1
|
Nandhini A, Anilkumar P, Jasmin J, Balamurali S. Green synthesis, characterization, structural, morphological, antibacterial, and cytotoxicity evaluation of zinc oxide nanoparticles using Fioria vitifolia extract. Biophys Chem 2025; 323:107440. [PMID: 40286642 DOI: 10.1016/j.bpc.2025.107440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
The increasing prevalence of bacterial pathogens diseases and the rise in multidrug resistance highlights the urgent need for new drug delivery systems or novel drug molecules to enhance treatment options. Zinc oxide (ZnO) nanoparticles attracting attention due to their potential in biomedical applications, such as cancer therapy and diagnostics. ZnO is a versatile compound with excellent UV-blocking, anti-inflammatory, and wide-bandgap semiconductor properties. This study focuses on the green synthesis of ZnO nanoparticles using 'Fioria vitifolia' leaf extract, as a reducing agent with polyvinylpyrrolidone (PVP) aids in reducing particle size and preventing aggregation, enhancing nanoparticle stability. The ZnO nanoparticles were characterized using various techniques, including X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X-ray Analysis (EDX), Transmission Electron Microscopy (TEM), Fourier-Transform Infrared Spectroscopy (FTIR), UV-Vis Diffuse Reflectance Spectroscopy (DRS), and Photoluminescence (PL). These analyses confirmed the successful formation of ZnO nanoparticles. The nanoparticles demonstrated strong antimicrobial activity, especially against 'Enterobacter', and exhibited significant cytotoxic effects on lung cancer cells (A549), but has low toxicity to standard cells (L929). The IC50 values affirmed their potential as anticancer agents, suggesting their dual promise as antimicrobial and anticancer compounds. The enormous potential of biosynthesized ZnO nanoparticles as biological agents a sustainable substitute for chemically synthesized medications is highlighted in this study. The potential of the nanoparticles in a range of biomedical applications is highlighted by their ecologically friendly manufacturing process as well as their proven antibacterial and anticancer qualities.
Collapse
Affiliation(s)
- A Nandhini
- Department of Chemistry, KPR Institute of Engineering and Technology, Coimbatore, Tamilnadu 641 407, India
| | - P Anilkumar
- Department of Chemistry, KPR Institute of Engineering and Technology, Coimbatore, Tamilnadu 641 407, India.
| | - J Jasmin
- Department of Chemistry, KPR Institute of Engineering and Technology, Coimbatore, Tamilnadu 641 407, India
| | - S Balamurali
- Department of Electronics and Communication Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamilnadu 641 407, India
| |
Collapse
|
2
|
Panwar A, Manna S, Sahini G, Kaushik V, Kumar M, Govarthanan M. The legacy of endophytes for the formation of bioactive agents, pigments, biofertilizers, nanoparticles and bioremediation of environment. World J Microbiol Biotechnol 2025; 41:52. [PMID: 39871057 DOI: 10.1007/s11274-025-04265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025]
Abstract
Endophytes have significant prospects for applications beyond their existing utilization in agriculture and the natural sciences. They form an endosymbiotic relationship with plants by colonizing the root tissues without detrimental effects. These endophytes comprise several microorganisms, including bacteria and fungi. They act as repositories of compounds of medicinal importance. They are considered sources of pigments besides synthetic dyes and assist with soil fertility and plant growth as bio-fertilizers. They also have immense potential for advanced technology using endophyte-synthesized nanoparticles. In assisting bioremediation, they facilitate detoxification of pollutants in all spheres of the environment. Studies on the potential of endophytic microbes in drug discovery and biotic stress management are underway. In this review, published databases on endophytes and their diverse roles and applications in various fields, such as bio-fertilizers and nanoparticles, as well as bioremediation, are critically discussed while exploring unanswered questions. In addition, future perspectives on endosymbiotic microorganisms and their prospective use in plants, environmental management, and medicine are discussed in this review.
Collapse
Affiliation(s)
- Anjali Panwar
- Department of Microbiology, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Suvendu Manna
- Sustainability Cluster, School of Advanced Engineering, University of Petroleum and Energy Studies, Dehradun, 24800, India.
| | - Gayatri Sahini
- Department of Microbiology, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Vivek Kaushik
- Department of Microbiology, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Manoj Kumar
- Department of Microbiology, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, South Korea
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India
| |
Collapse
|
3
|
Ramos Angulo JV, Fernández Valenzuela J, Freire-Bernal SI, Niño-Castaño VE, Rodríguez Paez JE, Dueñas-Cuellar RA. Cytotoxicity and genotoxicity of zinc oxide nanoparticles in human peripheral blood mononuclear cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2025; 901:503838. [PMID: 39855820 DOI: 10.1016/j.mrgentox.2024.503838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 01/27/2025]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) are of interest in biomedical applications, environmental remediation, and agriculture. ZnO-NPs inhibit the growth of phytopathogenic fungi and bacteria. We have evaluated their effects on mitochondrial function and the induction of membrane damage, apoptosis, and DNA damage in human peripheral blood mononuclear cells (PBMC) in vitro. ZnO-NPs caused significant reduction in cell viability and LDH release, indicating damage to cell membranes. Late apoptosis was significant and necrosis was significant at higher concentrations tested. ZnO-NPs did not induce micronucleus formation.
Collapse
Affiliation(s)
- Jovanna Vanessa Ramos Angulo
- Universidad del Cauca, Facultad de Ciencias de la Salud, Departamento de Patología, Grupo de investigación en Inmunología y Enfermedades Infecciosas, Popayán (Cauca), Colombia; Programa de Maestría en Biología, Universidad del Cauca, Popayán (Cauca), Colombia.
| | - Juliana Fernández Valenzuela
- Universidad del Cauca, Facultad de Ciencias de la Salud, Departamento de Patología, Grupo de investigación en Inmunología y Enfermedades Infecciosas, Popayán (Cauca), Colombia.
| | - Sofía Isabel Freire-Bernal
- Universidad del Cauca, Facultad de Ciencias de la Salud, Departamento de Patología, Grupo de investigación en Inmunología y Enfermedades Infecciosas, Popayán (Cauca), Colombia.
| | - Victoria Eugenia Niño-Castaño
- Universidad del Cauca, Facultad de Ciencias de la Salud, Departamento de Patología, Grupo de investigación en Inmunología y Enfermedades Infecciosas, Popayán (Cauca), Colombia.
| | - Jorge Enrique Rodríguez Paez
- Universidad del Cauca, Facultad de Ciencias naturales, Exactas y de la Educación, Departamento de Física, Grupo de Investigación en Ciencia y Tecnología de Materiales Cerámicos, Popayán (Cauca), Colombia.
| | - Rosa Amalia Dueñas-Cuellar
- Universidad del Cauca, Facultad de Ciencias de la Salud, Departamento de Patología, Grupo de investigación en Inmunología y Enfermedades Infecciosas, Popayán (Cauca), Colombia.
| |
Collapse
|
4
|
Salaheldin H, Aboelnga A, Elsayed A. Mycosynthesis of zinc sulfide/zinc oxide nanocomposite using Fusarium oxysporum for catalytic degradation of methylene blue dye, antimicrobial, and anticancer activities. Sci Rep 2024; 14:32165. [PMID: 39741154 PMCID: PMC11688424 DOI: 10.1038/s41598-024-81855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/29/2024] [Indexed: 01/02/2025] Open
Abstract
In the present study, extracellular cell-free filtrate (CFF) of fungal Fusarium oxysporum f. sp. cucumerinum (FOC) species, was utilized to biosynthesize zinc oxide /zinc sulfide (ZnO/ZnS) nanocomposite. This was achieved by mixing the metal salt with the fungal CFF for 96 h at a temperature of 27 ± 1.0 °C and a pH of 6.5. Several analytical techniques, such as XRD, TEM, UV-Vis, FTIR, DLS, and zeta potential studies, have confirmed the synthesis of NPs. Fungal CFF enzymes and metabolites stabilized produced NPs, according to FTIR. The nanocomposite particle diameter (15-80 nm) was estimated using HR-TEM imaging. The DLS and XRD measurements verified those findings. The zone of inhibition diameter for MRSA was 35 ± 0.21 mm, while B. subtilis measured 33 ± 0.32 mm against the nanocomposite. For E. coli and S. typhi bacterial isolates, it was 25 ± 0.19 and 32 ± 0.36 mm, respectively. The determined MIC value for E. coli was 5,000 µg/mL and MRSA was 500 µg/mL. The ZnO/ZnS nanocomposite has a dose-dependent cytotoxic effect on breast cancer cells, with an IC50 of 197 ± 0.895 µg/mL. The Methylene blue dye was removed by 87.51% using the nanocomposite. Thus, green biosynthesized ZnO/ZnS nanocomposites are recommended for pharmaceutical, industrial, and biological applications.
Collapse
Affiliation(s)
- Hosam Salaheldin
- Biophysics Research Group, Faculty of Science, Physics Department, Mansoura University, Mansoura, 35516, Egypt.
| | - Aya Aboelnga
- Faculty of Science, Botany Department, Mansoura University, Mansoura, 35516, Egypt
| | - Ashraf Elsayed
- Faculty of Science, Botany Department, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
5
|
Lekkala VVV, Sirigireddy B, Reddy MC, Lomada D. Synthesis and Characterization of Silver and Zinc Nanoparticles From Vitex altissima: Comparative Analysis of Anti-Oxidant, Anti-Inflammatory, Antibacterial, and Anti-Biofilm Activities. Chem Biodivers 2024:e202402166. [PMID: 39722480 DOI: 10.1002/cbdv.202402166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Metal nanoparticles have attained much popularity due to their low toxicity, economic feasibility, and eco-friendly nature. The present study focuses on the synthesis of silver and zinc nanoparticles from Vitex altissima leaf extract, further characterized by UV/Vis spectral analysis, Powder-x-ray diffraction (XRD), FE-SEM, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential. Synthesized silver and zinc nanoparticles were screened for antioxidant, anti-inflammatory, antibacterial, and anti-biofilm activities. AgNPs exhibited moderate antioxidant activities compared to ZnNPs, which were studied using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and ABTS assays. The anti-inflammatory effect was assessed using membrane stabilization and human red blood cell methods. Furthermore, both types of nanoparticles, AgNPs and ZnNPs, exhibited anti-biofilm activity against four MDR bacterial strains: Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Synthesized nanoparticles show antibacterial activity. Our data suggest that silver nanoparticles exhibited moderate activity compared to ZnNPs. These nanoparticles could act as potential antioxidant, anti-inflammatory, and antibacterial agents.
Collapse
Affiliation(s)
| | - Bharathi Sirigireddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Madhava C Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Dakshayani Lomada
- Department of Genetics and Genomics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| |
Collapse
|
6
|
Thirumavalavan M, Sukumar K, Sabarimuthu SQ. Trends in green synthesis, pharmaceutical and medical applications of nano ZnO: A review. INORG CHEM COMMUN 2024; 169:113002. [DOI: 10.1016/j.inoche.2024.113002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
|
7
|
Almuhayawi MS, Alruhaili MH, Soliman MKY, Tarabulsi MK, Ashy RA, Saddiq AA, Selim S, Alruwaili Y, Salem SS. Investigating the in vitro antibacterial, antibiofilm, antioxidant, anticancer and antiviral activities of zinc oxide nanoparticles biofabricated from Cassia javanica. PLoS One 2024; 19:e0310927. [PMID: 39352889 PMCID: PMC11444386 DOI: 10.1371/journal.pone.0310927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
It is thought to be risk-free, environmentally benign, and safe for biological processes to produce zinc oxide nanoparticles from renewable resources. This study examined Cassia javanica's ability to create ZnONPs. The generated ZnONPs were analyzed using a variety of techniques, such as TEM, FTIR spectroscopy, UV-Vis spectroscopy, and XRD analysis. The antibacterial potential of ZnONPs has been investigated using both Agar well diffusion and microtitreplate (MTP) methods. One method used to evaluate ZnONPs' capacity to scavenge free radicals at different concentrations was the DPPH method. The permanent zinc oxide (ZnO) shape and the naturally occurring crystal structure of ZnONPs were validated by the XRD data. ZnONPs showed antibacterial activity with MICs of 31.7 μg/mL toward Bacillus subtilis, 62.5 μg/mL for Salmonella typhimurium, Escherichia coli while Clostridium sporogenes and Bacillus pumilus was 125μg/mL. Furthermore, ZnONPs demonstrated a range of antibiofilm activities toward Staphylococcus aureus (MRSA). ZnONPs showed an intriguing antioxidant capacity, achieving IC50 of 109.3 μg/ml μg/mL. Additionally, ZnONPs demonstrated low toxic effect on Vero cell with IC50 154.01 μg/mL as well as possible anticancer action when applied to the carcinoma cell lines HepG2 with IC50 of 47.48 μg/mL. Furthermore, ZnONPs at 62.5 μg/mL had a promising antiviral impact against HSV1 and COX B4, with antiviral activities of 75.4% and 65.8%, respectively.
Collapse
Affiliation(s)
- Mohammed S Almuhayawi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed H Alruhaili
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Mohamed K Y Soliman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Muyassar K Tarabulsi
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Ruba A Ashy
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Amna A Saddiq
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Yasir Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Sustainable Development Research and Innovation Center, Deanship of Graduate Studies and Scientific Research, Jouf University, Sakaka, Saudi Arabia
| | - Salem S Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
8
|
Rezghi Rami M, Forouzandehdel S, Aalizadeh F. Enhancing biodegradable smart food packaging: Fungal-synthesized nanoparticles for stabilizing biopolymers. Heliyon 2024; 10:e37692. [PMID: 39315154 PMCID: PMC11417270 DOI: 10.1016/j.heliyon.2024.e37692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
The increasing global concern over environmental plastic waste has propelled the progress of biodegradable supplies for food packaging. Biopolymer-based packaging is undergoing modifications to enhance its mechanical properties, aligning with the requirements of smart food packaging. Polymer nanocomposites, incorporating reinforcements such as fibers, platelets, and nanoparticles, demonstrate significantly improved mechanical, thermal, optical, and physicochemical characteristics. Fungi, in particular, have garnered significant interest for producing metallic nanoparticles, offering advantages such as easy scaling up, streamlined downstream handling, economic feasibility, and a large surface area. This review provides an overview of nano-additives utilized in biopackaging, followed by an exploration of the recent advancements in using microbial-resistant metal nanoparticles for food packaging. The mycofabrication process, involving fungi in the extracellular or intracellular synthesis of metal nanoparticles, is introduced. Fungal functionalized nanostructures represent a promising avenue for application across various stages of food processing, packaging, and safety. The integration of fungal-derived nanostructures into food packaging materials presents a sustainable and effective approach to combatting microbial contamination." By harnessing fungal biomass, this research contributes to the development of economical and environmentally friendly methods for enhancing food packaging functionality. The findings underscore the promising role of fungal-based nanotechnologies in advancing the field of active food packaging, addressing both safety and sustainability concerns. The study concludes with an investigation into potential fungal isolates for nanoparticle biosynthesis, highlighting their relevance and potential in advancing sustainable and efficient packaging solutions.
Collapse
Affiliation(s)
- Mina Rezghi Rami
- Department of Chemistry, KN Toosi University of Technology, Tehran, Iran
| | | | - Farhad Aalizadeh
- Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge, UB8 3PH, UK
| |
Collapse
|
9
|
Giedraitienė A, Ružauskas M, Šiugždinienė R, Tučkutė S, Grigonis K, Milčius D. ZnO Nanoparticles Enhance the Antimicrobial Properties of Two-Sided-Coated Cotton Textile. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1264. [PMID: 39120368 PMCID: PMC11314259 DOI: 10.3390/nano14151264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Cotton textiles improved with metal oxide nanoparticles acquire additional features that may enhance their action against antimicrobial-resistant pathogens due to the unique properties and characteristics of the nanoparticles. The main objective of this work is to evaluate the antimicrobial features of two-sided-coated cotton textiles with ZnO nanoparticles. Nanoparticles were deposited using green chemistry technology with low-temperature oxygen plasma. ZnO particles formed stable structures on textile fibers. The optimal deposition parameters (150 W plasma power, 120 min immersion time) achieved the best effects against Gram-negative and Gram-positive bacteria and microscopic fungi. Two-sided-coated cotton with ZnO nanoparticles showed high antibacterial action on Gram-negative and Gram-positive bacteria. Modification with zinc oxide inhibited the growth of Candida albicans by more than half.
Collapse
Affiliation(s)
- Agnė Giedraitienė
- Institute of Microbiology and Virology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (M.R.); (R.Š.)
| | - Modestas Ružauskas
- Institute of Microbiology and Virology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (M.R.); (R.Š.)
| | - Rita Šiugždinienė
- Institute of Microbiology and Virology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (M.R.); (R.Š.)
| | - Simona Tučkutė
- Center for Hydrogen Energy Technologies, Lithuanian Energy Institute, 44403 Kaunas, Lithuania;
| | | | - Darius Milčius
- Center for Hydrogen Energy Technologies, Lithuanian Energy Institute, 44403 Kaunas, Lithuania;
| |
Collapse
|
10
|
Mohammed AE, Korany SM, Sonbol H, Alhomaidi EA, Alwakeel SS, Elbaz RM. Myco-fabricated silver nanoparticle by novel soil fungi from Saudi Arabian desert and antimicrobial mechanism. Sci Rep 2024; 14:15211. [PMID: 38956076 PMCID: PMC11220002 DOI: 10.1038/s41598-024-63117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
Biological agents are getting a noticeable concern as efficient eco-friendly method for nanoparticle fabrication, from which fungi considered promising agents in this field. In the current study, two fungal species (Embellisia spp. and Gymnoascus spp.) were isolated from the desert soil in Saudi Arabia and identified using 18S rRNA gene sequencing then used as bio-mediator for the fabrication of silver nanoparticles (AgNPs). Myco-synthesized AgNPs were characterized using UV-visible spectrometry, transmission electron microscopy, Fourier transform infrared spectroscopy and dynamic light scattering techniques. Their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae were investigated. In atrial to detect their possible antibacterial mechanism, Sodium dodecyl sulfate (SDS-PAGE) and TEM analysis were performed for Klebsiella pneumoniae treated by the myco-synthesized AgNPs. Detected properties of the fabricated materials indicated the ability of both tested fungal strains in successful fabrication of AgNPs having same range of mean size diameters and varied PDI. The efficiency of Embellisia spp. in providing AgNPs with higher antibacterial activity compared to Gymnoascus spp. was reported however, both indicated antibacterial efficacy. Variations in the protein profile of K. pneumoniae after treatments and ultrastructural changes were observed. Current outcomes suggested applying of fungi as direct, simple and sustainable approach in providing efficient AgNPs.
Collapse
Affiliation(s)
- Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
- Microbiology and Immunology Unit, Natural and Health Sciences Research Center, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Shereen M Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Hana Sonbol
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.
| | - Eman A Alhomaidi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Suaad S Alwakeel
- Microbiology and Immunology Unit, Natural and Health Sciences Research Center, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Reham M Elbaz
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, 12612, Egypt
- Department of Biology, College of Science, University of Bisha, P.O. Box 551, 61922, Bisha, Saudi Arabia
| |
Collapse
|
11
|
Barati A, Huseynzade A, Imamova N, Shikhaliyeva I, Keles S, Alakbarli J, Akgul B, Bagirova M, Allahverdiyev AM. Nanotechnology and malaria: Evaluation of efficacy and toxicity of green nanoparticles and future perspectives. J Vector Borne Dis 2024; 61:340-356. [PMID: 38634366 DOI: 10.4103/jvbd.jvbd_175_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Malaria is a global health problem that causes 1.5-2.7 million deaths worldwide each year. Resistance to antimalarial drugs in malaria parasites and to insecticides in vectors is one of the most serious issues in the fight against this disease. Moreover, the lack of an effective vaccine against malaria is still a major problem. Recent developments in nanotechnology have resulted in new prospects for the fight against malaria, especially by obtaining metal nanoparticles (NPs) that are less toxic, highly biocompatible, environmentally friendly, and less expensive. Numerous studies have been conducted on the synthesis of green NPs using plants and microorganisms (bacteria, fungi, algae, actinomycetes, and viruses). To our knowledge, there is no literature review that compares toxicities and antimalarial effects of some of the existing metallic nanoparticles, revealing their advantages and disadvantages. Hence, the purpose of this work is to assess metal NPs obtained through various green synthesis processes, to display the worth of future malaria research and determine future strategies. Results revealed that there are very few studies on green NPs covering all stages of malaria parasites. Additionally, green metal nanoparticles have yet to be studied for their possible toxic effects on infected as well as healthy erythrocytes. Morever, the toxicities of green metal NPs obtained from various sources differed according to concentration, size, shape, synthesis method, and surface charge, indicating the necessity of optimizing the methods to be used in future studies. It was concluded that studies on the toxic properties of green nanoparticles would be very important for the future.
Collapse
Affiliation(s)
- Ana Barati
- Faculty of Graduate School of Science, Art and Technology, Khazar University, Baku, Azerbaijan Republic
| | - Ayan Huseynzade
- Department of Microbiology, V.Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan Republic
| | - Nergiz Imamova
- Division of Genetic Research and Genetic Engineering, Department of Genetic Engineering, V.Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan Republic
| | - Inji Shikhaliyeva
- Division of Stem Cell and Regenerative Medicine, Department of Genetic Engineering and Biotechnology, V.Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan Republic
| | - Sedanur Keles
- Department of Metallurgical and Materials Engineering, Karadeniz Technical University, Trabzon, Turkey
| | - Jahid Alakbarli
- Department of Bioengineering, Yıldız Technical University, Istanbul, Turkey
| | - Buşra Akgul
- Department of Bioengineering, Yıldız Technical University, Istanbul, Turkey
| | - Melahat Bagirova
- Department of Microbiology, V.Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan Republic
| | - Adil M Allahverdiyev
- V.Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan Republic
| |
Collapse
|
12
|
Maheswaran H, Djearamane S, Tanislaus Antony Dhanapal AC, Wong LS. Cytotoxicity of green synthesized zinc oxide nanoparticles using Musa acuminata on Vero cells. Heliyon 2024; 10:e31316. [PMID: 38868065 PMCID: PMC11167271 DOI: 10.1016/j.heliyon.2024.e31316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) have become a highly regarded substance in various industries especially biologically synthesized ZnO NPs due to their adherence to the principles of green chemistry. However, concerns have been raised regarding the potential cytotoxic effects of ZnO NPs on biological systems. This study aimed to investigate and compare the cytotoxicity of ZnO NPs that were synthesized through chemical (C-ZnO NPs) and green approach using Musa acuminata leaf aqueous extract (Ma-ZnO NPs) on Vero cells. Characterization of ZnO NPs through Uv-Vis, FESEM, EDX, XRD, FTIR and XPS confirmed the successful synthesis of C- and Ma-ZnO NPs. MTT and ROS assays revealed that C- and Ma-ZnO NPs induced a concentration- and time-dependent cytotoxic effect on Vero cells. Remarkably, Ma-ZnO NPs showed significantly higher cell viability compared to C-ZnO NPs. The corelation of ROS and vell viability suggest that elevated ROS levels can lead to cell damage and even cell death. Flow cytometry analysis indicated that Ma-ZnO NPs exposed cells had more viable cells and a smaller cell population in the late and early apoptotic stage. Furthermore, more cells were arrested in the G1 phase upon exposure to C-ZnO NPs, which is associated with oxidative stress and DNA damage caused by ROS generation, proving its higher cytotoxicity than Ma-ZnO NPs. Similarly, time-dependent cytotoxicity and morphological alterations were observed in C- and Ma-ZnO NPs treated cells, indicating cellular damage. Furthermore, fluorescence microscopy also demonstrated a time-dependent increase in ROS formation in cells exposed to C- and Ma-ZnO NPs. In conclusion, the findings suggest that green ZnO NPs possess a favourable biocompatibility profile, exhibiting reduced cytotoxicity compared to chemically synthesized ZnO NPs on Vero cells. These results emphasize the potential of green synthesis methods for the development of safer and environmentally friendly ZnO NPs.
Collapse
Affiliation(s)
- Harshyini Maheswaran
- Department of Biomedical Sciences, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Sinouvassane Djearamane
- Department of Biomedical Sciences, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
- Biomedical Research Unit and Lab Animal Research Centre, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602 105, India
| | - Anto Cordelia Tanislaus Antony Dhanapal
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
13
|
Omari Shekaftik S, Nasirzadeh N. Exposure control measures proposed by different organizations: the curious case of nanomaterial-involved activities. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2024; 30:460-470. [PMID: 38347762 DOI: 10.1080/10803548.2024.2318088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Objectives. The unique properties of nanomaterials have turned them into an emerging threat for humans and the environment. This study therefore aimed to review exposure control measures proposed for nanomaterial-involved activities. Methods. This study is based on the published guidelines of different organizations on safe handling of nanomaterials. The search for documents was provided using the keywords 'Exposure controls', 'Good practices', 'Working safely', 'Safe practices', 'Handling safely', 'Safety guide' and 'Safety and health', combined with 'Nanomaterials', 'Nanotechnology' and 'Nanoparticles' on different databases and websites. Results. Thirty-one guidelines from 27 organizations were included. Most of the guidelines recommended engineering controls, administrative controls and personal protective equipment (PPE). Changing the physical form of nanomaterials or the process, using prevention through design (PtD) and using green chemistry principals were other suggestions to reduce exposure to nanomaterials. Conclusions. Considering the difficulty of implementation and case specificity of the solutions of the first two priorities of the hierarchy of controls (elimination and substitution), the emphasis of the guidelines on the next three priorities for controlling exposure to nanomaterials is understood. The type and method of using PPE and engineering controls should be resolved by referring to cutting-edge articles.
Collapse
Affiliation(s)
- Soqrat Omari Shekaftik
- Occupational Health Engineering, School of Public Health, Department of Occupational Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Nasirzadeh
- Occupational Health Engineering, School of Public Health, Department of Occupational Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Mughal M, Akram B, Khan BA, Mughal TA, Sulaiman S, Abd-Elkader OH, Sayed SRM, Ibrahim MAA, Sidky AM. Synthesis and Characterization of Naproxen Intercalated Zinc Oxide Stacked Nanosheets for Enhanced Hepatoprotective Potential. ACS OMEGA 2024; 9:22979-22989. [PMID: 38826557 PMCID: PMC11137690 DOI: 10.1021/acsomega.4c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 06/04/2024]
Abstract
Liver diseases pose a significant global health burden, with limited therapeutic options for chronic cases. Zinc oxide (ZnO) nanomaterials have emerged as promising candidates for hepatoprotection due to their antioxidant, anti-inflammatory, and regenerative properties. However, their potential remains hampered by insufficient drug loading and controlled release. The current study explores the intercalation of Naproxen (Nx), a potent anti-inflammatory and analgesic drug, within ZnO stacked nanosheets (SNSs) to address these limitations. Herein, an easy and solution-based synthesis of novel Nx intercalated ZnO SNSs was established. The obtained Nx intercalated ZnO SNSs were encapsulated with poly(vinyl acetate) (PVA) to make them biocompatible. The synthesized biocomposite was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR), which confirm the successful synthesis and intercalation of Nx within the ZnO SNSs. The obtained outcomes showed that the configuration of ZnO nanosheets was altered when Nx was introduced, resulting in a more organized stacking pattern. An in vivo investigation of mice liver cells unveiled that the Nx intercalated ZnO SNss had increased hepatoprotective properties. The study's results provide valuable insights into using Nx intercalated ZnO SNss for targeted drug delivery and improved treatment effectiveness, particularly for liver-related illnesses.
Collapse
Affiliation(s)
- Muhammad
Saleem Mughal
- Department
of Chemistry, The University of Azad Jammu
& Kashmir, Muzaffarabad 13100 Pakistan
| | - Bilal Akram
- Department
of Chemistry, Women University of Azad Jammu
& Kashmir, Bagh 12500, Pakistan
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bilal Ahmad Khan
- Department
of Chemistry, The University of Azad Jammu
& Kashmir, Muzaffarabad 13100 Pakistan
| | - Tafail Akbar Mughal
- Department
of Zoology, Women University of Azad Jammu
& Kashmir, Bagh 12500, Pakistan
| | - Sulaiman Sulaiman
- Department
of Chemistry, Islamia College University, Peshawar 25120, Pakistan
| | - Omar H. Abd-Elkader
- Department
of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shaban R. M. Sayed
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mahmoud A. A. Ibrahim
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School
of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Ahmed M. Sidky
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
- Department
of Neurology, The University of Chicago, Chicago, Illinois 60637-1476, United
States
| |
Collapse
|
15
|
Radwan A, Mohamed SO, Khalil MMH, El-Sewify IM. Effective adsorption of fluorescent congo red azo dye from aqueous solution by green synthesized nanosphere ZnO/CuO composite using propolis as bee byproduct extract. Sci Rep 2024; 14:9061. [PMID: 38643227 PMCID: PMC11032356 DOI: 10.1038/s41598-024-58306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024] Open
Abstract
The indirect dumping of massive volumes of toxic dyes into water has seriously affected the ecosystem. Owing to the many applications of the designed nanomaterials in the manufacturing process, there is a lot of research interest in synthesizing nanomaterials using green processes. In this research, the byproduct of bee was employed to synthesize nanoparticles (NPs) of ZnO, CuO, and biosynthesized ZnO/CuO (BZC) nanocomposite via utilizing a green and simple approach. To validate the effective fabrication of BZC nanocomposite, various characterization measurements were applied. FTIR analysis identified the functional groups in charge of producing nanoparticles and nanocomposites. Moreover, the existence of ZnO and CuO XRD peaks suggests that the nanocomposites were successfully biosynthesized. The high-resolution XPS spectrum of the BZC nanocomposite's Zn2p3, Cu2p3, and O1s were observed. Our findings indicate the successful engineering of the prepared nanomaterials and BZC nanocomposite. Our findings indicate the successful engineering of the prepared nanomaterials and BZC nanocomposite. For Congo red (CR) fluorescent stain azo dye elimination in water, all adsorption parameters were examined at room temperature. Moreover, the adsorption experiments revealed the removal capacity for uptake CR dye using BZC nanocomposite (90.14 mg g-1). Our results show that the BZC nanocomposite exhibited high removal capability for the adsorption of CR dye. The nanosphere adsorbent offered a simple, low-cost, and green approach for water purification and industrial wastewater control.
Collapse
Affiliation(s)
- Ahmed Radwan
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Samir O Mohamed
- Physics Department, Faculty of Science, Ibb University, Ibb, Yemen
- Engineering College, Al Janad University for Science and Technology, Taiz, Yemen
| | - Mostafa M H Khalil
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| | - Islam M El-Sewify
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
16
|
Nasirzadeh N, Monazam Esmaeelpour M, Naseri N, Omari Shekaftik S. Improving ultraviolet protection properties of cotton textiles using Zinc oxide (ZnO) nanomaterials: an approach for controlling occupational and environmental exposures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2067-2087. [PMID: 37173286 DOI: 10.1080/09603123.2023.2211529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Ultraviolet (UV) radiation exposure is one of the most important risk factor among workers. it may stimulate health outcomes such as multiple skin injuries and blinding eye diseases. So, UV protection is mainly important for people who expose to it. Modification of cotton textiles by nanomaterials is a new approach to overcome this problem. So, the aim of this study is to review studies conducted on using ZnO nanoparticles for improving ultraviolet protection of cotton textiles. The search strategy was provided by cochrane guideline. 45 studies were regarded as appropriate. The results show that UPF for textiles has improved by coated ZnO. However, UPF was depended on the physicochemical characteristics of ZnO and textiles such as yarn structure, effect of woven fabric construction, fabric porosity, and impurity of textiles and laundering conditions. Also, plasma technology has improved UPF, it is recommended that more studies be done to achieve better results.
Collapse
Affiliation(s)
- Nafiseh Nasirzadeh
- Occupational Health Engineering, School of Public Health, Department of Occupational Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Monazam Esmaeelpour
- Occupational Health Engineering, School of Public Health, Department of Occupational Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Naseri
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soqrat Omari Shekaftik
- Occupational Health Engineering, School of Public Health, Department of Occupational Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Elenany AM, Atia MMM, Abbas EEA, Moustafa M, Alshaharni MO, Negm S, Elnahal ASMA. Nanoparticles and Chemical Inducers: A Sustainable Shield against Onion White Rot. BIOLOGY 2024; 13:219. [PMID: 38666831 PMCID: PMC11048201 DOI: 10.3390/biology13040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
This study investigated the effectiveness of nanoparticles and chemical inducers in managing onion white rot caused by Sclerotium cepivorum. The pathogen severely threatens onion cultivation, resulting in significant yield losses and economic setbacks. Traditional fungicides, though effective, raise environmental concerns, prompting a shift toward eco-friendly alternatives. In this study, four S. cepivorum isolates were utilized, each exhibiting varying degrees of pathogenicity, with the third isolate from Abu-Hamad demonstrating the highest potency. During the in vitro studies, three nanoparticles (NPs) were investigated, including Fe3O4 NPs, Cu NPs, and ZnO NPs, which demonstrated the potential to inhibit mycelial growth, with salicylic acid and Fe3O4 NPs exhibiting synergistic effects. In vivo, these nanoparticles reduced the disease incidence and severity, with Fe3O4 NPs at 1000-1400 ppm resulting in 65.0-80.0% incidence and 80.0-90.0% severity. ZnO NPs had the most positive impact on the chlorophyll content, while Cu NPs had minimal effects. At 1000 ppm, Fe3O4 NPs had variable effects on the phenolic compounds (total: 6.28, free: 4.81, related: 2.59), while ZnO NPs caused minor fluctuations (total: 3.60, free: 1.82, related: 1.73). For the chemical inducers, salicylic acid reduced the disease (10.0% incidence, 25.0% to 10.0% severity) and promoted growth, and it elevated the chlorophyll values and enhanced the phenolic compounds in infected onions. Potassium phosphate dibasic (PDP) had mixed effects, and ascorbic acid showed limited efficacy toward disease reduction. However, PDP at 1400 ppm and ascorbic acid at 1000 ppm elevated the chlorophyll values and enhanced the phenolic compounds. Furthermore, this study extended to traditional fungicides, highlighting their inhibitory effects on S. cepivorum. This research provides a comprehensive comparative analysis of these approaches, emphasizing their potential in eco-friendly onion white rot management.
Collapse
Affiliation(s)
- Ahmed Mohammed Elenany
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (A.M.E.)
| | | | - Entsar E. A. Abbas
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (A.M.E.)
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mohammed O. Alshaharni
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha 62529, Saudi Arabia
| | | |
Collapse
|
18
|
Al-darwesh MY, Ibrahim SS, Mohammed MA. A review on plant extract mediated green synthesis of zinc oxide nanoparticles and their biomedical applications. RESULTS IN CHEMISTRY 2024; 7:101368. [DOI: 10.1016/j.rechem.2024.101368] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
19
|
Kodsangma A, Thajai N, Punyodom W, Worajittiphon P, Jantrawut P, Ruksiriwanich W, Sommano SR, Sringarm K, Thanakkasaranee S, Rachtanapun P, Jantanasakulwong K. Mechanical properties and water resistance improvement of thermoplastic modified starch, carboxymethyl cellulose, and zinc oxide nanometal particles by reactive blending. Int J Biol Macromol 2023; 253:126783. [PMID: 37699462 DOI: 10.1016/j.ijbiomac.2023.126783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Novel biodegradable thermoplastic starch (TPS) with high mechanical properties and water resistance was developed using reactive blending technique. Effect of zinc oxide (ZnO) addition to TPS properties and reaction was investigated. Thermoplastic modified starch (TPMS) was prepared by melt-mixing modified starch with glycerol 70/30%wt/wt. Carboxy methyl cellulose (CMC) 5%wt was incorporated with modified starch, glycerol, and zinc oxide (ZnO) 0-5 %wt. Fourier-transform infrared (FTIR) spectroscopy analysis confirmed the formation of the carboxyl anion (OZn) between the -COO- of CMC and the free Zn+ ion of ZnO. The tensile strength of the TPMS/CMC/ZnO blend increased 7 time with ZnO 5 % (14 MPa) addition compared to TPMS (2 MPa). The color (∆E) of TPMS/CMC/ZnO differed notably at high ZnO concentrations (1-5 %wt). The TPMS/CMC blend displayed a smooth fracture surface due to the miscibility of the materials. Small particles of ZnO dispersed finely in the TPMS matrix and increased the interfacial tension and water contact angle of the blends. The miscibility of TPS with CMC and the occurrence of ionic interactions of -COO- of CMC and -OH of starch with the Zn+ ion as physical crosslinking were indicated to improve the mechanical properties and water resistance of the blends.
Collapse
Affiliation(s)
- Araya Kodsangma
- Nanoscience and Nanotechnology (International Program/Interdisciplinary), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nanthicha Thajai
- Nanoscience and Nanotechnology (International Program/Interdisciplinary), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Winita Punyodom
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Faculty of Science, Chiang Mai University, Suthep, Mueang, Chiang Mai 50200, Thailand
| | - Patnarin Worajittiphon
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Faculty of Science, Chiang Mai University, Suthep, Mueang, Chiang Mai 50200, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; The cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; The cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sarana Rose Sommano
- Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; The cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Korawan Sringarm
- Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; The cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sarinthip Thanakkasaranee
- Faculty of Agro-Industry, Chiang Mai University, Mae-Hea, Mueang, Chiang Mai 50100, Thailand; The cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Faculty of Agro-Industry, Chiang Mai University, Mae-Hea, Mueang, Chiang Mai 50100, Thailand; The cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Faculty of Agro-Industry, Chiang Mai University, Mae-Hea, Mueang, Chiang Mai 50100, Thailand; The cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
20
|
Mehmood S, Ou W, Ahmed W, Bundschuh J, Rizwan M, Mahmood M, Sultan H, Alatalo JM, Elnahal ASM, Liu W, Li W. ZnO nanoparticles mediated by Azadirachta indica as nano fertilizer: Improvement in physiological and biochemical indices of Zea mays grown in Cr-contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122755. [PMID: 37852317 DOI: 10.1016/j.envpol.2023.122755] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
The current investigation aimed at evaluating the impact of Azadirachta indica-mediated zinc oxide nanoparticles (Ai-ZnONPs) on the growth and biochemical characteristics of maize (sweet glutinous 3000) under exposure to 50 mg kg-1Ai-ZnONPs with Cr (VI) concentrations of 50 and 100 mg kg-1. The results indicate that plants exposed to Cr (VI) only experienced a decline in growth parameters. Conversely, the inclusion of Ai-ZnONPs caused a noteworthy increase in physiological traits. Specifically, shoot and root fresh weight increased by 28.02% and 16.51%, and 63.11% and 97.91%, respectively, when compared to Cr-50 and 100 treatments. Additionally, the SPAD chlorophyll of the shoot increased by 91.08% and 15.38% compared to Cr-50 and 100 treatments, respectively. Moreover, the antioxidant enzyme traits of plant shoot and root, such as superoxide dismutase (SOD 7.44% and 2.70%, and 4.45% and 3.53%), catalase (CAT 1.18% and 3.20%, and 5.03% and 5.78%), and peroxidase (POD 0.31% and 5.55%, and 4.72% and 3.61%), exhibited significant increases in Cr 50 and 100 treatments, respectively. The addition of Ai-ZnONPs to the soil also enhanced soil nutrient status and reduced Cr (VI) concentrations by 40.69% and 19.82% compared to Cr-50 and 100 treated soils. These findings suggest that Ai-ZnONPs can trigger the activation of biochemical pathways that enable biomass accumulation in meristematic cells. Further investigations are required to elucidate the mechanisms involved in growth promotion.
Collapse
Affiliation(s)
- Sajid Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Wenjie Ou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, 570228, China
| | - Waqas Ahmed
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Jochen Bundschuh
- Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, 4350, QLD, Australia
| | | | - Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Haider Sultan
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Juha M Alatalo
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Ahmed S M Elnahal
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Wenjie Liu
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, 570228, China
| | - Weidong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, 570228, China.
| |
Collapse
|
21
|
Clarke B, Ghandi K. The Interplay of Growth Mechanism and Properties of ZnO Nanostructures for Different Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302864. [PMID: 37403280 DOI: 10.1002/smll.202302864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/29/2023] [Indexed: 07/06/2023]
Abstract
This review provides a background on the structure and properties of ZnO nanostructures. ZnO nanostructures are advantageous for many applications in sensing, photocatalysis, functional textiles, and cosmetic industries, which are described in this review. Previous work using UV Visible (UV-vis) spectroscopy and scanning electron microscopy (SEM) for ZnO nanorod growth analysis in-solution and on a substrate for determination of optical properties and morphology is discussed, as well as their results in determining the kinetics and growth mechanisms. From this literature review, it is understood that the synthesis process greatly affects nanostructures and properties; and hence, their applications. In addition, in this review, the mechanism of ZnO nanostructure growth is unveiled, and it is shown that by having greater control over their morphology and size through such mechanistic understanding, the above-mentioned applications can be affected. The contradictions and gaps in knowledge are summarized in order to highlight the variations in results, followed by suggestions for how to answer these gaps and future outlooks for ZnO nanostructure research.
Collapse
|
22
|
Murali M, Gowtham HG, Shilpa N, Singh SB, Aiyaz M, Sayyed RZ, Shivamallu C, Achar RR, Silina E, Stupin V, Manturova N, Shati AA, Alfaifi MY, Elbehairi SEI, Kollur SP. Zinc oxide nanoparticles prepared through microbial mediated synthesis for therapeutic applications: a possible alternative for plants. Front Microbiol 2023; 14:1227951. [PMID: 37744917 PMCID: PMC10516225 DOI: 10.3389/fmicb.2023.1227951] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023] Open
Abstract
Zinc oxide nanoparticles (ZnO-NPs) synthesized through biogenic methods have gained significant attention due to their unique properties and potential applications in various biological fields. Unlike chemical and physical approaches that may lead to environmental pollution, biogenic synthesis offers a greener alternative, minimizing hazardous environmental impacts. During biogenic synthesis, metabolites present in the biotic sources (like plants and microbes) serve as bio-reductants and bio-stabilizers. Among the biotic sources, microbes have emerged as a promising option for ZnO-NPs synthesis due to their numerous advantages, such as being environmentally friendly, non-toxic, biodegradable, and biocompatible. Various microbes like bacteria, actinomycetes, fungi, and yeast can be employed to synthesize ZnO-NPs. The synthesis can occur either intracellularly, within the microbial cells, or extracellularly, using proteins, enzymes, and other biomolecules secreted by the microbes. The main key advantage of biogenic synthesis is manipulating the reaction conditions to optimize the preferred shape and size of the ZnO-NPs. This control over the synthesis process allows tailoring the NPs for specific applications in various fields, including medicine, agriculture, environmental remediation, and more. Some potential applications include drug delivery systems, antibacterial agents, bioimaging, biosensors, and nano-fertilizers for improved crop growth. While the green synthesis of ZnO-NPs through microbes offers numerous benefits, it is essential to assess their toxicological effects, a critical aspect that requires thorough investigation to ensure their safe use in various applications. Overall, the presented review highlights the mechanism of biogenic synthesis of ZnO-NPs using microbes and their exploration of potential applications while emphasizing the importance of studying their toxicological effects to ensure a viable and environmentally friendly green strategy.
Collapse
Affiliation(s)
| | - H. G. Gowtham
- Department of PG Studies in Biotechnology, Nrupathunga University, Bangalore, India
| | - N. Shilpa
- Department of Studies in Microbiology, University of Mysore, Mysuru, India
| | - S. Brijesh Singh
- Department of Studies in Botany, University of Mysore, Mysuru, India
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Mysuru, India
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Myuru, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Ekaterina Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Surgery, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Victor Stupin
- Department of Surgery, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Natalia Manturova
- Department of Surgery, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | | | |
Collapse
|
23
|
Nassar ARA, Atta HM, Abdel-Rahman MA, El Naghy WS, Fouda A. Myco-synthesized copper oxide nanoparticles using harnessing metabolites of endophytic fungal strain Aspergillus terreus: an insight into antibacterial, anti-Candida, biocompatibility, anticancer, and antioxidant activities. BMC Complement Med Ther 2023; 23:261. [PMID: 37481531 PMCID: PMC10363295 DOI: 10.1186/s12906-023-04056-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/26/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND The overuse of antibiotics leads to the emergence of antibiotic-resistant microbes which causes high mortality worldwide. Therefore, the synthesis of new active compounds has multifunctional activities are the main challenge. Nanotechnology provides a solution for this issue. METHOD The endophytic fungal strain Aspergillus terreus BR.1 was isolated from the healthy root of Allium sativum and identified using internal transcribed spacer (ITS) sequence analysis. The copper oxide nanoparticles (CuO-NPs) were synthesized by harnessing the metabolites of the endophytic fungal strain. The UV-Visble spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Transmission electron micrscopy (TEM), Energy dispersive X-ray (EDX), X-ray diffraction (XRD), Dynamic light scattering (DLS), and zeta potential (ζ) were used for the characterization of synthesized CuO-NPs. The activity against different pathogenic bacteria and Candida species were investigated by agar well-diffusion method. The biocombatibility and anticancer activity were assessed by MTT assay method. The scavenging of DPPH was used to investigate the antioxidant activity of synthesized CuO-NPs. RESULTS Data showed the successful formation of crystalline nature and spherical shape CuO-NPs with sizes in the ranges of 15-55 nm. The EDX reveals that the as-formed sample contains ions of C, O, Cl, and Cu with weight percentages of 18.7, 23.82, 11.31, and 46.17%, respectively. The DLS and ζ-potential showed high homogeneity and high stability of synthesized CuO-NPs with a polydispersity index (PDI) of 0.362 and ζ-value of - 26.6 mV. The synthesized CuO-NPs exhibited promising antibacterial and anti-Candida activity (concentration-dependent) with minimum inhibitory concentration (MIC) values in the ranges of 25-50 µg mL-1. Moreover, the fungal mediated-CuO-NPs targeted cancer cells of MCF7 and PC3 at low IC50 concentrations of 159.2 ± 4.5 and 116.2 ± 3.6 µg mL-1, respectively as compared to normal cells (Vero and Wi38 with IC50 value of 220.6 ± 3.7 and 229.5 ± 2.1 µg mL-1, respectively). The biosynthesized CuO-NPs showed antioxidant activity as detected by the DPPH method with scavenging percentages of 80.5 ± 1.2% at a concentration of 1000 µg mL-1 and decreased to 20.4 ± 4.2% at 1.9 µg mL-1 as compared to ascorbic acid (control) with scavenging activity of 97.3 ± 0.2 and 37.5 ± 1.3% at the same concentrations, respectively. CONCLUSION The fungal mediated-CuO-NPs exhibited promising activity and can be integrated into various biomedical and theraputic applications.
Collapse
Affiliation(s)
| | - Hossam M Atta
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Mohamed Ali Abdel-Rahman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Wageih S El Naghy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
24
|
Al-Askar AA, Hashem AH, Elhussieny NI, Saied E. Green Biosynthesis of Zinc Oxide Nanoparticles Using Pluchea indica Leaf Extract: Antimicrobial and Photocatalytic Activities. Molecules 2023; 28:4679. [PMID: 37375234 DOI: 10.3390/molecules28124679] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Nanotechnology is playing a critical role in several essential technologies with nanoscale structures (nanoparticles) in areas of the environment and biomedicine. In this work, the leaf extract of Pluchea indica was utilized to biosynthesize zinc oxide nanoparticles (ZnONPs) for the first time and evaluated for antimicrobial and photocatalytic activities. Different experimental methods were used to characterize the biosynthesized ZnONPs. The biosynthesized ZnONPs showed maximum Ultraviolet-visible spectroscopy (UV-vis) absorbance at a wavelength of 360 nm. The X-Ray diffraction (XRD) pattern of the ZnONPs exhibits seven strong reflection peaks, and the average particle size was 21.9 nm. Fourier-transform infrared spectroscopy (FT-IR) spectrum analysis reveals the presence of functional groups that help in biofabrication. The existence of Zn and O was confirmed by the Energy-dispersive X-ray (EDX) spectrum and the morphology by SEM images. Antimicrobial studies showed that the biosynthesized ZnONPs have antimicrobial efficacy against Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, Bacillus subtilis, Staphylococcus aureus, Candida albicans and Cryptococcus neoformans where inhibition zones at concentration 1000 µg/mL were 21.83 ± 0.76, 13.0 ± 1.1, 14.9 ± 0.85, 24.26 ± 1.1, 17.0 ± 1.0, 20.67 ± 0.57 and 19.0 ± 1.0 mm respectively. Under both dark and sunlight irradiation, the photocatalytic activity of ZnONPs was evaluated towards the degradation of the thiazine dye (methylene blue-MB). Approximately 95% of the MB dye was broken down at pH 8 after 150 min of sunlight exposure. The aforementioned results, therefore, suggest that ZnONPs synthesized by implementing environmentally friendly techniques can be employed for a variety of environmental and biomedical applications.
Collapse
Affiliation(s)
- Abdulaziz A Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Nadeem I Elhussieny
- Department of Life Science and Chemistry, Constructor University, 28759 Bremen, Germany
- Institute of Environmental Biology and Biotechnology, University of Applied Sciences Bremen, Am Neustadtwall 30, 28199 Bremen, Germany
| | - Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
25
|
Ghaffar S, Abbas A, Naeem-Ul-Hassan M, Assad N, Sher M, Ullah S, Alhazmi HA, Najmi A, Zoghebi K, Al Bratty M, Hanbashi A, Makeen HA, Amin HMA. Improved Photocatalytic and Antioxidant Activity of Olive Fruit Extract-Mediated ZnO Nanoparticles. Antioxidants (Basel) 2023; 12:1201. [PMID: 37371931 DOI: 10.3390/antiox12061201] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Photodegradation is an efficient strategy for the removal of organic pollutants from wastewater. Due to their distinct properties and extensive applications, semiconductor nanoparticles have emerged as promising photocatalysts. In this work, olive (Olea Europeae) fruit extract-based zinc oxide nanoparticles (ZnO@OFE NPs) were successfully biosynthesized using a one-pot sustainable method. The prepared ZnO NPs were systematically characterized using UV-Vis, FTIR, SEM, EDX and XRD and their photocatalytic and antioxidant activity was evaluated. SEM demonstrated the formation of spheroidal nanostructures (57 nm) of ZnO@OFE and the EDX analysis confirmed its composition. FTIR suggested the modification/capping of the NPs with functional groups of phytochemicals from the extract. The sharp XRD reflections revealed the crystalline nature of the pure ZnO NPs with the most stable hexagonal wurtzite phase. The photocatalytic activity of the synthesized catalysts was evaluated by measuring the degradation of methylene blue (MB) and methyl orange (MO) dyes under sunlight irradiation. Improved degradation efficiencies of 75% and 87% were achieved within only 180 min with photodegradation rate constant k of 0.008 and 0.013 min-1 for MB and MO, respectively. The mechanism of degradation was proposed. Additionally, ZnO@OFE NPs exhibited potent antioxidant activity against DPPH, hydroxyl, peroxide and superoxide radicals. Hence, ZnO@OFE NPs may have potential as a cost-effective and green photocatalyst for wastewater treatment.
Collapse
Affiliation(s)
- Sadia Ghaffar
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Azhar Abbas
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
- Department of Chemistry, Government Ambala Muslim Graduate College Sargodha, Sargodha 40100, Pakistan
| | | | - Nasir Assad
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Sher
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Sami Ullah
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 82912, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 82912, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 82912, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 82912, Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 82912, Saudi Arabia
| | - Ali Hanbashi
- Department of Pharmacology, College of Pharmacy, Jazan University, Jazan 82912, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 82912, Saudi Arabia
| | - Hatem M A Amin
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
26
|
Sharaf MH, Nagiub AM, Salem SS, Kalaba MH, El Fakharany EM, Abd El-Wahab H. A new strategy to integrate silver nanowires with waterborne coating to improve their antimicrobial and antiviral properties. PIGMENT & RESIN TECHNOLOGY 2023; 52:490-501. [DOI: 10.1108/prt-12-2021-0146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
PurposeThis study aims to focus on the preparation and characterization of the silver nanowire (AgNWs), as well as their application as antimicrobial and antivirus activities either with incorporation on the waterborne coating formulation or on their own.Design/methodology/approachPrepared AgNWs are characterized by different analytical instruments, such as ultraviolet-visible spectroscope, scanning electron microscope and X-ray diffraction spectrometer. All the paint formulation's physical and mechanical qualities were tested using American Society for Testing and Materials, a worldwide standard test procedure. The biological activities of the prepared AgNWs and the waterborne coating based on AgNWs were investigated. And, their effects on pathogenic bacteria, antioxidants, antiviral activity and cytotoxicity were also investigated.FindingsThe obtained results of the physical and mechanical characteristics of the paint formulation demonstrated the formulations' greatest performance, as well as giving good scrub resistance and film durability. In the antimicrobial activity, the paint did not have any activity against bacterial pathogen, whereas the AgNWs and AgNWs with paint have similar activity against bacterial pathogen with inhibition zone range from 10 to 14 mm. The development of antioxidant and cytotoxicity activity of the paint incorporated with AgNWs were also observed. The cytopathic effects of herpes simplex virus type 1 (HSV-1) were reduced in all three investigated modes of action when compared to the positive control group (HSV-1-infected cells), suggesting that these compounds have promising antiviral activity against a wide range of viruses, including DNA and RNA viruses.Originality/valueThe new waterborne coating based on nanoparticles has the potential to be promising in the manufacturing and development of paints, allowing them to function to prevent the spread of microbial infection, which is exactly what the world requires at this time.
Collapse
|
27
|
Loshchinina EA, Vetchinkina EP, Kupryashina MA. Diversity of Mycogenic Oxide and Chalcogenide Nanoparticles: A Review. Biomimetics (Basel) 2023; 8:224. [PMID: 37366819 DOI: 10.3390/biomimetics8020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Oxide and chalcogenide nanoparticles have great potential for use in biomedicine, engineering, agriculture, environmental protection, and other research fields. The myco-synthesis of nanoparticles with fungal cultures, their metabolites, culture liquids, and mycelial and fruit body extracts is simple, cheap and environmentally friendly. The characteristics of nanoparticles, including their size, shape, homogeneity, stability, physical properties and biological activity, can be tuned by changing the myco-synthesis conditions. This review summarizes the data on the diversity of oxide and chalcogenide nanoparticles produced by various fungal species under different experimental conditions.
Collapse
Affiliation(s)
- Ekaterina A Loshchinina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Elena P Vetchinkina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Maria A Kupryashina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| |
Collapse
|
28
|
Sun S, Bao D, Zhou Y, Cheng C, Zhang S, Zhao M, Guo J. Sodium alginate/chitosan-coated TiO 2NPs hybrid fiber with photocatalytic self-cleaning property, UV resistance and enhanced tensile strength. Int J Biol Macromol 2023:124966. [PMID: 37244334 DOI: 10.1016/j.ijbiomac.2023.124966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
SA/CS-coated TiO2NPs hybrid fibers with photocatalytic self-cleaning properties, UV resistance and enhanced tensile strength were successfully prepared by adding CS-coated TiO2NPs to SA matrix. The FTIR and TEM results demonstrate the successful preparation of CS-coated TiO2NPs core-shell structured composite particles. SEM and Tyndall effect results showed that the core-shell particles were uniformly dispersed in the SA matrix. When the content of Core-shell particles increased from 0.1 to 0.3 wt%, the tensile strength of SA/CS-coated TiO2NPs hybrid fibers increased from 26.89 to 64.45 % compared with SA/TiO2NPs hybrid fibers. The SA/CS-coated TiO2NPs hybrid fiber (0.3 wt%) exhibits excellent photocatalytic degradation performance, achieving a 90 % degradation rate for the RhB solution. And the fibers also exhibit outstanding photocatalytic degradation performance towards various dyes and stains commonly encountered in daily life, including methyl orange, malachite green, Congo red, coffee and mulberry juice. The UV transmittance of the SA/CS-coated TiO2NPs hybrid fibers decreased significantly from 90 % to 75 % with the increase in core-shell particle addition, and correspondingly, the UV absorption capacity increased. The SA/CS-coated TiO2NPs hybrid fibers prepared lay the groundwork for potential applications in various fields, including textiles, automotive engineering, electronics and medicine.
Collapse
Affiliation(s)
- Shengnan Sun
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Da Bao
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Yongchun Zhou
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Chen Cheng
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Sen Zhang
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China; State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, PR China.
| | - Miao Zhao
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Jing Guo
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China.
| |
Collapse
|
29
|
Aboul-Soud MAM, Siddique R, Fozia F, Ullah A, Rashid Y, Ahmad I, Zaghloul NSS, Al-Rejaie SS, Mohany M. Antiplatelet, cytotoxic activities and characterization of green-synthesized zinc oxide nanoparticles using aqueous extract of Nephrolepis exaltata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27483-3. [PMID: 37195603 DOI: 10.1007/s11356-023-27483-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
The goal of the current study was to synthesize zinc oxide nanoparticles (ZnO-NPs) using ZnCl2.2H2O salt precursor and an aqueous extract of Nephrolepis exaltata (N. exaltata), which act as a capping and reducing agent. N. exaltata plant extract-mediated ZnO-NPs were further characterized by various techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), UV-visible (UV-Vis), and energy-dispersive X-ray (EDX) analysis. The nanoscale crystalline phase of ZnO-NPs was analyzed by the XRD patterns. The FT-IR analysis revealed different functional groups of biomolecules involved in the reduction and stabilization of the ZnO-NPs. The light absorption and optical properties of ZnO-NPs were examined by UV-Vis spectroscopy at a wavelength of 380 nm. The spherical shape morphology of ZnO-NPs with mean particle size ranges between 60 and 80 nm was confirmed by SEM images. While the EDX analysis was used to identify the elemental composition of ZnO-NPs. Furthermore, the synthesized ZnO-NPs demonstrate potential antiplatelet activity by inhibiting the platelet aggregation induced by platelet activation factor (PAF) and arachidonic acid (AA). The results showed that synthesized ZnO-NPs were more effective in inhibiting platelet aggregation induced by AA with IC50 (56% and 10 μg/mL) and PAF (63% and 10 μg/mL), respectively. However, the biocompatibility of ZnO-NPs was assessed in human lung cancer cell line (A549) under in vitro conditions. The cytotoxicity of synthesized nanoparticles revealed that cell viability decreased and the IC50 was found to be 46.7% at a concentration of 75 μg/mL. The present work concluded the green synthesis of ZnO-NPs that was achieved by N. exaltata plant extract and showed good antiplatelet and cytotoxic activity, which demonstrates the lack of harmful effects making them more effective for use in pharmaceutical and medical fields to treat thrombotic disorders.
Collapse
Affiliation(s)
- Mourad A M Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia.
| | - Rashid Siddique
- Department of Chemistry, Islamia College University, Peshawar, 26000, Pakistan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, 26000, Pakistan
| | - Fozia Fozia
- Biochemistry Department, Khyber Medical University Institute of Medical Sciences, Kohat, 26000, Pakistan
| | - Asad Ullah
- Department of Chemistry, Islamia College University, Peshawar, 26000, Pakistan
| | - Yasir Rashid
- Department of Chemistry, Kohat University of Science & Technology, Kohat, 26000, Pakistan
| | - Ijaz Ahmad
- Department of Chemistry, Kohat University of Science & Technology, Kohat, 26000, Pakistan
| | - Nouf S S Zaghloul
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, Tyndall Avenue, University of Bristol, Bristol, BS8 1FD, UK
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
30
|
Lan J, Wu Y, Lin C, Chen J, Zhu R, Ma X, Cao S. Totally-green cellulosic fiber with prominent sustained antibacterial and antiviral properties for potential use in spunlaced non-woven fabric production. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 464:142588. [PMID: 36992868 PMCID: PMC10035801 DOI: 10.1016/j.cej.2023.142588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/28/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
The worldwide spread of COVID-19 has put a higher requirement for personal medical protective clothing, developing protective clothing with sustained antibacterial and antiviral performance is the priority for safe and sustaining application. For this purpose, we develop a novel cellulose based material with sustained antibacterial and antiviral properties. In the proposed method, the chitosan oligosaccharide (COS) was subjected to a guanylation reaction with dicyandiamide in the presence of Scandium (III) triflate; because of the relatively lower molecular weight and water solubility of the COS, GCOS (guanylated chitosan oligosaccharide) with high substitution degree (DS) could be successfully synthetized without acid application. In this instance, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the GCOS were only 1/8 and 1/4 of that of COS. The introduction of GCOS onto the fiber endowed the fiber with extremely high antibacterial and antiviral performance, showing 100% bacteriostatic rate against Staphylococcus aureus and Escherichia coli and 99.48% virus load reduction of bacteriophage MS2. More importantly, the GCOS modified cellulosic fibers (GCOS-CFs) exhibit excellent sustained antibacterial and antiviral properties; namely, 30 washing cycles had negligible effect on the bacteriostatic rate (100%) and inhibition rate of bacteriophage MS2 (99.0%). Moreover, the paper prepared from the GCOS-CFs still exhibited prominent antibacterial and antiviral activity; inferring that the sheeting forming, press, and drying process have almost no effect on the antibacterial and antiviral performances. The insensitive of antibacterial and antiviral activity to water washing (spunlace) and heat (drying) make the GCOS-CFs a potential material applicable in the spunlaced non-woven fabric production.
Collapse
Affiliation(s)
- Jinxin Lan
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yao Wu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Changmei Lin
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jiazhen Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ruiqi Zhu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaojuan Ma
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shilin Cao
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
31
|
Malik AQ, Mir TUG, Kumar D, Mir IA, Rashid A, Ayoub M, Shukla S. A review on the green synthesis of nanoparticles, their biological applications, and photocatalytic efficiency against environmental toxins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27437-9. [PMID: 37171732 DOI: 10.1007/s11356-023-27437-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Green synthesis of nanoparticles (NPs) using plant materials and microorganisms has evolved as a sustainable alternative to conventional techniques that rely on toxic chemicals. Recently, green-synthesized eco-friendly NPs have attracted interest for their potential use in various biological applications. Several studies have demonstrated that green-synthesized NPs are beneficial in multiple medicinal applications, including cancer treatment, targeted drug delivery, and wound healing. Additionally, due to their photodegradation activity, green-synthesized NPs are a promising tool in environmental remediation. Photodegradation is a process that uses light and a photocatalyst to turn a pollutant into a harmless product. Green NPs have been found efficient in degrading pollutants such as dyes, herbicides, and heavy metals. The use of microbes and flora in green synthesis technology for nanoparticle synthesis is biologically safe, cost-effective, and eco-friendly. Plants and microbes can now use and accumulate inorganic metallic ions in the environment. Various NPs have been synthesized via the bio-reduction of biological entities or their extracts. There are several biological and environmental uses for biologically synthesized metallic NPs, such as photocatalysis, adsorption, and water purification. Since the last decade, the green synthesis of NPs has gained significant interest in the scientific community. Therefore, there is a need for a review that serves as a one-stop resource that points to relevant and recent studies on the green synthesis of NPs and their biological and photocatalytic efficiency. This review focuses on the green fabrication of NPs utilizing diverse biological systems and their applications in biological and photodegradation processes.
Collapse
Affiliation(s)
- Azad Qayoom Malik
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411.
| | - Tahir Ul Gani Mir
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Deepak Kumar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Irtiqa Ashraf Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Adfar Rashid
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Mehnaz Ayoub
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Saurabh Shukla
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| |
Collapse
|
32
|
Tripathi S, Mahra S, J V, Tiwari K, Rana S, Tripathi DK, Sharma S, Sahi S. Recent Advances and Perspectives of Nanomaterials in Agricultural Management and Associated Environmental Risk: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101604. [PMID: 37242021 DOI: 10.3390/nano13101604] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
The advancement in nanotechnology has enabled a significant expansion in agricultural production. Agri-nanotechnology is an emerging discipline where nanotechnological methods provide diverse nanomaterials (NMs) such as nanopesticides, nanoherbicides, nanofertilizers and different nanoforms of agrochemicals for agricultural management. Applications of nanofabricated products can potentially improve the shelf life, stability, bioavailability, safety and environmental sustainability of active ingredients for sustained release. Nanoscale modification of bulk or surface properties bears tremendous potential for effective enhancement of agricultural productivity. As NMs improve the tolerance mechanisms of the plants under stressful conditions, they are considered as effective and promising tools to overcome the constraints in sustainable agricultural production. For their exceptional qualities and usages, nano-enabled products are developed and enforced, along with agriculture, in diverse sectors. The rampant usage of NMs increases their release into the environment. Once incorporated into the environment, NMs may threaten the stability and function of biological systems. Nanotechnology is a newly emerging technology, so the evaluation of the associated environmental risk is pivotal. This review emphasizes the current approach to NMs synthesis, their application in agriculture, interaction with plant-soil microbes and environmental challenges to address future applications in maintaining a sustainable environment.
Collapse
Affiliation(s)
- Sneha Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shivani Mahra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Victoria J
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Kavita Tiwari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shweta Rana
- Department of Physical and Natural Sciences, FLAME University, Pune 412115, India
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida 201313, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shivendra Sahi
- Department of Biology, St. Joseph's University, 600 S. 43rd St., Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Ogunyemi SO, Xu X, Xu L, Abdallah Y, Rizwan M, Lv L, Ahmed T, Ali HM, Khan F, Yan C, Chen J, Li B. Cobalt oxide nanoparticles: An effective growth promoter of Arabidopsis plants and nano-pesticide against bacterial leaf blight pathogen in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114935. [PMID: 37086623 DOI: 10.1016/j.ecoenv.2023.114935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Recently, the application of cobalt oxide nanoparticles (Co3O4NPs) has gained popularity owing to its magnetic, catalytic, optical, antimicrobial, and biomedical properties. However, studies on its use as a crop protection agent and its effect on photosynthetic apparatus are yet to be reported. Here, Co3O4NPs were first green synthesized using Hibiscus rosa-sinensis flower extract and were characterized using UV-Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), transmission/scanning electron microscopy methods. Formation of the Co3O4NPs was attested based on surface plasmon resonance at 210 nm. XRD assay showed that the samples were crystalline having a mean size of 34.9 nm. The Co3O4NPs at 200 µg/ml inhibited the growth (OD600 = 1.28) and biofilm formation (OD570 = 1.37) of Xanthomonas oryzae pv. oryzae (Xoo) respectively, by 72.87% and 79.65%. Rice plants inoculated with Xoo had disease leaf area percentage (DLA %) of 57.25% which was significantly reduced to 11.09% on infected plants treated with 200 µg/ml Co3O4NPs. Also, plants treated with 200 µg/ml Co3O4NPs only had significant increment in shoot length, root length, fresh weight, and dry weight in comparison to plants treated with double distilled water. The application of 200 µg/ml Co3O4NPs on the Arabidopsis plant significantly increased the photochemical efficacy of PSII (ΦPSII) and photochemical quenching (qP) respectively, by 149.10% and 125.00% compared to the control while the non-photochemical energy dissipation (ΦNPQ) was significantly lowered in comparison to control. In summary, it can be inferred that Co3O4NPs can be a useful agent in the management of bacterial phytopathogen diseases.
Collapse
Affiliation(s)
- Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xinyan Xu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Yasmine Abdallah
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China; Plant Pathology Department, Faculty of Agriculture, Minia University, 61519, Elminya, Egypt
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Luqiong Lv
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS 7250, Australia
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
34
|
Chaudhary V, Chowdhury R, Thukral P, Pathania D, Saklani S, Rustagi S, Gautam A, Mishra YK, Singh P, Kaushik A. Biogenic green metal nano systems as efficient anti-cancer agents. ENVIRONMENTAL RESEARCH 2023; 229:115933. [PMID: 37080272 DOI: 10.1016/j.envres.2023.115933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Metal/metal oxide nano systems (M-NSs) of tunable and manipulative properties are emerging suitable for cancer management via immunity development, early-stage diagnosis, nanotherapeutics, and targeted drug delivery systems. However, noticeable toxicity, off-targeted actions, lacking biocompatibility, and being expensive limit their acceptability. Moreover, involving high energy (top-down routes) and hazardous chemicals (bottom-up chemical routes) is altering human cycle. To manage such challenges, biomass (plants, microbes, animals) and green chemistry-based M-NSs due to scalability, affordability, are cellular, tissue, and organ acceptability are emerging as desired biogenic M-NSs for cancer management with enhanced features. The state-of-art and perspective of green metal/metal oxide nano systems (GM-NSs) as an efficient anti-cancer agent including, imaging, immunity building elements, site-specific drug delivery, and therapeutics developments are highlighted in this review critically. It is expected that this report will serve as guideline for design and develop high-performance GM-NSs for establishing them as next-generation anti-cancer agent capable to manage cancer in personalized manner.
Collapse
Affiliation(s)
- Vishal Chaudhary
- Research Cell & Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India; SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab), New Delhi, 110072, India.
| | - Ruchita Chowdhury
- SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab), New Delhi, 110072, India; Department of Chemistry, Netaji Subhas University of Technology, New Delhi, 110078, India
| | - Prachi Thukral
- SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab), New Delhi, 110072, India; Department of Applied Chemistry, Delhi Technological University, New Delhi, 110042, India
| | - Diksha Pathania
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Shivani Saklani
- School of Biological and Environmental Sciences, Shoolini University, Solan, 173229, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttrakhand, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, 500046, India.
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400, Sønderborg, Denmark
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, 173229, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, 33805, USA; School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India.
| |
Collapse
|
35
|
Aventaggiato M, Preziosi A, Cheraghi Bidsorkhi H, Schifano E, Vespa S, Mardente S, Zicari A, Uccelletti D, Mancini P, Lotti LV, Sarto MS, Tafani M. ZnO Nanorods Create a Hypoxic State with Induction of HIF-1 and EPAS1, Autophagy, and Mitophagy in Cancer and Non-Cancer Cells. Int J Mol Sci 2023; 24:ijms24086971. [PMID: 37108134 PMCID: PMC10138614 DOI: 10.3390/ijms24086971] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Nanomaterials are gaining increasing attention as innovative materials in medicine. Among nanomaterials, zinc oxide (ZnO) nanostructures are particularly appealing because of their opto-electrical, antimicrobial, and photochemical properties. Although ZnO is recognized as a safe material and the Zn ion (Zn2+) concentration is strictly regulated at a cellular and systemic level, different studies have demonstrated cellular toxicity of ZnO nanoparticles (ZnO-NPs) and ZnO nanorods (ZnO-NRs). Recently, ZnO-NP toxicity has been shown to depend on the intracellular accumulation of ROS, activation of autophagy and mitophagy, as well as stabilization and accumulation of hypoxia-inducible factor-1α (HIF-1α) protein. However, if the same pathway is also activated by ZnO-NRs and how non-cancer cells respond to ZnO-NR treatment, are still unknown. To answer to these questions, we treated epithelial HaCaT and breast cancer MCF-7 cells with different ZnO-NR concentrations. Our results showed that ZnO-NR treatments increased cell death through ROS accumulation, HIF-1α and endothelial PAS domain protein 1 (EPAS1) activation, and induction of autophagy and mitophagy in both cell lines. These results, while on one side, confirmed that ZnO-NRs can be used to reduce cancer growth, on the other side, raised some concerns on the activation of a hypoxic response in normal cells that, in the long run, could induce cellular transformation.
Collapse
Affiliation(s)
- Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Adele Preziosi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, P.le A. Moro,5, 00185 Rome, Italy
| | - Hossein Cheraghi Bidsorkhi
- Department of Aerospace, Electrical and Energy Engineering, Sapienza University, Via Eudossiana 18, 00184 Rome, Italy
- Research Center for Nanotechnology Applied to Engineering, Sapienza University, Via Eudossiana 18, 00184 Rome, Italy
| | - Emily Schifano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, P.le A. Moro,5, 00185 Rome, Italy
| | - Simone Vespa
- Center for Advanced Studies and Technology, University "G. D'Annunzio" of Chieti-Pescara, Via Luigi Polacchi 11, 66100 Chieti, Italy
| | - Stefania Mardente
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Alessandra Zicari
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, P.le A. Moro,5, 00185 Rome, Italy
- Research Center for Nanotechnology Applied to Engineering, Sapienza University, Via Eudossiana 18, 00184 Rome, Italy
| | - Patrizia Mancini
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Lavinia Vittoria Lotti
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Maria Sabrina Sarto
- Department of Aerospace, Electrical and Energy Engineering, Sapienza University, Via Eudossiana 18, 00184 Rome, Italy
- Research Center for Nanotechnology Applied to Engineering, Sapienza University, Via Eudossiana 18, 00184 Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
36
|
Fouda A, Saied E, Eid AM, Kouadri F, Alemam AM, Hamza MF, Alharbi M, Elkelish A, Hassan SED. Green Synthesis of Zinc Oxide Nanoparticles Using an Aqueous Extract of Punica granatum for Antimicrobial and Catalytic Activity. J Funct Biomater 2023; 14:jfb14040205. [PMID: 37103295 PMCID: PMC10144860 DOI: 10.3390/jfb14040205] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
The peel aqueous extract of Punica granatum was utilized to fabricate zinc oxide nanoparticles (ZnO-NPs) as a green approach. The synthesized NPs were characterized by UV-Vis spectroscopy, Fourier transform infrared (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy, which was attached to an energy dispersive X-ray (SEM-EDX). Spherical, well arranged, and crystallographic structures of ZnO-NPs were formed with sizes of 10-45 nm. The biological activities of ZnO-NPs, including antimicrobial and catalytic activity for methylene blue dye, were assessed. Data analysis showed that the antimicrobial activity against pathogenic Gram-positive and Gram-negative bacteria, as well as unicellular fungi, was observed to occur in a dose-dependent manner, displaying varied inhibition zones and low minimum inhibitory concentration (MIC) values in the ranges of 6.25-12.5 µg mL-1. The degradation efficacy of methylene blue (MB) using ZnO-NPs is dependent on nano-catalyst concentration, contact time, and incubation condition (UV-light emission). The maximum MB degradation percentages of 93.4 ± 0.2% was attained at 20 µg mL-1 after 210 min in presence of UV-light. Data analysis showed that there is no significant difference between the degradation percentages after 210, 1440, and 1800 min. Moreover, the nano-catalyst showed high stability and efficacy to degrade MB for five cycles with decreasing values of 4%. Overall, P. granatum-based ZnO-NPs are promising tools to inhibit the growth of pathogenic microbes and degradation of MB in the presence of UV-light emission.
Collapse
Affiliation(s)
- Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ebrahim Saied
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ahmed M Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Fayza Kouadri
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Ahmed M Alemam
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mohammed F Hamza
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo 11728, Egypt
| | - Maha Alharbi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amr Elkelish
- Biology Department, College of Science, Imam Mohammad ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| |
Collapse
|
37
|
Rilda Y, Valeri A, Drajat S, Agustien A, Fardi H, Sofyan N. Biosynthesis, Characterization, and Antibacterial Activity of Ti-Doped Zno (Ti/ZnO) Using Mediated Aspergillus Niger. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1016/j.sajce.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
38
|
Salem SS. A mini review on green nanotechnology and its development in biological effects. Arch Microbiol 2023; 205:128. [PMID: 36944830 PMCID: PMC10030434 DOI: 10.1007/s00203-023-03467-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/23/2023]
Abstract
The utilization of living organisms for the creation of inorganic nanoscale particles is a potential new development in the realm of biotechnology. An essential milestone in the realm of nanotechnology is the process of creating dependable and environmentally acceptable metallic nanoparticles. Due to its increasing popularity and ease, use of ambient biological resources is quickly becoming more significant in this field of study. The phrase "green nanotechnology" has gained a lot of attention and refers to a variety of procedures that eliminate or do away with hazardous compounds to repair the environment. Green nanomaterials can be used in a variety of biotechnological sectors such as medicine and biology, as well as in the food and textile industries, wastewater treatment and agriculture field. The construction of an updated level of knowledge with utilization and a study of the ambient biological systems that might support and revolutionize the creation of nanoparticles (NPs) are presented in this article.
Collapse
Affiliation(s)
- Salem S Salem
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
39
|
Carrapiço A, Martins MR, Caldeira AT, Mirão J, Dias L. Biosynthesis of Metal and Metal Oxide Nanoparticles Using Microbial Cultures: Mechanisms, Antimicrobial Activity and Applications to Cultural Heritage. Microorganisms 2023; 11:microorganisms11020378. [PMID: 36838343 PMCID: PMC9960935 DOI: 10.3390/microorganisms11020378] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Nanoparticles (1 to 100 nm) have unique physical and chemical properties, which makes them suitable for application in a vast range of scientific and technological fields. In particular, metal nanoparticle (MNPs) research has been showing promising antimicrobial activities, paving the way for new applications. However, despite some research into their antimicrobial potential, the antimicrobial mechanisms are still not well determined. Nanoparticles' biosynthesis, using plant extracts or microorganisms, has shown promising results as green alternatives to chemical synthesis; however, the knowledge regarding the mechanisms behind it is neither abundant nor consensual. In this review, findings from studies on the antimicrobial and biosynthesis mechanisms of MNPs were compiled and evidence-based mechanisms proposed. The first revealed the importance of enzymatic disturbance by internalized metal ions, while the second illustrated the role of reducing and negatively charged molecules. Additionally, the main results from recent studies (2018-2022) on the biosynthesis of MNPs using microorganisms were summarized and analyzed, evidencing a prevalence of research on silver nanoparticles synthesized using bacteria aiming toward testing their antimicrobial potential. Finally, a synopsis of studies on MNPs applied to cultural heritage materials showed potential for their future use in preservation.
Collapse
Affiliation(s)
- António Carrapiço
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Institute for Research and Advanced Training (IIFA), University of Évora, 7000-809 Évora, Portugal
| | - Maria Rosário Martins
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Department of Medicinal Sciences and Health, School of Health and Human Development, University of Évora, 7000-671 Évora, Portugal
| | - Ana Teresa Caldeira
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Department of Chemistry and Biochemistry, School of Sciences and Technology, University of Évora, 7000-671 Évora, Portugal
| | - José Mirão
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Department of Geosciences, School of Sciences and Technology, University of Évora, 7000-671 Évora, Portugal
| | - Luís Dias
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Department of Geosciences, School of Sciences and Technology, University of Évora, 7000-671 Évora, Portugal
- Correspondence:
| |
Collapse
|
40
|
Zinc oxide nanoparticles: Biosynthesis, characterization, biological activity and photocatalytic degradation for tartrazine yellow dye. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Haris M, Hussain T, Mohamed HI, Khan A, Ansari MS, Tauseef A, Khan AA, Akhtar N. Nanotechnology - A new frontier of nano-farming in agricultural and food production and its development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159639. [PMID: 36283520 DOI: 10.1016/j.scitotenv.2022.159639] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 05/27/2023]
Abstract
The potential of nanotechnology for the development of sustainable agriculture has been promising. The initiatives to meet the rising food needs of the rapidly growing world population are mainly powered by sustainable agriculture. Nanoparticles are used in agriculture due to their distinct physicochemical characteristics. The interaction of nanomaterials with soil components is strongly determined in terms of soil quality and plant growth. Numerous research has been carried out to investigate how nanoparticles affect the growth and development of plants. Nanotechnology has been applied to improve the quality and reduce post-harvest loss of agricultural products by extending their shelf life, particularly for fruits and vegetables. This review assesses the latest literature on nanotechnology, which is used as a nano-biofertilizer as seen in the agricultural field for high productivity and better growth of plants, an important source of balanced nutrition for the crop, seed germination, and quality enrichment. Additionally, post-harvest food processing and packaging can benefit greatly from the use of nanotechnology to cut down on food waste and contamination. It also critically discusses the mechanisms involved in nanoparticle absorption and translocation within the plants and the synthesis of green nanoparticles.
Collapse
Affiliation(s)
- Mohammad Haris
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Touseef Hussain
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; Division. of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, Egypt.
| | - Amir Khan
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Moh Sajid Ansari
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Atirah Tauseef
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Abrar Ahmad Khan
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Naseem Akhtar
- Department of Pharmaceutics, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, Qassim 51418, Saudi Arabia
| |
Collapse
|
42
|
Plant and Microbial Approaches as Green Methods for the Synthesis of Nanomaterials: Synthesis, Applications, and Future Perspectives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010463. [PMID: 36615655 PMCID: PMC9823860 DOI: 10.3390/molecules28010463] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
The unique biological and physicochemical characteristics of biogenic (green-synthesized) nanomaterials (NMs) have attracted significant interest in different fields, with applications in the agrochemical, food, medication delivery, cosmetics, cellular imaging, and biomedical industries. To synthesize biogenic nanomaterials, green synthesis techniques use microorganisms, plant extracts, or proteins as bio-capping and bio-reducing agents and their role as bio-nanofactories for material synthesis at the nanoscale size. Green chemistry is environmentally benign, biocompatible, nontoxic, and economically effective. By taking into account the findings from recent investigations, we shed light on the most recent developments in the green synthesis of nanomaterials using different types of microbes and plants. Additionally, we cover different applications of green-synthesized nanomaterials in the food and textile industries, water treatment, and biomedical applications. Furthermore, we discuss the future perspectives of the green synthesis of nanomaterials to advance their production and applications.
Collapse
|
43
|
Rehman H, Ali W, Zaman Khan N, Aasim M, Khan T, Ali Khan A. Delphinium uncinatum mediated biosynthesis of zinc oxide nanoparticles and in-vitro evaluation of their antioxidant, cytotoxic, antimicrobial, anti-diabetic, anti-inflammatory, and anti-aging activities. Saudi J Biol Sci 2023; 30:103485. [DOI: 10.1016/j.sjbs.2022.103485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/17/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
|
44
|
Hamk M, Akçay FA, Avcı A. Green synthesis of zinc oxide nanoparticles using Bacillus subtilis ZBP4 and their antibacterial potential against foodborne pathogens. Prep Biochem Biotechnol 2023; 53:255-264. [PMID: 35616319 DOI: 10.1080/10826068.2022.2076243] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, extracellular biosynthesis of zinc oxide nanoparticles (ZnO NPs) by using the supernatant of Bacillus subtilis ZBP4 after cultivation in nutrient broth at 33 °C for 24 h was investigated. Zinc sulfate heptahydrate was used as the precursor, and the reactions were performed at 33 °C for 72 h. The effects of pH 5-9 and precursor concentration (2-10 mM) were determined and the optima were found to be pH 7.5 and 8 mM ZnSO4·7H2O, respectively. The nanoparticles were characterized by UV-VIS spectroscopy, FESEM, TEM, EDS, XRD, FTIR and zeta potential measurement. ZnO NPs appeared to be irregular spherical structures with a size range of 22-59 nm, as confirmed by FESEM and TEM. Energy-dispersive spectroscopy analysis validated the formation of ZnO NPs. X-ray diffraction analysis revealed the crystalline structure of the ZnO NPs, and they were determined to have a zeta potential of -19.0 ± 4.3 mV and a bandgap of 3.36 eV. Antibacterial activity experiments showed that ZnO NPs are effective against a broad spectrum of Gram-positive and Gram-negative food pathogens. This study provides evidence for a safe and effective method for synthesizing ZnO NPs and demonstrates their effectiveness against pathogenic bacteria.
Collapse
Affiliation(s)
- Mohammed Hamk
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan, Sakarya, Turkey.,Food Science and Quality Control Department, Halabja Technical College of Applied Sciences, Sulaimani Polytechnic University, Zamaqi, Halabja, Iraq
| | - Fikriye Alev Akçay
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan, Sakarya, Turkey
| | - Ayşe Avcı
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan, Sakarya, Turkey
| |
Collapse
|
45
|
Bidan AK, Al-Ali ZSA. Biomedical Evaluation of Biosynthesized Silver Nanoparticles by Jasminum Sambac(L.) Aiton Against Breast Cancer Cell Line, and Both Bacterial Strains Colonies. INTERNATIONAL JOURNAL OF NANOSCIENCE 2022; 21. [DOI: 10.1142/s0219581x22500429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The biosynthesis of silver nanoparticles (AgNPs) was conducted using the Iraqi Jasminum sambac (L.) Aiton leaves having substantial bioreduction and capping properties. The aqueous extract has been characterized using FTIR to observe changes in functional groups of extract compared to extract-AgNPs. GC-MS understands the mechanism synthesis of AgNPs based on the aqueous extract of J. sambac through identification of aqueous extracted. The synthesized AgNPs were characterized using UV–Vis at 455[Formula: see text]nm, XRD broad chart owing to size of AgNPs and TEM (AgNPs average size less than 10[Formula: see text]nm). FESEM-EDX was carried out to observe the nearly spherical shape with elemental composition. DLS was appointed with hydrodynamic radius as 105.9[Formula: see text]nm and also had a good polydispersity at 0.357, and [Formula: see text]-potential at [Formula: see text]23.1. AgNPs have antibacterial gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli), cytotoxicity MTT assay against breast cancer MCF-7 cell line IC50 at 222.6[Formula: see text][Formula: see text]g/mL, genotoxicity fragmented DNA of MCF-7 by comet assay, emphasized apoptosis cells through cell cycle flow cytometry. Overall, safe, cost-effective, and scalable biogenic nano-formulation of Jasminum sambac-AgNPs possesses antibacterial and anticancer therapeutic applications.
Collapse
Affiliation(s)
- Ali Kadhum Bidan
- Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq
| | | |
Collapse
|
46
|
Multi-Shaded Edible Films Based on Gelatin and Starch for the Packaging Applications. Polymers (Basel) 2022; 14:polym14225020. [PMID: 36433147 PMCID: PMC9693176 DOI: 10.3390/polym14225020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Starch and gelatin are natural biopolymers that offer a variety of benefits and are available at relatively low costs. In addition to this, they are an appealing substitute for synthetic polymers for the manufacturing of packaging films. Such packaging films are not only biodegradable but are also edible. Moreover, they are environmentally friendly and remain extremely cost-effective. In lieu of this, films made from fish gelatin and cornstarch have been the subject of several experiments. The pristine gelatin films have poor performance against water diffusion but exhibit excellent flexibility. The goal of this study was to assess the performance of pristine gelatin films along with the addition of food plasticizers. For this purpose, solutions of gelatin/cornstarch were prepared and specified quantities of food colors/plasticizers were added to develop different shades. The films were produced by using a blade coating method and were characterized by means of their shaded colors, water vapor transmission rate (WVTR), compositional changes via Fourier transform infrared spectroscopy (FTIR), hardness, bendability, transparency, wettability, surface roughness, and thermal stability. It was observed that the addition of several food colors enhanced the moisture blocking effect, as a 10% reduction in WVTR was observed in the shaded films as compared to pristine films. The yellow-shaded films exhibited the lowest WVTR, i.e., around 73 g/m2·day when tested at 23 °C/65%RH. It was also observed that the films' WVTR, moisture content, and thickness were altered when different colors were added into them, although the chemical structure remained unchanged. The mechanical properties of the shaded films were improved by a factor of two after the addition of colored plasticizers. Optical examination and AFM demonstrated that the generated films had no fractures and were homogeneous, clear, and shiny. Finally, a biscuit was packaged in the developed films and was monitored via shore hardness. It was observed that the edible packed sample's hardness remained constant even after 5 days. This clearly suggested that the developed films have the potential to be used for packaging in various industries.
Collapse
|
47
|
Development of smart cotton fabrics immobilized with anthocyanin and potassium alum for colorimetric detection of bacteria. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Bommakanti V, Banerjee M, Shah D, Manisha K, Sri K, Banerjee S. An overview of synthesis, characterization, applications and associated adverse effects of bioactive nanoparticles. ENVIRONMENTAL RESEARCH 2022; 214:113919. [PMID: 35863448 DOI: 10.1016/j.envres.2022.113919] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
A particle with a diameter ranging from 1 to 100 nm is considered a nanoparticle (NP). Owing to their small size and high surface area, NPs possess unique physical, chemical and biological properties as compared to their bulkier counterparts. This paper describes various physico-chemical as well as green methods that can be used to synthesize different types of NPs including carbon-based, ceramic, metal, semiconductor, polymeric and lipid-based NPs. These methods can be categorized into either top-down or bottom-up approaches. Electron microscopy, atomic force microscopy, dynamic light scattering, X-ray diffraction, zeta-potential instrument, liquid chromatography-mass spectrometry, fourier transform infrared spectroscopy and thermogravimetric analysis are the techniques discussed in the characterization of NPs. This review provides an insight into the extraordinary properties of NPs that have opened the doors for endless biomedical applications like drug delivery, photo-ablation therapy, biosensors, bio-imaging and hyperthermia. In addition, NPs are also involved in improving crop growth, making protective clothing, cosmetics and energy reserves. This review also specifies adverse health effects associated with NPs such as hepatotoxicity, genotoxicity, neurotoxicity, etc., and inhibitory effects on plant growth and aquatic life. Further, in-vitro toxicity assessment assays for cell proliferation, apoptosis, necrosis and oxidative stress, as well as in-vivo toxicity assessment like biodistribution, clearance, hematological, serological and histological studies, are discussed here. Lastly, the authors have mentioned various measures that can be adopted to minimize the toxicity associated with NPs such as green synthesis, use of stabilizers, gene gun, polymer shell, microneedle capsule, etc.
Collapse
Affiliation(s)
- Vaishnavi Bommakanti
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Madhura Banerjee
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Divik Shah
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Kowdi Manisha
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Kavya Sri
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Satarupa Banerjee
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
49
|
Abou Elmaaty TM, Elsisi H, Elsayad G, Elhadad H, Plutino MR. Recent Advances in Functionalization of Cotton Fabrics with Nanotechnology. Polymers (Basel) 2022; 14:4273. [PMID: 36297850 PMCID: PMC9608714 DOI: 10.3390/polym14204273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, consumers understand that upgrading their traditional clothing can improve their lives. In a garment fabric, comfort and functional properties are the most important features that a wearer looks for. A variety of textile technologies are being developed to meet the needs of customers. In recent years, nanotechnology has become one of the most important areas of research. Nanotechnology's unique and useful characteristics have led to its rapid expansion in the textile industry. In the production of high-performance textiles, various finishing, coating, and manufacturing techniques are used to produce fibers or fabrics with nano sized (10-9) particles. Humans have been utilizing cotton for thousands of years, and it accounts for around 34% of all fiber production worldwide. The clothing industry, home textile industry, and healthcare industry all use it extensively. Nanotechnology can enhance cotton fabrics' properties, including antibacterial activity, self-cleaning, UV protection, etc. Research in the field of the functionalization of nanotechnology and their integration into cotton fabrics is presented in the present study.
Collapse
Affiliation(s)
- Tarek M. Abou Elmaaty
- Department of Textile Printing, Dyeing & Finishing, Faculty of Applied Arts, Damietta University, Damietta 34512, Egypt
| | - Hanan Elsisi
- Department of Textile Printing, Dyeing & Finishing, Faculty of Applied Arts, Damietta University, Damietta 34512, Egypt
| | - Ghada Elsayad
- Department of Spinning, Weaving and Knitting, Faculty of Applied Arts, Damietta University, Damietta 34512, Egypt
| | - Hagar Elhadad
- Department of Spinning, Weaving and Knitting, Faculty of Applied Arts, Damietta University, Damietta 34512, Egypt
| | - Maria Rosaria Plutino
- Istituto per lo Studio dei Materiali Nano Strutturati, ISMN—CNR, Palermo, c/o Department of ChiBio FarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| |
Collapse
|
50
|
Green synthesis of cellulose nanocrystal/ZnO bio-nanocomposites exerting antibacterial activity and downregulating virulence toxigenic genes of food-poisoning bacteria. Sci Rep 2022; 12:16848. [PMID: 36207384 PMCID: PMC9547054 DOI: 10.1038/s41598-022-21087-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
Recently, cellulose nanocrystals (CNs) have attracted wide attention owing to their superior properties compared to their bulk materials. For example, they represent an outstanding model for fabricating green metallic/metal oxide nanoparticles (NPs). In this study, two CNs (carboxylated CNs and sulfated CNs) extracted from agro-wastes of palm sheath fibers were used as templates for the facile and green synthesis of ZnO NPs by employing the sono-co-precipitation method. The obtained nanomaterials were characterized using TEM, EDX, UV–visible, DLS, FT-IR, and XRD analysis. As a result, the size and concentration of synthesized ZnO NPs were inversely proportional to one another and were affected by the CNs utilized and the reaction temperature used. Contagious diseases incited by multifarious toxigenic bacteria present severe threats to human health. The fabricated bio-nanocomposites were evaluated in terms of their antimicrobial efficacy by agar well diffusion method and broth microdilution assay, showing that CN–ZnO bio-nanocomposites were effective against the tested Gram-negative (Escherichia coli and Salmonella) and Gram-positive (Listeria monocytogenes and Staphylococcus aureus) bacteria. The influence of the subinhibitory concentrations of these suspensions on the expression of the most critical virulence toxin genes of the tested strains was effective. Significant downregulation levels were observed through toxigenic operons to both fabricated CN–ZnO bio-nanocomposites with a fold change ranging from 0.004 to 0.510, revealing a decline in the capacity and virulence of microorganisms to pose infections. Therefore, these newly fabricated CNS–ZnO bio-nanocomposites could be employed rationally in food systems as a novel preservative to inhibit microbial growth and repress the synthesis of exotoxins.
Collapse
|