1
|
HajiAhmadi P, Momtaz H, Tajbakhsh E. Capsular Typing and Molecular Characterization of Streptococcus agalactiae Strains Isolated From Bovine Mastitis in Iran. Vet Med Sci 2025; 11:e70275. [PMID: 40110713 PMCID: PMC11923706 DOI: 10.1002/vms3.70275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/04/2025] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Streptococcus agalactiae infections may cause clinical or subclinical mastitis in dairy cows by invading the mammary gland. This research included the isolation of 29 strains of S. agalactiae from 425 milk samples obtained from cows affected by clinical mastitis in Chaharmahal and Bakhtiari province, Iran. The antimicrobial sensitivity of S. agalactiae strains was determined using 16 antibiotics from seven different classes. The epidemiological spread of S. agalactiae was determined by identifying the serotypes of isolates using multiplex PCR. In addition, the presence of antibiotic-resistance genes and virulence genes were investigated to infer the pathogenicity and antibiotic resistance of S. agalactiae using the multiplex PCR method. A total of 29 strains of S. agalactiae, which constitute 6.82% of the samples, were identified based on phenotypic traits, biochemical properties and dltR gene amplification. Multiplex serotype polymerase chain reaction study showed that most of the isolates belonged to Type III serotype. Phenotypically, 100% of the isolated strains were resistant to tetracycline and penicillin. The frequency of resistance to beta-lactams (penicillin and amoxicillin) was 100% and 82.75%. tetM, tetO and tetT genes, responsible for resistance to tetracyclines, were found in all samples, corresponding to the drug-resistant phenotype. Among the genes related to the virulence factor, 100% of the isolates had the dlts gene. The examination of virulence genes revealed that the majority of isolates included the cfb, pavA and scPb genes. This data has the potential to assist in the prevention and management of mastitis and enhance our comprehension of epidemiological patterns in dairy cows affected by S. agalactiae in Chaharmahal and Bakhtiari province.
Collapse
Affiliation(s)
- Pegah HajiAhmadi
- Department of MicrobiologyShahrekord BranchIslamic Azad UniversityShahrekordIran
| | - Hassan Momtaz
- Department of MicrobiologyShahrekord BranchIslamic Azad UniversityShahrekordIran
| | - Elahe Tajbakhsh
- Department of MicrobiologyShahrekord BranchIslamic Azad UniversityShahrekordIran
| |
Collapse
|
2
|
Lannes-Costa PS, Fernandes IR, Pena JMS, Costa BRFV, da Cunha MML, Ferreira-Carvalho BT, Nagao PE. Antibiotic Resistance and Presence of Persister Cells in the Biofilm-like Environments in Streptococcus agalactiae. Antibiotics (Basel) 2024; 13:1014. [PMID: 39596709 PMCID: PMC11590950 DOI: 10.3390/antibiotics13111014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Objectives: This study investigated antibiotic resistance and presence of persister cells in Streptococcus agalactiae strains belonging to capsular types Ia/ST-103, III/ST-17, and V/ST-26 in biofilm-like environments. Results: S. agalactiae strains were susceptible to penicillin, clindamycin, and erythromycin. Resistance genes were associated with tetM (80%), tetO (20%), ermB (80%), and linB (40%). Persister cells were detected in bacterial strains exposed to high concentrations of penicillin, clindamycin, and erythromycin. S. agalactiae capsular type III/ST-17 exhibited the highest percentage of persister cells in response to penicillin and clindamycin, while type Ia/ST-103 presented the lowest percentages of persister cells for all antimicrobials tested. Additionally, persister cells were also detected at lower levels for erythromycin, regardless of capsular type or sequence type. Further, all S. agalactiae isolates presented efflux pump activity in ethidium bromide-refractory cell assays. LIVE/DEAD fluorescence microscopy confirmed the presence of >85% viable persister cells after antibiotic treatment. Conclusions: These findings suggest that persister cells play a key role in the persistence of S. agalactiae during antibiotic therapy, interfering with the treatment of invasive infections. Monitoring persister formation is crucial for developing strategies to combat recurrent infections caused by this pathogen.
Collapse
Affiliation(s)
- Pamella Silva Lannes-Costa
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University—UERJ, Rio de Janeiro 20550-013, RJ, Brazil; (P.S.L.-C.); (I.R.F.); (J.M.S.P.)
| | - Isabelle Rodrigues Fernandes
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University—UERJ, Rio de Janeiro 20550-013, RJ, Brazil; (P.S.L.-C.); (I.R.F.); (J.M.S.P.)
| | - João Matheus Sobral Pena
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University—UERJ, Rio de Janeiro 20550-013, RJ, Brazil; (P.S.L.-C.); (I.R.F.); (J.M.S.P.)
| | - Brunno Renato Farias Verçoza Costa
- Núcleo Multidisciplinar de Pesquisa UFRJ—Xerém em Biologia, Campus UFRJ—Duque de Caxias Professor Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro 25240-005, RJ, Brazil; (B.R.F.V.C.); (M.M.L.d.C.)
| | - Marcel Menezes Lyra da Cunha
- Núcleo Multidisciplinar de Pesquisa UFRJ—Xerém em Biologia, Campus UFRJ—Duque de Caxias Professor Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro 25240-005, RJ, Brazil; (B.R.F.V.C.); (M.M.L.d.C.)
| | | | - Prescilla Emy Nagao
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University—UERJ, Rio de Janeiro 20550-013, RJ, Brazil; (P.S.L.-C.); (I.R.F.); (J.M.S.P.)
| |
Collapse
|
3
|
Xin J, Pu Q, Wang R, Gu Y, He L, Du X, Tang G, Han D. Antibacterial activity and mechanism of chelerythrine against Streptococcus agalactiae. Front Vet Sci 2024; 11:1408376. [PMID: 38948675 PMCID: PMC11212505 DOI: 10.3389/fvets.2024.1408376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Streptococcus agalactiae (S.agalactiae), also known as group B Streptococcus (GBS), is a highly infectious pathogen. Prolonged antibiotic usage leads to significant issues of antibiotic residue and resistance. Chelerythrine (CHE) is a naturally occurring benzophenidine alkaloid and chelerythrine chloride (CHEC) is its hydrochloride form with diverse biological and pharmacological activities. However, the antibacterial mechanism of CHEC against GBS remains unclear. Thus, this study aims to investigate the in vitro antibacterial activity of CHEC on GBS and elucidate its underlying mechanism. The antibacterial effect of CHEC on GBS was assessed using inhibitory zone, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assays, as well as by constructing a time-kill curve. The antibacterial mechanism of CHEC was investigated through techniques such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM), measurement of alkaline phosphatase (AKP) activity, determination of Na+ K+, Ca2+ Mg2+-adenosine triphosphate (ATP) activity, observation of membrane permeability, and analysis of intracellular reactive oxygen species (ROS) and mRNA expression levels of key virulence genes. The results demonstrated that the inhibition zone diameters of CHEC against GBS were 14.32 mm, 12.67 mm, and 10.76 mm at concentrations of 2 mg/mL, 1 mg/mL, and 0.5 mg/mL, respectively. The MIC and MBC values were determined as 256 μg/mL and 512 μg/mL correspondingly. In the time-kill curve, 8 × MIC, 4 × MIC and 2 × MIC CHEC could completely kill GBS within 24 h. SEM and TEM analyses revealed significant morphological alterations in GBS cells treated with CHEC including shrinkage, collapse, and leakage of cellular fluids. Furthermore, the antibacterial mechanism underlying CHEC's efficacy against GBS was attributed to its disruption of cell wall integrity as well as membrane permeability resulting in extracellular release of intracellular ATP, AKP, Na+ K+, Ca2+ Mg2+. Additionally CHEC could increase the ROS production leading to oxidative damage and downregulating mRNA expression levels of key virulence genes in GBS cells. In conclusion, CHEC holds potential as an antimicrobial agent against GBS and further investigations are necessary to elucidate additional molecular mechanisms.
Collapse
Affiliation(s)
- Jige Xin
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Qiqi Pu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Ruiying Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Yeqing Gu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Lin He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Xuan Du
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Guowen Tang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Diangang Han
- Technology Center of Kunming Customs, Kunming, China
| |
Collapse
|
4
|
Camsing A, Phetburom N, Chopjitt P, Pumhirunroj B, Patikae P, Watwiengkam N, Yongkiettrakul S, Kerdsin A, Boueroy P. Occurrence of antimicrobial-resistant bovine mastitis bacteria in Sakon Nakhon, Thailand. Vet World 2024; 17:1202-1209. [PMID: 39077446 PMCID: PMC11283618 DOI: 10.14202/vetworld.2024.1202-1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/08/2024] [Indexed: 07/31/2024] Open
Abstract
Background and Aim Bovine mastitis is an inflammation of the mammary gland of dairy cattle that causes economic losses due to poor quantity and quality of milk. The extensive or incorrect use of antibiotics has increased in the veterinary field, leading to the emergence of antibiotic-resistant pathogens worldwide. This study aimed to investigate bovine mastitis bacterial pathogens in Sakon Nakhon, Thailand. Materials and Methods A total of 35 dairy farms were screened for clinical and subclinical mastitis using the California Mastitis Test and clinical examination. Polymerase chain reaction was used to characterize bacterial species-induced mastitis (380 isolates) in cattle and antimicrobial resistance genes, and disk diffusion and broth microdilution were used to characterize antimicrobial susceptibility. Results The prevalence of Staphylococcus epidermidis (38.10%; 32/84)-induced mastitis in cattle was considerably high, followed by Streptococcus agalactiae (33.33%), Streptococcus uberis (25%), Klebsiella pneumoniae (8.33%), and Staphylococcus aureus (4.76%). In this study, Staphylococcus spp. isolates demonstrated 100% susceptibility to cefoxitin, and no antibiotic-resistance genes were identified. Tetracycline (TET) and macrolide-resistant genes of Streptococcus spp. revealed that tetM was predominant in 55.63% (79/142), followed by tetS + erm(B) (16.90%). Antibiotic susceptibility tests revealed the following resistance profiles to bacterial species: TET (85.92%), clindamycin (29.58%), erythromycin (15.49%), levofloxacin (14.08%), and penicillin (0%). Gram-negative bacterial isolates (K. pneumoniae [8.33%], Klebsiella variicola [2.38%], Klebsiella quasipneumoniae [1.19%], and Escherichia coli [1.19%]) were recovered and still susceptible to meropenem (100%), ceftazidime (97.06%), ceftriaxone (79.41%), and ciprofloxacin (79.41%). Conclusion This result suggested that mastitis pathogens in this area were susceptible to most antimicrobials, with the exception of streptococci against TET. In this study, limited data were available including one from small-holder dairy farms and study only dairy farms in Sakon Nakhon, Thailand. So, more farms should be included in the future studies.
Collapse
Affiliation(s)
- Apinya Camsing
- Department of Community Health, Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Nattamol Phetburom
- Department of Community Health, Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Peechanika Chopjitt
- Department of Community Health, Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Benjamabhorn Pumhirunroj
- Program in Animal Science, Faculty of Agricultural Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon 47000, Thailand
| | - Patinya Patikae
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham 44000, Thailand
| | - Nattaya Watwiengkam
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham 44000, Thailand
| | - Suganya Yongkiettrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Pathum Thani 12120, Thailand
| | - Anusak Kerdsin
- Department of Community Health, Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Parichart Boueroy
- Department of Community Health, Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| |
Collapse
|
5
|
Song X, Wang Y, Bai R, Pei X, Xu H, Zhu K, Wu C. Antimicrobial resistance profiles of common mastitis pathogens on large Chinese dairy farms. JDS COMMUNICATIONS 2024; 5:185-189. [PMID: 38646569 PMCID: PMC11026961 DOI: 10.3168/jdsc.2023-0413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/18/2023] [Indexed: 04/23/2024]
Abstract
The primary objective of this study was to determine the antimicrobial resistance (AMR) profile of common mastitis pathogens on large Chinese dairy farms. A total of 673 isolates, including Staphylococcus aureus (14.41%, 97/673), coagulase-negative staphylococci (CNS, 52.30%, 352/673), Streptococcus agalactiae (5.64%, 38/673), non-agalactiae streptococci (7.42%, 50/673), Acinetobacter spp. (7.72%, 52/673), Escherichia spp. (6.39%, 43/673), and Klebsiella spp. (6.09%, 41/673), were collected from 15 large Chinese dairy farms in 12 provinces. The AMR profiles were measured using a microdilution method. Our results showed that more than 75% of Staph. aureus (87/97) and CNS (291/352) were resistant to penicillin (PEN). More than 30% of Escherichia spp. (15/43) showed resistance to ampicillin (AMP). However, less than 10% CNS and non-agalactiae streptococci showed resistance to amoxicillin/clavulanate (AMC; 1/352; 0/50), cephalexin (LEX; 1/352; 0/50), ceftiofur (EFT; 10/352; 0/50), and rifaximin (RIX; 21/352; 2/50); less than 10% Staph. aureus showed resistance to AMC (1/97), oxacillin (OX; 3/97), LEX (1/97), EFT (2/97), and RIX (2/97); less than 10% Strep. agalactiae showed resistance to PEN (3/38), AMC (0/38), LEX (0/38), EFT (0/38), and RIX (0/38); and less than 10% Escherichia spp. showed resistance to AMC (1/43) and EFT (4/43). These results suggested that most mastitis pathogens were susceptible to most antimicrobials with exceptions of Staph. aureus tested against penicillin or ampicillin and CNS against penicillin or oxacillin. To control the AMR threat in Chinese dairy farms, a nationwide surveillance program for AMR of bovine mastitis pathogens is needed.
Collapse
Affiliation(s)
- Xiangbin Song
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Shandong Center for Quality Control of Feed and Veterinary Drug, Jinan 250100, PR China
| | - Yaxin Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Rina Bai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Xiaoyan Pei
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co. Ltd., Hohhot 010110, PR China
| | - Hongyan Xu
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co. Ltd., Hohhot 010110, PR China
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Congming Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
6
|
de Oliveira LMA, Simões LC, Crestani C, Costa NS, Pantoja JCDF, Rabello RF, Teixeira LM, Khan UB, Bentley S, Jamrozy D, Pinto TDCA, Zadoks RN. Long-Term Co-Circulation of Host-Specialist and Host-Generalist Lineages of Group B Streptococcus in Brazilian Dairy Cattle with Heterogeneous Antimicrobial Resistance Profiles. Antibiotics (Basel) 2024; 13:389. [PMID: 38786118 PMCID: PMC11117364 DOI: 10.3390/antibiotics13050389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Group B Streptococcus (GBS) is a major cause of contagious bovine mastitis (CBM) in Brazil. The GBS population is composed of host-generalist and host-specialist lineages, which may differ in antimicrobial resistance (AMR) and zoonotic potential, and the surveillance of bovine GBS is crucial to developing effective CBM control and prevention measures. Here, we investigated bovine GBS isolates (n = 156) collected in Brazil between 1987 and 2021 using phenotypic testing and whole-genome sequencing to uncover the molecular epidemiology of bovine GBS. Clonal complex (CC) 61/67 was the predominant clade in the 20th century; however, it was replaced by CC91, with which it shares a most common recent ancestor, in the 21st century, despite the higher prevalence of AMR in CC61/67 than in CC91, and high selection pressure for AMR from indiscriminate antimicrobial use in the Brazilian dairy industry. CC103 also emerged as a dominant CC in the 21st century, and a considerable proportion of herds had two or more GBS strains, suggesting poor biosecurity and within-herd evolution due to the chronic nature of CBM problems. The majority of bovine GBS belonged to serotype Ia or III, which was strongly correlated with CCs. Ninety-three isolates were resistant to tetracycline (≥8 μg/mL; tetO = 57, tetM = 34 or both = 2) and forty-four were resistant to erythromycin (2.0 to >4 μg/mL; ermA = 1, ermB = 38, mechanism unidentified n = 5). Only three isolates were non-susceptible to penicillin (≥8.0 μg/mL), providing opportunities for improved antimicrobial stewardship through the use of narrow-spectrum antimicrobials for the treatment of dairy cattle. The common bovine GBS clades detected in this study have rarely been reported in humans, suggesting limited risk of interspecies transmission of GBS in Brazil. This study provides new data to support improvements to CBM and AMR control, bovine GBS vaccine design, and the management of public health risks posed by bovine GBS in Brazil.
Collapse
Affiliation(s)
- Laura Maria Andrade de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.C.S.); (N.S.C.); (L.M.T.); (T.d.C.A.P.)
| | - Leandro Correia Simões
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.C.S.); (N.S.C.); (L.M.T.); (T.d.C.A.P.)
| | | | - Natália Silva Costa
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.C.S.); (N.S.C.); (L.M.T.); (T.d.C.A.P.)
| | | | | | - Lucia Martins Teixeira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.C.S.); (N.S.C.); (L.M.T.); (T.d.C.A.P.)
| | - Uzma Basit Khan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; (U.B.K.); (S.B.); (D.J.)
| | - Stephen Bentley
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; (U.B.K.); (S.B.); (D.J.)
| | - Dorota Jamrozy
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; (U.B.K.); (S.B.); (D.J.)
| | - Tatiana de Castro Abreu Pinto
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.C.S.); (N.S.C.); (L.M.T.); (T.d.C.A.P.)
| | - Ruth N. Zadoks
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW 2570, Australia
| |
Collapse
|
7
|
Hyeon JY, Kim J, Chung DH, Helal ZH, Polkowski R, Lee DH, Risatti GR. Genome analysis of Streptococcus spp. isolates from animals in pre-antibiotic era with respect to antibiotic susceptibility and virulence gene profiles. Vet Res 2024; 55:51. [PMID: 38622639 PMCID: PMC11017511 DOI: 10.1186/s13567-024-01302-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/11/2024] [Indexed: 04/17/2024] Open
Abstract
Lyophilized Streptococcus spp. isolates (n = 50) from animal samples submitted to the diagnostic laboratory at the University of Connecticut in the 1940s were revivified to investigate the genetic characteristics using whole-genome sequencing (WGS). The Streptococcus spp. isolates were identified as follows; S. agalactiae (n = 14), S. dysgalactiae subsp. dysgalactiae (n = 10), S. dysgalactiae subsp. equisimils (n = 5), S. uberis (n = 8), S. pyogenes (n = 7), S. equi subsp. zooepidemicus (n = 4), S. oralis (n = 1), and S. pseudoporcinus (n = 1). We identified sequence types (ST) of S. agalactiae, S. dysgalactiae, S. uberis, S. pyogenes, and S. equi subsp. zooepidemicus and reported ten novel sequence types of those species. WGS analysis revealed that none of Streptococcus spp. carried antibiotic resistance genes. However, tetracycline resistance was observed in four out of 15 S. dysgalactiae isolates and in one out of four S. equi subsp. zooepidemicus isolate. This data highlights that antimicrobial resistance is pre-existed in nature before the use of antibiotics. The draft genome sequences of isolates from this study and 426 complete genome sequences of Streptococcus spp. downloaded from BV-BRC and NCBI GenBank database were analyzed for virulence gene profiles and phylogenetic relationships. Different Streptococcus species demonstrated distinct virulence gene profiles, with no time-related variations observed. Phylogenetic analysis revealed high genetic diversity of Streptococcus spp. isolates from the 1940s, and no clear spatio-temporal clustering patterns were observed among Streptococcus spp. analyzed in this study. This study provides an invaluable resource for studying the evolutionary aspects of antibiotic resistance acquisition and virulence in Streptococcus spp.
Collapse
Affiliation(s)
- Ji-Yeon Hyeon
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Junwon Kim
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA
| | - David H Chung
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA
| | - Zeinab H Helal
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA
| | - Robert Polkowski
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA
| | - Dong-Hun Lee
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea.
| | - Guillermo R Risatti
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA.
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
8
|
Li S, Yu N, Tang Y, Liu C, Zhang Y, Chen X, Wu H, Li X, Liu Y. Pharmacokinetics and relative bioavailability study of two cefquinome sulfate intramammary infusions in cow milk. Front Vet Sci 2024; 11:1384076. [PMID: 38528872 PMCID: PMC10962211 DOI: 10.3389/fvets.2024.1384076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
In this study, two intramammary infusions of cefquinome sulfate were investigated for pharmacokinetics and bioavailability. Twelve lactating cows for each group were administered an effective dose of 75 mg/gland for cefquinome, with milk samples collected at various time intervals. The concentrations of cefquinome in milk at different times were determined by the UPLC-MS/MS method. Analyses of noncompartmental pharmacokinetics were conducted on the concentration of cefquinome in milk. Mean pharmacokinetic parameters of group A and group B following intramammary administration were as follows: AUClast 300558.57 ± 25052.78 ng/mL and 266551.3 ± 50654.85 ng/mL, Cmax 51786.35 ± 11948.4 ng/mL and 59763.7 ± 8403.2 ng/mL, T1/2 5.69 ± 0.62 h and 5.25 ± 1.62 h, MRT 7.43 ± 0.79 h and 4.8 ± 0.78 h, respectively. Pharmacokinetic experiments showed that the relative bioavailability of group B was 88.69% that of group A. From our findings, group B (3 g: 75 mg) shows a quicker drug elimination process than group A (8 g: 75 mg), which suggests that the withdrawal period for the new formulation may be shorter.
Collapse
Affiliation(s)
- Shuang Li
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Na Yu
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaoxin Tang
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunshuang Liu
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Zhang
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaojie Chen
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hao Wu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiubo Li
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiming Liu
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Wataradee S, Boonserm T, Samngamnim S, Ajariyakhajorn K. Characterization of Virulence Factors and Antimicrobial Susceptibility of Streptococcus agalactiae Associated with Bovine Mastitis Cases in Thailand. Animals (Basel) 2024; 14:447. [PMID: 38338090 PMCID: PMC10854646 DOI: 10.3390/ani14030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Streptococcus agalactiae is a contagious pathogen that causes bovine mastitis. The ability of S. agalactiae to cause widespread mastitis relies on bacterial virulence factors. In this study, we detected 10 virulence determinants associated with mastitis pathogenicity using conventional PCR. The antimicrobial susceptibility of 100 S. agalactiae isolates from 13 Thai dairy herds was assessed using the Kirby-Bauer disk diffusion susceptibility test. All strains had at least three virulence factors responsible for invasion, adhesion, and infection (fbsB, bibA, and cfb, respectively). The predominant virulent profile of S. agalactiae strains revealed the presence of fbsA, fbsB, bibA, cfb, and cyl (n = 96). Most strains were sensitive to penicillin, ampicillin, amoxicillin-clavulanic acid, cefotaxime, ceftiofur, erythromycin, sulfamethoxazole-trimethoprim, and vancomycin. However, all strains were resistant to aminoglycosides, including kanamycin and gentamicin attributed to the unnecessary antimicrobial use. Furthermore, we identified seven multidrug resistant (MDR) S. agalactiae strains among four dairy herds, of which, two were vancomycin resistant. Our study provides profiles for virulence factors and antimicrobial susceptibility, which are beneficial for the clinical monitoring, prevention, and control of bovine mastitis in dairy cattle in Thailand. Moreover, we emphasize the need for awareness regarding the judicious use of antimicrobials on dairy farms.
Collapse
Affiliation(s)
| | | | | | - Kittisak Ajariyakhajorn
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.W.); (T.B.); (S.S.)
| |
Collapse
|
10
|
Yang Y, Zhang J, El-Mahallawy HS. Editorial: Pathogenic and symbiotic bacteria in ruminants: antimicrobial resistance and microbial homeostasis. Front Vet Sci 2024; 10:1355704. [PMID: 38260209 PMCID: PMC10800636 DOI: 10.3389/fvets.2023.1355704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Affiliation(s)
- Yi Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, China
| | - Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | | |
Collapse
|
11
|
Alessandri G, Sangalli E, Facchi M, Fontana F, Mancabelli L, Donofrio G, Ventura M. Metataxonomic analysis of milk microbiota in the bovine subclinical mastitis. FEMS Microbiol Ecol 2023; 99:fiad136. [PMID: 37880979 DOI: 10.1093/femsec/fiad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/04/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
Subclinical mastitis is one of the most widespread diseases affecting dairy herds with detrimental effects on animal health, milk productivity, and quality. Despite its multifactorial nature, the presence of pathogenic bacteria is regarded one of the main drivers of subclinical mastitis, causing a disruption of the homeostasis of the bovine milk microbial community. However, bovine milk microbiota alterations associated with subclinical mastitis still represents a largely unexplored research area. Therefore, the species-level milk microbiota of a total of 75 milk samples, collected from both healthy and subclinical mastitis-affected cows from two different stables, was deeply profiled through an ITS, rather than a traditional, and less informative, 16S rRNA gene microbial profiling. Surprisingly, the present pilot study not only revealed that subclinical mastitis is characterized by a reduced biodiversity of the bovine milk microbiota, but also that this disease does not induce standard alterations of the milk microbial community across stables. In addition, a flow cytometry-based total bacterial cell enumeration highlighted that subclinical mastitis is accompanied by a significant increment in the number of milk microbial cells. Furthermore, the combination of the metagenomic and flow cytometry approaches allowed to identify different potential microbial marker strictly correlated with subclinical mastitis across stables.
Collapse
Affiliation(s)
- Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Elena Sangalli
- Department of Medical-Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Mario Facchi
- DVM Bovine Practitioner "Bergamo Veterinari" Group, 24124 Bergamo, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
- GenProbio srl, Via Nazario Sauro 3, 43121 Parma, Italy
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| |
Collapse
|
12
|
Zhang D, Lu X, Feng X, Shang X, Liu Q, Zhang N, Yang H. Molecular characteristics of Staphylococcus aureus strains isolated from subclinical mastitis of water buffaloes in Guangdong Province, China. Front Vet Sci 2023; 10:1177302. [PMID: 38026659 PMCID: PMC10663324 DOI: 10.3389/fvets.2023.1177302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Intramammary infections (IMI) in animals reared for milk production can result in large economic losses and distress to the animals. Staphylococcus aureus is an important causative agent of IMI in dairy cows, but its prevalence in water buffaloes has not been determined. Therefore, the current study was conducted to investigate the prevalence of subclinical mastitis in water buffaloes and the antimicrobial susceptibility, virulence genes and biofilm formation abilities of Staphylococcus aureus isolates recovered from water buffaloes in Guangdong, China. Staphylococcus aureus strains were isolated from milk samples of water buffaloes with subclinical mastitis, and twofold microdilution, PCR and crystal violet staining methods were used to determine antimicrobial susceptibility, distributions of virulence and antimicrobial resistance genes and biofilm formation ability, respectively. Our results indicated that 29.44% of water buffaloes were diagnosed with subclinical mastitis, and the most prevalent pathogens were Escherichia coli (96.17%), coagulase-negative staphylococci (CoNS) (67.60%) and S. aureus (28.57%). Most S. aureus isolates showed resistance to bacitracin, doxycycline, penicillin, florfenicol, and tetracycline but were susceptible to ciprofloxacin, ceftizoxime, cefoquinoxime, and ofloxacin. Moreover, 63.72% of S. aureus isolates were positive for tetM, and the prevalence of msrB, blaZ, mecA, fexA, and tetK ranged from 21.24 to 6.19%. All S. aureus isolates harbored clfB and icaA genes, and the virulence genes hla (93.8%), hld (91.15%), clfA (90.27%), fnbA (86.73%), and hlb (83.19%), and tsst, icaD, sec, see, fnbB, and sea showed a varied prevalence ranging from 3.5 to 65.49%. All S. aureus isolates possessed the ability to form biofilms, and 30.09% of isolates showed strong biofilm formation abilities, while 19.47% of isolates were weak biofilm producers. Our results indicated that subclinical mastitis is prevalent in water buffaloes in Guangdong, China, and S. aureus is prevalent in samples from water buffaloes with subclinical mastitis. Most S. aureus isolates were susceptible to cephalosporins and fluoroquinolones; thus, ceftizoxime and cefoquinoxime can be used to treat subclinical mastitis in water buffaloes.
Collapse
Affiliation(s)
- Dexian Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Ximing Lu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xiangyan Feng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xuzeng Shang
- Liaoning Agricultural Development Service Center, Shenyang, China
| | - Qingyou Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Nan Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hong Yang
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
13
|
Zouharova M, Nedbalcova K, Matiaskova K, Slama P, Matiasovic J. Antimicrobial Susceptibility and Resistance Genes in Streptococcus uberis Isolated from Bovine Mastitis in the Czech Republic. Antibiotics (Basel) 2023; 12:1527. [PMID: 37887228 PMCID: PMC10604623 DOI: 10.3390/antibiotics12101527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/24/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Streptococcus uberis is one of the most important causative agents of mastitis and is a common reason for the use of antimicrobials in dairy cows. In this study, we assessed the antimicrobial susceptibility of 667 S. uberis isolates originating from 216 Czech dairy farms collected between 2019 and 2023 using the broth microdilution method. We tested 140 of the isolates for the presence of antimicrobial genes using whole-genome sequencing and evaluated their relationship with phenotypic resistance. Streptococcus uberis isolates showed high levels of resistance to tetracycline (59%), followed by streptomycin (38%) and clindamycin (29%). Although all of the isolates were susceptible to beta-lactams, a relatively high percentage of intermediately susceptible isolates was recorded for ampicillin (44%) and penicillin (18%). The isolates were mainly resistant to tetracycline alone (31.3%); the second most frequent occurrence of the phenotypic profile was simultaneous resistance to tetracycline, streptomycin, and clindamycin (16.6%). The occurrence of antibiotic resistance genes did not always match the phenotypic results; in total, 36.8% of isolates that possessed the ant(6)-Ia gene did not show phenotypic resistance to streptomycin. To a lesser extent, silent genes were also detected in clindamycin and tetracycline. This study confirmed the high susceptibility of S. uberis to penicillins used as first-line antimicrobials for S. uberis mastitis treatment.
Collapse
Affiliation(s)
- Monika Zouharova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 621 00 Brno, Czech Republic; (K.N.); (K.M.); (J.M.)
| | - Katerina Nedbalcova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 621 00 Brno, Czech Republic; (K.N.); (K.M.); (J.M.)
| | - Katarina Matiaskova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 621 00 Brno, Czech Republic; (K.N.); (K.M.); (J.M.)
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University, 613 00 Brno, Czech Republic;
| | - Jan Matiasovic
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 621 00 Brno, Czech Republic; (K.N.); (K.M.); (J.M.)
| |
Collapse
|
14
|
Ozavci V, Dolgun HTY, Kirkan S, Seferoglu Y, Semen Z, Parin U. Evaluation of Streptococcus species isolated from subclinical sheep mastitis by molecular methods and determination of virulence factors and antimicrobial resistance genes. VET MED-CZECH 2023; 68:359-367. [PMID: 37981943 PMCID: PMC10646539 DOI: 10.17221/42/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/12/2023] [Indexed: 11/21/2023] Open
Abstract
Streptococcus (S.) species are important pathogens that cause mastitis in sheep. The study aimed to examine Streptococcus species in sheep milk with subclinical mastitis, assessing their prevalence, antimicrobial resistance, and virulence genes. A total of 200 milk samples were collected from sheep farms in İzmir's five districts. Out of 32 (28.6%) Streptococcus isolates identified by phenotypic methods, 25 were genotypically identified as S. uberis, 5 as S. agalactiae, and 2 as S. dysgalactiae. Disk diffusion was used to determine the antimicrobial resistance of the isolates. PCR was employed to identify antimicrobial resistance and virulence genes in the isolates. The highest resistance was found for cloxacillin (100%), and the highest sensitivity was found for florfenicol (84%). The most common resistance gene combination was tetM+tetS (3/32) for S. uberis in 9.4%. A total of five virulence genes were detected. GapC+sua (56.2%) constituted the most common gene pattern. The highest virulence gene gapC was detected in 78.1% (25/32) of the isolates. The cylE gene was not detected (0%) in the isolates. Streptococcus species may play a role in mastitis in sheep, emphasising the need for meticulous hygienic milking practices.
Collapse
Affiliation(s)
- Volkan Ozavci
- Department of Microbiology, Faculty of Veterinary Medicine, Dokuz Eylul University, Izmir, Turkiye
| | - Hafize Tugba Yuksel Dolgun
- Department of Microbiology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin, Turkiye
| | - Sukru Kirkan
- Department of Microbiology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin, Turkiye
| | - Yigit Seferoglu
- Department of Microbiology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin, Turkiye
| | - Zeynep Semen
- Department of Biochemistry, Faculty of Veterinary Medicine, Dokuz Eylul University, Izmir, Turkiye
| | - Ugur Parin
- Department of Microbiology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin, Turkiye
| |
Collapse
|
15
|
Shu G, Qiu J, Zheng Y, Chang L, Li H, Xu F, Zhang W, Yin L, Fu H, Yan Q, Gan T, Lin J. Association between Phenotypes of Antimicrobial Resistance, ESBL Resistance Genes, and Virulence Genes of Salmonella Isolated from Chickens in Sichuan, China. Animals (Basel) 2023; 13:2770. [PMID: 37685034 PMCID: PMC10486400 DOI: 10.3390/ani13172770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of this study was to explore the association between antimicrobial resistance, ESBL genes, and virulence genes of Salmonella isolates. From 2019 to 2021, a total of 117 Salmonella isolates were obtained from symptomatic chickens in Sichuan Province, China. The strains were tested for antimicrobial resistance and the presence of ESBL according to the Clinical and Laboratory Standards Institute (CLSI) instructions. The presence of ESBL genes and genes for virulence was determined using Polymerase Chain Reaction (PCR). In addition, Multilocus Sequence Typing (MLST) was applied to confirm the molecular genotyping. Moreover, the mechanism of ESBL and virulence gene transfer and the relationships between the resistance phenotype, ESBL genes, and virulence genes were explored. The isolates exhibited different frequencies of resistance to antibiotics (resistance rates ranged from 21.37% to 97.44%), whereas 68.38% and 41.03% of isolates were multi-drug resistance (MDR) and ESBL-producers, respectively. In the PCR analysis, blaCTX-M was the most prevalent ESBL genotype (73.42%, 58/79), and blaCTX-M-55 showed the most significant effect on the resistance to cephalosporins as tested by logistic regression analysis. Isolates showed a high carriage rate of invA, avrA, sopB, sopE, ssaQ, spvR, spvB, spvC, stn, and bcfC (ranged from 51.28% to 100%). MLST analysis revealed that the 117 isolates were divided into 11 types, mainly ST92, ST11, and ST3717. Of 48 ESBL-producers, 21 transconjugants were successfully obtained by conjugation. Furthermore, ESBL and spv virulence genes were obtained simultaneously in 15 transconjugants. These results highlighted that Salmonella isolates were common carriers of ESBLs and multiple virulence genes. Horizontal transfer played a key role in disseminating antimicrobial resistance and pathogenesis. Therefore, it is necessary to continuously monitor the use of antimicrobials and the prevalence of AMR and virulence in Salmonella from food animals and to improve the antibiotic stewardship for salmonellosis.
Collapse
Affiliation(s)
- Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.S.); (J.Q.); (H.L.); (F.X.); (W.Z.); (L.Y.); (H.F.); (Q.Y.); (T.G.)
| | - Jianyu Qiu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.S.); (J.Q.); (H.L.); (F.X.); (W.Z.); (L.Y.); (H.F.); (Q.Y.); (T.G.)
| | - Yilei Zheng
- Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Lijen Chang
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA;
| | - Haohuan Li
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.S.); (J.Q.); (H.L.); (F.X.); (W.Z.); (L.Y.); (H.F.); (Q.Y.); (T.G.)
| | - Funeng Xu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.S.); (J.Q.); (H.L.); (F.X.); (W.Z.); (L.Y.); (H.F.); (Q.Y.); (T.G.)
| | - Wei Zhang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.S.); (J.Q.); (H.L.); (F.X.); (W.Z.); (L.Y.); (H.F.); (Q.Y.); (T.G.)
| | - Lizi Yin
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.S.); (J.Q.); (H.L.); (F.X.); (W.Z.); (L.Y.); (H.F.); (Q.Y.); (T.G.)
| | - Hualin Fu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.S.); (J.Q.); (H.L.); (F.X.); (W.Z.); (L.Y.); (H.F.); (Q.Y.); (T.G.)
| | - Qigui Yan
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.S.); (J.Q.); (H.L.); (F.X.); (W.Z.); (L.Y.); (H.F.); (Q.Y.); (T.G.)
| | - Ting Gan
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.S.); (J.Q.); (H.L.); (F.X.); (W.Z.); (L.Y.); (H.F.); (Q.Y.); (T.G.)
| | - Juchun Lin
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.S.); (J.Q.); (H.L.); (F.X.); (W.Z.); (L.Y.); (H.F.); (Q.Y.); (T.G.)
| |
Collapse
|
16
|
Liang T, Huo G, Chen L, Ding L, Wu J, Zhang J, Wang R. Antibacterial activity and metabolomic analysis of linalool against bovine mastitis pathogen Streptococcus agalactiae. Life Sci 2023; 313:121299. [PMID: 36535400 DOI: 10.1016/j.lfs.2022.121299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Streptococcus agalactiae is among the major causative pathogens of bovine mastitis, as well as crucial pathogen leading to human morbidity and mortality. Being a promising natural antibacterial agent, linalool has been broadly applied in medicine and food processing. However, its antibacterial effect against S. agalactiae has barely been elucidated. This study is the first to investigate the antibacterial activity and action mechanism of linalool against S. agalactiae causing bovine mastitis. Linalool exhibited significant antibacterial activity against S. agalactiae, with an inhibition zone diameter of 23 mm and a minimum inhibitory concentration of 1.875 μL/mL. In addition, linalool damaged cell structural integrity of S. agalactiae, leading to the leakage of intracellular components (alkaline phosphatase, nucleic acids and protein). Linalool also exhibited a scavenging effect on biofilm. Moreover, untargeted metabolomics analysis revealed that linalool stress substantially disrupted intracellular metabolism of S. agalactiae. Linalool caused energy metabolism disorder, and obstructed nucleic acid synthesis in S. agalactiae. Furthermore, downregulation of amino acids (e.g., proline, alanine) and upregulation of saturated fatty acids provide strong evidence for linalool induced cell wall and membrane damage. Overall, linalool exhibited strong antibacterial activity against S. agalactiae by destroying the cell structure and disrupting intracellular metabolism. This study provides a new insight and theoretical foundation for linalool application in preventing S. agalactiae infection.
Collapse
Affiliation(s)
- Tingyu Liang
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China; New Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, PR China
| | - Guiguo Huo
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Lele Chen
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Ling Ding
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Jianping Wu
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China; New Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, PR China.
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China; New Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, PR China.
| | - Rongmin Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China; New Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, PR China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
17
|
Shi H, Zhou M, Zhang Z, Hu Y, Song S, Hui R, Wang L, Li G, Yao L. Molecular epidemiology, drug resistance, and virulence gene analysis of Streptococcus agalactiae isolates from dairy goats in backyard farms in China. Front Cell Infect Microbiol 2023; 12:1049167. [PMID: 36699728 PMCID: PMC9868259 DOI: 10.3389/fcimb.2022.1049167] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023] Open
Abstract
Streptococcus agalactiae infections may lead to clinical or subclinical mastitis in dairy animals when it invades the mammary gland. In this study, 51 S. agalactiae strains were isolated from 305 milk samples that were collected from goats with mastitis in 13 provinces of China. The antimicrobial resistance of S. agalactiae was determined by disk diffusion methods against 18 antibiotics from six classes. In addition, multilocus sequence typing (MLST), and the presence of resistance and virulence genes was determined by PCR analysis. Seven sequence types in five clonal complexes were identified according to MLST; CC103 and CC67 strains were predominant, with rates of 45.1% and 39.2%, respectively. All isolates (100%) were multiresistant to three or more antimicrobial agents. S. agalactiae isolates had a 100% resistance rate to penicillin, oxacillin, and amoxicillin, followed by doxycycline (82.4%), tetracycline (76.5%), and amikacin (74.5%). The lowest resistance was observed for ciprofloxacin (29.4%), which varied in five different regions. The detection rates of six classes of antimicrobial-related genes were calculated as follows: 33 (64.7%) for β-lactam-related resistance gene, 12 (23.5%) for tetracyclines, 11 (21.6%) for quinolone-related resistance genes, 10 (19.6%) for aminoglycosides, 7 (13.7%) for macrolides (ermA, ermB, and mefA), and 3 (5.9%) for lincosamide (lnu(B)). Regarding virulence genes, profile 1 (bca cfb-cspA-cylE-hylB-bibA-pavA-fbsA-fbsB) was the most prevalent, with a detection rate of 54.9%. This work provides a primary source related to the molecular epidemiology of S. agalactiae in dairy goat herds in China and will aid in the clinical treatment, prevention, and control of mastitis.
Collapse
Affiliation(s)
- Hongfei Shi
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China,*Correspondence: Hongfei Shi, ; Lunguang Yao,
| | - Mengxiao Zhou
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Zhengtian Zhang
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Yun Hu
- College of Animal Husbandry and Medical Engineering, Nanyang Vocational College of Agriculture, Nanyang, China
| | - Shiyang Song
- Animal Husbandry and Fishery Department, Heilongjiang State 853 Farm Limited Company, Shuangyashan, China
| | - Ruiqing Hui
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Long Wang
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Guoguang Li
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Lunguang Yao
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China,*Correspondence: Hongfei Shi, ; Lunguang Yao,
| |
Collapse
|
18
|
The pharmacokinetics and pharmacodynamics of cefquinome against Streptococcus agalactiae in a murine mastitis model. PLoS One 2023; 18:e0278306. [PMID: 36696421 PMCID: PMC9876276 DOI: 10.1371/journal.pone.0278306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/14/2022] [Indexed: 01/26/2023] Open
Abstract
Cefquinome is a new generation cephalosporin that is effective in the treatment of mastitis in animals. In this study, we evaluated the associations between the specific pharmacokinetics and pharmacodynamics (PK/PD) of cefquinome and its antibacterial activity against Streptococcus agalactiae in a mouse model of mastitis. After a single intramammary dose of cefquinome (30, 60, 120, and 240 μg/mammary gland), the concentration of cefquinome in plasma was analysed by liquid chromatography with tandem mass spectrometry (HPLC/MS-MS). The PK parameters were calculated using a one-compartment first-order absorption model. Antibacterial activity was defined as the maximum change in the S. agalactiae population after each dose. An inhibitory sigmoid Emax model was used to evaluate the relationships between the PK/PD index values and antibacterial effects. The duration for which the concentration of the antibiotic (%T) remained above the minimum inhibitory concentration (MIC) was defined as the optimal PK/PD index for assessing antibacterial activity. The values of %T > MIC to reach 0.5-log10CFU/MG, 1-log10 CFU/MG and 2-log10 CFU/MG reductions were 31, 47, and 81%, respectively. When the PK/PD index %T > MIC of cefquinome was >81% in vivo, the density of the Streptococcus agalactiae was reduced by 2-log10. These findings provide a valuable understanding to optimise the dose regimens of cefquinome in the treatment of S. agalactiae infections.
Collapse
|
19
|
Naranjo-Lucena A, Slowey R. Invited review: Antimicrobial resistance in bovine mastitis pathogens: A review of genetic determinants and prevalence of resistance in European countries. J Dairy Sci 2023; 106:1-23. [PMID: 36333144 DOI: 10.3168/jds.2022-22267] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/08/2022] [Indexed: 11/06/2022]
Abstract
Antimicrobial resistance is an urgent and growing problem worldwide, both for human and animal health. In the animal health sector actions have been taken as concerns grow regarding the development and spread of antimicrobial resistance. Mastitis is the most common infection in dairy cattle. We aimed to summarize the genetic determinants found in staphylococci, streptococci, and Enterobacteriaceae isolated from mastitic milk samples and provide a comparison of percentage resistance to a variety of antimicrobials in European countries.
Collapse
Affiliation(s)
- Amalia Naranjo-Lucena
- National Reference Laboratory for Antimicrobial Resistance, Department of Agriculture, Food and the Marine, Backweston Laboratory Campus, Celbridge, Ireland W23 VW2C.
| | - Rosemarie Slowey
- National Reference Laboratory for Antimicrobial Resistance, Department of Agriculture, Food and the Marine, Backweston Laboratory Campus, Celbridge, Ireland W23 VW2C
| |
Collapse
|
20
|
Antimicrobial Resistance and Virulence Genes of Streptococcus Agalactiae Isolated from Mastitis Milk Samples in China. J Vet Res 2022; 66:581-590. [PMID: 36846045 PMCID: PMC9944998 DOI: 10.2478/jvetres-2022-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Streptococcus agalactiae is an important zoonotic pathogen that affects milk production and quality and poses a threat to public health. Treatment of infections with this bacterium exploits antimicrobials, to which the resistance of S. agalactiae is a growing problem. Addressing the possibility of a correlation between this pathogen's genetic factors for antimicrobial resistance and virulence, this study attempted to identify the relevant genes. Material and Methods Antimicrobial resistance of S. agalactiae isolated from 497 Chinese bovine mastitic milk samples was detected by the broth microdilution method. Eight drug resistance genes and eleven virulence genes were detected using PCR. Results Streptococcus agalactiae was 100% susceptible to rifampicin and vancomycin, 93.33% susceptible to sulfisoxazole and sulfamethoxazole, but 100% resistant to ≥3 of the 16 antimicrobial agents, thereby being multidrug resistant, with resistance to oxacillin, tetracycline, erythromycin, clindamycin, and gentamicin being common. The ermB, ermA and lnuA genes were carried by 73.33%, 66.67% and 60.00% of the strains, respectively. The carriage rates of the glnA, clyE, hylB, bibA, iagA, and fbsA virulence genes were greater than 40%, lmb and bac were not observed in any strain, and glnA+hylB+bibA+iagA+fbsA+clyE combined virulence gene patterns were the most commonly detected. Conclusion Antimicrobial resistance of S. agalactiae is still a great concern for cattle health in China, and multidrug resistance coupled with the high positive rates of this bacterium's strains for virulence genes indicates the importance of S. agalactiae surveillance and susceptibility tests.
Collapse
|
21
|
Tetracycline, Macrolide and Lincosamide Resistance in Streptococcus canis Strains from Companion Animals and Its Genetic Determinants. Antibiotics (Basel) 2022; 11:antibiotics11081034. [PMID: 36009903 PMCID: PMC9405182 DOI: 10.3390/antibiotics11081034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Growing antimicrobial resistance (AMR) in companion-animal pathogens, including Streptococcus canis (S. canis), is a significant concern for pet treatment as well for public health. Despite the importance of S. canis in veterinary and human medicine, studies concerning the AMR of this bacterium are still scarce. A total of 65 S. canis strains, isolated from dogs and cats, were assessed to test for susceptibility to six clinically relevant antimicrobials via a microdilution method. The prevalence of the selected acquired-resistance genes was also investigated via PCR. High MIC50 and MIC90 values (≥128 μg/mL) were noted for tetracycline, erythromycin and clindamycin. Only a few strains were resistant to the tested beta-lactams (6.2%). Tetracycline resistance was found in 66.2% of the strains. Resistance to erythromycin and clindamycin (ML resistance) was found in 55.4% of the strains. Strains with a phenotype showing concurrent resistance to tetracycline and ML were predominant (53.8%). AMR in the tested S. canis strains was associated with a variety of acquired and potentially transferable genes. Tetracycline resistance was conferred by tet(O) (40.0%), tet(M) (9.2%), and tet(T) (1.5%), which is reported for the first time in S. canis. In most cases, the tet(M) gene was detected in relation to the conjugative transposon Tn916. The MLSB phenotype was confirmed in the strains harboring erm(B) (43.1%) and erm(TR) (7.7%). To conclude, a high rate of S. canis strains occurring in dogs and cats displayed resistance to antimicrobials important for treatment; moreover, they are a potential reservoirs of various resistance determinants. Therefore, AMR in these pathogens should be continuously monitored, especially regarding the One Health concept.
Collapse
|
22
|
Li Q, Li Z, Wang Y, Chen Y, Sun J, Yang Y, Si H. Antimicrobial Resistance and Transconjugants Characteristics of sul3 Positive Escherichia coli Isolated from Animals in Nanning, Guangxi Province. Animals (Basel) 2022; 12:ani12080976. [PMID: 35454223 PMCID: PMC9025041 DOI: 10.3390/ani12080976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 01/27/2023] Open
Abstract
Sulfonamides are the second most popular antibiotic in many countries, which leads to the widespread emergence of sulfonamides resistance. sul3 is a more recent version of the gene associated with sulfonamide resistance, whose research is relatively little. In order to comprehend the prevalence of sul3 positive E. coli from animals in Nanning, a total of 146 strains of E. coli were identified from some farms and pet hospitals from 2015 to 2017. The drug resistance and prevalence of sul3 E. coli were analyzed by polymerase chain reaction (PCR) identification, multi-site sequence typing (MLST), drug sensitivity test, and drug resistance gene detection, and then the plasmid containing sul3 was conjugated with the recipient strain (C600). The effect of sul3 plasmid on the recipient was analyzed by stability, drug resistance, and competitive test. In this study, forty-six sul3 positive E. coli strains were separated. A total of 12 ST types were observed, and 1 of those was a previously unknown type. The ST350 is the most numerous type. All isolates were multidrug-resistant E. coli, with high resistant rates to penicillin, ceftriaxone sodium, streptomycin, tetracycline, ciprofloxacin, gatifloxacin, and chloramphenicol (100%, 73.9%, 82.6%, 100%, 80.4%, 71.7%, and 97.8%, respectively). They had at least three antibiotic resistance genes (ARGs) in addition to sul3. The plasmids transferred from three sul3-positive isolates to C600, most of which brought seven antimicrobial resistance (AMR) and increased ARGs to C600. The transferred sul3 gene and the plasmid carrying sul3 could be stably inherited in the recipient bacteria for at least 20 days. These plasmids had no effect on the growth of the recipient bacteria but greatly reduced the competitiveness of the strain at least 60 times in vitro. In Nanning, these sul3-positive E. coli had such strong AMR, and the plasmid carrying sul3 had the ability to transfer multiple resistance genes that long-term monitoring was necessary. Since the transferred plasmid would greatly reduce the competitiveness of the strain in vitro, we could consider limiting the spread of drug-resistant isolates in this respect.
Collapse
|
23
|
Liu K, Zhang L, Gu X, Liu G, Liu Y, Chen P, Deng Z, Gao J, Han B, Qu W. The prevalence, molecular characterization and antimicrobial resistance profiling of Streptococcus agalactiae isolated from clinical mastitis cases on large dairy farms in China. J DAIRY RES 2022; 89:1-5. [PMID: 35225183 DOI: 10.1017/s0022029922000152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This research communication aims to characterize the prevalence, molecular characterization and antimicrobial resistance profiling of Streptococcus agalactiae isolated from clinical mastitis in China. A total of 140 Strep. agalactiae isolates were identified from 12 out of 201 farms in 6 provinces, overall herd prevalence was 18.6% and the MLST analysis showed clonal complexes (CC) 103 and CC 67 were present in these herds with CC 103 predominant, accounting for 97.9%. Isolates were mostly sensitive to the tested antimicrobials: penicillin, ceftiofur, amoxi/clav, cefquinome, and vancomycin (100%), followed by cefalexin (97.9%), oxacillin (96.4%), enrofloxacin (95.7%), erythromycin (89.3%), and clindamycin (88.6%). Only 19.3 and 0.7% of isolates were sensitive to tetracycline and daptomycin, respectively, and sequence type (ST) 103 was most resistant to antimicrobials. In conclusion, CC 103 was the predominant subgroup of bovine mastitis Strep. agalactiae in China, and most antimicrobials apart from tetracycline and daptomycin were effective.
Collapse
Affiliation(s)
- Kai Liu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan Province 650201, People's Republic of China
| | - Limei Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan Province 650201, People's Republic of China
| | - Xiaolong Gu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan Province 650201, People's Republic of China
| | - Gang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing100193, People's Republic of China
| | - Yang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing100193, People's Republic of China
| | - Peng Chen
- College of Veterinary Medicine, China Agricultural University, Beijing100193, People's Republic of China
| | - Zhaoju Deng
- College of Veterinary Medicine, China Agricultural University, Beijing100193, People's Republic of China
| | - Jian Gao
- College of Veterinary Medicine, China Agricultural University, Beijing100193, People's Republic of China
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Beijing100193, People's Republic of China
| | - Weijie Qu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan Province 650201, People's Republic of China
| |
Collapse
|
24
|
Peng J, Lu Q, Liu X, Deng Y, Shang T, Yuan L, Zhang H, Zeng Q. Antibacterial effect of synthetic ultra-short lipopeptide on Streptococcus agalactiae and its active on bacterial mastitis in mice. Biochem Biophys Res Commun 2022; 601:153-159. [PMID: 35247769 DOI: 10.1016/j.bbrc.2022.02.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 01/01/2023]
Abstract
Streptococcus agalactiae mastitis is one of the significant threats to the milk industry. The traditional antibiotic treatment method is easy to cause the emergence of resistant strains, and the problem of drug residue is increasingly severe. In this study, we designed and synthesized five lipopeptides. The antibacterial activity of different molecular structure lipopeptides against Streptococcus agalactiae was detected. Furthermore, the mouse mastitis model was established using Streptococcus agalactiae. The lipopeptides with better antibacterial effect were selected for the treatment experiment to evaluate the application value in the treatment of mastitis. The results showed that 4 of the synthesized lipopeptides had specific antibacterial activity. SLP3 and SLP4 have an excellent antibacterial effect and can treat murine mastitis caused by Streptococcus agalactiae infection within the safe concentration range. The results of this study can provide an excellent experimental basis for new antibiotics and clinical application in the treatment of dairy cow mastitis.
Collapse
Affiliation(s)
- Jie Peng
- College of Veterinary Medicine, Gansu Agricultural University, Gansu, PR China.
| | - Qiangsheng Lu
- College of Veterinary Medicine, Gansu Agricultural University, Gansu, PR China
| | - Xuming Liu
- College of Veterinary Medicine, Gansu Agricultural University, Gansu, PR China
| | - Yuanjie Deng
- College of Veterinary Medicine, Gansu Agricultural University, Gansu, PR China
| | - Tiantian Shang
- College of Veterinary Medicine, Gansu Agricultural University, Gansu, PR China
| | - Lvfeng Yuan
- Lanzhou Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Gansu, PR China
| | - Hecheng Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Gansu, PR China
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Gansu, PR China
| |
Collapse
|
25
|
Lan R, Zhou Y, Wang Z, Fu S, Gao Y, Gao X, Zhang J, Han X, Phouthapane V, Xu Y, Miao J. Reduction of ROS-HIF1α-driven glycolysis by taurine alleviates Streptococcus uberis infection. Food Funct 2022; 13:1774-1784. [PMID: 35112684 DOI: 10.1039/d1fo03909a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antibiotic-resistant strains of Streptococcus uberis (S. uberis) frequently cause clinical mastitis in dairy cows resulting in enormous economic losses. The regulation of immunometabolism is a promising strategy for controlling this bacterial infection. To investigate whether taurine alleviates S. uberis infection by the regulation of host glycolysis via HIF1α, the murine mammary epithelial cell line (EpH4-Ev) and C57BL/6J mice were challenged with S. uberis. Our data indicate that HIF1α-driven glycolysis promotes inflammation and damage in response to the S. uberis challenge. The activation of HIF1α is dependent on mTOR-mediated ROS production. These results were confirmed in vivo. Taurine, an intracellular metabolite present in most animal tissues, has been shown to effectively modulate HIF1α-triggered metabolic reprogramming and contributes to a reduction of inflammation, which reduces mammary tissue damage and prevents mammary gland dysfunction in S. uberis-induced mastitis. These data provide a novel putative prophylactic and therapeutic strategy for amelioration of dairy cow mastitis and bacterial inflammation.
Collapse
Affiliation(s)
- Riguo Lan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuanyuan Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhenglei Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaodong Fu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yabing Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xing Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinqiu Zhang
- National Research Center for Veterinary Vaccine Engineering and Technology of China, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Vanhnaseng Phouthapane
- Department of Livestock and Fisheries, Ministry of Agriculture and Forestry, Vientiane, Laos
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
26
|
Liu G, Zhang S, Gao T, Mao Z, Shen Y, Pan Z, Guo C, Yu Y, Yao H. Identification of a novel broad-spectrum endolysin, Ply0643, with high antibacterial activity in mouse models of streptococcal bacteriaemia and mastitis. Res Vet Sci 2021; 143:41-49. [PMID: 34973538 DOI: 10.1016/j.rvsc.2021.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022]
Abstract
Streptococcal infections are very common in humans and animals, and they are usually treated with antibiotics. Multidrug-resistant Streptococcus strains have continuously emerged in recent years, prompting the search for alternatives to antibiotics. The use of endolysins encoded by phages has presented a promising alternative approach to treatment. In this study, a novel prophage endolysin, Ply0643, was identified from the prophage S. a 04. At an optimal concentration (30 μg/mL), rPly0643 exhibited broad and strong lysosomal enzyme activity against 66 Streptococcus strains from different sources while also maintaining high lytic activity over a wide pH range (pH 6-10) and a broad range of temperatures (28 °C-45 °C). Two in vivo treatments of rPly0643 (total 0.8 mg/mouse) significantly protected mice (80%) from lethal bacteriaemia with Streptococcus suis, and single treatments of rPly0643 (0.1 mg/gland) significantly reduced Streptococcus agalactiae concentrations and inflammation in murine mammary glands. These findings collectively demonstrate that Ply0643 exhibits good bactericidal activity both in vitro and in vivo, and therefore represents a useful antibacterial agent for combatting streptococcal infections.
Collapse
Affiliation(s)
- Guangjin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.
| | - Shiyu Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Tingting Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Zhao Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Yanling Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Changming Guo
- Jiangsu Agri-animal Husbandry and Veterinary College, Taizhou, China
| | - Yong Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| |
Collapse
|
27
|
Xu S, Liu Y, Gao J, Zhou M, Yang J, He F, Kastelic JP, Deng Z, Han B. Comparative Genomic Analysis of Streptococcus dysgalactiae subspecies dysgalactiae Isolated From Bovine Mastitis in China. Front Microbiol 2021; 12:751863. [PMID: 34745056 PMCID: PMC8570283 DOI: 10.3389/fmicb.2021.751863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022] Open
Abstract
Streptococcus dysgalactiae subsp. dysgalactiae (SDSD) is one of the most prevalent pathogens causing bovine mastitis worldwide. However, there is a lack of comprehensive information regarding genetic diversity, complete profiles of virulence factors (VFs), and antimicrobial resistance (AMR) genes for SDSD associated with bovine mastitis in China. In this study, a total of 674 milk samples, including samples from 509 clinical and 165 subclinical mastitis cases, were collected from 17 herds in 7 provinces in China from November 2016 to June 2019. All SDSD isolates were included in phylogenetic analysis based on 16S rRNA and multi-locus sequence typing (MLST). In addition, whole genome sequencing was performed on 12 representative SDSD isolates to screen for VFs and AMR genes and to define pan-, core and accessory genomes. The prevalence of SDSD from mastitis milk samples was 7.57% (51/674). According to phylogenetic analysis based on 16S rRNA, 51 SDSD isolates were divided into 4 clusters, whereas based on MLST, 51 SDSD isolates were identified as 11 sequence types, including 6 registered STs and 5 novel STs (ST521, ST523, ST526, ST527, ST529) that belonged to 2 distinct clonal complexes (CCs) and 4 singletons. Based on WGS information, 108 VFs genes in 12 isolates were determined in 11 categories. In addition, 23 AMR genes were identified in 11 categories. Pan-, core and accessory genomes were composed of 2,663, 1,633 and 699 genes, respectively. These results provided a comprehensive profiles of SDSD virulence and resistance genes as well as phylogenetic relationships among mastitis associated SDSD in North China.
Collapse
Affiliation(s)
- Siyu Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Man Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingyue Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fumeng He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Zhaoju Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Wang S, Yu Z, Wang J, Ho H, Yang Y, Fan R, Du Q, Jiang H, Han R. Prevalence, Drug Resistance, and Virulence Genes of Potential Pathogenic Bacteria in Pasteurized Milk of Chinese Fresh Milk Bar. J Food Prot 2021; 84:1863-1867. [PMID: 34129676 DOI: 10.4315/jfp-21-094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/12/2021] [Indexed: 11/11/2022]
Abstract
Fresh Milk Bar (FMB), an emerging dairy retail franchise, is used to instantly produce and sell pasteurized milk and other dairy products in China. However, the quality and safety of pasteurized milk in FMB have received little attention. The objective of this study was to investigate the prevalence, antimicrobial resistance, and virulence genes of Escherichia coli, Staphylococcus aureus, and Streptococcus in 205 pasteurized milk samples collected from FMBs in China. Four (2.0%) isolates of E. coli, seven (3.4%) isolates of S. aureus, and three (1.5%) isolates of Streptococcus agalactiae were isolated and identified. The E. coli isolates were resistant to amikacin (100%), streptomycin (50%), and tetracycline (50%). Their detected resistance genes include aac(3)-III (75%), blaTEM (25%), aadA (25%), aac(3)-II (25%), catI (25%), and qnrB (25%). The S. aureus isolates were mainly resistant to penicillin G (71.4%), trimethoprim-sulfamethoxazole (71.4%), kanamycin (57.1%), gentamicin (57.1%), amikacin (57.1%), and clindamycin (57.1%). blaZ (42.9%), mecA (28.6%), ermB (14.3%), and ermC (14.3%) were detected as their resistance genes. The Streptococcus strains were mainly resistant to tetracycline (66.7%) and contained the resistance genes pbp2b (33.3%) and tetM (33.3%). The virulence genes eae and stx2 were only found in one E. coli strain (25%), sec was detected in two S. aureus strains (28.6%), and bca was detected in one S. agalactiae strain (33.3%). The results of this study indicate that bacteria with drug resistance and virulence genes isolated from the pasteurized milk of FMB are a potential risk to consumers' health.
Collapse
Affiliation(s)
- Shifeng Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Zhongna Yu
- Haidu College, Qingdao Agricultural University, Laiyang 265200, Shandong, People's Republic of China
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Harvey Ho
- Auckland Bioengineering Institute, The University of Auckland, Auckland 6000, New Zealand
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Rongbo Fan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Qijing Du
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Hongning Jiang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| |
Collapse
|
29
|
Shen J, Wu X, Yang Y, Lv Y, Li X, Ding X, Wang S, Yan Z, Yan Y, Yang F, Li H. Antimicrobial Resistance and Virulence Factor of Streptococcus dysgalactiae Isolated from Clinical Bovine Mastitis Cases in Northwest China. Infect Drug Resist 2021; 14:3519-3530. [PMID: 34511943 PMCID: PMC8418370 DOI: 10.2147/idr.s327924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/24/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Streptococcus dysgalactiae is a major pathogen in bovine mastitis. The purpose of this study was to survey the prevalence, antimicrobial resistance, as well as the spread of resistance and virulence-associated gene of S. dysgalactiae. Methods A total of 60 S. dysgalactiae strains were obtained from 830 milk samples from Holstein cows with clinical mastitis. Antimicrobial resistance was examined by the disk diffusion method. Antimicrobial resistance and virulence genes were investigated by PCR, agarose gel electrophoresis and 16S rRNA gene sequencing. Results All isolates were resistant to tetracycline and showed a high level of resistance to aminoglycoside antibiotics, where 81.67% of the strains were multi-resistant to these ten sorts of antibiotics. In addition, the most prevalent resistance gene in S. dysgalactiae was aphA-1 (98.33%), followed by blaTEM (96.67%), ermB (83.3%), aadA1/aadA2 (78.33%) and tetL (73.33%). Totally, seven virulence genes with 25 combination patterns were detected in these isolates, and each isolates harbored at least one virulence gene. 21.67% of the isolates carried three or more virulence genes, while one strain with seven virulence-related genes and belonged to cfb+lmb+eno+napr+bca+scpB+cyl. Conclusion These findings indicate that S. dysgalactiae isolated from clinical bovine mastitis cases in Northwest China show a variety of molecular ecology and are highly resistant to antibiotics commonly used in dairy farms. This research will help investigators better understand the pathophysiology S. dysgalactiae in bovine mastitis and choose the appropriate antibiotics to treat mastitis.
Collapse
Affiliation(s)
- Jirao Shen
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xiaohu Wu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Yayuan Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Yanan Lv
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xinpu Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xuezhi Ding
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Shengyi Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Zuoting Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Yong Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Feng Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Hongsheng Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| |
Collapse
|
30
|
Identification and antimicrobial susceptibility of milk pathogen isolated from dairy production systems. Prev Vet Med 2021; 194:105451. [PMID: 34364060 DOI: 10.1016/j.prevetmed.2021.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022]
Abstract
Livestock has been recognized as a reservoir of antibiotic-resistant bacteria. Prevalence of resistance has been associated with herd size and intensification of animal production systems. Brazil is one of the emergent hotspots of bacterial resistance, which is also associated with animal husbandry. This study aimed to evaluate the resistance profile of pathogens that cause subclinical mastitis and the relationship between resistance status at farm level and different production systems. Milk samples from cows diagnosed with subclinical mastitis were collected from farms that adopt different husbandry systems with different production intensities, i.e., agroecological, low input, high input, Free-Stall and Compost-bedded pack barn. Etiological agents were isolated and microbiologically identified, and antibiotic susceptibility testing was conducted, using the disk diffusion method. The main isolated agents were Streptococcus spp. (n = 54, 30.5 %) and coagulase-positive Staphylococcus (CPS) (n = 54; 30.5 %). The recovered isolates displayed high antibiotic resistance against Sulfamethazine (80.2 %), Gentamicin (29.37 %), Penicillin (29.37 %), Oxacillin (28.82 %) and Ampicillin (26 %). Multidrug resistance was found for all agents and in all farming systems (39.54 %). Neither production systems (p = 0.26) nor farming systems (p = 0.24) significantly affected the resistance rates of samples. Therefore, intensive production systems may not be a root cause of increased rates of antimicrobial resistance in the milk production chain, suggesting that other environmental factors should be investigated. It is noteworthy that high levels of multidrug resistance were even found in bacteria earlier considered as minor pathogens. This development can be taken as a warning that environmental bacteria are potential transmitters of resistance genes to the environment.
Collapse
|
31
|
Zeng J, Wang Y, Fan L, Yang N, Pan J, Han Y, Wang X, Li Q, Guo G, Zheng J, Zeng W. Novel Streptococcus uberis sequence types causing bovine subclinical mastitis in Hainan, China. J Appl Microbiol 2021; 132:1666-1674. [PMID: 34309977 DOI: 10.1111/jam.15235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022]
Abstract
AIM To determine the molecular epidemiology, genotypes, and phenotypes of the major species of Streptococcus associated with bovine subclinical mastitis in Hainan, China. METHODS AND RESULTS In total, 150 subclinical mastitis milk samples were collected from two large dairy farms in Hainan. On the basis of biochemical tests and 16S rDNA sequencing, 39 samples were Streptococcus positive and the most frequently isolated species was Streptococcus uberis (n=29, 74.4%). According to multilocus sequence typing (MLST), and assays of biofilm formation, antimicrobial susceptibility, resistance and virulence genes, the S. uberis isolates were clustered into nine new sequence types (STs; ST986-ST994), but were not merged into a clonal group (except for ST991 (CC143)). All isolates produced biofilm, but most weakly. The dominant virulence pattern was hasABC + sua + gapC + oppF + pauA + mtuA + cfu (27/29, 91.1%), based on the 11 virulence genes tested. The majority of isolates (88.46%) carried at least one resistance gene and more than half (58.62%) were multidrug-resistant. The main resistance genes were linB (65.5%), ermB (37.9%), and tetS (34.5%), among the six antibiotic resistance genes and 11 antimicrobials tested. CONCLUSION Environmental S. uberis is important in bovine subclinical mastitis in Hainan. SIGNIFICANCE AND IMPACT OF THE STUDY S. uberis isolates in Hainan, China, show distinct MLST, virulence, and antibiotic resistance characteristics.
Collapse
Affiliation(s)
- Jifeng Zeng
- Lab of Microbial Engineering (Infection and Immunity), Hainan University, Haikou, 570228, China
| | - Yu Wang
- Lab of Microbial Engineering (Infection and Immunity), Hainan University, Haikou, 570228, China
| | - Lixia Fan
- Lab of Microbial Engineering (Infection and Immunity), Hainan University, Haikou, 570228, China
| | - Nuo Yang
- Lab of Microbial Engineering (Infection and Immunity), Hainan University, Haikou, 570228, China
| | - Jiwen Pan
- Lab of Microbial Engineering (Infection and Immunity), Hainan University, Haikou, 570228, China
| | - Yu Han
- Lab of Microbial Engineering (Infection and Immunity), Hainan University, Haikou, 570228, China
| | - Xin Wang
- Lab of Microbial Engineering (Infection and Immunity), Hainan University, Haikou, 570228, China
| | - Qian Li
- Lab of Microbial Engineering (Infection and Immunity), Hainan University, Haikou, 570228, China
| | - Guiying Guo
- Lab of Microbial Engineering (Infection and Immunity), Hainan University, Haikou, 570228, China
| | - Jiping Zheng
- Lab of Microbial Engineering (Infection and Immunity), Hainan University, Haikou, 570228, China
| | - Weixin Zeng
- Department of Pharmacy, Beijing Shijitan Hospital, Beijing, 100038, China
| |
Collapse
|
32
|
Monistero V, Barberio A, Cremonesi P, Castiglioni B, Morandi S, Lassen DCK, Astrup LB, Locatelli C, Piccinini R, Addis MF, Bronzo V, Moroni P. Genotyping and Antimicrobial Susceptibility Profiling of Streptococcus uberis Isolated from a Clinical Bovine Mastitis Outbreak in a Dairy Farm. Antibiotics (Basel) 2021; 10:antibiotics10060644. [PMID: 34071296 PMCID: PMC8229259 DOI: 10.3390/antibiotics10060644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus uberis, an environmental pathogen responsible also for contagious transmission, has been increasingly implicated in clinical mastitis (CM) cases in Europe. We described a 4-month epidemiological investigation of Strep. uberis CM cases in an Italian dairy farm. We determined molecular characteristics and phenotypic antimicrobial resistance of 71 Strep. uberis isolates from dairy cows with CM. Genotypic variability was investigated via multiplex PCR of housekeeping and virulence genes, and by RAPD-PCR typing. Antimicrobial susceptibility was assessed for 14 antimicrobials by MIC assay. All the isolates carried the 11 genes investigated. At 90% similarity, two distinct clusters, grouping 69 of the 71 isolates, were detected in the dendrogram derived from the primer ERIC1. The predominant cluster I could be separated into two subclusters, containing 38 and 14 isolates, respectively. Strep. uberis strains belonging to the same RAPD pattern differed in their resistance profiles. Most (97.2%) of them were resistant to at least one of the drugs tested, but only 25.4% showed a multidrug resistance phenotype. The highest resistance rate was observed for lincomycin (93%), followed by tetracycline (85.9%). This study confirmed a low prevalence of β-lactam resistance in Strep. uberis, with only one isolate showing resistance to six antimicrobial classes, including cephalosporins.
Collapse
Affiliation(s)
- Valentina Monistero
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.M.); (C.L.); (R.P.); (M.F.A.); (V.B.); (P.M.)
| | - Antonio Barberio
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy;
| | - Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology, National Research Council, 26900 Lodi, Italy;
- Correspondence: ; Tel.: +39-037-1466-2508
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology, National Research Council, 26900 Lodi, Italy;
| | - Stefano Morandi
- Institute of Sciences of Food Production, Italian National Research Council, 20133 Milan, Italy;
| | - Desiree C. K. Lassen
- Centre for Diagnostics, DTU Health Tech, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (D.C.K.L.); (L.B.A.)
| | - Lærke B. Astrup
- Centre for Diagnostics, DTU Health Tech, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (D.C.K.L.); (L.B.A.)
| | - Clara Locatelli
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.M.); (C.L.); (R.P.); (M.F.A.); (V.B.); (P.M.)
| | - Renata Piccinini
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.M.); (C.L.); (R.P.); (M.F.A.); (V.B.); (P.M.)
| | - M. Filippa Addis
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.M.); (C.L.); (R.P.); (M.F.A.); (V.B.); (P.M.)
| | - Valerio Bronzo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.M.); (C.L.); (R.P.); (M.F.A.); (V.B.); (P.M.)
| | - Paolo Moroni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.M.); (C.L.); (R.P.); (M.F.A.); (V.B.); (P.M.)
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
33
|
Abboud Z, Galuppo L, Tolone M, Vitale M, Puleio R, Osman M, Loria GR, Hamze M. Molecular Characterization of Antimicrobial Resistance and Virulence Genes of Bacterial Pathogens from Bovine and Caprine Mastitis in Northern Lebanon. Microorganisms 2021; 9:1148. [PMID: 34071800 PMCID: PMC8228836 DOI: 10.3390/microorganisms9061148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
Mastitis is an infectious disease encountered in dairy animals worldwide that is currently a growing concern in Lebanon. This study aimed at investigating the etiology of the main mastitis-causing pathogens in Northern Lebanon, determining their antimicrobial susceptibility profiles, and identifying their antimicrobial resistance (AMR) genes. A total of 101 quarter milk samples were collected from 77 cows and 11 goats presenting symptoms of mastitis on 45 dairy farms. Bacterial identification was carried out through matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Antimicrobial susceptibility was tested by disc diffusion and broth microdilution methods. Molecular characterization included polymerase chain reaction (PCR) screening for genes encoding extended-spectrum beta-lactamases (ESBLs) and plasmid-mediated AmpC among Enterobacterales isolates, and virulence factors among Staphylococcus isolates. Escherichia coli isolates were subjected to phylogenetic typing by a quadruplex PCR method. The most frequently identified species were Streptococcus uberis (19.2%), Streptococcus agalactiae (15.1%), E. coli (12.3%), and Staphylococcus aureus (10.96%). Gram-positive bacteria were resistant to macrolides and tetracycline, whereas gram-negative bacteria displayed resistance to ampicillin and tetracycline. Two ESBL genes, blaTEM (83.3%) and blaOXA (16.7%), and one AmpC beta-lactamase gene, blaCMY-II (16.7%), were detected among six E. coli isolates, which mainly belonged to phylogenetic group B1. Among Staphylococcus spp., the mecA gene was present in three isolates. Furthermore, four isolates contained at least one toxin gene, and all S. aureus isolates carried the ica operon. These findings revealed the alarming risk of AMR in the Lebanese dairy chain and the importance of monitoring antimicrobial usage.
Collapse
Affiliation(s)
- Zahie Abboud
- Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli P.O. Box 146404, Lebanon;
| | - Lucia Galuppo
- Istituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi 3, 90129 Palermo, Italy; (L.G.); (M.V.); (R.P.)
| | - Marco Tolone
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Maria Vitale
- Istituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi 3, 90129 Palermo, Italy; (L.G.); (M.V.); (R.P.)
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi 3, 90129 Palermo, Italy; (L.G.); (M.V.); (R.P.)
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli P.O. Box 146404, Lebanon;
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| | - Guido Ruggero Loria
- Istituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi 3, 90129 Palermo, Italy; (L.G.); (M.V.); (R.P.)
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli P.O. Box 146404, Lebanon;
| |
Collapse
|
34
|
Ding Y, Wu Q, Guo Y, Li M, Li P, Ma Y, Liu W. Effects of in vitro-induced drug resistance on the virulence of Streptococcus. Vet Med Sci 2021; 7:935-943. [PMID: 33314727 PMCID: PMC8136945 DOI: 10.1002/vms3.404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/25/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
This study aimed to evaluate the effects of in vitro-induced drug resistance on the virulence of Streptococcus. Micro-dilution method was used to determine the minimal inhibitory concentration (MIC). In vitro-induced drug resistance was conducted for S. agalactiae (CVCC1886) and S. dysgalactiae (CVCC3701) by gradually increasing the antimicrobial concentration (strains were from IVDC, China). PCR was used to detect the resistance and virulence genes of the strains before and after resistance induction. Colony morphology was observed to compare the physiological and biochemical properties of the strains. A total of 88 clean-grade Kunming mice (obtained from Inner Mongolia University, Hohhot, China) were used in half of the lethal dose (LD50) test for detecting the changes in virulence of strains. The results showed that S. agalactiae (CVCC1886) and S. dysgalactiae (CVCC3701) developed resistance against seven kinds of antibiotics, respectively. Resistance and virulence genes of CVCC3701 were changed when treated by the Penicillin-inducing. The growth of the CVCC3701-PEN was decreased compared to the CVCC3701. Virulence test in mice indicated that the LD50 of CVCC3701 before induction and CVCC3701-PEN after induction were 5.45 × 106 and 5.82 × 108 CFU/ml, respectively. Compared with the untreated bacteria, the bacterial virulence was reduced 1.1 × 102 times after resistance induction. In conclusion, S. dysgalactiae (CVCC3701) is a susceptible strain of drug resistance to antibiotics, in vitro-induced drug resistance reduced the virulence of CVCC3701, but the virulence is still existing and also could result in the death of mice. For public health safety, it must be alert to the emergence of drug resistance of Streptococcus in animal production.
Collapse
Affiliation(s)
- Yue‐Xia Ding
- College of Coastal Agricultural SciencesGuangdong Ocean UniversityZhanjiangPR China
- Department of Veterinary Pharmacology & ToxicologyCollege of Veterinary MedicineInner Mongolia Agricultural UniversityHohhotPR China
- Laboratory of Clinical Diagnosis and Treatment Techniques for Animal DiseaseMinistry of AgricultureHohhotPR China
| | - Qun Wu
- Research Institute of Agricultural MachineryChinese Academy of Tropical Agricultural SciencesZhanjiangPR China
| | - Yan Guo
- College of Coastal Agricultural SciencesGuangdong Ocean UniversityZhanjiangPR China
| | - Man Li
- Department of Veterinary Pharmacology & ToxicologyCollege of Veterinary MedicineInner Mongolia Agricultural UniversityHohhotPR China
- Laboratory of Clinical Diagnosis and Treatment Techniques for Animal DiseaseMinistry of AgricultureHohhotPR China
| | - Pei‐Feng Li
- Department of Veterinary Pharmacology & ToxicologyCollege of Veterinary MedicineInner Mongolia Agricultural UniversityHohhotPR China
- Laboratory of Clinical Diagnosis and Treatment Techniques for Animal DiseaseMinistry of AgricultureHohhotPR China
| | - Yi Ma
- College of Coastal Agricultural SciencesGuangdong Ocean UniversityZhanjiangPR China
- Maoming BranchGuangdong Laboratory for Lingnan Modern AgricultureMaomingPR China
| | - Wen‐Chao Liu
- College of Coastal Agricultural SciencesGuangdong Ocean UniversityZhanjiangPR China
| |
Collapse
|
35
|
Hernandez L, Bottini E, Cadona J, Cacciato C, Monteavaro C, Bustamante A, Sanso AM. Multidrug Resistance and Molecular Characterization of Streptococcus agalactiae Isolates From Dairy Cattle With Mastitis. Front Cell Infect Microbiol 2021; 11:647324. [PMID: 33996629 PMCID: PMC8120232 DOI: 10.3389/fcimb.2021.647324] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/09/2021] [Indexed: 11/28/2022] Open
Abstract
Streptococcus agalactiae is a pathogen-associated to bovine mastitis, a health disorder responsible for significant economic losses in the dairy industry. Antimicrobial therapy remains the main strategy for the control of this bacterium in dairy herds and human In order to get insight on molecular characteristics of S. agalactiae strains circulating among Argentinean cattle with mastitis, we received 1500 samples from 56 dairy farms between 2016 and 2019. We recovered 56 S. agalactiae isolates and characterized them in relation to serotypes, virulence genes, and antimicrobial susceptibility. Serotypes III and II were the most prevalent ones (46% and 41%, respectively), followed by Ia (7%). In relation to the 13 virulence genes screened in this study, the genes spb1, hylB, cylE, and PI-2b were present in all the isolates, meanwhile, bca, cpsA, and rib were detected in different frequencies, 36%, 96%, and 59%, respectively. On the other hand, bac, hvgA, lmb, PI-1, PI-2a, and scpB genes could not be detected in any of the isolates. Disk diffusion method against a panel of eight antimicrobial agents showed an important number of strains resistant simultaneously to five antibiotics. We also detected several resistance-encoding genes, tet(M), tet(O), ermB, aphA3, and lnu(B) (9%, 50%, 32%, 32%, and 5%, respectively). The results here presented are the first molecular data on S. agalactiae isolates causing bovine mastitis in Argentina and provide a foundation for the development of diagnostic, prophylactic, and therapeutic methods, including the perspective of a vaccine.
Collapse
Affiliation(s)
- Luciana Hernandez
- Laboratorio de Inmunoquímica y Biotecnología, CIVETAN (CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| | - Enriqueta Bottini
- Laboratorio de Microbiología Clínica y Experimental, CIVETAN (CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| | - Jimena Cadona
- Laboratorio de Inmunoquímica y Biotecnología, CIVETAN (CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| | - Claudio Cacciato
- Laboratorio de Microbiología Clínica y Experimental, CIVETAN (CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| | - Cristina Monteavaro
- Laboratorio de Microbiología Clínica y Experimental, CIVETAN (CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| | - Ana Bustamante
- Laboratorio de Inmunoquímica y Biotecnología, CIVETAN (CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| | - Andrea Mariel Sanso
- Laboratorio de Inmunoquímica y Biotecnología, CIVETAN (CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| |
Collapse
|
36
|
Vezina B, Al-Harbi H, Ramay HR, Soust M, Moore RJ, Olchowy TWJ, Alawneh JI. Sequence characterisation and novel insights into bovine mastitis-associated Streptococcus uberis in dairy herds. Sci Rep 2021; 11:3046. [PMID: 33542314 PMCID: PMC7862697 DOI: 10.1038/s41598-021-82357-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Streptococcus uberis is one of the most frequent mastitis-causing pathogens isolated from dairy cows. Further understanding of S. uberis genetics may help elucidate the disease pathogenesis. We compared the genomes of S. uberis isolates cultured from dairy cows located in distinctly different geographic regions of Australia. All isolates had novel multi locus sequence types (MLST) indicating a highly diverse population of S. uberis. Global clonal complexes (GCC) were more conserved. GCC ST86 and GCC ST143 represented 30% of the total isolates (n = 27) and were clustered within different geographic regions. Core genome phylogeny revealed low phylogenetic clustering by region, isolation source, and MLST. Identification of putative sortase (srtA) substrates and generation of a custom putative virulence factor database revealed genes which may explain the affinity of S. uberis for mammary tissue, evasion of antimicrobial efforts and disease pathogenesis. Of 27 isolates, four contained antibiotic resistance genes including an antimicrobial resistance cluster containing mel/mef(A), mrsE, vatD, lnuD, and transposon-mediated lnuC was also identified. These are novel genes for S. uberis, which suggests interspecies lateral gene transfer. The presence of resistance genes across the two geographic regions tested within one country supports the need for a careful, tailored, implementation and monitoring of antimicrobial stewardship.
Collapse
Affiliation(s)
- Ben Vezina
- Good Clinical Practice Research Group (GCPRG), The University of Queensland, School of Veterinary Science, Gatton, QLD, 4343, Australia.,Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Hulayyil Al-Harbi
- The University of Queensland, School of Veterinary Science, Gatton, QLD, 4343, Australia
| | - Hena R Ramay
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Martin Soust
- Terragen Biotech Pty Ltd., Coolum Beach, QLD, 4573, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, Melbourne, 3083, Australia
| | - Timothy W J Olchowy
- Good Clinical Practice Research Group (GCPRG), The University of Queensland, School of Veterinary Science, Gatton, QLD, 4343, Australia.,Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T3R 1J3, Canada
| | - John I Alawneh
- Good Clinical Practice Research Group (GCPRG), The University of Queensland, School of Veterinary Science, Gatton, QLD, 4343, Australia. .,The University of Queensland, School of Veterinary Science, Gatton, QLD, 4343, Australia.
| |
Collapse
|
37
|
Anti-Biofilm Effect of Tea Saponin on a Streptococcus agalactiae Strain Isolated from Bovine Mastitis. Animals (Basel) 2020; 10:ani10091713. [PMID: 32971787 PMCID: PMC7552639 DOI: 10.3390/ani10091713] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/11/2020] [Accepted: 09/20/2020] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Tea saponin (TS), an inexpensive and easily-available plant extract, exhibited antibacterial activity against a Streptococcus agalactiae strain isolated from a dairy cow with mastitis. In addition, TS can inhibit the biofilm formation ability of this strain by down-regulating the transcript levels of biofilm-associated genes including srtA, fbsC, neuA, and cpsE. Hence, TS might be a potential alternative herbal cure for bovine mastitis. Abstract Streptococcus agalactiae (GBS) is a highly contagious pathogen which not only can cause neonatal meningitis, pneumonia, and septicemia but is also considered to be a major cause of bovine mastitis (BM), leading to large economic losses to the dairy industry worldwide. Like many other pathogenic bacteria, GBS also has the capacity to form a biofilm structure in the host to cause persistent infection. Tea saponin (TS), is one of the main active agents extracted from tea ash powder, and it has good antioxidant and antibacterial activities. In this study, we confirmed that TS has a slight antibacterial activity against a Streptococcus agalactiae strain isolated from dairy cow with mastitis and inhibits its biofilm formation. By performing scanning electron microscopy (SEM) experiments, we observed that with addition of TS, the biofilm formed by this GBS strain exhibited looser structure and lower density. In addition, the results of real-time reverse transcription polymerase chain reaction (RT-PCR) experiments showed that TS inhibited biofilm formation by down-regulating the transcription of the biofilm-associated genes including srtA, fbsC, neuA, and cpsE.
Collapse
|
38
|
Abril AG, Carrera M, Böhme K, Barros-Velázquez J, Rama JLR, Calo-Mata P, Sánchez-Pérez A, Villa TG. Proteomic Characterization of Antibiotic Resistance, and Production of Antimicrobial and Virulence Factors in Streptococcus Species Associated with Bovine Mastitis. Could Enzybiotics Represent Novel Therapeutic Agents Against These Pathogens? Antibiotics (Basel) 2020; 9:antibiotics9060302. [PMID: 32512932 PMCID: PMC7344566 DOI: 10.3390/antibiotics9060302] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 01/31/2023] Open
Abstract
Streptococcus spp. are major mastitis pathogens present in dairy products, which produce a variety of virulence factors that are involved in streptococcal pathogenicity. These include neuraminidase, pyrogenic exotoxin, and M protein, and in addition they might produce bacteriocins and antibiotic-resistance proteins. Unjustifiable misuse of antimicrobials has led to an increase in antibiotic-resistant bacteria present in foodstuffs. Identification of the mastitis-causing bacterial strain, as well as determining its antibiotic resistance and sensitivity is crucial for effective therapy. The present work focused on the LC–ESI–MS/MS (liquid chromatography–electrospray ionization tandem mass spectrometry) analysis of tryptic digestion peptides from mastitis-causing Streptococcus spp. isolated from milk. A total of 2706 non-redundant peptides belonging to 2510 proteins was identified and analyzed. Among them, 168 peptides were determined, representing proteins that act as virulence factors, toxins, anti-toxins, provide resistance to antibiotics that are associated with the production of lantibiotic-related compounds, or play a role in the resistance to toxic substances. Protein comparisons with the NCBI database allowed the identification of 134 peptides as specific to Streptococcus spp., while two peptides (EATGNQNISPNLTISNAQLNLEDKNK and DLWC*NM*IIAAK) were found to be species-specific to Streptococcus dysgalactiae. This proteomic repository might be useful for further studies and research work, as well as for the development of new therapeutics for the mastitis-causing Streptococcus strains.
Collapse
Affiliation(s)
- Ana G. Abril
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15705 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.)
| | - Mónica Carrera
- Marine Research Institute (IIM), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain;
| | - Karola Böhme
- Agroalimentary Technological Center of Lugo, Montirón 154, 27002 Lugo, Spain;
| | - Jorge Barros-Velázquez
- Departamento de Química Analítica, Nutrición y Bromatología, Area de Tecnología de los Alimentos, Facultad de Veterinaria, Campus Lugo, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (J.B.-V.); (P.C.-M.)
| | - José-Luis R. Rama
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15705 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.)
| | - Pilar Calo-Mata
- Departamento de Química Analítica, Nutrición y Bromatología, Area de Tecnología de los Alimentos, Facultad de Veterinaria, Campus Lugo, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (J.B.-V.); (P.C.-M.)
| | - Angeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Tomás G. Villa
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15705 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.)
- Correspondence:
| |
Collapse
|
39
|
de Alcântara Rodrigues I, Ferrari RG, Panzenhagen PHN, Mano SB, Conte-Junior CA. Antimicrobial resistance genes in bacteria from animal-based foods. ADVANCES IN APPLIED MICROBIOLOGY 2020; 112:143-183. [PMID: 32762867 DOI: 10.1016/bs.aambs.2020.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antimicrobial resistance is a worldwide public health threat. Farm animals are important sources of bacteria containing antimicrobial resistance genes (ARGs). Although the use of antimicrobials in aquaculture and livestock has been reduced in several countries, these compounds are still routinely applied in animal production, and contribute to ARGs emergence and spread among bacteria. ARGs are transmitted to humans mainly through the consumption of products of animal origin (PAO). Bacteria can present intrinsic resistance, and once antimicrobials are administered, this resistance may be selected and multiply. The exchange of genetic material is another mechanism used by bacteria to acquire resistance. Some of the main ARGs found in bacteria present in PAO are the bla, mcr-1, cfr and tet genes, which are directly associated to antibiotic resistance in the human clinic.
Collapse
Affiliation(s)
- Isadora de Alcântara Rodrigues
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
| | - Rafaela Gomes Ferrari
- Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Sergio Borges Mano
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
| | - Carlos Adam Conte-Junior
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil; Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Characterization of Staphylococci and Streptococci Isolated from Milk of Bovides with Mastitis in Egypt. Pathogens 2020; 9:pathogens9050381. [PMID: 32429272 PMCID: PMC7281669 DOI: 10.3390/pathogens9050381] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to characterize staphylococci and streptococci in milk from Egyptian bovides. In total, 50 milk samples were collected from localities in the Nile Delta region of Egypt. Isolates were cultivated, identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and antibiotic susceptibility testing was performed by the broth microdilution method. PCR amplifications were carried out, targeting resistance-associated genes. Thirty-eight Staphylococcus isolates and six Streptococcus isolates could be cultivated. Staphylococcus aureus isolates revealed a high resistance rate to penicillin, ampicillin, clindamycin, and erythromycin. The mecA gene defining methicillin-resistant Staphylococcus aureus, erm(C) and aac-aphD genes was found in 87.5% of each. Coagulase-negative staphylococci showed a high prevalence of mecA, blaZ and tetK genes. Other resistance-associated genes were found. All Streptococcus dysgalactiae isolates carried blaZ, erm(A), erm(B), erm(C) and lnuA genes, while Streptococcus suis harbored erm(C), aphA-3, tetL and tetM genes, additionally. In Streptococcus gallolyticus, most of these genes were found. The Streptococcus agalactiae isolate harbored blaZ, erm(B), erm(C), lnuA, tetK, tetL and tetM genes. Streptococcus agalactiae isolate was analyzed by DNA microarray analysis. It was determined as sequence type 14, belonging to clonal complex 19 and represented capsule type VI. Pilus and cell wall protein genes, pavA, cadD and emrB/qacA genes were identified by microarray analysis.
Collapse
|