Mishal Sarfraz
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Colette Wheler
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Wolfgang Köster
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Arshud Dar
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| |
Collapse
|
12
|
Dai Z, Shang L, Wang F, Zeng X, Yu H, Liu L, Zhou J, Qiao S. Effects of Antimicrobial Peptide Microcin C7 on Growth Performance, Immune and Intestinal Barrier Functions, and Cecal Microbiota of Broilers. Front Vet Sci 2022; 8:813629. [PMID: 35071396 PMCID: PMC8780134 DOI: 10.3389/fvets.2021.813629] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Microcin C7 is an antimicrobial peptide produced by Escherichia coli, composed of a heptapeptide with a modified adenosine monophosphate. This study was performed to evaluate the effects of Microcin C7 as a potential substrate to traditional antibiotics on growth performance, immune functions, intestinal barrier, and cecal microbiota of broilers. In the current study, 300 healthy Arbor Acres broiler chicks were randomly assigned to one of five treatments including a corn-soybean basal diet and basal diet supplemented with antibiotic or 2, 4, and 6 mg/kg Microcin C7. Results showed that Microcin C7 significantly decreased the F/G ratio of broilers; significantly increased the levels of serum cytokine IL-10, immunoglobulins IgG and IgM, and ileal sIgA secretion; significantly decreased the level of serum cytokine TNF-α. Microcin C7 significantly increased villus height and V/C ratio and significantly decreased crypt depth in small intestine of broilers. Microcin C7 significantly increased gene expression of tight junction protein Occludin and ZO-1 and significantly decreased gene expression of pro-inflammatory and chemokine TNF-α, IL-8, IFN-γ, Toll-like receptors TLR2 and TLR4, and downstream molecular MyD88 in the jejunum of broilers. Microcin C7 significantly increased the number of Lactobacillus and decreased the number of total bacteria and Escherichia coli in the cecum of broilers. Microcin C7 also significantly increased short-chain fatty acid (SCFA) and lactic acid levels in the ileum and cecum of broilers. In conclusion, diet supplemented with Microcin C7 significantly improved growth performance, strengthened immune functions, enhanced intestinal barrier, and regulated cecal microbiota of broilers. Therefore, the antimicrobial peptide Microcin C7 may have the potential to be an ideal alternative to antibiotic.
Collapse
Affiliation(s)
- Ziqi Dai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Bio-Feed Additives Key Laboratory, Beijing, China
| | - Lijun Shang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Bio-Feed Additives Key Laboratory, Beijing, China
| | - Fengming Wang
- Fengguangde Laboratory of Sichuan Tieqilishi Group, Mianyang, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Bio-Feed Additives Key Laboratory, Beijing, China
| | - Haitao Yu
- Department of Immunology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Lu Liu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Bio-Feed Additives Key Laboratory, Beijing, China
| | - Jianchuan Zhou
- Fengguangde Laboratory of Sichuan Tieqilishi Group, Mianyang, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Bio-Feed Additives Key Laboratory, Beijing, China
| |
Collapse
|
13
|
Roshanak S, Shahidi F, Tabatabaei Yazdi F, Javadmanesh A, Movaffagh J. Buforin I an alternative to conventional antibiotics: Evaluation of the antimicrobial properties, stability, and safety. Microb Pathog 2021; 161:105301. [PMID: 34822969 DOI: 10.1016/j.micpath.2021.105301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/28/2022]
Abstract
Cationic antimicrobial peptides are being developed as a promising class of antimicrobial sub-stances. The introduction of a new antibiotic component requires a comprehensive study of its properties so that it can be relied upon to continue laboratory procedures and clinical trials on laboratory animals or human volunteers. Antimicrobial activity of buforin I was evaluated against 15 of the most important pathogenic bacterial and fungal strains. This was followed by assessing anti-biofilm activity, time-dependent inhibitory, thermal stability, plas-ma stability, hemolysis, and cytotoxic activities. The range of obtained MICs was between 4 and 16 μg/mL. The most resistant and most sensitive microbial strains were S. salivarius and C. perfringens, respectively. Buforin I not only inhibited biofilm formation, but also showed a high biofilm radiation activity. Buforin I was stable in human plasma and also at different temperatures including 40, 60, and 80 °C. Although no significant anti-cancer properties were observed for buforin I, the lack of cytotoxicity as well as the lack of hemolytic activity confirm its safety. The high therapeutic index indicated that buforin I has a considerable pharmaceutical potential and can be a reasonable candidate to replace antibiotics or administered in combination with antibiotics to increase the effectiveness as well as reduce the dose of antibiotics.
Collapse
Affiliation(s)
- Sahar Roshanak
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Fakhri Shahidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Farideh Tabatabaei Yazdi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Ali Javadmanesh
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Jebraeil Movaffagh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Recombinant Expression of a Plant-Derived Dimeric Antifungal Peptide (DiSkh-AMP1) Joined by a Flexible Linker in Escherichia coli and Evaluation of Its Biological Activity In Vitro. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10225-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Sholikin M, Sadarman S, Irawan A, Prihambodo T, Qomariyah N, Wahyudi A, Nomura J, Nahrowi N, Jayanegara A. Antimicrobial peptides as an additive in broiler chicken nutrition:
a meta-analysis of bird performance, nutrient digestibility
and serum metabolites. JOURNAL OF ANIMAL AND FEED SCIENCES 2021. [DOI: 10.22358/jafs/136400/2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Javadmanesh A, Mohammadi E, Mousavi Z, Azghandi M, Tanhaiean A. Antibacterial effects assessment on some livestock pathogens, thermal stability and proposing a probable reason for different levels of activity of thanatin. Sci Rep 2021; 11:10890. [PMID: 34035354 PMCID: PMC8149819 DOI: 10.1038/s41598-021-90313-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 05/06/2021] [Indexed: 02/04/2023] Open
Abstract
There is a continuing need to prevent the increasing use of common antibiotic and find the replacement to combat the drug/antibiotic resistant bacteria such as antimicrobial peptides (AMPs) such as thanatin peptide. In this study, recombinant thanatin peptide was expressed in the HEK293 cell line. Then the antimicrobial properties of this peptide on some poultry and farm animal's pathogen strains were assessed. The thermal-stability of thanatin was predicted in various temperatures through in silico analysis. Afterwards, according to Minimum Inhibitory Concentration (MIC) results, Escherichia coli and Pseudomonas aeruginosa were chosen to test the hypothesis of LptA/LptD-thanatin interaction, computationally. Relative amino acid sequences and crystallography structures were retrieved and missed tertiary structures were predicted. The interaction of thanatin with LptA and LptD of Escherichia coli and Pseudomonas aeruginosa were analyzed subsequently. The antibacterial activity of thanatin peptide was evaluated between 6.25 and 100 μg/mL using minimum inhibitory concentration. Also, the amounts of minimum bactericidal concentrations (MBC) were between 12.5 and 200 μg/mL. The bioinformatics analysis followed by the in vitro assessment, demonstrated that thanatin would be thermally stable in the body temperature of poultry and farm animals. Thanatin could penetrate to the outer membrane domain of LptD in Escherichia coli and it could block the transition path of this protein while the entrance of LptD in Pseudomonas aeruginosa was blocked for thanatin by extra residues in comparison with Escherichia coli LptD. In addition, the quality of interaction, with regard to the number and distance of interactions which leads to higher binding energy for thanatin and LptD of Escherichia coli was much better than Pseudomonas aeruginosa. But the site and quality of interaction for thanatin and LptA was almost the same for Escherichia coli and Pseudomonas aeruginosa. Accordingly, thanatin can prevent the assembly of LptA periplasmic bridge in both pathogens. The antibacterial and thermal stability of the thanatin peptide suggested that thanatin peptide might serve as a natural alternative instead of common antibiotics in the veterinary medicine. The outcome of this in silico study supports the MIC results. Therefore, a probable reason for different level of activity of thanatin against Escherichia coli and Pseudomonas aeruginosa might be the quality of LptA/LptD-thanatin interaction.
Collapse
Affiliation(s)
- Ali Javadmanesh
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran, 9177948974.
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Elyas Mohammadi
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran, 9177948974
- Faculty of Pharmacy and 3P Medicine Laboratory, International Research Agendas Programme, Medical University of Gdańsk, Gdańsk, Poland
| | - Zahra Mousavi
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran, 9177948974
| | - Marjan Azghandi
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran, 9177948974
| | - Abass Tanhaiean
- Department of Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
17
|
Nazeer N, Uribe-Diaz S, Rodriguez-Lecompte JC, Ahmed M. Antimicrobial peptides as an alternative to relieve antimicrobial growth promoters in poultry. Br Poult Sci 2021; 62:672-685. [PMID: 33908289 DOI: 10.1080/00071668.2021.1919993] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. This review describes different classes of antimicrobial peptides (AMP) found in the gastrointestinal (GI) tract of avian species, and their antimicrobial and immunomodulatory activities. The potential benefits of synthetic AMP in poultry production are examined, in the context of the use of AMP as alternatives to antimicrobial growth promoters (AGP).2. Since the mid-1950s, antibiotic growth promoters (AGP) have been used in feed at low prophylactic doses to modulate the homoeostasis of intestinal microbiota, decreasing the risk of intestinal dysbacteriosis and the growth of pathogens within the avian gut. Over the last three decades, AGP have faced major regulatory restrictions due to concerns of generating antimicrobial resistance (AMR). It is now well documented that the rate of infectious disease outbreaks is higher in flocks that are not fed prophylactic antibiotics, resulting in a compensatory increase in antimicrobial use for therapeutic purposes.3. Endogenous natural AMP production is associated with the presence of microbiota and their interaction with the intestinal epithelial and lamina propria lymphoid cells. Their antimicrobial activity shapes the beneficial microbiota population and controls intestinal pathogens such Clostridium and Salmonella spp., and stimulates the development and maturation of the local immune system.4. Similar to AGP, AMP can establish a well-balanced gut beneficial microbiota for adequate immune-competence, animal health and high growth performance parameters such as feed intake, daily weight, feed conversion and accumulated mortality.5. Antimicrobial proteins and peptides constitute an essential part of the innate immune system of all organisms and protect the host from invading pathogenic bacteria, viruses, fungi, and parasites by interacting with the negatively charged pathogen membranes.
Collapse
Affiliation(s)
- N Nazeer
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Canada
| | - S Uribe-Diaz
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Canada.,Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | | | - M Ahmed
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Canada
| |
Collapse
|
18
|
Ligtenberg AJM, Bikker FJ, Bolscher JGM. LFchimera: a synthetic mimic of the two antimicrobial domains of bovine lactoferrin. Biochem Cell Biol 2021; 99:128-137. [PMID: 33560169 DOI: 10.1139/bcb-2020-0285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Saliva is essential for the maintenance of oral health. When salivary flow is impaired, the risk of various oral diseases such as caries and candidiasis increases drastically. Under healthy conditions, saliva provides effective protection against microbial colonization by the collaborative action of numerous host-defense molecules. This review describes how saliva has been the guideline for the design and characterization of a heterodimeric antimicrobial construct called LFchimera. This construct mimics the helical parts of two antimicrobial domains in the crystal structure of bovine lactoferrin. It shows high antimicrobial activity against a broad spectrum of Gram-positive and Gram-negative bacteria, fungi, and parasites including biowarfare agents such as Bacillus anthracis, Burkholderia pseudomallei, and Yersinia pestis. Further, sublethal concentrations of LFchimera inhibited biofilm formation, the invasiveness of HeLa cells by Yersinia spp., and prevented haemolysis of enteropathogenic Escherichia coli, demonstrating the versatility of these peptides.
Collapse
Affiliation(s)
- A J M Ligtenberg
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, G. Mahlerlaan 3004, 1081LA Amsterdam, the Netherlands.,Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, G. Mahlerlaan 3004, 1081LA Amsterdam, the Netherlands
| | - F J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, G. Mahlerlaan 3004, 1081LA Amsterdam, the Netherlands.,Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, G. Mahlerlaan 3004, 1081LA Amsterdam, the Netherlands
| | - J G M Bolscher
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, G. Mahlerlaan 3004, 1081LA Amsterdam, the Netherlands.,Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, G. Mahlerlaan 3004, 1081LA Amsterdam, the Netherlands
| |
Collapse
|
19
|
Tanhaian A, Mohammadi E, Vakili-Ghartavol R, Saberi MR, Mirzayi M, Jaafari MR. In silico and In vitro Investigation of a Likely Pathway for Anti-Cancerous Effect of Thrombocidin-1 as a Novel Anticancer Peptide. Protein Pept Lett 2021; 27:751-762. [PMID: 32072885 DOI: 10.2174/0929866527666200219115129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/22/2019] [Accepted: 12/16/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Antimicrobial and antifungal activities of Thrombocidin-1 (TC-1) is shown previously, however,.the anti-cancerous feature of this peptide is still uncovered. OBJECTIVE The objective is to evaluate anti-cancerous feature of recombinant TC-1. METHODS In this study, based on the significant similarity of rTC-1 and IL-8 in case of coding sequence, tertiary structure, and also docking and molecular dynamic simulation (MD) results with CXCR1, a receptor which has positive correlation with different cancers, a likely pathway for anticancerous effect of rTC-1 was proposed. In addition, the coding sequence of TC-1+6xhistidine (rTC-1) was inserted into the pET22b(+) vector and cloned and expressed by E. coli BL21 and finally purified through nickel affinity column. Afterward, the retrieved rTC-1 was used in MTT assay against mouse colon adenocarcinoma, hepatocellular carcinoma, chondrosarcoma, mouse melanoma, and breast adenocarcinoma cell lines to investigate its probable anticancer application. RESULTS Docking and MD simulation results showed that rTC-1 and IL-8 share almost the same residues in the interaction with CXCR1 receptor. Besides, the stability of the rTC-1_CXCR11-38 complex was shown during 100ns MD simulation. In addition, the successful expression and purification of rTC-1 depict an 8kD peptide. The IC50 results of MTT assay revealed that rTC-1 has cytotoxic effect on C26-A and SW1353 cancerous cell lines. CONCLUSION Therefore, apart from probable anti-cancerous effect of rTC-1 on C26-A and SW1353 cell lines, this peptide may be able to mimic the anti-cancerous pathway of IL-8.
Collapse
Affiliation(s)
- Abbas Tanhaian
- School of Medicine, Shahrood University of Medical Science, Shahrood, Iran
| | - Elyas Mohammadi
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Saberi
- Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Mirzayi
- School of Medicine, Shahrood University of Medical Science, Shahrood, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Pirkhezranian Z, Tahmoorespur M, Monhemi H, Sekhavati MH. Computational Peptide Engineering Approach for Selection the Best Engendered Camel Lactoferrin-Derive Peptide with Potency to Interact with DNA. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-10012-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Effects of cLFchimera peptide on intestinal morphology, integrity, microbiota, and immune cells in broiler chickens challenged with necrotic enteritis. Sci Rep 2020; 10:17704. [PMID: 33077741 PMCID: PMC7573599 DOI: 10.1038/s41598-020-74754-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
Three hundred and sixty 1-day-old male broiler chicks were randomly allocated to 4 treatments of 6 replicates to evaluate the effects of cLFchimera, a recombinant antimicrobial peptide (AMP), on gut health attributes of broiler chickens under necrotic enteritis (NE) challenge. Treatments were as follows: (T1) unchallenged group fed with corn-soybean meal (CSM) without NE challenge and additives (NC); (T2) group fed with CSM and challenged with NE without any additives (PC); (T3) PC group supplemented with 20 mg cLFchimera/kg diet (AMP); (T4) PC group supplemented with 45 mg antibiotic (bacitracin methylene disalicylate)/kg diet (antibiotic). Birds were sampled for villi morphology, ileal microbiota, and jejunal gene expression of cytokines, tight junctions proteins, and mucin. Results showed that AMP ameliorated NE-related intestinal lesions, reduced mortality, and rehabilitated jejunal villi morphology in NE challenged birds. While the antibiotic non-selectively reduced the count of bacteria, AMP restored microflora balance in the ileum of challenged birds. cLFchimera regulated the expression of cytokines, junctional proteins, and mucin transcripts in the jejunum of NE challenged birds. In conclusion, cLFchimera can be a reliable candidate to substitute growth promoter antibiotics, while more research is required to unveil the exact mode of action of this synthetic peptide.
Collapse
|
22
|
Kaur N, Dilawari R, Kaur A, Sahni G, Rishi P. Recombinant expression, purification and PEGylation of Paneth cell peptide (cryptdin-2) with value added attributes against Staphylococcus aureus. Sci Rep 2020; 10:12164. [PMID: 32699335 PMCID: PMC7376037 DOI: 10.1038/s41598-020-69039-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
Cryptdins are disulfide-rich cationic antimicrobial peptides secreted by mouse Paneth cells and are known to exhibit potent antimicrobial activity against various deadly pathogens. Keeping in view the extremely low yield obtained from mouse Paneth cells and high cost of synthetic peptide(s), herein, we have attempted to produce cryptdin-2 in Escherichia coli using recombinant technology. To avoid lethal effects of peptide on the host cells, cryptdin-2 was expressed as a fusion protein with thioredoxin as fusion partner which yielded 40 mg/L protein in the soluble fraction. Subsequently, mature cryptdin-2 was cleaved from the fusion partner and purified by cation exchange chromatography. Since conjugation of poly(ethylene) glycol (PEG) has been known to improve the biological properties of biomolecules, therefore, we further attempted to prepare PEG-conjugated variant of cryptdin-2 using thiol specific PEGylation. Though the antimicrobial activity of PEGylated cryptdin-2 was compromised to some extent, but it was found to have enhanced serum stability for longer duration as compared to its un-modified forms. Also, it was found to exhibit reduced toxicity to the host cells. Further, its synergism with gentamicin suggests that PEGylated cryptdin-2 can be used with conventional antibiotics, thereby indicating its possibility to be used as an adjunct therapy.
Collapse
Affiliation(s)
- Navneet Kaur
- Department of Microbiology, Panjab University, Chandigarh, India.,CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | - Rahul Dilawari
- CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | - Amrita Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Girish Sahni
- CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
23
|
Tanhaieian A, Pourgonabadi S, Akbari M, Mohammadipour HS. The effective and safe method for preventing and treating bacteria-induced dental diseases by herbal plants and a recombinant peptide. J Clin Exp Dent 2020; 12:e523-e532. [PMID: 32665810 PMCID: PMC7335610 DOI: 10.4317/jced.55717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/12/2019] [Indexed: 11/15/2022] Open
Abstract
Background This study was conducted aimed at evaluating the antibacterial property of the recombinant peptide of bacteriocin entrocin P (EnP), the essential oil of Cuminum cyminum, and the extract of Ferulago angulata on some oral pathogens. Besides, the cytotoxicity of EnP was evaluated.
Material and Methods The antimicrobial property was tested on streptococcus mutans (ATCC 35668), streptococcus salivarius (ATCC 9222), streptococcus oralis (ATCC 35037), and Enterococcus faecalis (ATCC 29212), using the microbroth dilution method. The 0.2% Chlorhexidin (CHX) mouthwash was used as the control group. Besides, the cytotoxicity analysis was done on gingival fibroblasts by the MTT colorimetric method. The data were reported using descriptive methods, and analyzed by one-way ANOVA, and Tukey’s HSD test.
Results The strongest bacteriostatic and bactericidal effects of C. cyminum and F. angulata were observed for S.mutans and S. oralis, respectively (with the MIC and MBC value being 62.5 μg/mL). The antibacterial properties of EnP were comparable to those of CHX, being several times stronger than medicinal plants (1-14 μg/mL). Based on the cytotoxicity evaluation, there was no statistically significant difference observed between the cytotoxicity of the control group and that of Enp for three evaluations, except after 72 hours when the cell viability at the concentration of 3.75 µg/ml was significantly lower than that of the control group (P=0.05). However, no concentration of EnP was observed to be over 50% of the growth inhibition (IC50) of the fibroblasts for the three evaluations.
Conclusions EnP could be utilized in dental materials as a natural and safe antimicrobial agent against oral streptococci and E. faecalis, being as effective as CHX mouthwash. Key words:Antimicrobial peptide, Bacteriocin Entrocin P, Chlorhexidine, Cuminum cyminum, Enterococcus faecalis, Ferulago angulata.
Collapse
Affiliation(s)
- Abbas Tanhaieian
- Dental research center, School of Dentistry, Mashhad University of Medical Sciences Mashhad, Iran
| | - Solmaz Pourgonabadi
- Oral and maxillofacial department, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Akbari
- Department of Restorative and Cosmetic Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh-Sadat Mohammadipour
- Dental materials research center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Sampaio de Oliveira KB, Leite ML, Rodrigues GR, Duque HM, da Costa RA, Cunha VA, de Loiola Costa LS, da Cunha NB, Franco OL, Dias SC. Strategies for recombinant production of antimicrobial peptides with pharmacological potential. Expert Rev Clin Pharmacol 2020; 13:367-390. [PMID: 32357080 DOI: 10.1080/17512433.2020.1764347] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The need to develop new drugs for the control of pathogenic microorganisms has redoubled efforts to prospect for antimicrobial peptides (AMPs) from natural sources and to characterize its structure and function. These molecules present a broad spectrum of action against different microorganisms and frequently present promiscuous action, with anticancer and immunomodulatory activities. Furthermore, AMPs can be used as biopharmaceuticals in the treatment of hospital-acquired infections and other serious diseases with relevant social and economic impacts.Areas covered: The low yield and the therefore difficult extraction and purification process in AMPs are problems that limit their industrial application and scientific research. Thus, optimized heterologous expression systems were developed to significantly boost AMP yields, allow high efficiency in purification and structural optimization for the increase of therapeutic activity.Expert opinion: This review provides an update on recent developments in the recombinant production of ribosomal and non-ribosomal synthesis of AMPs and on strategies to increase the expression of genes encoding AMPs at the transcriptional and translational levels and regulation of the post-translational modifications. Moreover, there are detailed reports of AMPs that have already reached marketable status or are in the pipeline under advanced stages of preclinical testing.
Collapse
Affiliation(s)
- Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Michel Lopes Leite
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Gisele Regina Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Rosiane Andrade da Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Victor Albuquerque Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Lorena Sousa de Loiola Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Nicolau Brito da Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Octavio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Patologia Molecular, Campus Darcy Ribeiro , Brasília, Brazil.,S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco , Campo Grande, Mato Grosso do Sul, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Biologia Animal, Campus Darcy Ribeiro , Brasília, Brazil
| |
Collapse
|
25
|
Shorter Antibacterial Peptide Having High Selectivity for E. coli Membranes and Low Potential for Inducing Resistance. Microorganisms 2020; 8:microorganisms8060867. [PMID: 32521823 PMCID: PMC7356157 DOI: 10.3390/microorganisms8060867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial peptides (AMPs) have been recognised as a significant therapeutic option for mitigating resistant microbial infections. It has been found recently that Plasmodium falciparum-derived, 20 residue long, peptide 35409 had antibacterial and haemolytic activity, making it an AMP having reduced selectivity, and suggesting that it should be studied more extensively for obtaining new AMPs having activity solely targeting the bacterial membrane. Peptide 35409 was thus used as template for producing short synthetic peptides (<20 residues long) and evaluating their biological activity and relevant physicochemical characteristics for therapeutic use. Four of the sixteen short peptides evaluated here had activity against E. coli without any associated haemolytic effects. The 35409-1 derivative (17 residues long) had the best therapeutic characteristics as it had high selectivity for bacterial cells, stability in the presence of human sera, activity against E. coli multiresistant clinical isolates and was shorter than the original sequence. It had a powerful membranolytic effect and low potential for inducing resistance in bacteria. This peptide’s characteristics highlighted its potential as an alternative for combating infection caused by E. coli multiresistant bacteria and/or for designing new AMPs.
Collapse
|
26
|
Secretory Expression of a Chimeric Peptide in Lactococcus lactis: Assessment of its Cytotoxic Activity and a Deep View on Its Interaction with Cell-Surface Glycosaminoglycans by Molecular Modeling. Probiotics Antimicrob Proteins 2020; 11:1034-1041. [PMID: 30552573 DOI: 10.1007/s12602-018-9496-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nowadays, cancer remains a major cause of death affecting millions of people. Currently, the antimicrobial peptides (AMPs) as potent anticancer therapeutic agents offer specificity and low levels of side effects in cancer therapy. In the present study, a cationic chimeric peptide (cLFchimera), derived from camel lactoferrin, was expressed as a secretory peptide using P170 expression system in L. lactis. Peptide purification was carried out using Ni-NTA agarose column from culture medium with 21 μ/mL concentration. The recombinant peptide was investigated for its activity against four tumor and one normal cell line. The cLFchimera was more active against two tumor cell lines (chondrosarcoma and colorectal cancer cells), but the activity against two other tumor cell lines (hepatoma and breast cancer cell line) and normal cells was low. Finally, to have better insight into the mode of action of the peptide on cytotoxic activity, we examined the interaction of cationic peptide with two glycosaminoglycans (GAGs), heparan sulfate (HS) and chondroitin sulfate (CS), as the two most anionic molecules on the cell surface by molecular dynamic simulation. The results of in silico analysis showed that the cLFchimera interacted with HS and CS with a totally different amino acid profile. Hydrogen bonding screening in GAGs-peptide complexes revealed K21, V23 and I3, R16 are the dominant amino acids involved in peptide-HS and CS interaction, respectively. Overall, the results of this investigation showed the P170 expression system successfully expressed a cationic peptide with potent anticancer activity. Moreover, molecular docking analysis revealed the pattern of peptide interaction with negatively charged membrane molecules.
Collapse
|
27
|
Tanhaeian A, Mirzaii M, Pirkhezranian Z, Sekhavati MH. Generation of an engineered food-grade Lactococcus lactis strain for production of an antimicrobial peptide: in vitro and in silico evaluation. BMC Biotechnol 2020; 20:19. [PMID: 32228563 PMCID: PMC7106598 DOI: 10.1186/s12896-020-00612-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Foodborne pathogens and their biofilms are considered as one of the most serious problems in human health and food industry. Moreover, safety of foods is a main global concern because of the increasing use of chemical food additives. Ensuring food safety enhances interest in discovery of new alternative compounds such as antimicrobial peptides (AMPs), which can be used as bio-preservatives in the food industry. In this study, the most important antimicrobial peptides of camel milk lactoferrin (lactoferrampin and lactoferricin) were recombinantly expressed in the form of chimeric peptide (cLFchimera) in a food-grade L. lactis strain. P170 expression system was used to express secreted cLFchimera using pAMJ1653 expression vector which harbors a safe (non-antibiotic) selectable marker. RESULTS Peptide purification was carried out using Ni-NTA agarose column from culture medium with concentration of 0.13 mg/mL. The results of disk diffusion test revealed that cLFchimera had considerable antimicrobial activity against a number of major foodborne bacteria. Furthermore, this chimeric peptide showed strong and weak inhibitory effect on biofilm formation against P. aeruginosa, S. aureus E. faecalis, and E. coli, respectively. Antioxidant activity and thermal stability of the chimeric peptide was determined. The results showed that cLFchimera had antioxidant activity (IC50: 310 μ/mL) and its activity was not affected after 40 min of boiling. Finally, we evaluated the interaction of the peptide with LPS and DNA in bacteria using molecular dynamic simulation as two main intra and extra cellular targets for AMPs, respectively. Our in silico analysis showed that cLFchimera had strong affinity to both of these targets by positive charged residues after 50 ns molecular dynamic simulation. CONCLUSIONS Overall, the engineered food-grade L. lactis generated in the present study successfully expressed a secreted chimeric peptide with antimicrobial properties and could be considered as a promising bio-preservative in the food industry.
Collapse
Affiliation(s)
- Abbas Tanhaeian
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mehdi Mirzaii
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Zana Pirkhezranian
- Department of Animal Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran
| | - Mohammad Hadi Sekhavati
- Department of Animal Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran.
| |
Collapse
|
28
|
Stamilla A, Messina A, Sallemi S, Condorelli L, Antoci F, Puleio R, Loria GR, Cascone G, Lanza M. Effects of Microencapsulated Blends of Organics Acids (OA) and Essential Oils (EO) as a Feed Additive for Broiler Chicken. A Focus on Growth Performance, Gut Morphology and Microbiology. Animals (Basel) 2020; 10:ani10030442. [PMID: 32155791 PMCID: PMC7143382 DOI: 10.3390/ani10030442] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 01/22/2023] Open
Abstract
Simple Summary Replacing antibiotics with natural alternative compounds in poultry feeding is being increased in the last few years to challenge the antibiotic resistance problem. Among natural compounds, organic acids and essential oils could be a favorable option. The goal of the trial was testing the dietary supplementation of a blend of organic acids and essential oils in broiler diets in order to evaluate growth performance and gut healthiness. The blend of organic acids and essential oils improved growth performances at the end of the growing period and favorably affected, to a certain extent, gut morphology at different gut districts. Moreover, a selective microbial control against Clostridium perfringens, Enterobacteriaceae, Enterococci and Mesophilic bacteria was found. Additionally, in litter, organic acids and essential oils dietary treatment drove to an overall decrease of Mesophilic bacteria and Enterococci counts. Overall, dietary strategy oriented to a supplementation of a mixture of organic acids and essential oils in broiler diets could offer some favorable perspectives in order to maintain adequate growth performance and gut healthiness either in term of morphology or of microbiology. Nevertheless, improving knowledge on the mechanisms of action of these natural additives together with a potential synergistic action is pivotal to clarify their potential as antibiotic replacers. Abstract The goal of the trial was testing the effects of a blend of organic acids and essential oils dietary supplementation on growth performance and gut healthiness in broiler chickens. In total, 420 male Ross 308 chicks (1-day old) were randomly assigned to two dietary treatments: basal (BD) and organic acids and essential oils (OA&EO) diets (three replicates/treatment; 70 broilers/replicate). BD group received commercial diets whereas OA&EO group basal diets + 5 g/kg of microencapsulated organic acids and essential oils. OA&EO treatment improved the average daily gain (p < 0.01) and feed conversion ratio at 37–47 days compared to BD treatment. OA&EO treatment improved gut morphology mostly at ileum and duodenum levels in terms of villi height, crypt depth, number of villi, mucosa thickness and villi area at 24 and 34 sampling days. A certain selective action against Clostridium perfringens in ileum of OA&EO group was shown at 33 (p = 0.053) and 46 days (p = 0.09) together with lower median values for Enterobacteriaceae, Enterococci, Mesophilic bacteria and Clostridium perfringens at ceca level. Overall, organic acids and essential oils supplementation improved growth performance in the final growth stage and some morphological gut traits and reduced to a certain extent Clostridium perfringens count in ileum.
Collapse
Affiliation(s)
- Alessandro Stamilla
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia, 5, 95123 Catania, Italy
- Correspondence: (A.S.); (M.L.); Tel.: +39-095-4783349 (M.L.); +39-333-1939432 (A.S.)
| | - Antonino Messina
- DVM consultant poultry specialists, via Cava Gucciardo Pirato, 12, 97015 Modica, Italy;
| | - Sabrina Sallemi
- DVM consultant poultry specialists, via Alcide de Gasperi, 106, 97013 Comiso, Italy;
| | - Lucia Condorelli
- Istituto Zooprofilattico Sperimentale della Sicilia; Via Gino Marinuzzi, 3, 90129 Palermo, Italy; (L.C.); (F.A.); (R.P.); (G.R.L.); (G.C.)
| | - Francesco Antoci
- Istituto Zooprofilattico Sperimentale della Sicilia; Via Gino Marinuzzi, 3, 90129 Palermo, Italy; (L.C.); (F.A.); (R.P.); (G.R.L.); (G.C.)
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia; Via Gino Marinuzzi, 3, 90129 Palermo, Italy; (L.C.); (F.A.); (R.P.); (G.R.L.); (G.C.)
| | - Guido Ruggero Loria
- Istituto Zooprofilattico Sperimentale della Sicilia; Via Gino Marinuzzi, 3, 90129 Palermo, Italy; (L.C.); (F.A.); (R.P.); (G.R.L.); (G.C.)
| | - Giuseppe Cascone
- Istituto Zooprofilattico Sperimentale della Sicilia; Via Gino Marinuzzi, 3, 90129 Palermo, Italy; (L.C.); (F.A.); (R.P.); (G.R.L.); (G.C.)
| | - Massimiliano Lanza
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia, 5, 95123 Catania, Italy
- Correspondence: (A.S.); (M.L.); Tel.: +39-095-4783349 (M.L.); +39-333-1939432 (A.S.)
| |
Collapse
|
29
|
Engineering Biology to Construct Microbial Chassis for the Production of Difficult-to-Express Proteins. Int J Mol Sci 2020; 21:ijms21030990. [PMID: 32024292 PMCID: PMC7037952 DOI: 10.3390/ijms21030990] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
A large proportion of the recombinant proteins manufactured today rely on microbe-based expression systems owing to their relatively simple and cost-effective production schemes. However, several issues in microbial protein expression, including formation of insoluble aggregates, low protein yield, and cell death are still highly recursive and tricky to optimize. These obstacles are usually rooted in the metabolic capacity of the expression host, limitation of cellular translational machineries, or genetic instability. To this end, several microbial strains having precisely designed genomes have been suggested as a way around the recurrent problems in recombinant protein expression. Already, a growing number of prokaryotic chassis strains have been genome-streamlined to attain superior cellular fitness, recombinant protein yield, and stability of the exogenous expression pathways. In this review, we outline challenges associated with heterologous protein expression, some examples of microbial chassis engineered for the production of recombinant proteins, and emerging tools to optimize the expression of heterologous proteins. In particular, we discuss the synthetic biology approaches to design and build and test genome-reduced microbial chassis that carry desirable characteristics for heterologous protein expression.
Collapse
|
30
|
Pirkhezranian Z, Tahmoorespur M, Daura X, Monhemi H, Sekhavati MH. Interaction of camel Lactoferrin derived peptides with DNA: a molecular dynamics study. BMC Genomics 2020; 21:60. [PMID: 31959108 PMCID: PMC6971935 DOI: 10.1186/s12864-020-6458-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 01/07/2020] [Indexed: 12/31/2022] Open
Abstract
Background Lactoferrampin (LFampin), Lactoferricin (LFcin), and LFchimera are three well-known antimicrobial peptides derived from Lactoferrin and proposed as alternatives for antibiotics. Although the intracellular activity of these peptides has been previously demonstrated, their mode of action is not yet fully understood. Here, we performed a molecular dynamics simulation study to understand the molecular interactions between camel Lactoferrin derived peptides, including CLFampin, CLFcin, and CLFchimera, and DNA as an important intracellular target. Results Our results indicate that all three peptides bind to DNA, albeit with different propensities, with CLFchimera showing the highest binding affinity. The secondary structures of the peptides, modeled on Lactoferrin, did not undergo significant changes during simulation, supporting their functional relevance. Main residues involved in the peptide-DNA interaction were identified based on binding free energy estimates calculated over 200 ns, which, as expected, confirmed strong electrostatic interactions between DNA phosphate groups and positively charged peptide side chains. Interaction between the different concentrations of CLFchimera and DNA revealed that after binding of four copies of CLFchimera to DNA, hydrogen bonds between the two strands of DNA start to break from one of the termini. Conclusions Importantly, our results revealed that there is no DNA-sequence preference for peptide binding, in line with a broad antimicrobial activity. Moreover, the results showed that the strength of the interaction between DNA and CLFchimera is concentration dependent. The insight provided by these results can be used for the rational redesign of natural antimicrobial peptides targeting the bacterial DNA.
Collapse
Affiliation(s)
- Zana Pirkhezranian
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mojtaba Tahmoorespur
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Hassan Monhemi
- Department of Chemistry, Faculty of Science, University of Neyshabur, Neyshabur, Iran
| | - Mohammad Hadi Sekhavati
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
31
|
Tahmoorespur M, Azghandi M, Javadmanesh A, Meshkat Z, Sekhavati MH. A Novel Chimeric Anti-HCV Peptide Derived from Camel Lactoferrin and Molecular Level Insight on Its Interaction with E2. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09972-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Daneshmand A, Kermanshahi H, Sekhavati MH, Javadmanesh A, Ahmadian M. Antimicrobial peptide, cLF36, affects performance and intestinal morphology, microflora, junctional proteins, and immune cells in broilers challenged with E. coli. Sci Rep 2019; 9:14176. [PMID: 31578353 PMCID: PMC6775057 DOI: 10.1038/s41598-019-50511-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
This study investigated the effects of an antimicrobial peptide (AMP), cLF36, on growth performance and the histophysiological changes of the intestine in E. coli-challenged broiler chickens. A total number of 360 day old male chicks were randomly assigned to 4 groups of 6 replicates as follows: T1) negative control diet based on corn-soybean meal without E. coli challenge and additives; T2) positive control diet based on corn-soybean meal and challenged with E. coli without any additives; T3) positive control diet challenged with E. coli and supplemented with 20 mg AMP (cLF36)/kg diet; T4) positive control diet challenged with E. coli and supplemented with 45 mg antibiotic (bacitracin methylene disalicylate)/kg diet. Results showed that T3 improved growth performance and the jejunal morphology of E. coli-challenged chickens similar to those of T4. While antibiotic non-selectively decreased the population of ileal bacteria, AMP increased the population of Lactobacillus spp. and decreased harmful bacteria in the ileum of E. coli-challenged chickens. Supplementing E. coli-challenged chickens with AMP improved the gene expression of immune cells and upregulated the expression of tight junction proteins compared to other challenged groups. In conclusion, although cLF36 beneficially affected growth performance and the intestinal morphology of E. coli-challenged chickens similar to those of the antibiotic group, this AMP drastically improved the intestinal microbiome, immune cells, and junctional proteins compared to other E. coli-challenged birds, and can be nominated as an alternative for growth promoter antibiotics.
Collapse
Affiliation(s)
- Ali Daneshmand
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.,School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Hassan Kermanshahi
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.,Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Mohammad Hadi Sekhavati
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Ali Javadmanesh
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Monireh Ahmadian
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
33
|
Tanhaeian A, Habibi Najafi MB, Rahnama P, Azghandi M. Production of a Recombinant Peptide (Lasioglossin LL ΙΙΙ) and Assessment of Antibacterial and Antioxidant Activity. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09904-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|